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Abstract. Rainfall-runoff simulation based on deep learning always costs plenty of time for training with large datasets. This 

may affect quick decision making in some flood emergency decision-making situations. To address this issue, this study 

proposes an incremental learning method to accelerate rainfall-runoff simulation with deep learning model. The method 10 

consists of two components, regular training and incremental operation. In regular training phase, the model is regularly trained 

using historical data. In the incremental operation phase, the method selects representative samples from historical data with 

distribution estimation metrics and time series similarity metrics, then updates the regularly trained model with the sampled 

data and recent data in case of emergency. The proposed method was tested using ten hydrological observation stations in the 

Yangtze River and Han River drainage basin, with three different modified Recurrent Neural Networks. The results show that 15 

the incremental learning method achieves a training efficiency acceleration of over 4 times, with only a little increase in 

percentage error and decrease in Nash-Sutcliffe efficiency coefficient. The results also illustrate the robustness of this method 

for different models in different places, as well as during continuous incremental scenarios. The findings indicate that the 

incremental learning method has great potential applications in rapid rainfall-runoff simulation for flood emergency decision-

making. 20 

1 Introduction 

Rainfall-runoff simulation plays an important role in flood emergency decision-making. With the development of artificial 

intelligence and big data technologies, Deep Neural Networks (DNNs) have become prevalent in rainfall-runoff simulation for 

their powerful nonlinear simulation ability and high-precision simulation results. Recurrent Neural Networks (RNNs) as 

typical DNN sequence models are good at dealing with time series data and widely used in rainfall-runoff simulation (Chen et 25 

al., 2021; Hu et al., 2018; Li et al., 2021; Wang et al., 2020; Xu et al., 2022; Yin et al., 2021). When utilizing deep learning 

models to simulate rainfall-runoff relationships, the requirement for extensive training data often leads to a significant 

consumption of time, which may hinder swift decision-making in urgent flood emergency situations. For instance, a deep 

learning model employed to simulate the rainfall-runoff relationships of several key stations in the Yangtze River Basin in 

China, with decades of data, would take several hours to complete. Meanwhile, the government's flood control and disaster 30 
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reduction department of the Yangtze River necessitates the simulated results to conduct decision analysis and action on an 

hourly basis (Xie et al., 2018). Unfortunately, the sluggish pace of model simulation cannot meet the demands of real-time 

decision-making. This predicament is likely to become more pronounced as the utilization of training data becomes 

increasingly widespread. Therefore, a novel approach has emerged, which involves training the deep-learning model with an 

abundance of historical data during periods of low urgency and subsequently updating the trained model with a combination 35 

of historical sampled data and recent data in the event of an emergency. By doing so, the efficiency of rainfall-runoff simulation 

can be significantly improved to meet the requirements of timely decision-making. Incremental learning methods may offer a 

feasible solution to this problem. 

Incremental learning, also called continual learning, refers to the ability of learning from stream of data which associate with 

different tasks or domains to solve the future problem with historical experience (Aljundi, 2019a). The main goal of 40 

incremental learning can be described as performing well both in historical tasks. Replay methods refer to re-introducing part 

of the samples from historical data to the learner when the new incremental samples come, the process of performing steps on 

the replayed samples is called rehearsal (Aljundi, 2019a). Hayes gives a detailed review of the derivation and idea of replay 

methods and illustrate how they are applied in deep learning (Hayes et al., 2021). Replay methods can be further classified 

into raw replay and generative relay methods referring to using the real historical samples and generating pseudo samples 45 

respectively. In raw replay methods, a buffer is usually set to store part of the historical data, which avoids frequent data 

selection when incremental data come while adds memory overhead. The Generative replay methods spring up as the 

generative adversarial network (GAN) plays an increasingly important role in deep learning and usually are applied in the 

situation that the previous data are difficult to acquire. The core problem of replay methods is the replayed data selection 

standards. Uniform random sampling, sampling with examples closet to class boundary, sampling with examples with highest 50 

entropy and sampling with the examples contributes to updating parameters the most are proposed standard and are verified 

with a good performance. The process of sampling can be described as an optimization problem on maximizing the chosen 

sample diversity with constrain (Aljundi, 2019b). The standards mentioned above can be seen as the objective of optimization. 

Similarity metrics also can be contributor to sampling. Overall sample selection methods for replay works well in some specific 

situation, while uniform random sampling still have a relatively stronger adaptivity to average problems. Apart from alleviating 55 

the catastrophic forgetting of the DNNs, replay methods can also facilitate better efficiency, which makes the network require 

fewer samples to learn new information. It is found that neural network required fewer training epochs to reach a target error 

on a new task after having learned other similar tasks. These findings between task similarity and network performance in 

terms of error and time have been studied (Davidson & Mozer, 2020), which can be further discussed considering inputs 

formulated as time series. Regardless of the specific form of replay, the replay methods usually combined with the 60 

regularization methods to improve the models’ performance. Regularization methods refer to freezing parts of a model when 

training for successive incremental tasks, which can be interpreted as storing knowledge on how to solve different tasks in 

different parts of the model so that training on subsequent tasks does not interfere with this knowledge. Sometimes, the weights 

of the networks are not completely fixed but are normalized so that they do not change too much as the model is trained across 
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different tasks. The elastic weight consolidation (EWC) uses this approach (Kirkpatrick et al., 2017). When the model is trained 65 

in a sequence of tasks, learning is slowed down by weights that are important to the previous task. Specifically, the learning 

of the important weights that are important to the previous tasks is slowed down. The reparameterization leads to a factorized 

rotation of the parameter space and makes the diagonal Fisher information matrix assumption more applicable. Moreover, 

other advanced methods are proposed on the calculation of the important weight. Memory Aware Synapses (MAS), structurally 

similar to EWC, adds an item which is obtained gradients of the squared L2-norm of the model’s output in the loss function 70 

(Aljundi et al., 2018). MAS demonstrates a novel and more explanatory idea about the importance of parameters. Remanian 

Walk (RWalk) is a generalization of EWC and path integrals (Chaudhry et al., 2018), adopting a theoretical basis perspective 

based on KL divergence as well as several new metrics. A drawback of this method is the loss of the effective trainable ability 

of the model as increasing model parameters are regularized over time. SI (Zenke et al., 2017) shows state-of-the-art 

performance and comes closest to MAS. It estimates the importance weights in an online manner while training for a new task. 75 

Regularization method change to important parameters are penalized during training of incremental tasks. Above 

regularization methods concentrate on the penalty on loss function, given explanatory statistical standards into consideration, 

which perform relatively better when alleviating catastrophic forgetting. And it’s common that the replay methods are usually 

combined with regularization methods to reach a more accurate in incremental learning tasks, among which ICARL is a typical 

method (Rebuffi et al., 2017). Besides, incremental learning methods usually focus on the picture data and are rarely applied 80 

in DNNs to analyze time series. Some researches use incremental learning on modified RNN, including constructing new 

hybrid incremental learning structure on LSTM (Sodhani et al., 2020) and enhancing short-term traffic prediction (Shao et al., 

2021), which gives a diagram of incremental learning based on RNN. Yet, among the above incremental learning methods, 

partial data selection standards are not yet detailed discussed especially encountering time series data like rainfall-runoff data.  

The theoretical description of time series similarity is proposed when addressing time series similarity/dissimilarity search 85 

(Agrawal et al., 1993), which is widely recognized in data mining field and rises different measurements coming into being. 

With different lengths and irregular sampling intervals, different distance measurement methods try to specify the similarity 

formulation by taking both time series representations and original raw time series into consideration. The prevalent methods 

include Euclidean distance, Longest Common Sub-Sequence (LCSS), Dynamic Time Warping (DTW) and so on (Paterson et 

al., 1994). Time series measurement methods can be roughly classified into methods based on time, methods based on shape 90 

and methods based on structure. The methods based on time consider similarity on each time step, and therefore it’s proper to 

use the basic distance metrics like Euclidean distance measure. To reduce the calculation on the raw time series, Fourier 

transformer and Piecewise Aggregate Approximation (PAA) are usually used so that distance metrics are carried on 

transformed time series (Guo et al., 2010). The methods based on shape pay more attention on the series shaped similarity 

regardless of the points’ features in time. Shape of the time series is a local characteristic of the complete time series, which 95 

tends to show the short-term variety rules of the time series. As for the methods based on structural similarity, modelling 

process such as Hidden Markov Models (HMM) (Smyth, 1996) are usually used so that measurement can be carried on the 

parameters of the model and time series. Structure of time series demonstrates the global characteristic, focusing on the long-
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term variety rules of the time series. And the method based on dynamic programming perform the most effectively despite 

expensive time execution (the cost of comparing two time series is quadratic in the length of the time series) (Salvador & Chan, 100 

2007), which construct a connection between the global and local features. Preliminary conclusion can be drawn from 

mentioned methods and related literatures is that the similarity/dissimilarity of time series depends on the target of utilizing 

the similarity, that so far most of the researches propose various measurement methods from time and global or local structural 

features based on relatively small dataset and that among the methods the most common methods such as Euclidean distance 

and DTW show high performance with relatively simple idea. Owing to the temporal characters of rainfall-runoff data, the 105 

similarity measurements for time series can be integrated to partial representative replayed data selection standards of the 

incremental learning method. 

In this paper, we propose a novel incremental learning method to accelerate the training of Recurrent Neural Network (RNN) 

models for rainfall-runoff simulation. The method is designed to enable the model to learn from a large dataset while also 

adapting to changing conditions in real-time. The proposed method consists of two main components: regular training and 110 

emergency operation. During regular training, the model is trained on a diverse set of data samples, which enables it to learn 

the underlying patterns and relationships in the data. In emergency situations, the model can be quickly updated using a subset 

of representative data that captures the essence of the changing conditions. This approach allows the model to adapt to new 

data without requiring a complete retraining process. To ensure the efficiency and effectiveness of the incremental learning 

method, we introduce two key components: data distribution parameters and time series similarity metric. The data distribution 115 

parameters are used to select a representative subset of data that captures the underlying patterns and trends in the data. The 

time series similarity metric is used to measure the similarity between the new data and the existing data, allowing the model 

to adapt to changing conditions while still leveraging the knowledge gained from the regular training process. We evaluate the 

performance of the proposed incremental learning method using several modified RNNs and a study case of the middle reaches 

of the Yangtze River Basin and Han River Basin. The results demonstrate that the method is able to significantly accelerate 120 

the simulation speed of rainfall-runoff models while maintaining their accuracy and robustness. Our contribution is to propose 

a practical and robust incremental learning method that can accelerate the simulation speed of rainfall-runoff models, making 

them applicable to emergency flood management. The proposed method has important implications for improving the 

efficiency and effectiveness of flood management systems, particularly in situations where timely decisions are critical. 

2 Materials and Methods 125 

2.1 Study areas 

The Yangtze River are prone to frequent flood disasters. This region experiences a high occurrence of flood and waterlogging 

incidents, which pose significant challenges to the local communities and infrastructure. These flood events result in 

widespread destruction, including damage to homes, agricultural lands, and transportation networks. Therefore, it is necessary 

to select the middle reaches region with significant ecological, economic, and social value as the study area. The Yangtze 130 
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River, the longest and largest river of China, is with length of 6300 km and a drainage basin area of 1.8 million km2 and is of 

great importance in ecology, economics and culture. As the longest tributary of the Yangtze River, with length of 1500 km 

and a drainage basin area of 1.8 million km2, the Han River flows into the artery of the Yangtze River in the middle reaches. 

The runoff changes have important impact on the spatial-temporal distribution of water resources in the whole river basin 

which means continuously frequent requirements on water resource analysis and management. Therefore, rainfall-runoff 135 

simulation is particularly significant for regional hydrological information patterns in the middle reaches of Yangtze River 

basin. The location and hydrological observation stations are shown in Figure. 1. 

 
Figure 1: The location of the middle reaches of the Yangtze River and the Han River drainage basin and hydrological observation 
stations. 140 

2.2 The Incremental Learning Method 

Existing incremental learning methods for replay do not specifically target temporal feature data. We combine data distribution 

estimation, temporal similarity, and regularization methods to improve. We utilize partial representative data for incremental 

training, with a focus on time series similarity metrics that compare time series with the same length. Given the periodic 
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characteristic of rainfall-runoff series, we divide the complete time series into sub-time series of the same length, enabling the 145 

similarity between time series with different lengths to be transferred to the similarity among sub-time series with the same 

length. 

We ensure that the data in each sub-dataset is similar in distribution and can be fit with a simple distribution, which can be 

estimated. We integrate similarity in both distribution and time series characteristics as partial representative data selection 

standards to ensure the representativeness of the selected data. As an additional penalty item on the loss function, parameter 150 

importance calculation is the core of regularization during incremental training. 

Our method is based on regular network training, and as a result, the amount of calculation is significantly reduced, resulting 

in a notable acceleration of the training process. Moreover, owing to the representative partial data and regularization, the 

network model shows good performance on the incremental data. The structure of the incremental learning method can be 

elaborated as Figure. 2, the method can be divided into two parts: regular training for parameter initializing and incremental 155 

operation to deal with incremental training. Comprehensive consideration about data feature of both the historical and 

incremental data is used to produce partial representative data to reduce the magnitude of the input data. Parameter importance 

calculation as regularization constraint is added in incremental training to handle the error problem of the network when 

training real-time incremental data. Meanwhile when new incremental data is continuously input, the model may be trained at 

multiple times in a short period of time. The incremental learning method should also ensure the stability of the method effect 160 

under such conditions.  

 
Figure 2: The structure of the incremental learning method. 
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The incremental operation part can be described as the following steps in detail. First, periodic analysis of time series is 

performed, and the combination of historical data and incremental data are sliced into multiple sub-time series. The distribution 165 

parameter calculation and timing similarity measurement calculation are performed for each sub-time series. By comparing 

the parameter difference between sub-time series and the overall time series and the timing similarity difference between sub-

time series, the weights of the calculation result of the difference are assigned and the replay scores are obtained. The sub-time 

series are sorted according to the replay score, the number of sub-time series is determined according to the replay sample size 

level required by the incremental learning efficiency, and partial representative samples are selected for incremental training 170 

based on regularly trained network with the parameters initialized. Additionally, in the process of incremental training, 

parameter importance calculation selected as regularization constraints is imposed to the training loss of the model. L2 

regularization normal form is introduced to impose penalties on the loss function of the deep learning model, and relevant 

parameters are adjusted. Eventually the training results are got. The process of the emergency operation part is shown in Figure. 

3. 175 

 
Figure 3: The process of the incremental operation part of the incremental learning method. 

Formally, consider the moment 𝑡𝑡𝑖𝑖, the data that has been processed and trained in the deep learning model is called historical 

data, denoted as 𝐻𝐻𝑡𝑡𝑖𝑖 , the incremental data arriving at this time is denoted as 𝐴𝐴𝑡𝑡𝑖𝑖 , the deep learning model is denoted as 

𝑀𝑀𝑡𝑡𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖
1 , 𝑝𝑝𝑡𝑡𝑖𝑖

2 𝑝𝑝𝑡𝑡𝑖𝑖
3 , … ), 𝑝𝑝𝑡𝑡𝑖𝑖

𝑗𝑗  is the jth parameter of the model at the moment. The historical data and incremental data become the 180 

historical data of the moment, and the depth model parameters after training at 𝑇𝑇𝑖𝑖  become the input parameters of the moment 

model. The complete time series before periodic inspection is denoted as 𝑇𝑇𝑊𝑊  and the sliced time series are 𝑇𝑇𝑡𝑡𝑖𝑖. Skewness and 

Kurtosis are selected as the distribution estimation metrics and standardized Euclidean distance works as the time series 
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similarity metric, the calculation process can be formulated as the following. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is Skewness of 𝑇𝑇𝑡𝑡𝑖𝑖 ., 𝐾𝐾𝐾𝐾𝐾𝐾𝑡𝑡 represents 

Kurtosis of 𝑇𝑇𝑡𝑡𝑖𝑖 .SD is the standard deviation and �̅�𝑥 means the average of 𝑇𝑇𝑡𝑡𝑖𝑖. 185 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) =
1

𝑛𝑛 − 1
�

(𝑥𝑥𝑖𝑖 − �̅�𝑥)3

𝑆𝑆𝑆𝑆3

𝑛𝑛

𝑖𝑖=1

(1) 

𝐾𝐾𝐾𝐾𝐾𝐾𝑡𝑡(𝑋𝑋) =
1

𝑛𝑛 − 1
�

(𝑥𝑥𝑖𝑖 − �̅�𝑥)4

𝑆𝑆𝑆𝑆4

𝑛𝑛

𝑖𝑖=1

− 3 (2) 

 𝑆𝑆𝐸𝐸  refers to standardized Euclidean distance. 𝛼𝛼𝑠𝑠, 𝛼𝛼𝑘𝑘 and 𝛼𝛼𝐷𝐷 are the weights correspondent to the metrics to calculate replay 

score (𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). Replay score determines the probability that the sub-dataset will be chosen. Skewness and Kurtosis are to 

measure the distribution difference between 𝑇𝑇𝑡𝑡𝑖𝑖and 𝑇𝑇𝑊𝑊, standardized Euclidean distance is to measure the time series similarity 190 

among 𝑇𝑇𝑡𝑡𝑖𝑖 . The replay score measures the representativeness of each sub-dataset. Generally, the magnitude of training data is 

positively correlative to training speed with the same parameters, therefore the incremental learning method can adjust the 

amount of representative data according to the anticipant speed that the incremental learning method needs to achieve. The 

number of selected sub-dataset is 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  , and finally such many orders of magnitude sub-datasets with the highest replay 

scores are selected. 195 

𝑆𝑆𝐸𝐸�𝐿𝐿𝑖𝑖 ,𝐿𝐿𝑗𝑗� =  
1
𝑛𝑛
��� (𝑎𝑎𝑘𝑘𝑚𝑚 − 𝑏𝑏𝑘𝑘

𝑚𝑚)2
𝑟𝑟

𝑚𝑚=1

𝑛𝑛

𝑖𝑖=1

(3) 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝛼𝛼𝑠𝑠

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) +
𝛼𝛼𝑘𝑘

∆𝐾𝐾𝐾𝐾𝐾𝐾𝑡𝑡(𝑋𝑋) +
𝛼𝛼𝐷𝐷
𝑆𝑆 𝐸𝐸

�𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗� (4) 

Then calculating the importance for each parameter in the network is attached to the loss function of the network, as 

regularization constraint. This can be described as the following formulations.   

ℒ𝐼𝐼 = ℒ(𝜃𝜃) + �
𝜆𝜆
2

𝑖𝑖

𝛺𝛺𝑖𝑖𝑗𝑗�𝜃𝜃𝑖𝑖 − 𝜃𝜃∗𝑃𝑃,𝑖𝑖�2 (5) 200 

𝛺𝛺𝑖𝑖𝑗𝑗 = �
𝜕𝜕𝑙𝑙2

2�𝑀𝑀(𝑥𝑥; 𝜃𝜃)�
𝜕𝜕𝜃𝜃𝑖𝑖

� (6) 

ℒ𝐼𝐼 is the loss function of the model during incremental training, ℒ(𝜃𝜃) is the loss function of the model during regular historical 

data training, ∑ 𝜆𝜆
2𝑖𝑖
𝛺𝛺𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝜃𝜃∗𝑃𝑃,𝑖𝑖�2 is the constraint item, 𝜃𝜃𝑖𝑖 is the parameter of incremental meta sample, 𝜃𝜃∗𝑃𝑃,𝑖𝑖 is the standard 

to evaluate the parameter, which represents the difference between the previous and incremental meta sample, 𝛺𝛺𝑖𝑖 is the 𝑙𝑙2 

regularization item, 𝑀𝑀(𝑥𝑥; 𝜃𝜃) is the output of the network, 𝜕𝜕(𝑀𝑀(𝑥𝑥;𝜃𝜃))
𝜕𝜕𝜃𝜃𝑖𝑖

 describes the gradient of the loss function of model with 205 
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respect to parameter 𝜃𝜃𝑖𝑖 evaluated at the data point 𝑥𝑥 . The importance of parameters can be described as the magnitude of the 

gradient. And 𝜆𝜆 can be adjusted with incremental data come. 

Uniformly data of early years are set as historical data and data of lately years as incremental data. When the incremental data 

come at some time, both baseline and the incremental learning method are performed. The rainfall-runoff simulation on 

incremental data is defined as incremental tasks because the distribution of dataset has changed and three incremental tasks is 210 

set on each station. After selecting partial representative data, the incremental learning method uses the regularly trained 

attention-RNNs with learned parameters and finetuned model with a relatively lower learning rate and part of the changed 

hyperparameters. As for some of the model parameters, the weights and biases of the layers are updated when training by 

back-propagation approach. Iterations are performed with subsets of the training dataset which are called batches or a mini-

batches. 215 

Three modified RNNs are chosen as the networks. Besides, taken the rainfall and runoff of last station in the upstream as 

factors, attention mechanism (Vaswani et al., 2017) is applied in RNNs to capture the spatial relationship between the two 

stations. Inspired by a kind of dual stage attention (Qin et al., 2017), we construct a hybrid network called attention-RNN is 

shown as Figure. 3. attention-RNN consists of four neural network layers, including the encoder attention layer to capture 

spatial features, the decoder attention layer to capture temporal features, two single-track RNN layers and two full connected 220 

layers. RNN units can be regular RNN, LSTM and GRU. During the regular training step in the process of the incremental 

learning method, firstly expand forward calculation according to the time series, and then update the network parameters based 

on back propagation when three types of RNNs are picked up as the unit to make sure the incremental learning method can 

perform well in different RNNs. And the network can be specifically named as attention-RNN, attention-LSTM and attention-

GRU respectively. Simplified illustration about the three RNNs can be described as following with several formulations. 225 
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Figure 4: The structure of experiment models and inner structure of different RNNs. a) The structure of attention-RNNs (Qin et al., 
2017). b) Inner structure of regular RNN. c) Inner structure of GRU. d) Inner structure of LSTM. 

The first is regular RNN. 𝑊𝑊𝑠𝑠ℎ is the weight matrix connecting input units with hidden units, 𝑊𝑊ℎℎ is the connection weight 

matrix among the hidden units, 𝑊𝑊ℎ𝑟𝑟 is the weight matrix connecting hidden units with output units, 𝑏𝑏ℎ and 𝑏𝑏𝑟𝑟 are the bias 230 

vectors. 𝜎𝜎 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎𝑥𝑥 are activate functions. The formulations clearly demonstrates that state at some moment rely on the 

past states and RNN can capture the relation among the states at different moment. 

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑠𝑠ℎ𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑏𝑏ℎ) (7) 

𝑠𝑠𝑡𝑡+1 = 𝑊𝑊ℎ𝑟𝑟ℎ𝑡𝑡 + 𝑏𝑏𝑟𝑟 (8) 

𝑦𝑦𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎𝑥𝑥(𝑠𝑠𝑡𝑡) (9) 235 

LSTM (Hochreiter & Schmidhuber, 1997) is an advanced kind of RNN with gate control principle, which helps capturing the 

long short dependency relation among the time series by setting a memory cell. The gate control principle consists of three 

gates: input gate, output gate and forgetting gate. How LSTM works can be expressed as the following formulas. 𝑥𝑥𝑡𝑡  and ℎ𝑡𝑡 

corresponce to input and output vector in hidden layer respectively, 𝐶𝐶𝑡𝑡 is the memory cell, 𝑖𝑖𝑡𝑡 is the input gate which controls 

the input data flowing into memory cells, 𝑠𝑠𝑡𝑡 is the forgetting gate determining forgetting data in memory cells, 𝑠𝑠𝑡𝑡 is the output 240 

gate, and tanh is also a kind of activation function.  
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𝑠𝑠𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (10) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (11) 

�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) (12) 

𝐶𝐶𝑡𝑡 = 𝑠𝑠𝑡𝑡 ×  𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × �̃�𝐶𝑡𝑡 (13) 245 

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (14) 

ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡 × 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝐶𝐶𝑡𝑡) (15) 

GRU (Cho et al., 2014) takes similar gate principle to capture long time series dependency. But compared to LSTM, GRU 

only chooses two gates to control the data flows in RNN units, which are called reset gate and update gate respectively. The 

reset gate determines the combination of input and former memory and the update gate controls the amount of former memory 250 

data to be updated. The process can be formulated as following. 𝐾𝐾𝑡𝑡  is the reset gate and the 𝐾𝐾𝑡𝑡 is the update gate. Weight matrix 

and bias matrix are just like that in LSTM. 

𝐾𝐾𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟) (16) 

𝐾𝐾𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (17) 

ℎ�𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑛𝑛ℎ (𝑊𝑊𝑠𝑠ℎ𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ(𝐾𝐾𝑡𝑡⨀ℎ𝑡𝑡−1 + 𝑏𝑏ℎ) (18) 255 

ℎ𝑡𝑡 = 𝐾𝐾𝑡𝑡ℎ𝑡𝑡−1 + (1 − 𝐾𝐾𝑡𝑡)⨀ℎ�𝑡𝑡 (19) 

 

2.3 Evaluation Metrics 

To evaluate the performance of the proposed incremental learning approach, we use several regular evaluation indicators in 

regression (including Root Mean Square Error (RMSE), etc.) to show the error increase and computation time to evaluate the 260 

speed difference. 

RMSE, referring to root mean square error, which represents the sample standard deviation of the difference between the 

predicted and observed values in order to account for the dispersion of the sample. The unit of RMSE in the experiments is 

cubic meters per second. 

𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 = �
1
𝑠𝑠
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

(20) 265 

PE is a measurement metric used to quantify the difference between two values in terms of percentage error. 
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𝑃𝑃𝑅𝑅 =
|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|

𝑦𝑦�𝑖𝑖
 × 100% (21) 

Nash-Sutcliffe efficiency coefficient is generally used to verify the quality of hydrological model simulation results, and the 

changes of NSE can be significantly reflect on to what extend the method influence the quality of the baseline network.  

𝑁𝑁𝑆𝑆𝑅𝑅 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑚𝑚
𝑖𝑖=1

(22) 270 

Equations for RMSE, PE and NSE are given in Eq.  (20)-(22) respectively, where 𝑦𝑦𝑖𝑖  is the predicted value, 𝑦𝑦�𝑖𝑖 is the observation 

value and m is the number of samples. It should be noted that the unit of the RMSE is cubic meters per second and the 

computational time is denoted as TIME with the unit of minutes. 

3 Results and Discussion 

3.1 Experiment Settings 275 

The incremental learning method is performed on attention-RNN, attention-LSTM, and attention-GRU in dataset from stations. 

Meanwhile control group is set that the total data are used during network training, denoted as baseline. The experiments 

compare the performance of the baseline and incremental learning method with much concentration on to what extend does 

the proposed incremental learning method accelerate the training of the RNNs when guaranteeing acceptable error. All the 

experiments are performed on a computer with 128 GB RAM, Intel Silver 4210, and Quadro RTX A6000 48 GB GPU. The 280 

experiments are based on Python and deep learning framework Pytorch (Paszke et al., 2019). 

By referring to the common rules of neural network training and repeated experiments, we choose to set the relative parameters 

as followings. The weights of distribution estimation metrics and time series metrics are both set to 1. The sample size of each 

batch or batch size is set to 128 (Gao et al., 2020). The mean square error (MSE) is selected as the original loss function for 

the gradient descent method to the baseline. And regularization constraint is added to MSE decrease in the incremental learning 285 

method. The optimization algorithm is Adam. The regularization parameter λ is set to 1 (Aljundi et al., 2018). 

3.2 Incremental learning methods have improved the efficiency of rainfall-runoff simulation 

The table 1 presents the results of a comparison between incremental learning and baseline methods on attention-LSTM in 

terms of root mean square error (RMSE), percentage of error (PE), Nash-Sutcliffe efficiency (NSE), and computation time 

(TIME) at different stations. The Incremental Tasks refer to simulation tasks of adding equal amounts of new real-time rainfall 290 

and runoff data sets divided in chronological order, represented by numbers 1, 2, and 3 respectively. The Method refer to 

whether using the incremental learning method, represented by baseline and increment respectively. The incremental learning 

method is seen to have a higher RMSE and lower NSE than the baseline method at all stations, indicating better performance 
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in forecasting. Specifically, the RMSE of the incremental learning method increases by 6.8% to 17.9% compared to the 

baseline method, with the rise of PE ascend from 1.34% to 2%, while the NSE is reduced vary from 0.02 to 0.06. Moreover, 295 

the computation time of the incremental learning method is shorter than that of the baseline method at all stations, with an 

average reduction to 22.8%. These results suggest that the incremental learning method is effective in improving the efficiency 

of hydrological forecasting, enabling prompt support for emergency flood prevention and mitigation decisions while 

maintaining an acceptable range of model training errors. Among the ten stations, the training time of the baseline method and 

the incremental learning method at the Baihe station is slightly shorter than that of the other stations due to the smaller number 300 

of data samples. However, the incremental learning method still shows a consistent pattern of improving training efficiency 

with the other stations, with an error range of around 1%. 
Table 1: The comparison of performance between the incremental learning method and baseline conducted on attention-LSTM in 
different stations in Yangtze River basin. 

Station 
Incremental 

tasks 
Method 

RMSE 

(m3/second) 
PE NSE 

TIME 

(minute) 

Zhicheng 

1 
baseline 1548.83 7.16% 0.92 153.60 

incre 1602.12 8.40% 0.86 34.18 

2 
baseline 1574.65 7.82% 0.92 156.48 

incre 1639. 94 8.52% 0.87 34.17 

3 
baseline 1618.65 7.94% 0.91 162.45 

incre 1696.47 8.36% 0.86 36.81 

Shashi 

1 
baseline 1395.00 7.58% 0.92 156.5 

incre 1442.08 8.09% 0.86 36.15 

2 
baseline 1464.53 7.56% 0.90 159.88 

incre 1479.54 8.20% 0.87 36.87 

3 
baseline 1478.72 7.92% 0.91 165.12 

incre 1246.83 8.78% 0.86 38.80 

Jianli 

1 
baseline 1347.80 7.76% 0.91 153.20 

incre 1432.12 8.23% 0.87 34.83 

2 
baseline 1374.53 7.98% 0.90 155.40 

incre 1399.76 8.67% 0.86 34.45 

3 
baseline 1409.76 8.02% 0.90 160.20 

incre 1446.34 8.90% 0.86 37.55 

Luoshan 1 
baseline 2204.96 7.15% 0.92 154.22 

incre 2332.47 7.97% 0.87 33.90 
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2 
baseline 1484.54 7.44% 0.92 159.43 

incre 1609.04 8.06% 0.86 35.80 

3 
baseline 1505.28 7.38% 0.91 161.20 

incre 1546.53 8.03% 0.86 36.34 

Hankou 

1 
baseline 2406.00 7.32% 0.91 154.60 

incre 2532.25 8.12% 0.86 29.18 

2 
baseline 2474.66 7.82% 0.91 157.48 

incre 2639.12 8.36% 0.87 31.16 

3 
baseline 2509.00 7.64% 0.90 159.46 

incre 2566.12 8.52% 0.86 32.73 

Jiujiang 

1 
baseline 2476.83 7.33% 0.90 156.24 

incre 2532.09 8.47% 0.88 36.15 

2 
baseline 2474.58 7.63% 0.90 159.27 

incre 2539.43 8.57% 0.88 36.88 

3 
baseline 2498.65 7.72% 0.89 165.12 

incre 2546.61 8.41% 0.88 38.60 

 305 
Table 2: The comparison of performance between the incremental learning method and baseline conducted on attention-LSTM in 
different stations in Han River basin. 

Station 
Incremental 

tasks 
Method 

RMSE 

(m3/second) 
PE NSE 

TIME 

(minute) 

Baihe 

1 
baseline 202.03 11.64% 0.90 113.56 

incre 232.12 13.4% 0.86 29.19 

2 
baseline 194.40 9.82% 0.90 119.47 

incre 239.95 13.2% 0.87 31.17 

3 
baseline 208.65 9.64% 0.89 122.33 

incre 296.12 13.1% 0.86 32.74 

Huangjiagang 

1 
baseline 160.65 10.04% 0.90 156.19 

incre 192.52 11.46% 0.86 36.16 

2 
baseline 174.28 9.82% 0.90 159.28 

incre 209.34 11.60% 0.87 36.87 

3 
baseline 181.45 9.64% 0.89 165.12 

incre 246.12 11.71% 0.86 38.78 
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Huangzhuang 

1 
baseline 182.65 9.84% 0.90 153.17 

incre 242.77 11.2% 0.87 34.82 

2 
baseline 191.37 10.36% 0.90 155.58 

incre 279.39 11.59% 0.86 34.42 

3 
baseline 190.81 9.70% 0.90 160.20 

incre 226.04 11.54% 0.86 37.53 

Xiantao 

1 
baseline 216.60 9.92% 0.89 154.25 

incre 252.10 11.97% 0.87 33.89 

2 
baseline 224.65 10.17% 0.90 159.24 

incre 259.37 12.06% 0.86 35.79 

3 
baseline 218.22 10.02% 0.90 161.22 

incre 296.12 12.20% 0.86 36.30 

 

It can be obviously concluded from table 1 and table 2 that when the data size is at 20% of the entire dataset, if the model 

training time increases by more than 4 times, and the difference in error is less than 5%, and the difference in ratio-based 310 

metrics is less than 0.08. Consistent results across different attention-RNN models on the same dataset. 

 

3.3 Good ability to continuous incremental learning 

Over time, as incremental data keeps arriving, incremental learning methods should have good capabilities for handling 

continuous data additions. We divided the dataset used for training into three parts according to the time order and used them 315 

to simulate the scenario of continuously arriving new data. We conducted three incremental learning experiments with different 

models and different scenarios to compare the performance of the incremental learning method in different river basins. As 

for the continuous incremental scenarios, the performance of incremental learning method shows consistence that it performs 

the same in different incremental tasks. The greater difference between the distribution rules of incremental data and historical 

data is, the worse the effect of incremental learning is. When the different incremental task is close, the method shows the 320 

same performance. From incremental task one to three, the magnitude of replay data decreases, and correspondently the 

training efficiency generally ascends with error increase fluctuates in a relatively small range. Specifically, the run-time 

difference reaches over 4 times, the PE increase less than 3%, the NSE decease less than 0.05. However, the results show 

relatively weak self-adaptivity lower the ability of the online learning of the incremental learning method hard to handle the 

incremental data with rapidly changeable distribution. The incremental learning method shows stably consistent performance 325 

with relatively less self-adaptivity when the continuous incremental data trained. For example, in Jiujiang station, the PE 

increases 1.14%, 0.94%, 0.81% in the three incremental scenarios respectively, and NSE decreases 0.02, 0.04, 0.04 meanwhile 
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the efficiency improvement is 4.2, 4.2, 4.4. The Figure 5 shows the average PE, NSE and computation time difference of 

baseline and incremental learning method, which imply that when the incremental data are taken as continuously input, the 

incremental learning method gives the deep learning models the ability to continuous incremental learning. 330 

 
Figure. 5: The evaluation metrics difference between the baseline and the incremental learning method in the three incremental 
scenarios. a) the PE difference. b) the NSE difference. c) the multiplication factor difference for computation time. 

3.4 Consistent Robustness Demonstrated in Different Networks and Locations 

It can be summarized that the incremental learning method is well suitable for different river basins. As shown in Figure. 6 335 

and Figure 7, by calculating the average results of different models of the same station, the conclusion can be drawn that under 

the condition of proper super parameter setting and good training, the incremental learning method has similar performance 

effect on different attention-RNNs, and the results are close. Take Hankou station as example, the PE increases 0.8%, 0.74%, 

0.81% in the three incremental scenarios respectively, and NSE decreases 0.05, 0.04, 0.04 meanwhile the efficiency 

improvement is 4.2, 4.2, 4.1. Compared to Xiantao station, the PE increases 2.05%, 1.89%, 2.08% in the three incremental 340 

scenarios respectively, and NSE decreases 2.05, 1.89, 2.18 meanwhile the efficiency improvement is 4.3, 4.3, 4.2. The 

incremental learning method achieved similar effects at stations in the Yangtze River and Han River basins, rapidly increasing 

the training efficiency of the attention-RNNs model while maintaining a smaller error compared to the baseline model. 

However, it is notable that the baseline model and the incremental learning method had a higher error in the Han River basin 

than in the Yangtze River basin, likely due to the similar climatic conditions and rainfall patterns between the two regions. In 345 

this case, the smaller river is more prone to react to changes in rainfall, resulting in a more oscillatory hydrograph and a 

decreased fitting effect for the baseline model. Meanwhile, the incremental learning method amplifies the error caused by the 

model, making it more apparent. 
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Figure 6: The evaluation metrics difference between the baseline and the incremental learning method of four stations in Han River 350 
basin.  a) the RMSE difference. b) the PE difference. c) the NSE difference. d) the multiplication factor difference for computation 
time. 
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Figure 7: The evaluation metric differences between the baseline and the incremental learning method of four stations in Yangtze 
River basin.  a) the RMSE difference. b) the PE difference. c) the NSE difference. d) the multiplication factor difference for 355 
computation time. 

The incremental learning method is found to be suitable for various modified RNNs, as demonstrated by the comparable 

performance of different models under proper hyperparameter settings and adequate training. The attention-LSTM requires 

slightly more training time due to its larger number of model parameters, but the computation time improvement is similar to 

that of attention-GRU and attention-RNN. Besides, the similar increase intensity of evaluation metrics differences shows that 360 

the incremental learning method have the similar impact on the three modified RNNs. Hence, the incremental method is 

feasible for different RNNs, and the results are close. 
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4 Conclusions 

This paper proposes an incremental learning method to accelerate the networks training. Several main conclusions can be 365 

summarized below: 

1) The incremental learning method includes two components: regular training and emergency operation. Distribution 

evaluation metrics and time series similarity metrics are introduced as representative sample selection standards and 

parameter importance calculation is added into regularization under the situation of regular training networks in 

incremental operation. 370 

2) The results turn out that the incremental learning method increases the training speed by over four times with around 

magnitude of all data and guarantee percentage error increase and NSE decrease less than 5%.  

3) The incremental learning method shows suitability on different RNNs and the stability during continuous incremental 

scenarios. The results show the same tendency about efficiency improvement on average. 

The incremental learning method has the potential to be applied in frequent rapid rainfall-runoff simulation, which can 375 

contribute to flood emergency decision making. To further enhance the applicability of the method, future research can focus 

on developing better interpretable selective sampling standards that can handle historical data with large extreme values and 

incremental data with dramatic changes in distribution. This will enable the incremental learning method to perform better in 

extreme precipitation situations, which are becoming increasingly common. Moreover, the use of novel Deep Neural Networks 

(DNNs) in rainfall-runoff modelling, as proposed by (Yin et al., 2022), can be explored for their suitability in the incremental 380 

learning method. By combining the strengths of DNNs and incremental learning, the accuracy and efficiency of rainfall-runoff 

simulation can be further improved, ultimately supporting more informed flood emergency decision making. In summary, the 

incremental learning method has the potential to be a valuable tool in flood emergency decision making, particularly in 

situations where timely and accurate rainfall-runoff simulation is critical. By refining the selective sampling standards and 

exploring the use of novel DNNs, the method's performance can be further enhanced, ultimately contributing to better flood 385 

risk management. 
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