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Abstract. Alpine basins are important water sources for human life and reliable hydrological modeling can enhance the water

resource management in alpine basins. Recently, hybrid hydrological models, coupling process-based models and deep learn-

ing, exhibit considerable promise in hydrological simulations. However, a notable limitation of existing hybrid models lies in

their failure to incorporate spatial information within the basin and describe alpine hydrological processes, which restricts their

applicability in hydrological modeling in large alpine basins. To address this issue, we develop a set of hybrid semi-distributed5

hydrological models by employing a process-based model as the backbone, and utilizing embedded neural networks (ENNs) to

parameterize and replace different internal modules. The proposed models are tested on three large alpine basins on the Tibetan

Plateau. A climate perturbation method is further used to test the applicability of the hybrid models to analyze the hydrological

sensitivities to climate change in large alpine basins. Results indicate that proposed hybrid hydrological models can perform

well in predicting runoff processes and simulating runoff component contributions in large alpine basins. The optimal hybrid10

model with Nash-Sutcliffe efficiency coefficients (NSEs) higher than 0.87 shows comparable performance to state-of-the-art

DL models. The hybrid model also exhibits remarkable capability in simulating hydrological processes at ungauged sites within

the basin, markedly surpassing traditional distributed models. Besides, the results also show reasonable patterns in the analysis

of the hydrological sensitivities to climate change. Overall, this study provides a high-performance tool enriched with explicit

hydrological knowledge for hydrological prediction and improves our understanding about the hydrological sensitivities to15

climate change in large alpine basins.

1 Introduction

Alpine basins are important water sources, playing a crucial role in various aspects of human life and the environment, such as

domestic water supply, irrigation, hydropower generation, and climate regulation (Cui et al., 2023; Huss et al., 2017; Viviroli

et al., 2011). Developing reliable hydrological models is crucial for managing floods and improving water use efficiency under20

climate change (Blöschl et al., 2019).

Process-based hydrological models, such as EXP-Hydro (Patil and Stieglitz, 2014), CRHM (DeBeer and Pomeroy, 2017),

and THREW (Nan et al., 2021), are widely used approaches for hydrological simulation in large alpine basins. These models
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depend on physical laws and empirical knowledge to describe physical processes and are grounded in well-defined physical

mechanisms. They can be used to advance scientific understanding about the hydrological systems and provide the insight25

into the response of hydrological processes to climate changes (Cui et al., 2023; Li et al., 2021). However, the performance of

these models is constrained by several factors, including an incomplete understanding of alpine hydrological processes, errors

in the model structure, and uncertainties in parameterization (Kuppel et al., 2018; Beven, 2006). These deficiencies also give

rise to equifinality, making it challenging to accurately represent hydrological processes. This diminishes the credibility of

process-based models in the context of climate change assessment.30

Deep learning (DL) hydrological models are distinguished by their remarkable data mining capabilities, operating inde-

pendently of hydrological knowledge. They showcased exceptional model performance across diverse hydrological domains,

including streamflow/discharge forecasting (Kratzert et al., 2018; Lees et al., 2021; Liu et al., 2021), snow water equivalent

modeling (Duan and Ullrich, 2021), and groundwater level mapping (Solgi et al., 2021; Nourani et al., 2022). Most of these

studies disregard the effect of spatial information from meteorological data on hydrological modeling. Li et al. (2023a) intro-35

duced an innovative spatiotemporal DL hydrological model, demonstrating that integrating spatial information can significantly

improve the performance of DL models in hydrological modeling. Nonetheless, despite their remarkable capabilities, DL hy-

drological models still face scrutiny within the hydrological modeling community, primarily due to their "black-box" nature.

Furthermore, DL models rely on the assumption that the dataset’s distribution during the prediction period remains consistent

with that of the training period. This assumption cannot be met when using DL models to assess the effects of climate change40

on hydrological modeling (Nearing et al., 2021; Zhong et al., 2023).

Hybrid hydrological models that combine process-based and DL approaches are anticipated to harness their respective

strengths to achieve both impressive performance and a well-defined understanding of hydrological processes (Tsai et al.,

2021; Shen et al., 2023). Previous studies have introduced various hybrid model configurations and demonstrated satisfactory

outcomes (Feigl et al., 2022; Frame et al., 2021; Kashinath et al., 2021; Quilty et al., 2022; Bhasme et al., 2022; Kumanlioglu45

and Fistikoglu, 2019; Xie et al., 2021; Lu et al., 2021), while the underlying concept in many of these hybrid models remains

centered on either pure DL models or process-based models. For instance, Frame et al. (2021) utilized LSTM models as post-

processors for the United States National Water Model, highlighting that integrating DL models can improve performance

by rectifying errors in the outcomes of process-based models. Xie et al. (2021) introduced a physically-guided LSTM model

by incorporating synthetic samples during model training to capture underlying physical mechanisms. Recently, some studies50

attempted to implement differentiable models to facilitate a bidirectional integration between process-based models and DL

models (Shen et al., 2023; Baydin et al., 2018; Höge et al., 2022). Feng et al. (2022) introduced hybrid hydrological models

that integrated a lumped hydrological model HBV as the foundation and incorporated embedded neural networks (ENNs) to

parameterize, enhance, or replace internal components without prior training. The proposed models demonstrated comparable

performance to DL models and can output untrained physical variables. Our earlier work further developed hybrid models55

by employing ENNs to replace the internal modules of the lumped model EXP-Hydro, and systematically test the impact of

replacing different internal modules with ENNs (Li et al., 2023b). The findings suggest that substituting any internal component

with ENNs can enhance model performance, but increasing the number of internal component replacements does not guarantee
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improved outcomes. Achieving optimal performance requires a delicate equilibrium between the quantity of ENNs and the

process constraints inherent in the process-based model. However, Feng et al. (2022) and Li et al. (2023b) have predominantly60

employed lumped hydrological models as the foundational framework in hybrid models. They have not adequately accounted

for the spatial information of meteorological inputs and underlying surfaces within the basin, which limits their applicability

in large basins. Additionally, the effectiveness of hybrid models in the Tibetan Plateau’s large alpine basins, particularly in

assessing hydrological sensitivities to climate change, is yet to be clearly established. Therefore, there is a need to evolve

hybrid models from lumped to distributed to adequately capture the spatial information within the basin. Moreover, it is also65

essential to incorporate alpine hydrological processes in hybrid models for adapting them to alpine basins and evaluate the

adaptability of these hybrid models in analyzing the hydrological sensitivities to climate change in large alpine basins.

Building upon our earlier work about hybrid lumped models (Li et al., 2023b), this study aims to propose hybrid semi-

distributed models that employ a hydrological model as the backbone, and employ the ENNs to parameterize and replace

different internal modules within the sub-basin scale. The proposed models are then comprehensively assessed across three70

large mountainous basins on the Tibetan Plateau. A climate perturbation method is further used to analyze the hydrological

sensitivities to climate change in large alpine basins. The remainder of this paper is organized as follows: Sect. 2 outlines the

proposed hybrid models, study area, and data, Sect. 3 shows the evaluation results of the proposed models, Sect. 4 provides

details about the hydrological sensitivities to climate change, and we conclude in Sect. 5.

2 Methods and Materials75

2.1 Model development

This study develops hybrid semi-distributed hydrological models by integrating the process-based model and embedded neural

networks (ENNs; Figure 1). Specifically, the proposed models use a semi-distributed EXP-Hydro model as the backbone,

with ENNs parameterizing and replacing different internal modules. The differential programming framework is utilized to

achieve a bidirectional integration between the process-based model and ENNs, enabling simultaneous parameter training of80

both entities.

2.1.1 The semi-distributed EXP-Hydro model

In this study, the hybrid semi-distributed models are built upon the foundation of the semi-distributed EXP-Hydro model (Patil

et al., 2014). The originally lumped EXP-Hydro model, proposed by Patil and Stieglitz (2014), treats each basin as a singular

areal unit, disregarding the spatial information within the basin. The EXP-Hydro model encompasses a snow accumulation85

bucket and a basin bucket represented by snow storage (S0) and basin water storage (S1), respectively. Within the model, four

processes are represented: precipitation partition (rainfall Pr or snowfall Ps), evapotranspiration (ET ), snowmelt (M ), and

runoff (Q). Detailed equations refer to Appendix A1 and Patil and Stieglitz (2014). The semi-distributed EXP-Hydro model

was subsequently extended to incorporate the spatial heterogeneity within the basin (Patil et al., 2014). Initially, the study basin
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is divided into multiple sub-basins using a Digital Elevation Model (DEM). The EXP-Hydro model is run independently within90

each sub-basin, and the overall basin runoff is derived by summing the runoff outputs from all sub-basins (Equation A12). Patil

and Stieglitz (2015) and Patil et al. (2014) showcased the efficacy of the semi-distributed EXP-Hydro model in hydrological

modeling across 295 basins spanning the continental United States. Their studies indicated that this model outperforms the

original EXP-Hydro model.

Figure 1. The schematic diagram of hybrid semi-distributed models. (a) The basin is first divided into many sub-basins; (b) All meteorological

and hydrological processes included in the EXP-Hydro model are calculated in each sub-basin. The precipitation partition, snowmelt, and

runoff modules can be optionally replaced by embedded neural networks. Detailed formulations of these processes refer to the main text.

2.1.2 The hybrid semi-distributed models95

Using the semi-distributed EXP-Hydro model as the backbone, the hybrid models integrate ENNs to parameterize and replace

various internal modules within the differential programming framework (Baydin et al., 2018). This configuration enables the

model to comply with basic physical principles while enhancing its representational capability of the corresponding meteoro-

logical and hydrological modules, thus increasing the accuracy of hydrological simulations. ENNs utilize both static attributes

(Table A1) and dynamic meteorological time series from each sub-basin as inputs. These inputs are employed to characterize100

the disparities in physical mechanisms among sub-basins and to drive the precipitation-runoff processes. The hybrid models

are realized via four steps:

1. Data pre-processing: DEM is employed to partition the study basin into multiple sub-basins, guided by a drainage area

threshold (Grieve et al., 2016; Noël et al., 2014). The static attributes (Table A1) and daily meteorological time series

for each sub-basin are derived by calculating the areal averages from the original dataset.105

2. Semi-distributed model development within the differential programming framework: All equations within the hydro-

logical model are formulated to be differentiable to ensure operating within the differential programming framework

(Shen et al., 2023; Li et al., 2023b; Levine et al., 2016). This framework facilitates the computation of derivatives from

model outputs to inputs and intermediate variables, thus enabling an "end-to-end" training approach. The hybrid model
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achieves simultaneous training of both the semi-distributed hydrological models and ENNs. Only runoff data is em-110

ployed as the training target, eliminating the need for observed data for ENN outputs. Furthermore, a physical recurrent

neural network (P-RNN) is established to simulate hydrological dynamic processes and retain the memory of past basin

storage sequences (Li et al., 2023b; Jiang et al., 2020).

3. ENNs parameterization and replacement: The calibration parameters of all sub-basins within the basin are assumed to

be the same in the semi-distributed EXP-Hydro model, while many of them related to sub-basin attributes should be115

different (Feng et al., 2022). To capture the spatial diversity of these calibration parameters at the sub-basin scale, we

build an ENN to derive calibration parameters only using static attributes as inputs. Additionally, ENNs are employed

to potentially substitute distinct internal modules of the EXP-Hydro model, utilizing static attributes and corresponding

dynamic time series as inputs. Specifically, three ENNs are designed for simulating runoff, precipitation partition, and

snowmelt processes in this study.120

4. Model training: Through the aforementioned steps, all parameters of the hybrid models, encompassing the EXP-Hydro

model and ENNs, can be jointly trained using observed runoff data as the training target. The Nash-Sutcliffe efficiency

(NSE, (Nash and Sutcliffe, 1970)) is utilized as the loss function during training.

Our previous study has shown that the utilization of ENNs to substitute internal components of lumped hydrological models

can elevate model performance in hydrological modeling (Li et al., 2023b). ENNs possess the flexibility to optionally replace125

any single or multiple internal modules of the hydrological model. Similar to Li et al. (2023b), the ENN dedicated to precipi-

tation partition employs precipitation and air temperature as inputs to compute the snowfall ratio. Rainfall is then determined

by subtracting snowfall from the precipitation. The snowmelt ratio is determined through an ENN that takes air temperature

as the input. The ENN related to the runoff process is developed using basin water storage, the combined value of rainfall and

snowmelt, and air temperature as inputs. The inclusion of air temperature serves to depict the influence of soil freeze-thaw130

dynamics on the runoff process in alpine basins within the Tibetan Plateau (Zhong et al., 2023). Apart from the dynamic

driving time series, all ENNs utilized for replacing internal components also incorporate static attributes as inputs, aiming to

differentiate disparities among various sub-basins. The detailed ENNs inputs refer to Appendix B. ENNθ is used to represent

the ENN that parameterize for the process-based model. ENNQ, ENNS, and ENNM are utilized hereinafter to denote the ENN

that replace runoff, precipitation partition, and snowmelt processes, respectively.135

In this study, we develop and evaluate five hybrid models denoted as DMθ, DMθ−Q, DMθ−Q−T , DMθ−QSM , and

DMθ−QSM−T (Table 1). The DMθ model solely employs the ENNθ for parameterizing calibration parameters across sub-

basins. The DMθ−Q and DMθ−Q−T models go a step further by incorporating ENNQ to replace the runoff process. Expand-

ing upon this, the precipitation partition and snowmelt processes are substituted by corresponding ENNs in DMθ−QSM and

DMθ−QSM−T models. Notably, the inputs for the ENNQ include air temperature in DMθ−Q−T and DMθ−QSM−T models,140

while DMθ−Q and DMθ−QSM models do not consider it.
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Table 1. Design details of different hybrid models. “
√

” represents that the model employs the corresponding ENNs while “×” means not.

Model ENNθ ENNθ ENNM ENNQ Temperature as the input of ENNQ

DM × × × × ×

DMθ
√

× × × ×

DMθ−Q
√

× ×
√

×

DMθ−Q−T
√

× ×
√ √

DMθ−QSM
√ √ √ √

×

DMθ−QSM−T
√ √ √ √ √

2.1.3 Comparison models

We also compare our proposed models with the state-of-the-art distributed hydrological model THREW (Tsinghua Represen-

tative Elementary Watershed) and deep learning models LSTM and CNN-LSTM. The THREW model, originally proposed by

Tian et al. (2006), operates by delineating the basin into representative elementary watersheds (REWs) through DEM calcula-145

tion. Furthermore, each REW is subdivided into sub-zones, which serve as the fundamental units for hydrological modeling.

The THREW model has demonstrated successful applications across diverse basins, including representative ones within the

Tibetan Plateau, Alps, and Tianshan (Cui et al., 2023; He et al., 2014). To establish a fair comparison of model performance

between the THREW model and the proposed hybrid models, the THREW model in this study is subjected to the same spatial

discretization utilized by the hybrid models. LSTM models (Hochreiter and Schmidhuber, 1997) have recently shown excel-150

lent capabilities in hydrological simulation all over the world (Kratzert et al., 2019; Lees et al., 2021; Li et al., 2023a). To

benchmark against our proposed hybrid models, we have sourced the LSTM and CNN-LSTM model results from Li et al.

(2023a). These models are renowned for their superior accuracy in existing deep learning researches within the study basins.

Furthermore, we also include the hybrid lumped hydrological models EXPQ and EXPQSM , proposed by Li et al. (2023b),

for comparative evaluation. Their backbone model is the lumped hydrological model EXP-Hydro. This allows us to assess155

the effect of spatial information on hydrological modeling within hybrid frameworks. Notably, the EXPQ and EXPQSM

employ the same dynamic time series inputs of ENNs for module replacement as the DMθ−Q−T and DMθ−QSM−T models,

respectively. Besides, DM and EXP are utilized hereinafter to denote semi-distributed and lumped EXP-Hydro models if not

specified otherwise.

2.2 Study area and data160

2.2.1 Study area

The Tibetan Plateau (TP; Figure 2), acclaimed as the “Third Pole” and the “Water tower of Asia”, stands as the world’s highest

plateau. The TP provides a significant source of abundant water resources crucial for the sustenance of downstream communi-

ties. To evaluate the performance of proposed hybrid models on large alpine basins, this study focuses on the source regions of
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three major river basins: the Yellow River, the Yangtze River, and the Lancang River. These basins are recognized as extensive165

mountainous regions within the TP (Figure 2). Each of these study basins spans an area exceeding 90,000 km2, character-

ized by diverse topography with elevation fluctuations exceeding 3,000 m. The significant topographic variations within the

basin lead to notable spatial heterogeneity in meteorological elements such as precipitation and temperature (Figure A1). To

accurately capture this heterogeneity in hydrological modeling, it is necessary to divide the basin into different computational

units. Besides, previous studies have shown that the glacier process has a minimal impact on runoff modeling in the three study170

basins, and it is neglected in this study (Cui et al., 2023). Hereinafter, Yellow, Yangtze, and Lancang are used to denote the

corresponding source regions in this study.

Figure 2. The terrain of the Tibetan Plateau and the location of the four study basins.

2.2.2 Data used

This study utilized the reanalysis and remote sensing datasets for input variables of hybrid models and the THREW model as

follows:175

1. Precipitation: China Meteorological Forcing Dataset (CMFD) with 0.1° spatial and 3h temporal resolution (Yang et al.,

2010);

2. Air temperature: The air temperature at 2m AGL (T2) from the fifth generation of ECMWF atmospheric reanalysis of

the global climate (ERA5) reanalysis dataset with 0.1° spatial and 1 h temporal resolution (Hersbach et al., 2020);
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3. Potential evaporation: The potential evaporation from the ERA5 reanalysis dataset with 0.1° spatial and 1 h temporal180

resolution (Hersbach et al., 2020);

4. DEM: Shuttle Radar Topography Mission (SRTM) with 90 m spatial resolution. The data set is provided by Geospatial

Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn);

5. LAI: The MOD15A2H dataset from MODIS product with 500 m spatial and 8-day temporal resolution (Myneni et al.,

2015);185

6. NDVI: The MOD13A3 dataset from MODIS product with 1 km spatial and 1-month temporal resolution (Didan, 2015);

The daily observed runoff data at hydrological stations (Figure 2) is used for the model calibration/training and evaluation.

The dataset is provided by local water agencies.

2.3 Experimental design

2.3.1 Model evaluation schemes190

We conduct two sets of experiments to comprehensively evaluate the performance of proposed hybrid semi-distributed hydro-

logical models in this study.

1. Model performance in trained sites: all proposed hybrid semi-distributed models are developed, trained, and evaluated

in three study basins. The comparison models are then utilized for a range of purposes: comparing the performance of

the proposed models against state-of-the-art DL and distributed hydrological models, examining the effects of ENNs195

parameterization and replacement on hydrological modeling, and appraising the impact of spatial information on model

performance. Due to the limitation of the observed runoff data, TNH in Yellow, ZMD in Yangtze, and JZ in Lancang

are utilized as the evaluation stations in this experiment. For Yellow and Yangtze, the training and evaluation periods are

respectively designated as 1982–2004 and 2007–2014. In the case of the Lancang, these periods span 1988–2003 and

2005–2010.200

2. Model performance in untrained sites within the basin: by capturing the spatial heterogeneity within the basin, hybrid

semi-distributed models provide the opportunity to predict hydrological processes at any untrained sites within the basin.

To assess the proficiency of hybrid semi-distributed models in ungauged sites within the basin, the MT, MQ, and JG

stations, situated upstream of the TNH station in the Yellow (Figure 2), are simulated using Yellow (TNH) hydrological

models in this section. The evaluation phase encompasses the years 2009 to 2014 for all hydrological stations.205

2.3.2 The climate perturbation method

This study uses the climate perturbation method to test the applicability of the hybrid models to analyze the hydrological

sensitivities to climate change in three large alpine basins. Using precipitation and temperature data from the reanalysis dataset
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(Sect. 2.2.2) as the reference, the additional perturbation sequences are added to represent the potential climate changes.

Perturbed precipitation sequences are extracted by multiplying the reference precipitation data from 80% to 120% with an210

increment of 10% (Su et al., 2023). Perturbed temperature sequences are generated by adding from 0.5 to 2 °C with an

increment of 0.5 °C to the reference temperature input (Cui et al., 2023). The impact of increased temperature on the potential

evapotranspiration is calculated by the regression between observed temperature and potential evapotranspiration in each sub-

basin (Cui et al., 2023; Van Pelt et al., 2009; Xu et al., 2019). Total one reference, four perturbed temperature, and four

perturbed precipitation sequences are conducted to assess the influence of precipitation and temperature change on hydrological215

processes. The changes of other underlying surfaces are not considered in this study.

2.3.3 Evaluation metrics

Three common hydrological metrics – including NSE, modified NSE (mNSE; (Legates and McCabe Jr, 1999)), and the

absolute value of peak flow bias (PFAB; (Yilmaz et al., 2008)) are employed to evaluate the model performance. They can

be defined as follows:220

NSE = 1−
∑T

i=1 (Qobs,i −Qsim,i)
2∑T

i=1

(
Qobs,i − ¯Qobs

)2 (1)

mNSE = 1−
∑T

i=1 |Qobs,i −Qsim,i|∑T
i=1

∣∣Qobs,i − ¯Qobs

∣∣ (2)

PFAB = 100×

∣∣∣∣∣
∑L

l=1 (Qsim:l −Qobs:l)∑L
l=1Qobs:l

∣∣∣∣∣ (3)

where Qobs,i and Qsim,i are the observed and simulated values, T is the length of the evaluation period, and ¯Qobs is the

averaged observed values. Qsim:l and Qobs:l are the observed and simulated runoff sorted in descending order, respectively. L225

is the number of flow values which are in the top 2% of all flows. Both NSE and mNSE measure the overall fit-of-goodness

of simulated and observed data, while mNSE gives less weight to high values than NSE and thus focuses on the baseflow.

A NSE and mNSE of 1 indicates the perfect fit and a NSE of 0.55 is the threshold for good performance (Newman et al.,

2015; Knoben et al., 2019). PFAB emphasizes the performance for peak values and the value closer to zero indicates a smaller

peak bias.230

3 Model evaluation

To adopt the hybrid semi-distributed models and THREW models in three basins, the Yellow, Yangtze, and Lancang basins are

delineated into 83, 99, and 63 sub-basins (Figure 2) based on the actual river network and the divided sub-basin numbers in

other relevant studies (Cui et al., 2023). The performance of all proposed models in gauged and ungauged sites are evaluated

as follow.235
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3.1 Hybrid model evaluation in trained sites

3.1.1 The effect of ENNs on runoff modeling

In general, all hybrid semi-distributed models exhibit notable performance, adeptly capturing the runoff peaks with appropriate

magnitudes and timings across three study basins (Figure 3 and Table 2). Specifically, the comparison results show that DMθ

model exhibits a closed but slightly better performance than the DM model in overall runoff modeling, with a slight increase240

NSE and mNSE of 0.01-0.03 in all three basins. Additionally, lower PFAB results imply that the DMθ model contributes

to an improved performance in peak runoff modeling. The incorporation of ENNs to represent the spatial heterogeneity of

calibration parameters can reduce the peak simulation biases and slightly improve the overall performance.

Figure 3. The comparison of simulated (DM , DMθ , DMθ−Q−T , and DMθ−QSM−T models) and observed runoff processes in the

evaluation period at the trained TNH, ZMD, and JZ station in Yellow, Yangtze, and Lancang, respectively.

10



The notably enhanced performance in DMθ−Q−T and DMθ−QSM−T models indicates that the inclusion of ENNs for

replacing internal modules yields further improvements in model performance (Figure 3 and Table 2). First, the results between245

DMθ−Q−T and DMθ models show the significant improvement in runoff modeling brought by the incorporation of ENNQ.

This enhancement is illustrated by an increase in NSE and mNSE values, ranging from 0.06 to 0.09 in Yellow and Yangtze.

Since the DMθ model already exhibits commendable performance in Lancang, the advancements achieved by the DMθ−Q−T

model are relatively marginal in comparison. PFAB results suggest that the ENNQ does not lead to substantial improvements

in peak flow performance. Besides, evaluation findings for the DMθ−QSM−T model show that replacing precipitation partition250

and snowmelt modules by ENNs can further improve the model performance with an increase NSE of 0.01-0.05. It also

does not translate into better peak runoff modeling as evidenced by comparable PFAB scores across all three basins. ENNs

employed for replacement in hybrid hydrological models have proven to be effective in enhancing the model performance in

runoff modeling. Among them, the ENNQ leads to the most substantial improvements in runoff prediction performance. The

replacement of ENNs for snow-related processes (ENNS and ENNM ) results in comparatively minor enhancements. These255

findings align with our hydrological understanding as the runoff module directly generates runoff and thus plays a central role

in runoff modeling. It thus contributes the most to the overall performance of runoff prediction. Conversely, the influence of

snow-related processes on runoff modeling performance improvements is indirect and thus relatively modest (Li et al., 2023b).

Table 2. The results of three hydrological metrics for different hybrid semi-distributed models in three study basins.

Basin DM DMθ DMθ−Q−T DMθ−QSM−T DMθ−Q DMθ−QSM

TNH NSE 0.8 0.81 0.88 0.89 0.87 0.88

Yellow mNSE 0.6 0.61 0.70 0.70 0.69 0.68

PFAB 6.68 5.18 6.48 4.57 9.46 10.84

ZMD NSE 0.75 0.76 0.82 0.87 0.83 0.84

Yangtze mNSE 0.56 0.59 0.66 0.73 0.66 0.7

PFAB 14.33 2.81 3.49 19.39 20.22 28.13

JZ NSE 0.85 0.86 0.87 0.89 0.87 0.87

Lancang mNSE 0.68 0.69 0.71 0.73 0.71 0.71

PFAB 10.41 9.19 7.97 8.64 8.16 9.1

The air temperature is employed as the additional input of the ENNQ to implicitly represent the soil freeze-thaw process in

this study (Zhong et al., 2023; Gao et al., 2021). Results indicate that DMθ−Q−T and DMθ−QSM−T models exhibit improved260

performance in peaking runoff modeling compared to the DMθ−Q and DMθ−QSM models, respectively. This enhancement in

peaking runoff modeling is evident through closed NSE and mNSE and lower PFAB values in all three basins. Moreover,

the enhancement observed due to the inclusion of air temperature is notably more pronounced in Yellow and Yangtze compared

to Lancang. This pattern aligns with expectations because Lancang features a smaller extent of permafrost regions, resulting in

a lesser influence of the soil freeze-thaw process on runoff modeling in this region.265
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Figure 4. (a-c) The comparison of simulated and observed runoff processes in the evaluation period in Yellow, Yangtze, and Lancang,

respectively. DMT and EXP are denoted to hybrid semi-distributed and lumped models, while DM represents the hybrid semi-distributed

models without inclusion of air temperature in ENNQ. Circles, squares, and triangles refer to NSE, mNSE, and PFAB. (d) The model

comparison with state-of-the-art models.

Table 3. The results of three hydrological metrics for different hybrid semi-distributed and lumped models in three study basins.

Basin EXP θ−Q EXP θ−QSM DMθ−Q−T DMθ−QSM−T

TNH NSE 0.84 0.85 0.88 0.89

Yellow mNSE 0.65 0.64 0.70 0.70

PFAB 2.42 8.65 6.48 4.57

ZMD NSE 0.74 0.83 0.82 0.84

Yangtze mNSE 0.6 0.67 0.66 0.7

PFAB 36.59 27.8 3.49 7.86

JZ NSE 0.82 0.82 0.87 0.89

Lancang mNSE 0.63 0.59 0.71 0.73

PFAB 8.66 17.48 7.97 8.64

3.1.2 The impact of spatial information on runoff modeling

Hybrid lumped models proposed by Li et al. (2023b) are similar with our proposed hybrid semi-distributed models but did not

consider the spatial heterogeneity. Hybrid lumped and semi-distributed models are used to test the effect of spatial information

on hydrological modeling. It is important to highlight that while the ENNs of the hybrid lumped models utilize the same
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dynamic time series inputs as those of the distributed models, they do not include the static attributes of the basin. Results show270

that both hybrid lumped models, EXPQ and EXPQSM , exhibit strong performance in runoff modeling with NSE more

than 0.74 in all three basins (Figure 4 and Table 3). It demonstrated the suitably of hybrid lumped models for hydrological

modeling on the TP. In comparison to EXPQ and EXPQSM models, the DMθ−Q−T and DMθ−QSM−T models show

more impressive performance in runoff modeling with the increase NSE and mNSE of 0.01-0.14 in three basins. PFAB

results affirm that DMθ−Q−T and DMθ−QSM−T models excel in simulating peak flow processes, achieving PFAB values275

of less than 10% across all three basins. Consequently, the incorporation of spatial heterogeneity within the basin in hybrid

models leads to improved performance in both overall and peak runoff modeling. This finding is seamlessly consistent with

our hydrological understanding and is also corroborated by related studies in the case of distributed process-based hydrological

models and DL hydrological models (Li et al., 2023a; Patil et al., 2014). In practice, we recommend the utilization of hybrid

semi-distributed models for hydrological modeling, particularly in the context of large basins, to attain enhanced performance280

outcomes.

3.1.3 The comparison to the state-of-the-art models

We further use the optimal hybrid semi-distributed model DMθ−QSM−T to compare with state-of-the-art models: distributed

hydrological model THREW and DL models LSTM and CNN-LSTM (Li et al., 2023a). Results show that the DMθ−QSM−T

model outperforms the THREW model by a substantial margin and holds comparable performance to the LSTM and CNN-285

LSTM models (Figure 4). This reveals that our hybrid semi-distributed model can effectively harness the advantages of both

process-based models and DL models. Specifically, it attains the high performance characteristic of DL models while adhering

to the physical mechanism constraints inherent in process-based models, creating a synergy not entirely realized in other

models.

3.2 Hybrid semi-distributed model evaluation in untrained sites within the basin290

As proposed hybrid models operate in a semi-distributed manner, it is imperative to further investigate whether models trained

using the basin outlet point can effectively simulate hydrological processes in any untrained sites within the same basin. In this

study, runoff processes at three hydrological stations (JG, MQ, and MT), situated upstream of TNH in Yellow, are simulated

using our proposed hybrid models trained by TNH data (Figure 2 and Figure 5).

Results reveal that all models trained on TNH data exhibit impressive performance in simulating runoff processes at JG295

and MQ stations, with NSE values exceeding 0.71. The DMθ−QSM−T model achieves an especially high NSE of 0.84.

However, the models demonstrates lower accuracy at the upstream-most MT station (Figure 2). This is because the alpine

hydrological processes in the basin above the MT station, such as soil freeze-thaw and snow and ice processes, play a more

significant role in runoff processes (Figure 5e). This increases the difficulty of hydrological simulation, leading to reduced

model accuracy. Among them, DM and DMθ models show the most significant reduction in accuracy due to its insufficient300

representation of alpine hydrological processes. On the other hand, hybrid semi-distributed models with ENNs replacement,

including DMθ−Q−T and DMθ−QSM−T models, exhibit notably enhanced abilities in runoff modeling compared to DM
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Figure 5. The NSE results between simulated (different hydrological models in TNH) and observed runoff processes at JG, MQ, and MT.

e represents the static attributes of sub-basins normalized by the maximum-minimum in TNH.

and DMθ models, resulting in NSE improvements ranging from 0.09 to 0.58. The DMθ−QSM−T model demonstrates the

strongest performance in runoff modeling across all three stations, particularly in MT where its NSE reaches 0.54, whereas the

other three models yield NSE values lower than 0.22 (Figure 5). The findings show that the proposed hybrid semi-distributed305

models exhibit strong performance in hydrological modeling for untrained sites within the basin. It is also demonstrated that

the hydrological relationships established by ENNs are credible and robust.

4 The applicability of hybrid models for hydrological sensitivities to climate change

Perturbed precipitation and air temperature dataset are input to trained DMθ−QSM−T models to test the applicability of the

hybrid models to analyze the hydrological sensitivities to climate change in three large alpine basins.310
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4.1 Sensitivities of runoff to perturbed precipitation

Figure 6 and Figure 7a-c depict the runoff sensitivities to various altered precipitation scenarios within three study basins. The

findings suggest a consistent trend in the relationship between runoff and precipitation: runoff rises (decreases) as precipitation

increases (decreases). Specifically, the annual runoff increases at rates of approximately 33.8, 18.1, and 44.9 mm/10% with

the increase of precipitation within Yellow, Yangtze, and Lancang, respectively. The relative change in runoff surpasses that315

of precipitation in all three study basins: a 10% increase in precipitation leads to a 15% to 20% increase in runoff in all three

study basins. Besides, annual runoff exhibits greater sensitivity to increases in precipitation compared to decreases (Figure

7a-c). As an illustration, an increase of 20% in precipitation results in a substantial 40% increase in annual runoff, whereas a

20% decrease in precipitation leads to a notable 30% reduction in annual runoff in Yellow. It is indicated that runoff exhibits an

amplification effect in response to precipitation changes due to the increase in the runoff coefficient with rising precipitation.320

Figure 6a-c also illustrate that the inter-annual variation in runoff follows a pattern consistent with the annual runoff: there is a

greater (lesser) variation in inter-annual runoff when there is an increase (decrease) in precipitation.

Figure 6. Runoff responses to altered precipitation in the Yellow, Yangtze, and Lancang basins (a-c for annual; d-f for monthly). The error

bars in panels a-c and the shaded areas in panels d-f denote the range of simulated runoff

Moreover, the monthly runoff across all months shows a consistent response to perturbed precipitation, yet the extent of

change varied among different months (Figure 6d-f and Figure 7a-c). Notably, the alterations during the wet seasons (June to
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October) are more pronounced compared to those in the dry seasons. This indicates that increased precipitation contributes325

to a more concentrated distribution of runoff. Figure 6d-f also demonstrate that intra-annual runoff variation becomes more

pronounced with higher levels of precipitation. These findings can be attributed to the fact that the augmented precipitation

primarily occurs during the wet seasons, and the primary runoff components during these periods consist of direct rainfall

runoff.

Figure 7. Relative change of annual (grey background) and monthly(yellow background) runoff response to the perturbed precipitation (a-c)

and air temperature (d-f) in Yellow, Yangtze, and Lancang, respectively.

4.2 Sensitivities of runoff to perturbed temperature330

The sensitivities of runoff to changing temperature follows a more intricate pattern: runoff tends to decrease as temperatures

rise. This decrease is particularly pronounced during the flood season, while in the dry season, there is a slight increase in

runoff (Figure 7d-f and Figure 8-9). This shift also leads to a reduction in the intra-annual variability of runoff. Taking the

temperature increase of 2 °C as an example, the annual runoff in the three study basins decreases by less than 15%. When

examining monthly runoff, the most significant increase occurs in April, while the most notable decrease is observed in June.335

These phenomena can be explained by the fact that changes in temperature affect the evaporation capacity, the redistribution

of rainfall and snowfall, and the timing of snowmelt. Higher temperature leads to increased evaporation capability, which

results in more actual evaporation and less total runoff when precipitation remains constant. During the winter and spring, the

increased rainfall and earlier snowmelt, along with higher actual evaporation, tend to balance each other, resulting in a minor

increase or decrease in runoff. However, in the summer, reduced snowmelt and higher evaporation significantly reduce runoff.340

To enhance the reliability of our model and validate our findings of hydrological sensitivities to climate change, we conducted

an analysis of runoff component contributions in all three study basins across scenarios with varying temperature perturbations.

It is essential to highlight that the glacier module has been excluded from this model due to structural limitations. Previous

studies in the study basins have demonstrated that glaciers have a negligible impact on runoff (Cui et al., 2023; Su et al.,
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Figure 8. Runoff responses to altered temperature in the Yellow, Yangtze, and Lancang basins (a-c for annual; d-f for monthly). The error

bars in panels a-c and the shaded areas in panels d-f denote the range of simulated runoff.

Figure 9. The runoff components with different perturbed temperature scenarios in Yellow, Yangtze, and Lancang, respectively.

2022). As a result, this limitation does not significantly affect the accuracy of the simulation results. In the reference scenario,345

rainfall runoff emerged as the primary component, contributing approximately 81.5%, 73.1%, and 84.0% to the total runoff in

Yellow, Yangtze, and Lancang, respectively. Notably, these results align with findings from other studies (Cui et al., 2023; Su

et al., 2022), underscoring that our hybrid model not only excels in simulating the runoff process but also accurately represents

untrained hydrological processes. Furthermore, the contribution of snowfall runoff diminishes as the perturbed temperature
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increases. With a 2 °C temperature rise, the contribution of snowfall runoff decreases by 5.8%, 8.9%, and 5.0% in the Yellow,350

Yangtze, and Lancang basins, respectively. These results strongly support the credibility of our analysis.

5 Conclusions and limitations

In this study, we propose hybrid semi-distributed hydrological models that synergize the semi-distributed process-based model

with embedded neural networks (ENNs). The hybrid models use the semi-distributed process-based model as the backbone,

with ENNs parameterizing and replacing internal modules. Taking three large alpine basins on the Tibetan Plateau as the study355

basins, the proposed models are test and compared with state-of-the-art models. The climate perturbation method is further

carried out to test the applicability of the hybrid models to analyze the hydrological sensitivities to climate change in large

alpine basins. Our main findings are as follows:

1. The optimal hybrid semi-distributed model achieves superior performance in runoff modeling, with NSE of higher

than 0.87, approaching the state-of-the-art DL models and outperforming traditional process-based models. The optimal360

hybrid semi-distributed model also demonstrates remarkable prowess in hydrological modeling at ungauged sites within

the basin.

2. Further experiments reveal that the inclusions of ENNs for parameterizing and replacing modules can lead to higher

model accuracy. Considering spatial information within the basin and introducing temperature in ENNQ to represent

the soil freeze-thaw process also show enhanced predictive capabilities in hybrid models.365

3. The results about hydrological sensitivities to climate change show resonable patterns: runoff exhibits an amplification

effect in response to precipitation changes, with a 10% precipitation change resulting in a 15–20% runoff change in large

alpine basins. Annual runoff exhibits greater sensitivity to increases in precipitation compared to decreases. The increase

in temperature enhances evaporation capacity and reduces the contributions of snowfall runoff, leading to a decrease in

the total runoff and a reduction in the intra-annual variability of runoff. With a 2 °C temperature rise, the contribution of370

snowfall runoff decreases by 5.8%, 8.9%, and 5.0% in the Yellow, Yangtze, and Lancang basins, respectively.

In summary, we provide an effective and easily interpretable hybrid semi-distributed hydrological model and enhance our

understanding about hydrological sensitivities to climate change in large alpine basins. However, being promising in modeling

hydrological processes, this study also has several limitations. First, the routing method is important for hydrological modeling,

especially in large basins. The technical requirements of differential programming framework limit the consideration of routing375

methods in our hybrid hydrological models. We calculate the river length from each sub-basin to the basin outlet and employ

this static attribute as the inputs of ENNs to implicitly characterize the routing process within the basin. Besides, this study is

limited to only using three large alpine basins on the Tibetan Plateau to evaluate proposed hybrid models due to the limitation of

computational resources. Third, although numerous studies have used climate perturbation method to calculate the response of

hydrological processes to climate change, this approach has difficulty capturing the true characteristics of meteorological and380
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hydrological changes, making it hard to validate the reasonableness of the results. In this study, we compared our findings with

those of related research to demonstrate the validity of our results, thereby proving the effectiveness of our proposed coupled

model in analyzing the response of hydrological processes to climate change. Future research will focus on developing hybrid

distributed including routing processes and extending the evaluation of the hybrid model to encompass a broader range of

basins.385

Code and data availability. The hybrid models code and results is available in https://cloud.tsinghua.edu.cn/d/1bb19608a7024abfaa3e/.

DEM, LAI, CMFD, NDVI, and HSWD data can be publicly downloaded. The observed runoff data and the threw model code are not

publicly available due to the privacy reasons.

Appendix A

A1 Distributed EXP-Hydro model equations390

The semi-distributed EXP-Hydro model firstly delineates the basin into many sub-basins. In each sub-basin, the lumped EXP-

Hydro is run independently (Equation A1-A12) to obtain the respective runoff. The runoff from all sub-basins is then aggre-

gated to calculate the basin runoff (Equation A12). The detailed equations are as follows (Patil et al., 2014).

(1) Water balance

dS0

dt
= Ps −M (A1)395

dS1

dt
= Pr +M −ET − Q (A2)

where S0, S1, Ps, Pr, M , ET , and Q are snow storage, basin water storage, snowfall, rainfall, snowmelt, evaporation, and

runoff, respectively.

(2) Precipitation partition

Ps =

 0 T > Tmin

P T ≤ Tmin

(A3)400

Pr =

 P T > Tmin

0 T ≤ Tmin

(A4)

where P and T are precipitation and air temperature.

(3) Snowmelt

M =

 min{S0, Df · (T −Tmax)} T > Tmax

0 T ≤ Tmax

(A5)
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(4) Evapotranspiration405

ET =


0 S1 < 0

PET ·
(

S1

Smax

)
0≤ S1 ≤ Smax

PET S1 > Smax

(A6)

PET = 29.8 Lday
esat (T )

T +237.3
(A7)

esat (T ) = 0.611× exp

(
17.3T

T +237.3

)
(A8)

where PET , Lday , and esat (T ) represent the potential evaporation, day length, and the saturation vapor pressure.

(5) Runoff and baseflow410

Qb =


0 S1 < 0

Qmax · e−f ·(Smax−S1) 0≤ S1 ≤ Smax

Qmax S1 > Smax

(A9)

Qs =

 0 S1 ≤ Smax

S1 −Smax S1 > Smax

(A10)

Q=Qb +Qs (A11)

where Qb and Qs are the baseflow generated depending on the available storage in the basin bucket and the capacity-excess

runoff generated when basin bucket is saturated. All above undefined variables are calibration parameters. The details please415

refer to (Patil and Stieglitz 2014).

(6) Basin runoff

Qbasin =

∑N
i=1Qi ∗Ai∑N

i=1Ai

(A12)

where Qbasin is the runoff at basin outlet. Qi and Ai are the runoff and area of sub-basin i. N is the total number of sub-basins

within the basin.420

A2 Hybrid semi-distributed model equations

In all hybrid semi-distributed models, four ENNs are constructed to parameterize (NNθ) and replace runoff (NNQ), precipi-

tation partition (NNS), and snowmelt processes (NNM ). The detailed equations are as follows.

θd =NNθ (As) (A13)
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Q=NNQ (M +Pr,S1,T,As) (A14)425

Ps = P ×NNS (P, T,As) (A15)

Pr = P −Ps (A16)

M = S0 ×NNM (T,As) (A17)

where θd and As represent calibration parameters and static basin attributes, respectively. Detailed static basin attributes

refer to Table A1.430

Table A1. The summary of static basin attributes for the inputs of ENNs.

Variables Descriptions Units

P_mean Mean daily precipitation mm/d

T_mean Mean daily air temperature mm/d

PET_mean Mean daily potential evaporation mm/d

Basin area Basin area km2

SLOPE_mean Mean slope m/km

DEM_mean Mean elevation m

Aridity PET/P -

LAI_max Maximum monthly of the LAI -

LAI_diff Difference between maximum and minimum monthly mean of

the LAI

-

River length The river length from a sub-basin to the basin outlet km
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Figure A1. The spatial heterogeneity of precipitation and air temperature in Yellow, Yangtze, and Lancang.
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