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Abstract. Large alpine basins provide abundant water resources crucial for hydropower generation, irrigation, and daily life

. It is thus crucial to develop high-performance hydrological models for water resources management in large
:::::
Alpine

::::::
basins

::
are

:::::::::
important

:::::
water

::::::
sources

:::
for

::::::
human

:::
life

:::
and

:::::::
reliable

::::::::::
hydrological

:::::::::
modeling

:::
can

:::::::
enhance

:::
the

:::::
water

:::::::
resource

:::::::::::
management

::
in

alpine basins. Recently, hybrid hydrological modelshave come to the forefront, synergizing the exceptional learning capacity

of deep learning with the interpretability and physical consistency of ,
::::::::
coupling process-based models . These models

::
and

:::::
deep5

:::::::
learning,

:
exhibit considerable promise in achieving precision in hydrological simulations. However, a notable limitation of

existing hybrid models lies in their failure to incorporate spatial information within the basin and describe alpine hydrological

processes, which restricts their applicability in hydrological modeling in large alpine basins. To address this issue, we develop

a set of hybrid distributed hydrological models by employing a distributed process-based model as the backbone, and utilizing

embedded neural networks (ENNs) to parameterize and replace different internal modules. The proposed models are tested10

on three large alpine basins on the Tibetan Plateau. Results are compared to those obtained from hybrid lumped models,

state-of-the-art distributed hydrological model, and purely deep learning models. A climate perturbation method is further used

to test the applicability of the hybrid models to analyze the hydrological sensitivities to climate change in large alpine basins.

Results indicate that proposed hybrid hydrological models can perform well in predicting runoff processes and simulating

runoff component contributions in large alpine basins. The optimal hybrid model with Nash-Sutcliffe efficiency coefficients15

(NSEs) higher than 0.87 shows comparable performance to state-of-the-art DL models. The hybrid distributed model also

exhibits remarkable capability in simulating hydrological processes at ungauged sites within the basin, markedly surpassing

traditional distributed models. Besides, the results also show reasonable patterns in the analysis of the hydrological sensitivities

to climate change. Runoff exhibits an amplification effect in response to precipitation changes, with a 10% precipitation change

resulting in a 15–20% runoff change in large alpine basins. An increase in temperature enhances evaporation capacity and20

changes the redistribution of rainfall and snowfall and the timing of snowmelt. It further leads to a decrease in the total

runoff, the contributions of snowmelt runoff, and the intra-annual variability of runoff. Overall, this study provides a high-

performance tool enriched with explicit hydrological knowledge for hydrological prediction and improves our understanding

about the hydrological sensitivities to climate change in large alpine basins.
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1 Introduction25

The large alpine basins almost offer abundant water resources crucial for hydropower generation, irrigation, and daily life

:::::
Alpine

::::::
basins

:::
are

::::::::
important

:::::
water

::::::::
sources,

::::::
playing

::
a

::::::
crucial

:::
role

::
in
:::::::

various
::::::
aspects

:::
of

::::::
human

:::
life

:::
and

:::
the

:::::::::::
environment,

:::::
such

::
as

:::::::
domestic

:::::
water

:::::::
supply,

::::::::
irrigation,

::::::::::
hydropower

::::::::::
generation,

:::
and

:::::::
climate

::::::::
regulation

:
(Cui et al., 2023; Huss et al., 2017; Vivi-

roli et al., 2011). Developing accurate hydrological models in large alpine basins is of paramount importance in effectively

addressing challenges posed by floods and droughts, as well as in improving water usage efficiency
::::::
reliable

:::::::::::
hydrological30

::::::
models

::
is

::::::
crucial

::
for

:::::::::
managing

:::::
floods

::::
and

::::::::
improving

:::::
water

:::
use

:::::::::
efficiency

:::::
under

::::::
climate

::::::
change

:
(Blöschl et al., 2019).

Process-based hydrological models, such as EXP-Hydro (Patil and Stieglitz, 2014), CRHM (DeBeer and Pomeroy, 2017),

and THREW (Nan et al., 2021), are widely used approaches for hydrological simulation in large alpine basins. These models

use established physical laws or empirical relationships
::::::
depend

:::
on

:::::::
physical

::::
laws

:::
and

::::::::
empirical

:::::::::
knowledge

:
to describe physical

processes and are grounded in well-defined physical mechanisms. They can be used to understand the entire hydrological35

systems including all internal processes and assess the
::::::
advance

::::::::
scientific

::::::::::::
understanding

:::::
about

:::
the

:::::::::::
hydrological

:::::::
systems

::::
and

::::::
provide

:::
the

::::::
insight

::::
into

::
the

:
response of hydrological systems to changes in the driving forces or properties, which are essential

to advance scientific understanding and can demonstrate that the simulated results are regarded as highly reliable
::::::::
processes

::
to

::::::
climate

:::::::
changes (Cui et al., 2023; Li et al., 2021). However, the performance of these models is constrained by several factors,

including an incomplete understanding of alpine hydrological processes, errors in the model structure, and uncertainties in40

parameterization (Kuppel et al., 2018; Beven, 2006). These deficiencies also give rise to equifinality, making it challenging to

accurately represent hydrological processes. This diminishes the credibility of process-based models in the context of climate

change assessment.

Deep learning (DL) hydrological models are distinguished by their remarkable data mining capabilities, operating indepen-

dently of hydrological knowledge. They have showcased exceptional model performance across diverse hydrological domains,45

encompassing runoff
:::::::
including

::::::::::::::::::
streamflow/discharge

::::::::::
forecasting (Kratzert et al., 2018; Lees et al., 2021; Liu et al., 2021),

snow water equivalent
::::::::
modeling

:
(Duan and Ullrich, 2021), and groundwater level

:::::::
mapping

:
(Solgi et al., 2021; Nourani et al.,

2022). Most of these studies disregard the effect of spatial information from meteorological data on hydrological modeling. Li

et al. (2023a) introduced an innovative spatiotemporal DL hydrological model, demonstrating that integrating spatial informa-

tion can significantly improve the performance of DL models in hydrological modeling. Nonetheless, despite their remarkable50

capabilities, DL hydrological models still face scrutiny within the hydrological modeling community, primarily due to their

"black-box" nature. Furthermore, DL models rely on the assumption that the dataset’s distribution during the prediction period

remains consistent with that of the training period. This assumption cannot be met when using DL models to assess the effects

of climate change on hydrological modeling (Nearing et al., 2021; Zhong et al., 2023).

Hybrid hydrological models that combine process-based and DL approaches are anticipated to harness their respective55

strengths to achieve both impressive performance and a well-defined understanding of hydrological processes (Tsai et al.,

2021; Shen et al., 2023). Previous studies have introduced various hybrid model configurations and demonstrated satisfactory

outcomes (Feigl et al., 2022; Frame et al., 2021; Kashinath et al., 2021; Quilty et al., 2022; Bhasme et al., 2022; Kumanlioglu
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and Fistikoglu, 2019; Xie et al., 2021; Lu et al., 2021), while the underlying concept in many of these hybrid models remains

centered on either pure DL models or process-based models. For instance, Frame et al. (2021) utilized LSTM models as post-60

processors for the United States National Water Model, highlighting that integrating DL models can improve performance

by rectifying errors in the outcomes of process-based models. Xie et al. (2021) introduced a physically-guided LSTM model

by incorporating synthetic samples during model training to capture underlying physical mechanisms. Recently, some studies

attempted to implement differentiable models to facilitate a bidirectional integration between process-based models and DL

models (Shen et al., 2023; Baydin et al., 2018; Höge et al., 2022). Feng et al. (2022) introduced hybrid hydrological models65

that integrated a lumped hydrological model HBV as the foundation and incorporated embedded neural networks (ENNs) to

parameterize, enhance, or replace internal components without prior training. The proposed models demonstrated comparable

performance to DL models and can output untrained physical variables. Our earlier work further developed hybrid models

by employing ENNs to replace the internal modules of the lumped model EXP-Hydro, and systematically test the impact of

replacing different internal modules with ENNs (Li et al., 2023b). The findings suggest that substituting any internal component70

with ENNs can enhance model performance, but increasing the number of internal component replacements does not guarantee

improved outcomes. Achieving optimal performance requires a delicate equilibrium between the quantity of ENNs and the

process constraints inherent in the process-based model. However, Feng et al. (2022) and Li et al. (2023b) have predominantly

employed lumped hydrological models as the foundational framework in hybrid models. They have not adequately accounted

for the spatial information of meteorological inputs and underlying surfaces within the basin, which limits their applicability75

in large basins. Additionally, the effectiveness of hybrid models in the Tibetan Plateau’s large alpine basins, particularly in

assessing hydrological sensitivities to climate change, is yet to be clearly established. Therefore, there is a need to evolve

hybrid models from lumped to distributed to adequately capture the spatial information within the basin. Moreover, it is also

essential to incorporate alpine hydrological processes in hybrid models for adapting them to alpine basins and evaluate the

adaptability of these hybrid models in analyzing the hydrological sensitivities to climate change in large alpine basins.80

Building upon our earlier work about hybrid lumped models (Li et al., 2023b), this study aims to propose hybrid distributed

models that employ a distributed hydrological model as the backbone, and employ the ENNs to parameterize and replace

different internal modules within the sub-basin scale. The proposed models are then comprehensively assessed across three

large mountainous basins on the TP
::::::
Tibetan

::::::
Plateau. A climate perturbation method is further used to analyze the hydrological

sensitivities to climate change in large alpine basins. The remainder of this paper is organized as follows: Sect. 2 outlines the85

proposed hybrid models, study area, and data, Sect. 3 shows the evaluation results of the proposed models, Sect. 4 provides

details about the hydrological sensitivities to climate change, and we conclude in Sect. 5.

2 Methods and Materials

2.1 Model development

This study develops hybrid distributed hydrological models by integrating the distributed process-based model and embedded90

neural networks (ENNs; Figure 1). Specifically,
::
the

:
proposed models use

:
a
:

distributed EXP-Hydro model as the backbone,
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with ENNs parameterizing and replacing different internal modules. The differential programming framework is utilized to

achieve a bidirectional integration between the process-based model and ENNs, enabling simultaneous parameter training of

both entities.

2.1.1 The distributed EXP-Hydro model95

In this study, the hybrid distributed models are built upon the foundation of the distributed EXP-Hydro model (Patil et al., 2014).

The originally lumped EXP-Hydro model, proposed by Patil and Stieglitz (2014), treats each basin as a singular areal unit,

disregarding the spatial information within the basin. The EXP-Hydro model encompasses a snow accumulation bucket and

a basin bucket represented by snow storage (S0) and basin water storage (S1), respectively. Within the model, four processes

are represented: precipitation partition (rainfall Pr or snowfall Ps), evapotranspiration (ET ), snowmelt (M ), and runoff (Q).100

Detailed equations refer to Appendix A1 and Patil and Stieglitz (2014). The distributed EXP-Hydro model was subsequently

extended to incorporate the spatial heterogeneity within the basin (Patil et al., 2014). Initially, the study basin is divided into

multiple sub-basins using a Digital Elevation Model (DEM). The EXP-Hydro model is run independently within each sub-

basin, and the overall basin runoff is derived by summing the runoff outputs from all sub-basins (Equation A12). Patil and

Stieglitz (2015) and Patil et al. (2014) showcased the efficacy of the distributed EXP-Hydro model in hydrological modeling105

across 295 basins spanning the continental United States. Their studies indicated that this model outperforms the original

EXP-Hydro model.

Figure 1. The schematic diagram of hybrid distributed models. (a) The basin is first divided into many sub-basins; (b) All meteorological

and hydrological processes included in the EXP-Hydro model are calculated in each sub-basin. The precipitation partition, snowmelt, and

runoff modules can be optionally replaced by embedded neural networks. Detailed formulations of these processes refer to the main text.

2.1.2 The hybrid distributed models

Using the distributed EXP-Hydro model as the backbone, the hybrid models integrate ENNs to parameterize and replace various

internal modules within the differential programming framework (Baydin et al., 2018). This configuration enables the model110
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to comply with basic physical principles while enhancing its representational capability of the corresponding meteorological

and hydrological modules, thus increasing the accuracy of hydrological simulations. ENNs utilize both static attributes (Table

A1) and dynamic meteorological time series from each sub-basin as inputs. These inputs are employed to characterize the

disparities in physical mechanisms among sub-basins and to drive the precipitation-runoff processes. The hybrid models are

realized via four steps:115

1. Data pre-processing: DEM is employed to partition the study basin into multiple sub-basins, guided by a drainage area

threshold (Grieve et al., 2016; Noël et al., 2014). The static attributes (Table A1) and daily meteorological time series

for each sub-basin are derived by calculating the areal averages from the original dataset.

2. Distributed model development within the differential programming framework: All equations within the distributed

models
:::::
model

:
are formulated to be differentiable to ensure operating within the differential programming framework120

(Shen et al., 2023; Li et al., 2023b; Levine et al., 2016). This framework facilitates the computation of derivatives from

model outputs to inputs and intermediate variables, thus enabling an "end-to-end" training approach. The hybrid model

achieves simultaneous training of both the distributed hydrological models and ENNs. Only runoff data is employed as

the training target, eliminating the need for observed data for ENN outputs. Furthermore, a physical recurrent neural

network (P-RNN) is established to simulate hydrological dynamic processes and retain the memory of past basin storage125

sequences (Li et al., 2023b; Jiang et al., 2020).

3. ENNs parameterization and replacement: The calibration parameters of the distributed EXP-Hydro model
::
all

:::::::::
sub-basins

:::::
within

:::
the

:::::
basin

:
are assumed to be the same in every sub-basin

:::
the

:::::::::
distributed

::::::::::
EXP-Hydro

:::::
model, while many of them

related to sub-basin attributes should be different (Feng et al., 2022). To capture the spatial diversity of these calibration

parameters at the sub-basin scale, we build an ENN to derive calibration parameters only using static attributes as inputs.130

Additionally, ENNs are employed to potentially substitute distinct internal modules of the distributed EXP-Hydro model,

utilizing static attributes and corresponding dynamic time series as inputs. Specifically, three ENNs are designed for

simulating runoff, precipitation partition, and snowmelt processes in this study.

4. Model training: Through the aforementioned steps, all parameters of the hybrid models, encompassing the distributed

EXP-Hydro model and ENNs, can be jointly trained using observed runoff data as the training target. The Nash-Sutcliffe135

efficiency (NSE, (Nash and Sutcliffe, 1970)) is utilized as the loss function during training.

Our previous study has shown that the utilization of ENNs to substitute internal components of lumped hydrological models

can elevate model performance in hydrological modeling (Li et al., 2023b). ENNs possess the flexibility to optionally replace

any single or multiple internal modules of the distributed hydrological model. Similar to Li et al. (2023b), the ENN dedicated

to precipitation partition employs precipitation and air temperature as inputs to compute the snowfall ratio. Rainfall is then140

determined by subtracting snowfall from the precipitation. The snowmelt ratio is determined through an ENN that takes air

temperature as the input. The ENN related to the runoff process is developed using basin water storage, the combined value

of rainfall and snowmelt, and air temperature as inputs. The inclusion of air temperature serves to depict the influence of soil
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freeze-thaw dynamics on the runoff process in alpine basins within the TP
::::::
Tibetan

:::::::
Plateau (Zhong et al., 2023). Apart from

the dynamic driving time series, all the ENNs utilized for replacing internal components also incorporate static attributes as145

inputs, aiming to differentiate disparities among various sub-basins. The detailed ENNs inputs refer to Appendix B.
:::::
ENNθ::

is

::::
used

::
to

::::::::
represent

:::
the

::::
ENN

::::
that

:::::::::::
parameterize

::
for

:::
the

::::::::::::
process-based

::::::
model.

:
ENNQ, ENNS, and ENNM are utilized hereinafter

to denote the ENN that replace runoff, precipitation partition, and snowmelt processes, respectively.

In this study, we develop and evaluate five hybrid distributed models denoted as DMθ, DMθ−Q, DMθ−Q−T , DMθ−QSM ,

and DMθ−QSM−T in this study
:::::
(Table

::
1). The DMθ model solely employs the ENN

:::::
ENNθ:

for parameterizing calibration150

parameters across sub-basins. The DMθ−Q and DMθ−Q−T models go a step further by incorporating ENNs
::::::
ENNQ to replace

the runoff process. Expanding upon this, the precipitation partition and snowmelt processes are substituted by corresponding

ENNs in DMθ−QSM and DMθ−QSM−T models. Notably, the inputs for the ENNQ include air temperature in DMθ−Q−T

and DMθ−QSM−T models, while DMθ−Q and DMθ−QSM models do not consider it.

Table 1.
::::::
Design

:::::
details

::
of

::::::
different

:::::
hybrid

:::::::
models.

:::
“
√

”
::::::::
represents

:::
that

:::
the

:::::
model

::::::
employs

:::
the

:::::::::::
corresponding

::::
ENNs

:::::
while

:::
“×”

:::::
means

:::
not.

Model
:::::
ENNθ :::::

ENNθ :::::
ENNM :::::

ENNQ ::::::::::
Temperature

::
as

:::
the

::::
input

::
of
::::::
ENNQ

::::
DM

:
×

:
×

:
×

:
×

:
×

::::
DMθ ::

√
:
×

:
×

:
×

:
×

::::::
DMθ−Q ::

√
:
×

:
×

::

√
:
×

:::::::::
DMθ−Q−T ::

√
:
×

:
×

::

√
::

√

::::::::::
DMθ−QSM ::

√
::

√
::

√
::

√
:
×

::::::::::::
DMθ−QSM−T ::

√
::

√
::

√
::

√
::

√

2.1.3 Comparison models155

We also compare our proposed models with the state-of-the-art distributed hydrological model THREW (Tsinghua Represen-

tative Elementary Watershed) and deep learning models LSTM and CNN-LSTM. The THREW model, originally proposed by

Tian et al. (2006), operates by delineating the basin into representative elementary watersheds (REWs) through DEM calcula-

tion. Furthermore, each REW is subdivided into sub-zones, which serve as the fundamental units for hydrological modeling.

The THREW model has demonstrated successful applications across diverse basins, including representative ones within the160

Tibetan Plateau, Alps, and Tianshan (Cui et al., 2023; He et al., 2014). To establish a fair comparison of model performance

between the THREW model and the proposed hybrid models, the THREW model in this study is subjected to the same spatial

discretization utilized by the hybrid models. LSTM models
::::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997) have recently shown excellent

capabilities in hydrological simulation all over the world (Lees et al., 2021; Li et al., 2023a; Kratzert et al., 2019; Hochreiter and Schmidhuber, 1997)

:::::::::::::::::::::::::::::::::::::::::::::
(Kratzert et al., 2019; Lees et al., 2021; Li et al., 2023a). To benchmark against our proposed hybrid models, we have sourced165

the LSTM and CNN-LSTM model results from Li et al. (2023a). These models are renowned for their superior accuracy in

existing deep learning research
:::::::::
researches within the study basins. Furthermore, we also include the hybrid lumped hydrolog-
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ical models EXPQ and EXPQSM , proposed by Li et al. (2023b), for comparative evaluation. Their backbone model is the

lumped hydrological model EXP-Hydro. This allows us to assess the effect of spatial information on hydrological modeling

within hybrid frameworks. Notably, the EXPQ and EXPQSM employ the same dynamic time series inputs of ENNs for mod-170

ule replacement as the DMθ−Q−T and DMθ−QSM−T models, respectively. Besides, DM and EXP are utilized hereinafter to

denote distributed and lumped EXP-Hydro models if not specified otherwise.

2.2 Study area and data

2.2.1 Study area

The Tibetan Plateau (TP; Figure 2), acclaimed as the “Third Pole” and the “Water tower of Asia”, stands as the world’s175

highest plateau. The TP provides a significant source of abundant water resources crucial for the sustenance of downstream

communities. To evaluate the performance of proposed hybrid models on large alpine basins, this study focuses on the source

regions of three major river basins: the Yellow River, the Yangtze River, and the Lancang River. These basins are recog-

nized as extensive mountainous regions within the TP (Figure 2). Each of these study basins spans an area exceeding 90,000

km2, characterized by diverse topography with elevation fluctuations exceeding 3,000 m. Previous studies has
:::
The

:::::::::
significant180

::::::::::
topographic

::::::::
variations

::::::
within

:::
the

::::
basin

::::
lead

::
to
:::::::

notable
::::::
spatial

:::::::::::
heterogeneity

::
in

:::::::::::::
meteorological

::::::::
elements

::::
such

::
as

:::::::::::
precipitation

:::
and

::::::::::
temperature

::::::
(Figure

:::::
A1).

::
To

:::::::::
accurately

:::::::
capture

:::
this

::::::::::::
heterogeneity

::
in

::::::::::
hydrological

:::::::::
modeling,

::
it

::
is

::::::::
necessary

::
to

::::::
divide

:::
the

::::
basin

::::
into

:::::::
different

::::::::::::
computational

:::::
units.

::::::::
Besides,

:::::::
previous

::::::
studies

:::::
have shown that the glacier process has a minimal impact

on runoff modeling in the three study basins, and it is neglected in this study (Cui et al., 2023). Hereinafter, Yellow, Yangtze,

and Lancang are used to denote the corresponding source regions in this study.185

2.2.2 Data used

This study utilized the reanalysis and remote sensing datasets for input variables of hybrid models and the THREW model as

follows:

1. Precipitation: China Meteorological Forcing Dataset (CMFD) with 0.1° spatial and 3h temporal resolution (Yang et al.,

2010);190

2. Air temperature: The air temperature at 2m AGL (T2) from the fifth generation of ECMWF atmospheric reanalysis of

the global climate (ERA5) reanalysis dataset with 0.1° spatial and 1 h temporal resolution (Hersbach et al., 2020);

3. Potential evaporation: The potential evaporation from the ERA5 reanalysis dataset with 0.1° spatial and 1 h temporal

resolution (Hersbach et al., 2020);

4. DEM: Shuttle Radar Topography Mission (SRTM) with 90 m spatial resolution. The data set is provided by Geospatial195

Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn);
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Figure 2. The terrain of the Tibetan Plateau and the location of the four study basins.

5. LAI: The MOD15A2H dataset from MODIS product with 500 m spatial and 8-day temporal resolution (Myneni et al.,

2015);

6. NDVI: The MOD13A3 dataset from MODIS product with 1 km spatial and 1-month temporal resolution (Didan, 2015);

The daily observed runoff data at hydrological stations (Figure 2) is used for the model calibration/training and evaluation.200

The dataset is provided by local water agencies.

2.3 Experimental design

2.3.1 Model evaluation schemes

We conduct two suites
:::
sets

:
of experiments to comprehensively evaluate the performance of proposed hybrid distributed hydro-

logical models in this study.205

1. Model performance in trained sites: all proposed hybrid distributed models are developed, trained, and evaluated in

three study basins. The comparison models are then utilized for a range of purposes: comparing the performance of

the proposed models against state-of-the-art DL and distributed hydrological models, examining the effects of ENNs

parameterization and replacement on hydrological modeling, and appraising the impact of spatial information on model

performance. Due to the limitation of
:::
the observed runoff data, TNH in Yellow, ZMD in Yangtze, and JZ in Lancang210
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are utilized as the evaluation stations in this experiment. For the Yellow and Yangtze, the training and evaluation periods

are respectively designated as 1982–2007 and 2009
::::
2004

::::
and

::::
2007–2014. In the case of the Lancang, these periods span

1988–2003 and 2005–2010.

2. Model performance in untrained sites within the basin: by capturing the spatial heterogeneity within the basin, hybrid

distributed models provide the opportunity to predict hydrological processes at any untrained sites within the basin. To215

assess the proficiency of hybrid distributed models in ungauged sites within the basin, the MT, MQ, and JG stations,

situated upstream of the TNH station in the Yellow (Figure 2), are simulated using Yellow (TNH) hydrological models

in this section. The evaluation phase encompasses the years 2009 to 2014 for all hydrological stations.

2.3.2 The climate perturbation method

This study uses the climate perturbation method to test the applicability of the hybrid models to analyze the hydrological220

sensitivities to climate change in three large alpine basins. Using precipitation and temperature data from the reanalysis dataset

(Sect. 2.2.2) as the reference, the additional perturbation sequences are added to represent the potential climate changes.

Perturbed precipitation sequences are extracted by multiplying the reference precipitation data from 80% to 120% with an

increment of 10% (Su et al., 2023). Perturbed temperature sequences are generated by adding from 0.5 to 2 °C with an

increment of 0.5 °C to the reference temperature input (Cui et al., 2023). The impact of increased temperature on the potential225

evapotranspiration is calculated by the regression between observed temperature and potential evapotranspiration in each sub-

basin (Cui et al., 2023; Van Pelt et al., 2009; Xu et al., 2019). Total one reference, four perturbed temperature, and four

perturbed precipitation sequences are conducted to assess the influence of precipitation and temperature change on hydrological

processes. The changes of other underlying surfaces are not considered in this study.

2.3.3 Evaluation metrics230

Three common hydrological metrics – including NSE, modified NSE
:::::
NSE,

::::::::
modified

::::::
NSE

:
(mNSE; (Legates and Mc-

Cabe Jr, 1999)), and the absolute value of peak flow bias (PFAB; (Yilmaz et al., 2008)) are employed to evaluate the model

performance. They can be defined as follows:

NSE = 1−
∑T

i=1 (Qobs,i −Qsim,i)
2∑T

i=1

(
Qobs,i − ¯Qobs

)2 (1)

mNSE = 1−
∑T

i=1 |Qobs,i −Qsim,i|∑T
i=1

∣∣Qobs,i − ¯Qobs

∣∣ (2)235

PFAB = 100×

∣∣∣∣∣
∑L

l=1 (Qsim:l −Qobs:l)∑L
l=1Qobs:l

∣∣∣∣∣ (3)
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where Qobs,i and Qsim,i are the observed and simulated values, T is the length of the evaluation period, and ¯Qobs is the

averaged observed values. Qsim:l and Qobs:l are the observed and simulated runoff sorted in descending order, respectively. L

is the number of flow values which are in the top 2% of all flows. Both NSE and mNSE measure the overall fit-of-goodness

of simulated and observed data, while mNSE gives less weight to high values than NSE and thus focuses on the baseflow.240

A NSE and mNSE of 1 indicates the perfect fit and a NSE of 0.55 is the threshold for good performance (Newman et al.,

2015; Knoben et al., 2019). PFAB emphasizes the performance for peak values and the value closer to zero indicates a smaller

peak bias.

3 Model evaluation

::
To

:::::
adopt

:::
the

::::::
hybrid

::::::::::
distributed

::::::
models

::::
and

:::::::
THREW

:::::::
models

::
in

:::::
three

::::::
basins,

:::
the

:::::::
Yellow,

::::::::
Yangtze,

:::
and

::::::::
Lancang

::::::
basins

:::
are245

::::::::
delineated

::::
into

:::
83,

:::
99,

::::
and

::
63

:::::::::
sub-basins

:::::::
(Figure

::
2)

:::::
based

:::
on

:::
the

:::::
actual

:::::
river

:::::::
network

:::
and

:::
the

:::::::
divided

::::::::
sub-basin

::::::::
numbers

::
in

::::
other

:::::::
relevant

::::::
studies

::::::::::::::
(Cui et al., 2023)

:
.
:::
The

:::::::::::
performance

::
of

:::
all

::::::::
proposed

::::::
models

::
in

:::::::
gauged

:::
and

::::::::
ungauged

:::::
sites

:::
are

::::::::
evaluated

::
as

::::::
follow.

3.1 Hybrid distributed model evaluation in trained sites

3.1.1 The effect of ENNs on runoff modeling250

In general, all hybrid distributed models exhibit notable performance, adeptly capturing the runoff peaks with appropriate

magnitudes and timings across three study basins (Figure 3 and Table 2). Specifically, the comparisons with
::::::::::
comparison

:::::
results

:::::
show

:::
that

:
DMθ and DM models show that the DMθ model slightly outperforms

::::::
exhibits

:
a
::::::
closed

:::
but

:::::::
slightly

:::::
better

::::::::::
performance

::::
than

:
the DM model in overall runoff modelingwith an ,

::::
with

::
a
:::::
slight increase NSE and mNSE of 0.01-0.03 in

all three basins. Additionally, lower PFAB results imply that the DMθ model contributes to an improved performance in peak255

runoff modeling. The incorporation of ENNs to represent
::
the

:
spatial heterogeneity of calibration parameters is demonstrated

to augment the ability of the distributed hydrological model to simulate both overall and peaking runoff processes
:::
can

::::::
reduce

::
the

:::::
peak

:::::::::
simulation

:::::
biases

:::
and

:::::::
slightly

:::::::
improve

:::
the

::::::
overall

:::::::::::
performance.

The notably enhanced performance in DMθ−Q−T and DMθ−QSM−T models indicates that the inclusion of ENNs for

replacing internal modules yields further improvements in model performance (Figure 3 and Table 2). First, the results between260

DMθ−Q−T and DMθ models show the substantial
:::::
slight improvements in runoff modeling brought by the incorporation of

ENNQ. This enhancement is illustrated by a noteworthy
:::::
small increase in NSE and mNSE values, ranging from 0.06 to

0.09 in Yellow and Yangtze. Since the DMθ model already exhibits commendable performance in Lancang, the advancements

achieved by the DMθ−Q−T model are relatively marginal in comparison. PFAB results suggest that the ENNQ does not

lead to substantial improvements in peak flow performance. Besides, evaluation findings for the DMθ−QSM−T model show265

that replacing precipitation partition and snowmelt modules by ENNs can further improve the model performance with an

increase NSE of 0.01-0.05. It also does not translate into better peak runoff modeling as evidenced by comparable PFAB
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Figure 3. The comparison of simulated (DM , DMθ , DMθ−Q−T , and DMθ−QSM−T models) and observed runoff processes in the

evaluation period at the trained TNH, ZMD, and JZ station in Yellow, Yangtze, and Lancang, respectively.

scores across all three basins. ENNs employed for replacement in hybrid hydrological models have proven to be effective in

enhancing the model performance in runoff modeling. Among them, the ENNQ leads to the most substantial improvements

in runoff prediction performance. The replacement of ENNs for snow-related processes (ENNS and ENNM ) results in270

comparatively minor enhancements. These findings align with our hydrological understanding as the runoff module directly

generates runoff and thus plays a central role in runoff modeling. It thus contributes the most to the overall performance

of runoff prediction. Conversely, the influence of snow-related processes on runoff modeling performance improvements is

indirect and thus relatively modest (Li et al., 2023b).

The air temperature is employed as the additional input of the ENNQ to implicitly represent the soil freeze-thaw process in275

this study (Zhong et al., 2023; Gao et al., 2021). Results indicate that DMθ−Q−T and DMθ−QSM−T models exhibit slightly

improved performance
:::::::
improved

:::::::::::
performance

::
in

:::::::
peaking

:::::
runoff

::::::::
modeling

:
compared to the DMθ−Q and DMθ−QSM models,

respectively. This enhancement is evident through higher
:::::
closed NSE and

:::::::
mNSE

:::
and

:
lower PFAB values in Yellow and

11



Table 2. The results of three hydrological metrics for different hybrid distributed models in three study basins.

Basin DM DMθ DMθ−Q−T DMθ−QSM−T DMθ−Q DMθ−QSM

TNH NSE 0.8 0.81 0.88 0.89 0.87 0.88

Yellow mNSE 0.6 0.61 0.70 0.70 0.69 0.68

PFAB 6.68 5.18 6.48 4.57 9.46 10.84

ZMD NSE 0.75 0.76 0.82 0.87 0.83 0.84

Yangtze mNSE 0.56 0.59 0.66 0.73 0.66 0.7

PFAB 14.33 2.81 3.49 19.39 20.22 28.13

JZ NSE 0.85 0.86 0.87 0.89 0.87 0.87

Lancang mNSE 0.68 0.69 0.71 0.73 0.71 0.71

PFAB 10.41 9.19 7.97 8.64 8.16 9.1

Figure 4. (a-c) The comparison of simulated and observed runoff processes in the evaluation period in Yellow, Yangtze, and Lancang, respec-

tively. DMT and EXP are denoted to hybrid distributed and lumped models, while DM represents the hybrid distributed models without

inclusion of air temperature in ENNQ. Circles, squares, and triangles refer to NSE, mNSE, and PFAB. (d) The model comparison with

state-of-the-art models.

Lancang. While the NSE values of these models are closely comparable in the Yangtze basin, the PFAB results underscore

that incorporating air temperature can contribute to an enhanced capacity for predicting the runoff process.
::
all

:::::
three

::::::
basins.280

Moreover, the enhancement observed due to the inclusion of air temperature is notably more pronounced in Yellow and Yangtze
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Table 3. The results of three hydrological metrics for different hybrid distributed and lumped models in three study basins.

Basin EXP θ−Q EXP θ−QSM DMθ−Q−T DMθ−QSM−T

TNH NSE 0.84 0.85 0.88 0.89

Yellow mNSE 0.65 0.64 0.70 0.70

PFAB 2.42 8.65 6.48 4.57

ZMD NSE 0.74 0.83 0.82 0.84

Yangtze mNSE 0.6 0.67 0.66 0.7

PFAB 36.59 27.8 3.49 7.86

JZ NSE 0.82 0.82 0.87 0.89

Lancang mNSE 0.63 0.59 0.71 0.73

PFAB 8.66 17.48 7.97 8.64

compared to Lancang. This pattern aligns with expectations because Lancang features a smaller extent of permafrost regions,

resulting in a lesser influence of the soil freeze-thaw process on runoff modeling in this region.

3.1.2 The impact of spatial information on runoff modeling

Hybrid lumped models proposed by Li et al. (2023b) are similar with our proposed hybrid distributed models but did not285

consider the spatial heterogeneity. Hybrid lumped and distributed models are used to test the effect of spatial information

on hydrological modeling. It is important to highlight that while the ENNs of the hybrid lumped models utilize the same

dynamic time series inputs as those of the distributed models, they do not include the static attributes of the basin. Results show

that both hybrid lumped models, EXPQ and EXPQSM , exhibit strong performance in runoff modeling with NSE more

than 0.74 in all three basins (Figure 4 and Table 3). It demonstrated the suitably of hybrid lumped models for hydrological290

modeling on the TP. In comparison to EXPQ and EXPQSM models, the DMθ−Q−T and DMθ−QSM−T models show

more impressive performance in runoff modeling with the increase NSE and mNSE of 0.01-0.14 in three basins. PFAB

results affirm that DMθ−Q−T and DMθ−QSM−T models excel in simulating peak flow processes, achieving PFAB values

of less than 10% across all three basins. Consequently, the incorporation of spatial heterogeneity within the basin in hybrid

models leads to improved performance in both overall and peak runoff modeling. This finding is seamlessly consistent with295

our hydrological comprehension
:::::::::::
understanding

:
and is also corroborated by related studies in the case of distributed process-

based hydrological models and DL hydrological models (Li et al., 2023a; Patil et al., 2014). In practice, we recommend the

utilization of hybrid distributed models for hydrological modeling, particularly in the context of large basins, to attain enhanced

performance outcomes.
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3.1.3 The comparison to the state-of-the-art models300

We further use the optimal hybrid distributed model DMθ−QSM−T to compare with state-of-the-art models: distributed hydro-

logical model THREW and DL models LSTM and CNN-LSTM (Li et al., 2023a). Results show that the DMθ−QSM−T model

outperforms the THREW model by a substantial margin and holds comparable performance to the LSTM and CNN-LSTM

models (Figure 4). This reveals that our hybrid distributed model can effectively harness the advantages of both process-based

models and DL models. Specifically, it attains the high performance characteristic of DL models while adhering to the physical305

mechanism constraints inherent in process-based models, creating a synergy not entirely realized in other models.

3.2 Hybrid distributed model evaluation in untrained sites within the basin

As proposed hybrid distributed models operate in a distributed manner, it is imperative to further investigate whether models

trained using the basin outlet point can effectively simulate hydrological processes in any untrained sites within the same

basin. In this study, runoff processes at three hydrological stations (JG, MQ, and MT), situated upstream of TNH in Yellow,310

are simulated using our proposed distributed models trained by TNH data (Figure 2 and Figure 5).

Results reveal that all models trained on TNH data exhibit impressive predictive performance in simulating runoff pro-

cesses at JG and MQ stations, with NSE values exceeding 0.71. The DMθ−QSM−T model achieves an especially high NSE

of 0.84. However, the models show comparatively poorer performance in runoff modeling at the MT station, which is the

most upstream point
::::::::::
demonstrates

:::::
lower

::::::::
accuracy

::
at
::::

the
::::::::::::
upstream-most

::::
MT

::::::
station

:::::::
(Figure

::
2).

:::::
This

::
is

:::::::
because

:::
the

::::::
alpine315

::::::::::
hydrological

::::::::
processes

:
in the basin (Figure 2 and Figure

:::::
above

:::
the

::::
MT

::::::
station,

:::::
such

::
as

::::
soil

::::::::::
freeze-thaw

:::
and

:::::
snow

::::
and

:::
ice

::::::::
processes,

::::
play

::
a
:::::
more

:::::::::
significant

:::
role

:::
in

:::::
runoff

:::::::::
processes

::::::
(Figure

:
5e). Hybrid

::::
This

::::::::
increases

:::
the

::::::::
difficulty

::
of

:::::::::::
hydrological

:::::::::
simulation,

::::::
leading

:::
to

::::::
reduced

::::::
model

::::::::
accuracy.

:::::::
Among

:::::
them,

::::
DM

::::
and

:::::
DMθ::::::

models
:::::
show

:::
the

:::::
most

::::::::
significant

:::::::::
reduction

::
in

:::::::
accuracy

::::
due

::
to

::
its

::::::::::
insufficient

::::::::::::
representation

::
of

:::::
alpine

:::::::::::
hydrological

:::::::::
processes.

:::
On

:::
the

::::
other

:::::
hand,

::::::
hybrid

:
distributed models

with ENNs replacement, including DMθ−Q−T and DMθ−QSM−T models, exhibit notably enhanced abilities in runoff mod-320

eling compared to DM and DMθ models, resulting in NSE improvements ranging from 0.09 to 0.58. The DMθ−QSM−T

model demonstrates the strongest performance in runoff modeling across all three stations, particularly in MT where its NSE

reaches 0.54, whereas the other three models yield NSE values lower than 0.22 (Figure 5). The findings show that the pro-

posed hybrid distributed models exhibit strong performance in hydrological modeling for untrained sites within the basin. It is

also demonstrated that the hydrological relationships established by ENNs are credible and robust.325

4 Hydrological
:::
The

:::::::::::
applicability

::
of

::::::
hybrid

:::::::
models

:::
for

:::::::::::
hydrological

:
sensitivities to climate change

Perturbed precipitation and air temperature dataset are input to trained DMθ−QSM−T models to test the applicability of the

hybrid models to analyze the hydrological sensitivities to climate change in three large alpine basins.
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Figure 5. The NSE results between simulated (different distributed hydrological models in TNH) and observed runoff processes at JG, MQ,

and MT. e
::::::::
represents

:::
the

::::
static

:::::::
attributes

::
of

::::::::
sub-basins

:::::::::
normalized

::
by

:::
the

:::::::::::::::
maximum-minimum

::
in

::::
TNH.

:

4.1 Sensitivities of runoff to perturbed precipitation

Figure 6 and Figure 7a-c depict the runoff sensitivities to various altered precipitation scenarios within three study basins. The330

findings suggest a consistent trend in the relationship between runoff and precipitation: runoff rises (decreases) as precipitation

increases (decreases). Specifically, the annual runoff increases at rates of approximately 33.8, 18.1, and 44.9 mm/10% with

the increase of precipitation within Yellow, Yangtze, and Lancang, respectively. The relative change in runoff surpasses that

of precipitation in all three study basins: a 10% increase in precipitation leads to a 15% to 20% increase in runoff in all three

study basins. Besides, annual runoff exhibits greater sensitivity to increases in precipitation compared to decreases (Figure335

7a-c). As an illustration, an increase of 20% in precipitation results in a substantial 40% increase in annual runoff, whereas a

20% decrease in precipitation leads to a notable 30% reduction in annual runoff in Yellow. It is indicated that runoff exhibits an

amplification effect in response to precipitation changes due to the increase in the runoff coefficient with rising precipitation.
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Figure 6a-c also illustrate that the inter-annual variation in runoff follows a pattern consistent with the annual runoff: there is a

greater (lesser) variation in inter-annual runoff when there is an increase (decrease) in precipitation.340

Figure 6. Runoff responses to altered precipitation in the Yellow, Yangtze, and Lancang basins (a-c for annual; d-f for monthly). The error

bars in panels a-c and the shaded areas in panels d-f denote the range of simulated runoff

Moreover, the monthly runoff across all months shows a consistent response to perturbed precipitation, yet the extent of

change varied among different months (Figure 6d-f and Figure 7a-c). Notably, the alterations during the wet seasons (June to

October) are more pronounced compared to those in the dry seasons. This indicates that increased precipitation contributes

to a more concentrated distribution of runoff. Figure 6d-f also demonstrate that intra-annual runoff variation becomes more

pronounced with higher levels of precipitation. These findings can be attributed to the fact that the augmented precipitation345

primarily occurs during the wet seasons, and the primary runoff components during these periods consist of direct rainfall

runoff.

4.2 Sensitivities of runoff to perturbed temperature

The sensitivities of runoff to changing temperature follows a more intricate pattern: runoff tends to decrease as temperatures

rise. This decrease is particularly pronounced during the flood season, while in the dry season, there is a slight increase in350

runoff (Figure 7d-f and Figure 8-9). This shift also leads to a reduction in the intra-annual variability of runoff. Taking the

temperature increase of 2 °C as an example, the annual runoff in the three study basins decreases by less than 15%. When
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Figure 7. Relative change of annual (grey shadings
:::::::::
background) and monthly(yellow shadings

:::::::::
background) runoff response to the perturbed

precipitation (a-c) and air temperature (d-f) in Yellow, Yangtze, and Lancang, respectively.

examining monthly runoff, the most significant increase occurs in April, while the most notable decrease is observed in June.

These phenomena can be explained by the fact that changes in temperature affect the evaporation capacity, the redistribution

of rainfall and snowfall, and the timing of snowmelt. Higher temperature leads to increased evaporation capability, which355

results in more actual evaporation and less total runoff when precipitation remains constant. During the winter and spring, the

increased rainfall and earlier snowmelt, along with higher actual evaporation, tend to balance each other, resulting in a minor

increase or decrease in runoff. However, in the summer, reduced snowmelt and higher evaporation significantly reduce runoff.

To enhance the reliability of our model and validate our findings of hydrological sensitivities to climate change, we conducted

an analysis of runoff component contributions in all three study basins across scenarios with varying temperature perturbations.360

It is essential to highlight that the glacier module has been excluded from this model due to structural limitations. Previous

studies in the study basins have demonstrated that glaciers have a negligible impact on runoff (Cui et al., 2023; Su et al.,

2022). As a result, this limitation does not significantly affect the accuracy of the simulation results. In the reference scenario,

rainfall runoff emerged as the primary component, contributing approximately 81.5%, 73.1%, and 84.0% to the total runoff in

Yellow, Yangtze, and Lancang, respectively. Notably, these results align with findings from other studies (Cui et al., 2023; Su365

et al., 2022), underscoring that our hybrid model not only excels in simulating the runoff process but also accurately represents

untrained hydrological processes. Furthermore, the contribution of snowfall runoff diminishes as the perturbed temperature

increases. With a 2 °C temperature rise, the contribution of snowfall runoff decreases by 5.8%, 8.9%, and 5.0% in the Yellow,

Yangtze, and Lancang basins, respectively. These results strongly support the credibility of our analysis.
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Figure 8. Same with Figure 6 but
:::::
Runoff

::::::::
responses

::
to

:::::
altered

:::::::::
temperature

::
in

:::
the

::::::
Yellow,

::::::
Yangtze,

::::
and

::::::
Lancang

:::::
basins

::::
(a-c for

:::::
annual;

:::
d-f

::
for

::::::::
monthly).

:::
The

::::
error

::::
bars

::
in

:::::
panels

:::
a-c

:::
and the runoff response to

:::::
shaded

::::
areas

::
in

:::::
panels

:::
d-f

:::::
denote

:
the perturbed temperature

::::
range

::
of

:::::::
simulated

:::::
runoff.

Figure 9. The runoff components with different perturbed temperature scenarios in Yellow, Yangtze, and Lancang, respectively.

5
::::::::::
Conclusions

::::
and

::::::::::
limitations370

In this study, we propose hybrid distributed hydrological models that synergize the distributed process-based model with

embedded neural networks (ENNs). The hybrid models use the distributed process-based model as the backbone, with ENNs

parameterizing and replacing internal modules. Taking three large alpine basins on the Tibetan Plateau as the study basins, the
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proposed models are test and compared with state-of-the-art models. The climate perturbation method is further carried out to

test the applicability of the hybrid models to analyze the hydrological sensitivities to climate change in large alpine basins. Our375

main findings are as follows:

1. The optimal hybrid distributed model achieves superior performance in runoff modeling, with NSE of higher than 0.87,

approaching the state-of-the-art DL models and outperforming traditional process-based models. The optimal hybrid

distributed model also demonstrates remarkable prowess in hydrological modeling at ungauged sites within the basin.

2. Further experiments reveal that the inclusions of ENNs for parameterizing and replacing modules can lead to higher380

model accuracy. Considering spatial information within the basin and introducing temperature in ENNQ to represent

the soil freeze-thaw process also show enhanced predictive capabilities in hybrid models.

3. The results about hydrological sensitivities to climate change show resonable patterns: runoff exhibits an amplification

effect in response to precipitation changes, with a 10% precipitation change resulting in a 15–20% runoff change in large

alpine basins. Annual runoff exhibits greater sensitivity to increases in precipitation compared to decreases. The increase385

in temperature enhances evaporation capacity and reduces the contributions of snowfall runoff, leading to a decrease in

the total runoff and a reduction in the intra-annual variability of runoff. With a 2 °C temperature rise, the contribution of

snowfall runoff decreases by 5.8%, 8.9%, and 5.0% in the Yellow, Yangtze, and Lancang basins, respectively.

In summary, we provide an effective and easily interpretable hybrid distributed hydrological model and enhance our under-

standing about hydrological sensitivities to climate change in large alpine basins. However, this study is
:::::
being

:::::::::
promising

::
in390

::::::::
modeling

::::::::::
hydrological

:::::::::
processes,

:::
this

:::::
study

::::
also

:::
has

::::::
several

:::::::::
limitations.

:::::
First,

:::
the

::::::
routing

::::::
method

::
is
::::::::
important

:::
for

:::::::::::
hydrological

::::::::
modeling,

::::::::
especially

::
in
:::::
large

::::::
basins.

:::
The

::::::::
technical

:::::::::::
requirements

::
of

:::::::::
differential

:::::::::::
programming

:::::::::
framework

:::::
limit

:::
the

:::::::::::
consideration

::
of

::::::
routing

:::::::
methods

::
in

:::
our

::::::
hybrid

::::::::::
hydrological

:::::::
models.

:::
We

::::::::
calculate

:::
the

::::
river

:::::
length

:::::
from

::::
each

::::::::
sub-basin

::
to

:::
the

::::
basin

:::::
outlet

::::
and

::::::
employ

:::
this

:::::
static

:::::::
attribute

:::
as

:::
the

:::::
inputs

::
of

::::::
ENNs

::
to

::::::::
implicitly

::::::::::
characterize

:::
the

:::::::
routing

::::::
process

::::::
within

:::
the

:::::
basin.

:::::::
Besides,

::::
this

::::
study

::
is
:
limited to only using three large alpine basins on the Tibetan Plateau to evaluate proposed hybrid models due to the395

limitation of computational resources.
:::::
Third,

::::::::
although

::::::::
numerous

:::::::
studies

::::
have

::::
used

:::::::
climate

::::::::::
perturbation

:::::::
method

::
to

::::::::
calculate

::
the

::::::::
response

:::
of

::::::::::
hydrological

:::::::::
processes

::
to

:::::::
climate

:::::::
change,

:::
this

::::::::
approach

::::
has

::::::::
difficulty

::::::::
capturing

:::
the

::::
true

::::::::::::
characteristics

:::
of

::::::::::::
meteorological

::::
and

:::::::::::
hydrological

:::::::
changes,

:::::::
making

::
it
:::::

hard
::
to

:::::::
validate

::::
the

::::::::::::
reasonableness

:::
of

:::
the

:::::::
results.

::
In

::::
this

::::::
study,

:::
we

::::::::
compared

:::
our

:::::::
findings

::::
with

::::
those

::
of
::::::
related

:::::::
research

::
to
:::::::::::
demonstrate

::
the

:::::::
validity

::
of

:::
our

::::::
results,

:::::::
thereby

::::::
proving

:::
the

:::::::::::
effectiveness

::
of

:::
our

::::::::
proposed

:::::::
coupled

::::::
model

::
in

::::::::
analyzing

:::
the

::::::::
response

::
of

:::::::::::
hydrological

::::::::
processes

::
to
:::::::

climate
:::::::
change. Future research will400

focus on
:::::::::
developing

::::::
hybrid

:::::::::
distributed

:::::::
including

:::::::
routing

::::::::
processes

:::
and extending the evaluation of the hybrid distributed model

to encompass a broader range of basins.

Code and data availability. The hybrid models code and results is available in https://cloud.tsinghua.edu.cn/d/1bb19608a7024abfaa3e/.

DEM, LAI, CMFD, NDVI, and HSWD data can be publicly downloaded. The observed runoff data and the threw model code are not

publicly available due to the privacy reasons.405
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Appendix A

A1 Distributed EXP-Hydro model equations

The distributed EXP-Hydro model firstly delineates the basin into many sub-basins. In each sub-basin, the lumped EXP-Hydro

is run independently (Equation A1-A12) to obtain the respective runoff. The runoff from all sub-basins is then aggregated to

calculate the basin runoff (Equation A12). The detailed equations are as follows (Patil et al., 2014).410

(1) Water balance

dS0

dt
= Ps −M (A1)

dS1

dt
= Pr +M −ET − Q (A2)

where S0, S1, Ps, Pr, M , ET , and Q are snow storage, basin water storage, snowfall, rainfall, snowmelt, evaporation, and

runoff, respectively.415

(2) Precipitation partition

Ps =

 0 T > Tmin

P T ≤ Tmin

(A3)

Pr =

 P T > Tmin

0 T ≤ Tmin

(A4)

where P and T are precipitation and air temperature.

(3) Snowmelt420

M =

 min{S0, Df · (T −Tmax)} T > Tmax

0 T ≤ Tmax

(A5)

(4) Evapotranspiration

ET =


0 S1 < 0

PET ·
(

S1

Smax

)
0≤ S1 ≤ Smax

PET S1 > Smax

(A6)

PET = 29.8 Lday
esat (T )

T +237.3
(A7)

esat (T ) = 0.611× exp

(
17.3T

T +237.3

)
(A8)425
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where PET , Lday , and esat (T ) represent the potential evaporation, day length, and the saturation vapor pressure.

(5) Runoff and baseflow

Qb =


0 S1 < 0

Qmax · e−f ·(Smax−S1) 0≤ S1 ≤ Smax

Qmax S1 > Smax

(A9)

Qs =

 0 S1 ≤ Smax

S1 −Smax S1 > Smax

(A10)

Q=Qb +Qs (A11)430

where Qb and Qs are the baseflow generated depending on the available storage in the basin bucket and the capacity-excess

runoff generated when basin bucket is saturated. All above undefined variables are calibration parameters. The details please

refer to (Patil and Stieglitz 2014).

(6) Basin runoff

Qbasin =

∑N
i=1Qi ∗Ai∑N

i=1Ai

(A12)435

where Qbasin is the runoff at basin outlet. Qi and Ai are the runoff and area of sub-basin i. N is the total number of sub-basins

within the basin.

A2 Hybrid distributed model equations

In all hybrid distributed models, four ENNs are constructed to parameterize (NNθ) and replace runoff (NNQ), precipitation

partition (NNS), and snowmelt processes (NNM ). The detailed equations are as follows.440

θd =NNθ (As) (A13)

Q=NNQ (M +Pr,S1,T,As) (A14)

Ps = P ×NNS (P, T,As) (A15)

Pr = P −Ps (A16)
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M = S0 ×NNM (T,As) (A17)445

where θd and As represent calibration parameters and static basin attributes, respectively. Detailed static basin attributes

refer to Table A1.

Figure A1.
::
The

::::::
spatial

::::::::::
heterogeneity

::
of

:::::::::
precipitation

:::
and

:::
air

:::::::::
temperature

::
in

:::::
Yellow,

:::::::
Yangtze,

:::
and

:::::::
Lancang.
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Table A1. The summary of static basin attributes for the inputs of ENNs.

Variables Descriptions Units

P_mean Mean daily precipitation mm/d

T_mean Mean daily air temperature mm/d

PET_mean Mean daily potential evaporation mm/d

Basin area Basin area km2

SLOPE_mean Mean slope m/km

DEM_mean Mean elevation m

Aridity PET/P -

LAI_max Maximum monthly of the LAI -

LAI_diff Difference between maximum and minimum monthly mean of

the LAI

-

River length The river length from a sub-basin to the basin outlet km
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