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Abstract. Water vapour flux, expressed as evapotranspiration (ET), is critical for understanding the earth climate system and 

the complex heat/water exchange mechanisms between the land surface and the atmosphere in the high-altitude Tibetan Plateau 

(TP) region. However, the performance of ET products over the TP has not been adequately assessed, and there is still consid-10 

erable uncertainty in the magnitude and spatial variability in the water vapour released from the TP into the atmosphere. In 

this study, we evaluated 22 ET products in the TP against in-situ observations and basin-scale water balance estimations. This 

study also evaluated the spatiotemporal variability of the total vapour flux and of its components to clarify the vapour flux 

magnitude and variability in the TP. The results showed that the remote sensing high-resolution global ET data from ETMon-

itor and PMLV2 had a high accuracy, with overall better accuracy than other global and regional ET data with fine spatial 15 

resolution (~1km), when comparing with in-situ observations. When compared with water balance estimates of ET at the basin 

scale, ETMonitor and PMLV2 at finer spatial resolution and GLEAM and TerraClimate at the coarse spatial resolution showed 

good agreement. Different products showed different patterns of spatiotemporal variability, with large differences in the central 

to western TP. The multi-year and multi-product mean ET in the TP was 333.1 mm/yr with a standard deviation of 38.3 mm/yr. 

The ET components (i.e., plant transpiration, soil evaporation, canopy rainfall interception evaporation, open water evapora-20 

tion, and snow/ice sublimation) available from some products were also compared, and the contribution of these components 

to total ET varied considerably even in cases where the total ET from different products was similar.  Soil evaporation accounts 

for most of the total ET in the TP, followed by plant transpiration and canopy rainfall interception evaporation, while the 

contributions from open water evaporation and snow/ice sublimation cannot be negligible. 

1 Introduction 25 

The Tibetan Plateau (TP) is also known as the ‘Water Tower of Asia’ as it is the source of 10 major rivers. Significant changes 

in the natural and social environments of the TP have occurred over the past 50 years (e.g., temperatures have warmed twice 

as much as the global average over the same period), and there is considerable uncertainty about further environmental change 

(Immerzeel et al., 2020; Yang et al., 2014; Chen et al., 2015). Observations have shown significant changes in the environment, 

such as increased precipitation, decreased wind speed and snow days, increased surface solar radiation, thawing of permafrost, 30 
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melting of glaciers and snow, and greening of vegetation (Yao et al., 2012; Yang et al., 2014; Kuang and Jiao et al., 2016; Bibi 

et al., 2018; Z. Wang et al., 2018). These changes have significant impacts on human living conditions, as well as economic 

and social development (Wei et al., 2022; Yang et al., 2022). The TP can also affect the atmospheric circulation by altering 

the release of sensible and latent heat, which has a significant implication on the climate in China, Asia, and globally (Wu et 

al., 2016).  35 

Water vapour flux, expressed as evapotranspiration (ET), is critical for understanding the earth climate system and the com-

plex heat/water exchange mechanisms between the land surface and the atmosphere in the high-altitude TP region (Shen et al., 

2015; Yang et al., 2023). It is important as a covariate of the water and heat fluxes in the soil-vegetation-atmosphere system 

in the TP and as an indicator of climate and land surface changes (Sun et al., 2023; Yang et al., 2023; Zhang et al., 2010). The 

TP is experiencing faster water phase transitions, with more solid water becoming liquid water through melting glacier/snow 40 

and more liquid water vaporized through ET (Z. Li et al., 2019; Yao et al., 2019). Accurate estimation of ET at a large scale 

in the TP has always been challenging due to the high heterogeneity and the complex topography. The TP is rich in land cover 

types, including grasslands, deserts, lakes, forests, glaciers, snow, and so on. The dynamics and thermodynamics of the sub-

surface vary greatly among different climate types, making it a great challenge to conduct large-scale studies of ET processes 

on TP and explore the governing mechanism and feedback effect on the climate system and hydrological processes. In addition, 45 

the harsh natural conditions and ecological environment of the plateau make ground-based observations difficult, and the high 

cost of instrumentation and routine maintenance have resulted in a scarcity of ET stations on the TP and a relatively short time 

series of observations (Ma et al., 2020).  

Land surface models (LSMs) and climate reanalysis have been widely used to estimate ET, but generally at coarse spatial 

resolutions (e.g., 0.25°) and suffer from large cumulative errors due to many factors, e.g., the uncertainty of forcing and model 50 

parametrization, surface heterogeneity, etc. (Chen et al., 2019; Khan et al., 2020; X. Li et al., 2019). In contrast, ET estimation 

based on satellite remote sensing observations, which allow high-resolutions estimation, has clear advantages, especially in 

the spatially heterogeneous regions of the TP (Ma et al., 2006; Jia et al., 2018; Zheng et al., 2016). In recent decades, remote 

sensing-based ET datasets have improved significantly and several regional and global high-quality ET datasets have been 

produced (e.g., Chen et al., 2021; Martens et al., 2017; Elnashar et al., 2021; Jia et al., 2018). For example, the validation 55 

results based on the global flux network show that the PMLV2 and ETMonitor global ET products have good accuracy (with 

RMSE<1mm/d) (Zhang et al., 2019b; Zheng and Jia, 2020). These improved ET datasets also have many advantages, e.g., the 

ability to distinguish different components (vegetation transpiration, soil evaporation, and canopy rainfall interception loss), 

higher spatial resolution (e.g., 1-km), better performance in the heterogeneous land surface, and their application to the TP 

deserves further attention. However, previous studies also found significant differences between different products, such as 60 

different magnitudes of the annual mean ET in the TP ranging from 294 mm/yr  to 543 mm/yr (Chen et al., 2024; Wang et al., 

2020; Yuan et al., 2024; Zhang et al., 2018), and diverse trends of ET depending on the adopted datasets and study periods 

(Chen et al., 2024; Ma and Zhang, 2022; Wang et al., 2022). The contributions of different processes (e.g., plant transpiration, 
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soil evaporation, water evaporation from canopy intercepted rainfall and open water bodies) to the total water flux by different 

products also vary, most likely due to the theoretical and technological differences in different models and driving factors 65 

(Chen et al., 2021; Cui et al., 2020; Hu et al., 2009; Zhu et al., 2021, Ma and Zhang, 2022; Miralles et al., 2020)., Recent 

studies on lake water evaporation suggest that it accounts for about 4%-8% of the total annual ET from the whole TP (Wang 

et al., 2020; Chen et al., 2024). The comparison of different ET products certainly contributes to the understanding of the ET 

process in the TP, as well as the magnitude of ET and its spatiotemporal variability, including the ET components. There is 

also a need to enhance research on the whole TP as a region, and improve the understanding of the evolution of the water cycle 70 

and eco-hydrological processes in the TP (W. Wang et al., 2018). 

The performance of an ET product is related to both the adopted algorithms and the forcing variables (Mueller et al., 2013; 

Wang et al., 2022). The global ET datasets based on satellite remote sensing have been criticized for the lack of adaptation to 

the specificity of the TP environment and the uncertainty inherited from the input global meteorological reanalysis data, which 

may lead to a large uncertainty in the direct application of the global ET datasets for studies in the TP (Zou, 2020; Song et al., 75 

2017; Chang et al., 2018; Xue et al., 2013). These evaluations have generally been based on either in-situ measurements using 

eddy covariance systems or the basin-scale ET estimates using water balance method., These evaluations have generally been 

based on either in-situ measurements using eddy covariance systems or basin-scale ET estimates using water balance method. 

The in-situ eddy covariance measurements at 30min temporal resolution capture both upward and downward water vapor flux 

at site scale, and the integrated daily or monthly ET depended on whether the upward water vapor flux is included. Water 80 

balance estimates which represents the surface net liquid water flux at different the surface and at basin scales, while ET 

products are estimates of the upward water vapour flux, unless separate estimates of condensation and deposition are provided. 

which This difference contributes to the uncertainty. Recently, Chen et al. (2024) evaluated several ET products with spatial 

resolutions ranging from 1km to 50km against site-scale eddy covariance observations. It is important to note that the obser-

vations from tower-based eddy covariance systems have a very small footprint (approximately several hundred metres depend-85 

ing on weather conditions), and direct comparison of site-scale observations with the coarse-resolution ET products (e.g., 

25km) is problematic due to the severe problem of spatial mismatch. In order to increase the credibility of currently available 

ET products, this study will undertake a more comprehensive evaluation, taking into account both in-situ observations and 

basin-scale measurements.  

The following questions emerge from this brief literature review: 1) How accurate are these improved ET products, and how 90 

well do different products capture the magnitude and variability of ET in the TP? 2) How much water is vaporized in the TP 

and which processes, e.g., plant transpiration, soil evaporation, snow/ice sublimation, play a significant role? Answering these 

questions would reveal the strengths and weaknesses of different ET products and address the knowledge gaps on relevant 

processes in the TP, which are fundamental for various scientific and practical purposes.  

The aim of this paper is to clarify the magnitude and variability of ET in the TP by assessing the accuracy and spatiotemporal 95 

variability of ET in the TP according to commonly available gridded products. Specifically, the main objectives are 1) to 
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estimate the absolute uncertainties of individual ET products using flux tower data and water balance estimates; 2) to evaluate 

and compare the spatiotemporal variability of total ET and its components from different ET products. 

2 Methodology and Data 

2.1 Study region 100 

The Tibetan Plateau (25-40°N, 70-105°E) is the highest elevated region in the world, covering an area of approximately 3.0 

million km2, with most areas above 2,500 meters (Figure 1). It has complex climatic regimes, ranging from a humid climate 

with an aridity ratio less than 0.3 to hyper-arid climate with an aridity ratio larger than 3 (Feng et al., 2024). The climate is 

influenced by both westerly and the Asian monsoon, which is also enhanced by the thermal forcing of the TP (Zhou et al., 

2009; Wu et al., 2012; Yang et al., 2014).  Influenced by multiple sources of water vapor through atmospheric circulation and 105 

alpine terrain, its precipitation shows spatial variability with the average annual precipitation gradually increasing from less 

than 50 mm/yr in the northwest to more than 1000 mm/yr in the southeast, and most of the precipitation is concentrated in 

summer (Jiang et al., 2023). The TP is also known for its extensive snow and glacier cover, with a total glacier area of approx-

imately 50,000 km2 (Yao et al., 2007) and 77% of the area above 6000 m is covered by snow (Chu et al., 2023). The main land 

cover types are forest, grassland, bare soil, glaciers and snow (Supplementary Figure S1). The water supply for the dense river 110 

network on the TP, which includes the headwaters of five major Asian rivers, is mainly precipitation and meltwater from 

glaciers and snowpack.  

The TP region consists of 12 basins/subregions: Hexi, Tarim, Qaidam, Upper Amu Darya, Inner TP, Upper Yellow, Upper 

Yangtze, Upper Salween, Upper Mekong, Upper Brahmaputra, Upper Ganges, and Upper Indus (Figure 1). The first five 

subregions, Hexi, Tarim, Qaidam, Amu Darya, and Inner TP, are located in the northern, western, and central parts of the TP 115 

and receive relatively low precipitation with arid or semi-arid climate. These basins are generally covered by sparse vegetation 

or bare land (Supplementary Figure S1).  The remaining watersheds receive high precipitation due to the monsoons originating 

from the Arabian Sea, the South China Sea, and the Western Pacific, and extremely high annual precipitation (>1000 mm/yr) 

is found in the Upper Salween, Upper Brahmaputra, and Upper Ganges river basins. These are with relatively dense vegetation. 

https://www.sciencedirect.com/science/article/pii/S002216942201280X#b0430
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/headwater
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Figure 1: Location of the selected ground flux tower observation sites and major river basins in the TP, with elevation shown as 

background. The selected basins where the evaluation of ET products using water balance-based data was carried out are also shown.   

2.2 Data sources 

2.2.1 Flux tower data 

To validate ET at high spatial resolution (≤ 1km), measurements of near-surface turbulent fluxes by the eddy-covariance 125 

method at 18 flux towers were collected. The measurements were aggregated to total monthly ET to carry out the evaluation 

study. Figure 1 presents the spatial distribution of these sites, and the details are provided in Table 1. The quality of flux 

observation data at each site was evaluated after data screening, and only reliable observations were selected following the 

methodology described by Zheng et al. (2022). The sites, where gap-filled daily or monthly ET data with reliable quality were 

already available, i.e., DXG, HBG-S01, HBG-W01, CN-HaM, CN-Hgu, SH and Maqu, were directly adopted without further 130 

modifications. For sites that provide half-hourly or hourly data, the observed latent heat flux data were gap-filled after energy 

closure correction, and this includes six sites (BJ, NADORS, SETORS, QOMS, NAMORS, MAWORS) from the Tibetan 

Observation and Research Platform (Ma et al., 2020; 2008), four sites from the Heihe Integrated Observatory Network (Liu et 

al., 2018; Li et al., 2009), and our own site at Namco. The Bowen ratio energy balance correction method preserves the Bowen 

ratio by attributing the residual term of the energy balance to the latent heat flux and sensible heat flux (Twine et al., 2000; 135 

Foken, 2008; Chen et al., 2014). The corrected half-hourly or hourly LE data was then averaged to obtain daily ET values, and 

only the days with more than 80% of the hourly flux were retained as valid observations. The missing daily ET values were 

further filled using the constant reference evapotranspiration fraction method (Jiang et al., 2022). The monthly ET was finally 
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calculated by accumulating the daily ET values, and those months with less than 50% valid daily ET values were treated as 

missing values. The missing data was not further filled, and it was not used for validation to avoid the impact of uncertainty 140 

introduced by gap-filling. 

Table 1: List of ground flux tower observation sites. 

Site Code Site Name Latitude/Longitude Elevation Land Cover* Periods 
Sources / 

reference 

MAWORS TORP MAWORS 38.41 ºN, 75.05 ºE 3668 

Grassland (Sparse 

Desert desert 

steppe) 

2012-2016 Ma et al., 2020 

NADORS TORP NADORS 33.39 ºN, 79.70 ºE 4270 

Grassland (Sparse 

Desert desert 

steppe) 

2010–2018 Ma et al., 2020 

NAMORS TORP NAMORS 30.77 ºN, 90.96 ºE 4730 
Grassland (Alpine 

steppe) 
2008–2018 Ma et al., 2020 

QOMS TORP QOMS 28.36 ºN, 86.95 ºE 4298 
Bare land (Desert 

steppe) 
2007–2018 Ma et al., 2020 

SETORS TORP SETORS 29.77 ºN, 94.74 ºE 3327 

Tree cover broad-

leaved deciduous 

(Dense vegeta-

tion)Alpine 

meadow 

2007–2018 Ma et al., 2020 

BJ TORP BJ 31.37 ºN, 91.90 ºE 4509 
Grassland (Sparse 

alpine meadow) 
2010–2016 Ma et al., 2020 

SH  TORP Shuanghu 33.21 ºN, 88.83 ºE 4947 
Grassland (Alpine 

steppe) 
2013–2018 Ma et al., 2015 

ARS  HiWATER A’rou  38.05 ºN, 100.46 ºE 3033 
Grassland (Dense 

alpine meadow) 
2008–2018 Liu et al., 2018 

DSL HiWATER Dashalong  38.84 ºN, 98.94 ºE 3739 
Grassland (Alpine 

meadow) 
2013-2018 Liu et al., 2018 

YK  HiWATER Yakou  38.01 ºN, 100.24 ºE 4148 
Grassland (Alpine 

steppe) 
2014-2018 Liu et al., 2018 

GT HiWATER Guantan  38.53 ºN, 100.25 ºE 2835 

Tree cover  

needleleaved  ev-

ergreen 

Needleleaf forest 

2009-2011 Li et al., 2009 
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DXG  ChinaFLUX Dangxiong  30.49 ºN, 91.07 ºE 4333 
Grassland (Alpine 

meadow) 
2004–2010 Yu et al., 2006 

HBG-S01 
ChinaFLUX Haibei 

grassland 
37.67 ºN, 101.33 ºE 3358 

Grassland (Dense 

alpine meadow) 
2003-2010 Yu et al., 2006 

HBG-W01 
ChinaFLUX Haibei 

wetland 
37.61 ºN, 101.33 ºE 3357 

Grassland (Alpine 

wetland) 
2004-2009 

Zhang et al., 

2020 

CN-Ha2 
FLUXNET Tibet Hai-

bei Alpine  
37.37 ºN, 101.18 ºE 3824 

Grassland (Alpine 

meadow) 
2002-2004 Kato et al., 2004 

CN-Hgu 
FLUXNET-CH4 CN-

Hgu Hongyuan  
32.85 ºN, 102.59 ºE 3500 

Grassland (Alpine 

meadow) 
2015-2017 

Niu and Chen, 

2020 

MQ Maqu site 33.89 ºN, 102.14 ºE 3423 
Grassland (Dense 

alpine meadow) 
2013-2016 

Shang et al., 

2015 

Namco Namco site 30.89 ºN, 90.24 ºE 4760 
Grassland (Alpine 

steppe) 
2019-2021 this study 

* Land cover data are from ESA CCI land cover classification (Supplementary Figure S1), while the actual land cover accord-

ing to the field survey are shown within the brackets.  

2.2.2 Water balance-based ET data  145 

We also collected monthly water balance-based evapotranspiration (ETwb) from other studies at the basin-scale to evaluate the 

accuracy of ET data products at monthly scale. Compared to the flux tower data, ETwb can also be used to evaluate the products 

with coarse spatial resolution (≥5km). The monthly ETwb may also contain uncertainties due to propagated errors from precip-

itation and water storage, although ETwb is often considered as the ‘ground truth’ for validating basin-wide ET estimates. In 

total, monthly ETwb from five river basins were extracted from previous studies (Ma and Zhang., 2022; Wang et al., 2021), 150 

including the headwaters of the Yellow basin (HYE), the headwaters of Yangtze basin (HYA), the Inner TP (INTP), Qaidam 

(QDM) basins, and the upper Heihe basin (UH), as shown in Figure 1 and Table 2.  

Table 2: Basins with water balance-based ET data for validation. 

Basin name Periods 
Area 

(km2) 

Runoff gauging 

station 

Description of the dataset used for water bal-

ance-based ET estimation 

Sources /ref-

erence 

Headwaters of Yellow 

basin (HYE) 
2003-2015 122,890 Tangnaihai 

Precipitation was from the ensemble mean of 

CMFD (https://doi.org/10.11888/AtmosphericPhys-

ics.tpe.249369.file), CN05.1 (http://data.cma.cn), 

and MSWEP (http://www.gloh2o.org/mswep/). 

Terrestrial water storage changes were derived 

from the Gravity Recovery and Climate Experiment 

(GRACE) (https://grace.jpl.nasa.govs/). Monthly 

ETwb was turned into zero whenever it is negative, 

and ET from lakes was excluded. 

Ma and 

Zhang., 2022 

 

Headwaters of Yang-

tze basin (HYA) 
2003-2015 140,270 Zhimenda 

Inner Tibet Plateau 

(INTP) 
2003-2015 708,252 

- (endorheic 

river) 

- (endorheic 

river) 
Qaidam (QDM) 2003-2015 253,252 
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Upper Heihe basin 

(UH) 
2004-2008 10,011 Yingluoxia 

Precipitation was from MSWEP after comparing 

with five datasets. Terrestrial water storage changes 

were derived from GRACE. 

Wang et al. 

2022 

2.2.3 ET products 

This study examined 22 ET datasets (including 20 global datasets and 2 regional datasets) (Table 3), and detailed descriptions 155 

of ET data can be found in Appendix I in Supplementary materials. Among these, 7 datasets were at high spatial resolution 

(≤1km), including ETMonitor (Zheng et al., 2022), MOD16 (Mu et al., 2011), MOD16-STM (Yuan et al., 2021), the Penman–

Monteith–Leuning Version 2 (PMLV2) (Zhang et al., 2019), the operational Simplified Surface Energy Balance (SSEBop) 

(Senay et al., 2020), GLASS (Yao et al., 2014), and SynthesisET (Elnashar et al., 2021). Most of these high-resolution ET 

datasets used different variables or indices from Moderate Resolution Imaging Spectroradiometer (MODIS) as main inputs. 160 

Two products (GLASS, SynthesisET) are ensemble ET products generated by fusing other ET models or datasets. Remote 

sensing ET datasets with coarse resolution were also collected, including Thermal Energy Balance (EB) ET (Chen et al., 2021), 

Breathing Earth System Simulator version 2 (BESSv2) (Li et al., 2023), GLEAM (version 3.5a based on satellite and reanalysis 

data with long-term coverage, and version 3.5b based on mainly satellite data) (Martens et al., 2017), and FLUXCOM (RS 

version using MODIS remote sensing data as input, and RS_METEO version using remote sensing and meteorological data 165 

as input) (Jung et al., 2019). MOD16-STM and PMLV2-Tibet are regional ET datasets that were calibrated against ground-

based eddy-covariance measurements on the TP. MOD16-STM is an enhanced version of the MOD16 algorithm by redefining 

the transpiration and soil evaporation module (Yuan et al., 2021), while PMLV2-Tibet is a calibrated version of PMLV2 (Ma 

and Zhang, 2022). We also collected some ET products based on land surface models and climate reanalysis datasets, including 

calibration-free complementary relationship (CR) ET (Ma et al., 2021), TerraClimate (Abatzoglou et al., 2018), MERRA2 170 

(Gelaro et al., 2017), ERA5 (Hersbach et al., 2020), ERA5-Land (Muñoz-Sabater et al., 2021), GLDAS-VIC (Rodell et al., 

2004), GLDAS-Noah (Rodell et al., 2004), GLDAS-CLSM (B. Li et al., 2019). In summary, among these evaluated ET prod-

ucts, there are 14 products that primarily use remote sensing products, including 2 products (SSEBop and EB) based on land 

surface temperature (LST), 8 products (ETMonitor, MOD16, MOD16-STM, PMLV2, PMLV2-Tibet, GLEAMv35a, 

GLEAMv35b, BESSv2) based on PM-types models (including Penman-Monteith equation, Priestley-Taylor equation, Shut-175 

tleworth-Wallace equation), 4 products (FLUXCOM-RS, FLUXCOM-RS-METEO, GLASS, SynthesisET) based on data-

driven methods. Among the 8 PM-type models, there are 3 models that incorporate soil moisture to account for the influence 

of available soil water on ET, including ETMonitor, GLEAMv35a, and GLEAMv35b.  

All products were temporally aggregated to monthly total ET from their native temporal resolutions prior to evaluation. For 

the daily resolution products, simple summation operations were performed to obtain the monthly ET values. For 8-day reso-180 

lution data, a mean daily ET value was first estimated with the available data in that month, and the monthly ET value was 

then obtained by multiplying the mean daily values by the number of days in the month.  

Table 3: List of ET products evaluated in this study. 
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Prod-

ucts 

Tem-

poral 

resolu-

tion 

Spatial 

resolu-

tion 

Temporal 

coverage 

Basic principle or algo-

rithm 
Main forcing data 

ET 

com-

po-

nents 

Valida-

tion 

method 

Refer-

ence 

ETMon

itor 
Daily  1km 2000-2021 

Shuttleworth–Wallace 

model combined with Jar-

vis-type method for Ec and 

Es, revised Gash model for 

Ei, Penman-Monteith equa-

tion for Ew and Ess.  

ERA5 meteorological data, 

GLASS (LAI, FVC, al-

bedo), MODIS land cover, 

dynamic water and snow 

cover, downscaled ESA-

CCI soil moisture. 

Ec, Es, 

Ei, 

Ew, 

Ess 

ground 

observa-

tion and 

ETwb 

Zheng et 

al., 2022 

MOD16 8-day 500m 
2000- pre-

sent 

MOD-PM based algorithm 

for vegetation covered re-

gion.  

NASA GMAO meteoro-

logical data, MODIS (land 

cover, LAI).  

Ec, Es, 

Ei 

ground 

observa-

tion and 

ETwb 

Mu et 

al., 2011 

PMLV2 8-day 500m 2002-2019 

Penman-Monteith-Leuning 

model V2 using remote-

sensing as input.  

GLDAS meteorological 

data, MODIS (land cover, 

LAI, albedo, emissivity). 

Ec, Es, 

Ei, Ew 

ground 

observa-

tion and 

ETwb 

Zhang et 

al., 2019 

SSEBop 10-day 1km 2002-2019 

Operational Simplified 

Surface Energy Balance 

using satellite psychromet-

ric principle.  

Daymet Ta, and GLDAS 

PET data, MODIS (NDVI, 

LST, albedo). 

- ground 

observa-

tion and 

ETwb 

Senay et 

al., 2020 

GLASS 8-day 1km 2000-2018 

Bayesian multi-model en-

semble of different ET 

products.  

MOD16 ET, PT-JPL ET, 

and other ET datasets 

- ground 

observa-

tion and 

ETwb 

Yao et 

al., 2014 

Synthe-

sisET 
Monthly 1km 1982-2019 

Synthetization of different 

ET products based on rank-

ing of validation metrics.  

MOD16 ET, PML ET, 

SSEBop ET, GLEAM ET, 

GLDAS ET, etc. 

- ground 

observa-

tion and 

ETwb 

Elnashar 

et al., 

2021 

MOD16

-STM 
Monthly  1km 1982-2018 

Enhanced MOD16 algo-

rithm by redefining the 

transpiration and soil evap-

oration module. MODIS 

yearly constant land cover 

is used to extract water 

cover.  

Regional CMFD meteoro-

logical data, ERA5-Land 

LST, GLASS albedo and 

emissivity, AVHRR NDVI, 

GLEAM soil moisture. 

Ec, Es, 

Ei 

ground 

observa-

tion and 

ETwb 

Yuan et 

al., 

2024; 

Yuan et 

al., 2021 

PMLV2

-Tibet 
8-day 5km 1982-2016 

Penman-Monteith-Leuning 

V2 model calibrated in the 

Tibet Plateau 

Regional CMFD meteoro-

logical data, ERA5-Land 

LST, GLASS albedo, 

GLASS and GIMSS LAI. 

- ETwb 

Ma et 

al., 2022 

EB Daily 0.05º 2000-2017 

Improved Surface Energy 

Balance method based 

monthly LST 

ERA-Interim meteorologi-

cal data, GLASS (LAI, 

FVC, albedo), MODIS 

(land cover, LST). 

- ETwb 

Chen et 

al., 2021 

BESSv2 Monthly 5km 1982-2019 

Quadratic form of the Pen-

man-Monteith equation to 

estimate ET uses various 

ERA5 meteorological data, 

GLASS (LAI, albedo), 

Ec, Es, 

Ei 

ETwb 
Li et al., 

2023 
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satellite remote-sensing as 

input 

MODIS (land cover, cloud, 

aerosol, LAI, etc.). 

FLUXC

OM-RS 
8-day 0.0833º 2001-2015 

FLUXNET and ensemble 

multiple machine learning 

Multiple meteorological 

data, MODIS (land cover, 

LST, fPAR, NDVI, EVI, 

NDWI). 

- ETwb 

Jung et 

al., 2019 

FLUXC

OM-

RS-

ME-

TEO 

8-day 0.5º 2001-2013 
FLUXNET and ensemble 

multiple machine learning 

Multiple meteorological 

data 

- ETwb 

Jung et 

al., 2019 

GLEA

Mv3.5a 
Daily  0.25º 1980-2018 

Priestley-Taylor equation 

and data assimilation of 

soil moisture 

ERA5 meteorological data, 

ESA-CCI soil moisture, 

NSWEP precipitation, 

GLOBSNOW SWE， etc. 

Ec, Es, 

Ei, 

Ew, 

Ess 

ETwb 
Martens 

et al., 

2017 

GLEA

Mv3.5b 
Daily  0.25º 2003-2018 

Priestley-Taylor equation 

and data assimilation of 

soil moisture 

CERES radiation, AIRS 

temperature, NSWEP pre-

cipitation, GLOBSNOW 

SWE.  

Ec, Es, 

Ei, 

Ew, 

Ess 

ETwb 
Martens 

et al., 

2017 

CR Monthly 0.25º 2000-2022 
calibration-free comple-

mentary relationship model 

ERA5 meteorological data, 

ERA5-Land LST, GLASS 

albedo, CERES net 

radiation. 

- ETwb 

Ma et 

al., 2021 

GLDAS

-CLSM 
Daily 0.25º 

2003- pre-

sent 

Global Land Data Assimila-

tion System， Catchment 

Land Surface Model 

(GLDAS_CLSM025_DA1

_D.2.2) 

GLDAS-v2.2 forcing data 

from ECWMF and Prince-

ton, GRACE TWS data.  

Ec, Es, 

Ei,  

Ess 

ETwb 

B. Li et 

al., 2019 

GLDAS

-Noah 
Monthly 0.25º 

2000- pre-

sent 

Global Land Data Assimila-

tion System Version 2， 

Noah Land Surface Model 

(GLDAS_NOAH025_3H.2

.1) 

GLDAS-v2.1 forcing data, 

combination of GDAS, dis-

aggregated daily GPCP 

precipitation, and AFWA 

radiation datasets.  

Ec, Es, 

Ei 

ETwb 

Rodell 

et al., 

2004 

GLDAS

-VIC 
Monthly 1º 

2000- pre-

sent 

Global Land Data Assimila-

tion System Version 2.1， 

Noah Land Surface Model 

(GLDAS_VIC10_3M.2.1) 

GLDAS-v2.1 forcing data, 

combination of GDAS, dis-

aggregated daily GPCP 

precipitation, and AFWA 

radiation datasets. 

Ec, Es, 

Ei 

ETwb 

Rodell 

et al., 

2004 

Terra-

Climate 
Monthly 0.25º 1958-2020 

modified Thornthwaite-

Mather climatic water-bal-

ance model 

Meteorological data from 

WorldClim, CRU, JRA, 

etc. 

- ETwb Abatzog

lou et 

al., 2018 

MERR

A2 

Monthly 0.25º 1979-pre-

sent 

The Modern-Era Retro-

spective analysis for Re-

search and Applications, 

Version 2, by NASA Global 

Modeling and Assimilation 

Office (GMAO) using the 

MERRA-2 global atmos-

pheric reanalysis data  

Ec, Es, 

Ei, 

Ew, 

Ess 

ETwb Gelaro 

et al., 

2017 
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Goddard Earth Observing 

System Model (GEOS) 

ERA5 Monthly 0.25º 1979- pre-

sent 

The fifth generation of Eu-

ropean ReAnalysis of 

ECMWF based on Hydrol-

ogy Tiled ECMWF Scheme 

for Surface Exchanges over 

Land (HTESSEL).  

ECMWF ERA5 global cli-

mate reanalysis data. 

- ETwb Hers-

bach et 

al., 2020 

ERA5-

Land 

Monthly 0.25º 1979- pre-

sent 

New land component of the 

fifth generation of Euro-

pean ReAnalysis of 

ECMWF: Carbon Hydrol-

ogy-Tiled ECMWF 

Scheme for Surface Ex-

changes over Land 

(CHTESSEL). 

Downscaled meteorologi-

cal forcing from the ERA5 

climate reanalysis 

- ETwb Muñoz-

Sabater 

et al., 

2021 

2.2.4 Other data  

The precipitation data used in this study are from the TPHiPr dataset, which is long-term high-resolution (1/3°, daily) precip-185 

itation datasets for the TP obtained by merging the atmospheric model output with gauge observations from more than 9000 

rain gauges around the TP (Jiang et al., 2023). Compared to other widely used precipitation datasets, this dataset has remark-

ably better accuracy in the TP, with a generally unbiased and root mean square error of 5.0 mm/d. 

2.3 Methodology 

2.3.1 Evaluation of ET products  190 

We evaluated different ET data products (Table 2) at monthly scale against ground observations and basin-scale estimates of 

the water balance. Various error metrics were calculated to assess the accuracy of these ET datasets. These ET datasets were 

mainstream gridded ET products obtained by a variety of algorithms applied to the TP or globally. Considering that the foot-

print of the in-situ flux tower observations was generally in the range of  several hundred meters to kilometers, they were used 

to evaluate ET datasets at relatively high resolution (≤1km), including six global ET products and one regional ET product, 195 

i.e., ETMonitor, MOD16, PMLV2, SSEBop, GLASS, SynthesisET, and MOD16-STM. All products were evaluated against 

estimates of the basin-scale water balance, regardless of their spatial resolution. When validating with ground observations, 

the ET values of the ET products in the pixels where the flux sites are located were extracted directly for comparison. For 

comparison with the basin-scale water balance data, the basin-scale monthly averaged ET values of different products were 

calculated using the area-weighted averaging method according to the basin boundary.  200 

The following commonly used accuracy metrics were applied, including the correlation coefficient (R), the bias (BIAS), the 

root mean square error (RMSE), and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009). The KGE is a multi-objective 
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statistical indicator that incorporates the correlation, relative variability ratio and mean value ratio, to comprehensively evaluate 

the accuracy. The metrics were calculated as: 

𝑅 =
∑ (𝐸𝑇𝑒−𝐸𝑇𝑒̅̅ ̅̅ ̅)(𝐸𝑇𝑜−𝐸𝑇𝑜̅̅ ̅̅ ̅𝑛

𝑖=1

√∑ (𝐸𝑇𝑒−𝐸𝑇𝑒̅̅ ̅̅ ̅)2𝑛
𝑖=1 √∑ (𝐸𝑇𝑜−𝐸𝑇𝑜̅̅ ̅̅ ̅)2𝑛

𝑖=1

                                                            (1) 205 

𝐵𝐼𝐴𝑆 =  ∑ (𝐸𝑇𝑒 − 𝐸𝑇𝑜)𝑛
𝑖=1 𝑛⁄                                                                          (2) 

𝑅𝑀𝑆𝐸 = √∑ (𝐸𝑇𝑒 − 𝐸𝑇𝑜)2𝑛
𝑖=1                                                                           (3) 

𝐾𝐺𝐸 =  1 − √(𝑅 − 1)2 + (
𝜇(𝐸𝑇𝑒)

𝜇(𝐸𝑇𝑜)
− 1)2 + (

𝜎(𝐸𝑇𝑒)

𝜎(𝐸𝑇𝑜)
− 1)2                 (4) 

where ETe (mm/month) indicates the ET values of different products, ETo (mm/month) indicates the ground-truth ET values, 

either from in-situ observations or basin-scale water balance estimates, μ is the mean value, σ is the standard deviation, and R 210 

is the Pearson correlation coefficient between the ET values and the ground-truth ET values. KGE is smaller than 1, and higher 

KGE means better agreement between observations and estimates.  

2.3.2 Inter-comparison of different products 

In order to inter-compare the spatial variation of ET by different products, multiple-year average annual ET was calculated 

and analysed for each product during their overlap period from 2003 to 2013, unless specific period was redefined. The aver-215 

aged and median values of ET, as well as the standard deviation, of different products were calculated at both pixel-wise and 

basin-wise level, to explore the discrepancy of ET magnitude by different products. The ratio of standard deviation to multi-

products average ET values was used as an indicator of uncertainty. For products that also provide the ET components (i.e., 

plant transpiration, soil evaporation, canopy rainfall interception evaporation, open water evaporation, and snow/ice sublima-

tion), the individual contributions of these components to the total ET were also calculated and compared.  220 

Monthly ET values were produced for each product to analyse the seasonal variation in ET. It is generally agreed that long-

term temporal coverage (i.e., at least 30 years) is required to estimate the trend of climate variables. However, most ET products 

cover a relatively short period. Although the relatively short period of time can be debated, these time series are helpful to 

clarify the trend in recent years and to understand the difference in trend among products. The calculation of the trends can be 

affected by exceptional years (outliers) with extremely high or low ET. To reduce the influence of these outliers, we used the 225 

robust regression method instead of the simple linear regression method. The significance level of the trend was estimated 

using a t-test.  
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3. Results 

3.1 Evaluation of ET products  230 

3.1.1 Validation of ET products against flux tower measurements 

Figure 2 and Supplementary Figure S2 show the validation results. It should be noted that all the products have different 

temporal coverage and the eddy covariance observations at the flux tower sites also cover different years. In addition, some 

ET products do not have valid values over certain land cover types, e.g., the MOD16 ET algorithm does not work over non-

vegetated areas, so MOD16 ET has no data at the QOMS and NADORS sites (both have land cover as desert steppe). Therefore, 235 

the accuracy metrics for each ET product in Figure 2 have only be calculated for those periods when both ground measurements 

and the ET product data are available at each site. To provide a fair and overall comparison, Figure 2 also shows the metrics 

for the condition only when all products and ground data are overlapped (‘Overlap’) and the overall metrics that include all 

conditions (‘All’). More information on the validation period and relevant information can be found in Supplementary Table 

S1. 240 

Among all the global ET datasets, ETMonitor and PMLV2 ET achieved the highest accuracy with the highest KGE (>0.77) 

and lowest RMSE (<20 mm/month). As expected, the regional ET product MOD16-STM showed good performance with low 

RMSE and high KGE (15.84 mm/month and 0.77 when using the ‘overlap’ validation samples). This can be attributed to the 

fact that MOD16-STM ET was calibrated using the flux observations from the TP sites and was estimated based on the regional 

bias-corrected climate data with better accuracy than the global forcing data. These three PM -type model-based products 245 

(ETMonitor, PMLV2, MOD16-STM) showed overall better accuracy than other products. The energy balance-based SSEBop 

ET product had the largest negative bias and lowest KGE for relatively wet sites and desert sites, but showed good accuracy 

for some alpine steppe sites with sparse vegetation cover (e.g., SH, YK, NAMORS). Figure 2 also indicates that the ensemble 

ET datasets (GLASS and SynthesisET) showed poorer accuracy than other ET products, e.g., both with KGE less than 0.6 and 

negative bias (-13.76 ~ -10.82mm/month), which is most likely related to the ensembled data sources and algorithms. Most 250 

products showed better accuracy at the relatively wet sites with dense vegetation cover (e.g., GT, HBG, ARS, CN-Ha2 sites), 

as judged by relatively higher values of KGE and R, than that at the relatively dry sites with sparse vegetation cover or desert 

bare land (e.g., QOMS, NADORS). 
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 255 

Figure 2: Summary of the validation results of high-resolution ET products against flux tower measurements. ‘All’ indicates that 

the validation results are obtained based on different samples depending on the availability of each product, while ‘Overlap’ repre-

sents the validation results are obtained based on consistent time frame and same sample numbers (mainly vegetation covered sites) 

for every product. 
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3.1.2 Evaluation of ET products against water balance model estimates 260 

Figure 3 and Supplementary Figure S3 showed the comparison of all ET products with the basin-scale water balance ET (ETwb). 

As expected, the regional ET products MOD16-STM and PMLV2-Tibet showed good agreement with the water balance-based 

ET of the five river basins described in Section 2.2.2, with KGE of 0.64~0.87 and RMSE of 12.19~15.60 mm/month. Although 

both MOD16-STM and PMLV2-Tibet were calibrated using the ground flux observations from the TP, their accuracy is 

different, with the MOD16-STM ET showing a slightly lower KGE, most likely due to its underestimation at high ET levels 265 

(Figure 3 and Supplementary Figure S3). ETMonitor and PMLV2 ET also had high KGE (≥0.80) and low RMSE 

(<14mm/month). SynthesisET had the highest RMSE and BIAS, this is due to the fact that SynthesisET ensembles different 

data sources in different time periods, resulting in inconsistent time series. Among the coarse resolution reanalysis and LSM 

ET products, TerraClimate, ERA5, and ERA5-Land showed overall good accuracy with KGE≥0.78 and RMSE≈13 

mm/month, while GLDAS-CLSM and GLDAS-VIC showed large errors with RMSE≥20 mm/month and KGE≤0.41. CR 270 

also showed overall good accuracy in the TP, but had relatively lower KGE in arid basins (e.g., InnerTP), where GLEAM and 

SSEBop showed relatively higher KGE. Of all products, the PMLV2-Tibet and ETMonitor ET products showed the lowest 

RMSE (<13mm/month) and the highest KGE (0.87) and R (>0.90) when compared with ETwb. The global ET products ETMon-

itor, PMLV2, GLEAM35a, GLEAM35b, TerraClimate, ERA5, and ERA5Land showed above-average accuracy due to their 

lower RMSE and higher KGE. When regressed against ETwb, most ET products showed slope values less than one, indicating 275 

these ET products underestimate ET in regions or periods with high ET values (Supplementary Figure S3). Among them, 

ETMonitor, CR, and TerraClimate ET showed slope values close to 1 (larger than 0.9), which highlights their good accuracy 

in the reference basins.  
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 280 

Figure 3: Summary of the evaluation of ET products against basin-scale ET based on water balance estimates for the headwaters of 

Yellow basin (HYE), headwaters of Yangtze basin (HYA), upper Heihe basin (UH), Inner TP (INTP) and Qaidam (QDM). ‘5basins’ 

presents the validation results when timeseries data from all five basins were usedappended together to calculate the performance 

indicators.  

3.2 Variability of ET across the TP 285 

3.2.1 Spatial variability in ET across the TP 

Figure 4 shows the mean value of the multi-year average annual ET from the 22 ET products and the standard deviation across 

the TP, and Supplementary Figure S4 documents the spatial variability of multi-year average annual ET across the TP by each 

product. The annual ET in the river basins over the TP by different products is summarized in Supplementary Table S2. In 

general, most of the products showed pixel-wise ET values of each pixel below 800 mm/yr and showed a similar spatial pattern, 290 

with high ET values in the eastern part and low ET in the western part of the TP. The regional ET histogram showed two peaks 
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for some datasets, e.g., ETMonitor, EB, MERRA2 (Supplementary Figure S4). These peaks correspond to the low ET values 

of non-vegetated or sparsely vegetated regions in the central and western TP and the high ET values of regions in the eastern 

TP with dense vegetation and relatively humid climate. The spatial variability, expressed by the standard deviation of different 

products (Figure 4b), suggest large the differences between among different products were larger in the central to western TP 295 

than in the eastern TP, where most ET products show low ET values, e.g., ET values from ETMonitor, SSEBop, EB, are 

generally less than 200 mm/yr, while some ET products show much higher ET values, e.g., ET values from BESSv2, ERA5, 

and ERA5-Land reach 400 mm/yr, illustrating their overestimationthe relatively larger uncertainty in the arid regions/basins 

(Supplementary Table S2).  

300 

 

Figure 4: Mean multi-year average annual ET from the 22 products and the standard deviation across the TP during their overlap 

period (2003~2013). The inset in each panel shows the histogram. 

Figure 5 summarizes the multiple-year average ET over differentof all products in the TP. Among all the ET products, BESSv2 

ET presents highest multiple-year average ET value in the TP, while GLDAS-VIC shows the lowest ET values (Figure 5). The 305 

basins with low ET and sparse vegetation cover (e.g., Qaidam, Inner TP, Hexi Corridor, Tarim, and Amu Darya) have the 

largest uncertainty between products, expressed as the ratio of standard deviation to the mean values (Supplementary Table 
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S2). Uncertainty is also high in the Indus and Brahmaputra basins, most likely due to their complex topography, extreme 

altitude, and large areas of permanent glaciers and snow, which make it difficult to obtain reliable estimates. According to the 

above-mentioned evaluation results, five ET products (ETMonitor, PMLV2, GLEAMv3.5a, GLEAMv3.5b, TerraClimate) 310 

were found to have continuous spatial coverage and provide reliable estimates; the median and average annual ET from these 

five products in the TP are 339.9 mm/yr and 333.1 mm/yr, respectively, with a standard deviation of 38.3 mm/yr. Based on 

the TPHiPr precipitation data (Jiang et al., 2023), the total annual precipitation in the TP is 631 mm/yr, so ET accounts for 

about 52(±7)% of the total annual precipitation. The difference among these products is also noticeable at the basin scale.  

 315 

 
Figure 5: Bar plot of the multi-year (2003~2013) averaged ET of different products in the TP. The red horizontal line represents the 

average ET of all products. The global ET datasets based on satellite remote sensing are in dark blue, the global ET datasets based 

on land surface models and analysis global ET dataset are in light blue, the regional ET datasets are in red. It should be noted that 

some products do not have full spatial coverageonly provide ET values for the vegetation-covered regions, e.g., MOD16, FLUXCOM-320 
RS and FLUXCOM-RS-Meteo only provide ET values for the vegetation-covered regions, and there arethe two regional products 

(MOD16-STM, PMLV2-Tibet) cannot cover the regions outside of China (area accounting 17% of TP roughly).   

3.2.2 Temporal variability in ET across the TP 

Figure 6 shows the monthly variation of ET across the TP, while Supplementary Figure S5 illustrates the differences between 

different products. Despite the diverse temporal profiles observed, most products indicate that the highest ET occurs in July 325 

and August. Based on the products-averaged statistical, ET during the monsoon (June to September) and pre-monsoon seasons 

(March to May) accounts for 62% (±7%) and 23% (±4%) of the annual total ET, respectively. The remaining 15% of ET 

occurs during October to next February. In summary, 66% and 22% of the annual precipitation occurs during the monsoon 

and pre-monsoon seasons respectively, with the remaining 12% occurring during the rest of the year. The monthly patterns of 

ET variability are similar in all basins, with differences in magnitude. The proportion of ET during the monsoon season is 330 

higher in the dry basins, e.g., 69% in Hexi Corridor and 68 % in Qaidam, compared to the wet basins, e.g., 53% in the Ganges 

and 58% in the Brahmaputra.  



19 

 

 

Figure 6: Seasonal evolution of ET in different basins in the TP. Data shown are monthly averaged ET values during 2003~2013. 335 

Figure 7 shows the time series of annual ET spatially averaged over the TP for different products. Large deviations were 

observed among the products, with BESSv2 having the highest value of spatial-average annual ET and the GLDAS-VIC 

having the lowest. The trend of annual ET varies with different products and their temporal coverage (Figure 7 and Supple-

mentary Figure S6). The results suggest a general, significant, increasing trend of ET since the 1980s (most products with 

p<0.05). Since 2000, the annual ET has shown both positive and negative trends depending on the product. Most products 340 

showed a significant increasing trend (p<0.05), and the median ET of all products increased at a rate of 1.70 mm/yr from 2000 
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to 2020 in TP (p<0.05). The SynthesisET showed the largest significant negative trend. At the basin scale, the difference in 

annual trends between different products is also clearly illustrated (Supplementary Figure S6). Most basins showed significant 

increasing trend of ET, especially the Yellow, Yangtze, Mekong, Tarim, Hexi Corridor, Tarim, and Qaidam basins, where 

most products had a positive ET trend. The median ET trend is either negative or close to zero in the Ganges, Brahmaputra, 345 

Amu Darya, and Inner TP basins, probably indicating a decreasing or non-monotonic trend for these basins.  
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Figure 7: Time series of annual ET by different products in the TP. The inset panel shows the annual ET trend by different products. 350 
*: trend with significance level (p<0.05).  In the upper panel, the reanalysis data are shown by a dotted line, and the land surface 

model-based data are shown by a dashed line.  

3.3 ET components  

We also compared the main ET components, i.e., Ec, Es, and Ei from nine products, including ETMonitor, PMLV2, MOD16-

STM, GLEAMv35a, GLEAMv35b, GLDAS-VIC, GLDAS-NOAH, GLDAS-CLSM, and MERRA2. It is important to note 355 

that there is no independent reference data available to validate the ET components, and each model has a different way of 

estimating these components. Even when the total ET is consistent across different products, the individual components can 

differ significantly (Figure 8 and Supplementary Figure S7). All products show higher Ec and Ei values in the eastern TP and 

lower values in the central and western TP (Supplementary Figure S7). This pattern follows the spatial distribution of 
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environmental factors (e.g., LAI and precipitation), i.e., regions with high ET values are mostly covered by forest and alpine 360 

meadow with higher precipitation, whereas regions with low ET values are dominated by sparse vegetation (alpine steppe and 

desert steppe) with lower precipitation. Large deviations in Es values were observed, with several products showing high Es 

values in the eastern TP, e.g., MERRA2, GLDAS-CLSM, ETMonitor, and MOD16-STM, while some products showed ex-

tremely low Es values, e.g., GLEAMv35a, GLEAMv35b, and GLDAS-VIC.  

Figure 8 shows the false color composite maps of the relative magnitude of transpiration (Ec), soil evaporation (Es), and 365 

interception (Ei) from different products, with Red (Es is largest), Green (Ei is largest), Blue (Ec is largest). In the false color 

composite maps, the red (green, blue) color means that Es (Ei, Ec) contributes most to total ET. There are clear differences 

between different products. Most products generally indicate that Es is the major contributor to total ET (Figure 8, pie diagram). 

In contrast, three products (GLEAMv35a, GLEAMv35b, and GLDAS-VIC) show that plant transpiration is the main contrib-

utor to total ET (Figure 8, pie diagram), most likely due to the extremely low Es values in the eastern TP (Supplementary 370 

Figure S7). The averaged Es/ET values range from 18% in GLDAS-VIC to 84% in MOD16-STM, with a median value of 

50%. Averaged Ec/ET values range from 11% in GLDAS-CLSM to 58% in GLEAMv35a, with a median value of 30%. Most 

products generally showed low Ei/ET values with a median value of 5%, while GLDAS-VIC and GLDAS-NOAH show the 

highest Ei/ET values (20% ~ 36%). Overall, the ET partitioning ratio in ETMonitor is the closest one to the median value of 

all products.    375 
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Figure 8: False color composite maps to visualize the relative magnitudes of the transpiration (Ec), soil evaporation (Es), and inter-

ception (Ei) contribution to total ET according to different products. 

In addition, two other components of water vapour flux are considered separately: evaporation from open water bodies (Ew) 

and sublimation from snow/ice-covered surfaces (Ess). There are three products providing open water evaporation, including 380 

ETMonitor, GLEAMv35a and GLEAMv35b (Figure 9, upper panel), and five products providing snow/ice sublimation, 
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including ETMonitor, GLEAMv35a, GLEAMv35b, GLDAS-CLSM, and MERRA2 (Figure 9, middle and lower panels). For 

open water evaporation, three products provide comparable Ew results with average Ew/ET from 3.45% to 4.10%. According 

to Wang et al. (2020), the total water evaporation is about 29.4 ± 1.2 km3/yr (≈1111.5 mm/yr) from the 75 lakes in the TP with 

total area of 26,450 km2 (accounting for approximately 56.9% of the total lake area in the whole TP), and the total lake evap-385 

oration (51.7 ± 2.1 km3/yr) for all plateau lakes. The total open water evaporation amount from ETMonitor gives a value of 

945.3mm/yr for the permanent water surface over the TP. The total water area is 1.29×106 km2 in the TP when seasonal water 

bodies are taken into account, which is much larger than the permanent water surface. ETMonitor takes into account the 

seasonality of water surface areas when estimate ET, and the multi-year mean total annual water evaporation in the TP esti-

mated by the ETMonitor is about at 44.4 km3/yr, which is lower than that given by Wang et al. (2020). For snow/ice cover 390 

surface, GLDAS-CLSM provided the overall highest ratio of sublimation (Ess) to total ET (i.e. Ess/ET) with a regional mean 

of 7.79%, and GLEAMv35a provided the overall lowest Ess/ET value with a regional mean of 1.20%. This difference is mainly 

caused by large differences in Ess between different products in the southern TP, e.g., in the Indus, Ganges and Brahmaputra 

watersheds, where Ess is not well captured by GLEAM. The sublimation (Ess) estimated by the ETMonitor falls in the middle 

of these ET products, with a regional average of 4.3%.   395 
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Figure 9: Spatial variability of open water evaporation (Ew) and snow/ice sublimation (Ess) in the TP by different products. 

4. Discussion 

To understand regional and global climate change, as well as regional ecohydrological processes in the TP, knowledge of the 400 

changes in ET over time and space is required. In this study, 22 ET products were evaluated using various methods, i.e., 
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comparing ET products with ground eddy covariance observations and basin-scale water balance estimates, assessing the spa-

tiotemporal variability of ET and its components, to assess the performance of ET products and clarify the ET amount, spati-

otemporal variability and trends of ET in the TP. After this comprehensive evaluation and analysis, we have gained a clear 

understanding of the water vapour released from the TP. In addition, we find that the evaluation results are highly relevant to 405 

better understand the performance of ET models and the underlying vaporization processes, thus providing suggestions for 

further improvements in the ET estimation for the TP.  

4.1 Relevance of evaluation results towards a better understanding of the vaporization processesContribution of the 

study to a better understanding of the vaporization processes 

The in-situ observations with an eddy covariance system are recognized as the standard method for monitoring energy and 410 

mass fluxes to validate high-resolution ET (Baldocchi, 2020). In addition, the ET products were compared with the basin-scale 

water balance estimates ETwb. ETwb is obtained at the basin scale (several hundred km2), which is much larger than the footprint 

of flux tower observations (approximately km2, depending on meteorological conditions). Given the relatively sparse distribu-

tion and small footprint of the flux-tower-based eddy covariance system observations, the water balance method can serve as 

a useful complementary reference for ET estimates. This is especially true for the coarse-resolution ET, which has a much 415 

larger spatial footprints than eddy covariance observations.   

In this study, these two methodsthe validations based on in-situ observations and basin-scale water balance estimates gave 

generally consistent results when evaluating the high-resolution ET. When judged by the KGE of site-scale estimates, the 

accuracy of the high-resolution ET products can be ranked as follows: PMLV2 > ETMonitor > MOD16-STM > GLASS > 

MOD16 > SynthesisET > SSEBop. When judged by the KGE of basin-scale validation, the accuracy of the high-resolution 420 

ET products can be ranked as: ETMonitor > PMLV2 > MOD16STM > SSEBop > GLASS > MOD16 > SynthesisET. Although 

both indicate that ETMonitor, PMLV2, and MOD16STM are the most accurate and the remaining four are less accurate among 

the high-resolution ET products, some differences in the ranking of the ET products can be observed. This is probably related 

to the processes captured by the ‘ground-truth’ data at different scale used in the two evaluation methods. An eddy covariance 

observation represents the net water vapour flux integrated across different processes at given point (e.g., plant transpiration 425 

in the dense vegetation regions, snow sublimation in dry snow cover regions, evaporation of canopy-intercepted water when 

the canopy is wet due to intercepted rainfall). In addition, the observed vaporization process depends on the land surface 

conditions at the observation sites during particular times, which may vary seasonally and annually due to factors such as 

snow/ice, intercepted water, and vegetation. The estimated basin-scale ET by water balance (ETwb) was essentially the residual 

of the observed water balance terms, which is assumed to be the net liquid water flux loss to the atmosphere at the basin scale. 430 

Compared to the site-scale observation, the basin-scale ETwb can capture the effect of land cover dynamic on the ET within the 

basin. For example, the mean water level of lakes in TP increased by 0.20 m/yr from 2000 to 2009, and the lake water mass 

increased significantly (Zhang et al., 2013), which caused higher ET in the TP because water evaporation is generally higher 

than other land cover types. However, most ET products (e.g., MOD16, PMLV2, etc) assume constant land surface conditions 
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throughout the year or multiple years, which means that they cannot capture the temporal transitions of the vaporization process 435 

associated with changes in land cover. In contrast, ETMonitor adjusts the daily land cover based on dynamic land cover con-

ditions, including water bodies cover and snow/ice cover, which allows it to reflect the impact of seasonal and annual open 

water extent and snow/ice cover on total ET (Zheng et al., 2022). This probably explains in part why ETMonitor performs 

slightly better than PMLV2 when validated by basin-scale water balance methods, while they are comparable when validated 

by in-situ observations.     440 

Eddy covariance observations capture condensation when negative latent heat flux (i.e. ET) occurs. Remote sensing-based ET 

products mainly focus on positive ET (positive upward latent heat flux) and omit processes such as condensation. For example, 

in the MOD16 ET product algorithm, net radiation (Rn) is constrained to positive values (Rn is set to 0 if Rn<0) indicating 

that negative ET is not allowed. Negative ET (e.g., condensation) can also occur when VPD is negative. Depending on whether 

negative Rn or negative VPD is allowed, the considered water phase changes are different and this will certainly affect the 445 

accuracy of the ET products. 

The evaluation using the basin water balance method gave slightly higher metrics compared to the flux tower results. This may 

be attributed to the disparity in spatial resolution between the flux tower measurements and the basin-scale ETwb estimates. 

Basin-scale ETwb may offset the positive and negative biases within the basin, resulting in better evaluation metrics (Liu et al., 

2023). However, the uncertainties in the water balance method as ground-truth data should also be acknowledged. This method 450 

is based on the validity of several assumptions (e.g., negligible subsurface leakage to adjacent basins) and the reliability of 

data on precipitation, runoff, and water storage (Mao et al., 2016). In cold regions such as the TP, where glaciers and snow 

have a substantial impact on the water balance, meltwater should also be considered (Wang et al., 2022). 

4.2 Implications for the estimation of ET in the TP  

4.2.1 ET estimation using PM-type models  455 

This study found that ET products generated using PM-type models were more accurate than other models. In particular, 

ETMonitor and PMLV2 were the most accurate when evaluated by both in-situ flux observations and estimates of ET based 

on the basin-scale water balance. This is consistent with the conventional wisdom that surface energy balance-based ET models 

are suitable for water-limited conditions in bare and partially vegetated areas, while PM-type ET models are more effective 

for both energy-limited and water-limited conditions in vegetated areas (Chen and Liu, 2020). An exception was found for 460 

MOD16, which had below-average accuracy overall, but its regionally improved version (MOD16-STM) gave significantly 

more accurate estimates of ET after regional parameter calibration and improvement of the soil evaporation module (Yuan et 

al., 2021). The reason for this is that MOD16 is only applicable to limited areas and seasons of the TP due to its unfavourable 

parameterization, which does not account for conditions in the central to western TP due to the lack of estimation of bare soil 

and open water evaporation.  465 
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This study also highlights the potential for improving model parameters to estimate ET using PM-based models, e.g., by 

incorporating soil moisture to compute a water stress indicator, by integrating the water balance simulation and data assimila-

tion, or by coupling the water and carbon cycles to estimate ET. We found that PM-type models incorporating soil moisture 

to parameterize water stress gave very good results. For instance, to improve the accuracy of ET estimate, ETMonitor, which 

provide high accuracy in TP in this study, utilized high-resolution soil moisture data to refine the parameterizations of soil and 470 

canopy surface resistances to estimate soil evaporation and plant transpiration (Hu and Jia, 2015; Zheng et al., 2022). GLEAM 

assimilates surface soil moisture to estimate water availability in the root zone, and applies it to determine the water stress 

(Miralles et al., 2011), which also gave accurate estimates of ET in the TP. Coupling the water and carbon cycles can also be 

helpful for better estimates of ET, e.g., PMLV2 adopted water-carbon cycle coupling to estimate ET (Zhang et al., 2019), since 

canopy conductance controls both transpiration and photosynthesis. The regional adaptation of parameterizations and better 475 

forcing are also beneficial, as shown in this study, where MOD16-STM and PMLV2-Tibet products showed better agreement 

with reference values than MOD16 and PMLV2. Furthermore, PM-type model-based ET products (especially those based on 

duel-source or multi-source models) can provide different ET components, benefiting from the more realistic representation 

of biotic and abiotic processes.  

4.2.2 ET estimation using LST-based model 480 

Although the absolute accuracy of the energy balance-based EB and SSEBop products may be lower than that of the ET 

products from the optimized PM-types models, they have some advantages, such as the close coupling of energy balance with 

sensible heat flux and the good ability to present the spatial variability of ET, especially for the high-resolution dataset. Previ-

ous studies pointed out that the LST-based models fail to produce temporally and spatially continuous ET fields under variable 

cloud conditions. The continuity of LST was significantly improved recently through temporal upscaling technologies , which 485 

may further benefit the ET estimation. The relatively good accuracy of SSEBop at some sites (e.g., SH, YK, NAMORS) in 

this study also demonstrates the potential of LST-based models to achieve estimate ET accurately in arid and sparsely vegetated 

regions.  

4.2.3 Uncertainty propagation in data-driven ensemble ET products  

The accuracy of ET products based on data-driven models has been quite variable in the TP. GLASS and SynthesisET are both 490 

ensemble ET products, with GLASS employing Bayesian averaging and SynthesisET using a ranking-based method (Yao et 

al., 2014; Elnashar et al., 2021). However, these two products showed significant differences, with SynthesisET showing much 

larger errors (Figure 3 and Figure 4). This finding on SynthesisET differs significantly from a previous study that validated 

ET product at the global scale (Liu et al., 2023), which claimed that SynthesisET was the best product when applied in its time 

span based on accuracy indicators (e.g., RMSE) by comparing to in-situ observations and water-balance estimates. After 495 

screening the time series of SynthesisET, we found significant temporal inconsistencies (much higher ET values before 2000 
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than after, which is also shown in Figure 7), mainly caused by its synthesis method. SynthesisET ensembled two or three high-

ranking ET datasets at each time step according to the evaluation metrics. The use of different products for different time 

periods, without correcting for the differences in different products, eliminates the possibility of improving the quality of a 

data product through an advanced ensemble method or critical selection of inputs (Wang et al., 2021). Therefore, to ensure a 500 

more reliable and comprehensive assessment, we propose to analyse the spatial and temporal variability of ET as in Section 

3.2 of this study.  

Data-driven methods, especially machine or deep learning methods, are increasingly applied in the geosciences to extract land 

surface information (Karpatne et al., 2017). The FLUXCOM product integrates the ET results upscaled from in-situ observa-

tions using various machine learning models (Jung et al., 2019). The FLUXCOM-RS-METEO product, which is obtained 505 

using both meteorological datasets and remote sensing datasets as drivers, is also found to have a good accuracy in TP. How-

ever, the FLUXCOM-RS product, which differs from FLUXCOM-RS-METEO, performs poorly in the TP according to the 

findings of this study, indicating the importance of meteorological variables in estimating ET.  

4.2.4 LSM and reanalysis ET products  

We also compared several ET products from LSM and climate reanalysis, including GLDAS-Noah, GLDAS-VIC, GLDAS-510 

CLSM, CR, TerraClimate, ERA5, ERA5Land, and MERRA2. Although these products generally have low spatial resolution 

(0.1˚~1.0˚), they have a long temporal coverage, making them more suitable for climate studies. Among them, TerraClimate, 

CR, ERA5, and ERA5-Land showed overall good accuracy when compared to ETwb, while GLDAS products had a relatively 

low accuracy. The poorer accuracy of GLDAS ET datasets is mainly caused by the forcing data and parameter settings, which 

need significant improvement when applied to the TP (X. Li et al., 2019). In the central and western regions of the TP, where 515 

the surface vegetation cover is sparse and the climate is arid or semi-arid with low precipitation (roughly 300 mm/yr or less), 

CR, ERA5, and ERA5-Land produce higher ET values than other products. The high ET values of ERA5 and ERA5-Land are 

most likely due to the overestimation of precipitation in the TP by ERA5 (Jiao et al., 2021; Xie et al., 2022), which leads to 

the overestimation of both ET and runoff (Sun et al., 2021). Previous studies have reported relatively high ET values from CR 

methods in the central and western TP (Yang et al., 2020) and Arctic basins (Ma et al., 2021), which can be partly explained 520 

by the uncertainty of the forcing (Ma et al., 2021) and by the applicability of CR in cold regions during non-thawing periods 

(Yang et al., 2021). A basic assumption of CR is that the energy difference between potential ET (ETP) and the ET under wet 

conditions has a linear or nonlinear relationship with the energy difference between ETP and actual ET when water is limited. 

This relationship fails during periods of soil freezing and thawing, when the available energy is mainly used for the phase 

change of ice-water (with higher latent heat) (Yang et al., 2021). Furthermore, CR also assumes that the changes in land surface 525 

properties can be accurately and promptly estimated from changes in atmospheric conditions, neglecting regional or large-

scale advection, which makes it inapplicable in heterogeneous areas (Morton, 1983; Han and Tian, 2020; Crago et al., 2021). 
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4.2.4 Suggestions for further ET estimations in TP  

Several aspects could be addressed to improve the ET estimation in the TP. The current ET models could be improved by 

integrating different models and processes, such as combination of LST-based models and conductance-based PM-types mod-530 

els (Chen and Liu., 2020) or data-driven algorithms (Zhao et al., 2019; Shang et al., 2023), combining ET processes with 

carbon cycle and hydrological processes (Zhang et al., 2019; Abatzoglou et al., 2018). The appropriate combination of PM-

type models and machine learning algorithms could benefit from both and result in a more powerful model for ET estimation 

(Koppa et al., 2022). Recent studies have highlighted the improved accuracy of the hybrid model by estimating the canopy 

conductance using machine learning methods and applying PM-type models (Zhao et al., 2019; Shang et al., 2023), which is 535 

direction towards better estimates of ET in the TP. A major challenge in improving or evaluating ET algorithms is the scarcity 

of ground measurements, which highlights the need for the long-term comprehensive observation network in the TP (Ma et 

al., 2020; Zhang et al., 2021). Furthermore, to improve the accuracy of the estimated ET, it is recommended to use regionally 

optimized forcing data, e.g., climate reanalysis data, which account for the specific climate of the TP with higher accuracy and 

resolution (He et al., 2020).  540 

4.3 Differences in ET components 

Previous studies have mostly focused on the total net vapour flux, e.g., magnitude, spatial variability, temporal trend, etc., 

while the ET components have not been fully investigated. The partitioning of ET into its components, such as soil evaporation 

(Es) and plant transpiration (Ec), can vary significantly between different datasets. These components reflect the different 

water phase transitions and vapour flow processes that are regulated by different factors, i.e. vapour flow within plant leaves 545 

is mainly controlled by the stomatal behaviour in response to environmental conditions, soil evaporation is controlled by soil 

structure and water content, the rainfall interception is determined by canopy morphology and rainfall intensity, and vapour 

transport after sublimation is determined by near-surface boundary layer conditions and the higher latent heat of sublimation. 

A recent study shows that the contributions of Es, Ec, and Ei to total ET are 68.2 %, 23.6 %, and 8.2 %, respectively, at the 

Three Rivers Source of the TP (Zhuang et al., 2024). Our study suggests that soil evaporation is the largest contributor to total 550 

ET in the whole TP, and further study should be given more attention in further studies. We also found that the evaluation of 

different ET components is still limited due to the scarcity of available data, and comprehensive evaluations based on more 

observations would help to further evaluate the ET components and improve the algorithm performance.  

This discrepancy in the ET partitioning across different datasets cannot be explained by a single factor, and it is difficult to say 

which one plays a dominant role as they all contribute in some way to the uncertainty in modelling ET, and may even com-555 

pensate for each other. In general, these differences stem from factors such as differences in the forcing data, model structure 

and parameterization, spatial and temporal resolution of the products, and the assumptions embedded in each dataset. 
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Differences in the forcing data. The forcing data could lead to differences in both the total ET and its components. This explains 

why GLEAMv35a and GLEAMv35b showed different ET partitioning results, although they are based on exactly the same 

algorithm. ETMonitor uses GLASS-MODIS data (LAI, FVC, and albedo), PMLV2 use the official MODIS dataset (LAI, 560 

albedo, and emissivity). A study by Li et al. (2018) has shown that GLASS LAI is more accurate than MODIS LAI, and 

MODIS LAI is much lower than GLASS LAI in the eastern TP, which partly explains the relatively lower Ec values by PMLV2 

than ETMonitor. Moreover, they also use different meteorological datasets. GLDAS-CLSM uses ERA5 data, while GLDAS-

Noah and GLDAS-VIC use GLDAS-2.1 meteorological forcing data as input. A recent study shows that GLDAS-2.1 highly 

overestimates relative humidity during spring and winter time (Xu et al., 2024), which may lead to lower Es.  565 

Model structure and parameterization. As a most intuitive example, GLDAS-VIC and GLDAS-Noah share the same forcing 

data, but the estimated ET partitioning differs significantly. GLDAS-VIC gives a much higher Ec/ET and lower Es/ET, con-

sistent with previous studies. This is most likely due to the weaker soil moisture-ET coupling in the applied physical scheme 

(Feng et al., 2023). The extremely high Ec/ET ratio is mainly due to the “big leaf” vegetation scheme, which assumes that 

there are no canopy gaps or exposed soil between plants, so that soil evaporation only occurs in unvegetated areas (Bohn and 570 

Vivoni, 2016; Sun et al., 2021). It has also been reported that VIC model, with FVC set to 1 as default value, significantly 

overestimate Ec and suppresses Es in sparse vegetation types with a true FVC between 0.1 and 0.5 (Schaperow et al., 2021). 

In contrast, GLDAS-CLSM tends to underestimate the Ec/ET ratio and overestimate Es/ET, possibly due to parameterization 

issues related to the soil or vegetation resistance, or the non-traditional approach of accounting for subgrid heterogeneity in 

soil moisture (Feng et al., 2023; Sun et al., 2023). CLSM estimates of ET are adjusted by varying the sub-ranges of soil water 575 

availability, i.e. the saturation, transpiration and wilting sub-ranges (where transpiration is shut off), which differs from the 

continuous soil water stress function used in other models. Some other factors, such as the “big leaf” vegetation scheme and 

the absence of irrigation and the data assimilation procedure, could also affect the ET partitioning in GLDAS models (Bohn 

and Vivoni, 2016; Li et al., 2022).  

Calibration of model parameters. Some ET algorithms may have been calibrated and evaluated against different observations, 580 

which can lead to variations in the model performance and, consequently, the partitioning of ET. The global ET datasets use 

default parameters assigned according to land surface characteristics, which are inappropriate for TP and certainly contribute 

to differences in ET partitioning. Many studies have also highlighted the importance of parameter optimization to reflect the 

local vegetation and soil properties for modelling ET processes (Xu et al., 2019; Zheng et al., 2022). 

Effects of spatial heterogeneity and resolution. Higher spatial resolution data may more accurately capture details of the local 585 

variability in land surface characteristics and associated vapour fluxes in heterogeneous areas (Chen et al., 2019), leading to 

differences in ET estimates compared to coarser resolution datasets. 
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4.4 Water vapor released by the TP 

4.4.1 ET magnitude and variability in the TP 

This study confirms the large discrepancy in the magnitude of ET among different products, as previously reported (e.g., Wang 590 

et al., 2020; W. Wang et al., 2018; X. Li et al., 2019). It also shows significant differences in the spatiotemporal distribution 

of ET and ET components according to different products. Our study suggests that the ET over the TP ranges from 224 mm/yr 

to 519 mm/yr depending on the products used, with a mean (median) value of 333.1 (339.8) mm/yr and a standard deviation 

of 42.5 mm/yr. ET accounts for about 52% of the total annual precipitation. This study focused on the vapor released into the 

atmosphere, while the downward vapor flux (mainly condensation) was not considered. A recent study based on ERA5 rea-595 

nalysis data found that the annual mean condensation in the TP is about 8.45 mm/yr, which accounts for roughly 2% of the 

upward vapor flux (Li et al., 2022). We also noticed that the boundary of the TP used in this study differs from that used in 

some previous studies (e.g., Wang et al., 2020; Ma et al., 2021). The boundary we adopted is more reliable because it is based 

on geomorphology and formation processes that take into account factors such as elevation, hydrological watershed, etc., 

which we believe is more appropriate for the analysis of land surface processes (Zhang et al., 2013; Zhang et al., 2021).  600 

Due to the heterogeneity of the climate and land surface, the dominant processes vary between the different sub-regions of the 

TP. For example, plant transpiration is expected to be the dominant process in the humid plant-soil systems that are more 

common in the eastern and southeastern TP, whereas soil evaporation is expected to be the dominant process in the central to 

western TP where arid sparse-vegetated or bare soil cover is prevalent. The difference between these processes certainly affects 

the magnitude of ET. In the eastern and southeastern TP where ET is higher due to the humid climate and high vegetation 605 

cover, there are strong correlations between Rn and ET indicating that the water and carbon cycles play an important role and 

that the stomatal openness and closure of plant leaves are closely related to the radiation forcing. In contrast, in the central and 

western TP, there are high correlations between precipitation and ET due to the cold arid climate and sparse vegetation cover, 

i.e. abiotic processes are dominant. Plants tend to grow more (high LAI) in regions where water is abundant, while higher LAI 

leads to higher Rn due to the generally low albedo of vegetation compared to soil. This may be more important in the energy-610 

limited regions of the southeastern TP. 

4.4.2 Impact of cryosphere on surface water flux 

The dynamics of cryosphere elements, such as glaciers and snow, have a significant impact on hydrological processes. 

Snow/ice sublimation is one of the most important aspects of water resources and hydrology at high altitude (MacDonald et 

al., 2010). Sublimation is a major contributor to the decrease in snow cover during winter. This study found that snow/ice 615 

sublimation in the TP is about 14 mm/yr (median value of different products). It may lead to an error of 4% if sublimation is 

not taken into account when estimating the total vapour flux released from the TP to the atmosphere. Sublimation from snow 

and ice surfaces occurs mainly at high elevations when snow/ice covers large parts of the catchments and atmospheric 
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conditions are cold and dry, as dictated by the Clausius-Clapeyron equation. The maximum sublimation value is higher than 

100 mm/yr in TP (Figure 12). A recent observational study of the Langtang Valley in the central Himalaya of Nepal showed 620 

that snow sublimation was 32~74 mm/yr during 2017~2019 (Stigter et al., 2021), which is consistent with the ETMonitor 

estimation (48 mm/yr) (Zheng et al., 2022).  Meltwater from glaciers is a significant proportion of the water available down-

stream, which also increases ET. A study has reported contrasting trends in ET in the central TP between a wetland replenished 

by glacial meltwater and a nearby alpine steppe with water supply by precipitation only (Ma et al., 2021). 

5. Conclusions 625 

To clarify the magnitude and variability of water vapour released to the atmosphere in the TP, this study evaluated f 22 ET 

products in  the TP in terms of accuracy, spatial and temporal variability and ET components. The accuracy of the ET products 

was evaluated against either eddy covariance observations or basin-scale estimates of the water balance. The spatiotemporal 

variability of ET and its components was evaluated. The main conclusions were:  

⚫ The high-resolution remote sensing-based ET data from ETMonitor and PMLV2 generally showed high accuracy a com-630 

parable to the regional MOD16-STM ET product, with overall better accuracy than other fine spatial resolution (~1km) 

global ET data. The accuracy of these ET estimates was confirmed by the comparison with the water balance-based ET 

at basin scale, which further indicated overall accuracy of GLEAM and TerraClimate for the coarse-resolution ET prod-

ucts.  

⚫ The median and mean values of annual ET in the TP, according to the different products evaluated in this study, are 339.8 635 

mm/yr and 333.1 mm/yr respectively, with a standard deviation of 38.3 mm/yr. Different products showed different 

spatial and temporal patterns, and large deviations occurred in the central and western TP. Most products showed an 

increasing trend of annual ET in the TP from 2000 to 2020, with the annual rate varying between data products.  

⚫ The separate contributions of the different components, i.e. plant transpiration, soil evaporation, interception loss, open 

water evaporation, and snow/ice sublimation, vary considerably between data products, even in cases where total ET is 640 

in good agreement between the different products, and soil evaporation accounts for the majority of ET. The contributions 

of open water evaporation and snow/ice sublimation are also not negligible.  
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