
Dear Editor and Reviewers: 

We appreciate the detailed constructive comments and suggestions which 

substantially help improve the manuscript. We provide the point-by-point response to 

all the comments, each comment starting with “Response”. All page numbers refer to 

the revised manuscript with changes marked. We look forward to hearing from you at 

your earliest convenience.  

 

For Reviewer #1 

1. Scope 

The scope of the paper is well suited for HESS. 

2. Summary 

The authors based their study on the hybrid model proposed by Li et al. (2023b), in 

which different modules of a conceptual hydrological model are substituted by Neural 

Networks. The authors then proposed a distributed version of the model, in which 

they subdivide the basins of interest into smaller subbasins and apply the hybrid 

models to each of these subbasins. 

The authors then compare the performance of the lumped and distributed hybrid 

models against purely data-driven techniques (LSTM and CNN-LSTM) and show all 

models achieved similar performance. They also test the performance of the hybrid 

models to predict discharges in some of the predefined subbasins (untrained gauges). 

In the last sections, the authors run some experiments looking at the behaviour of the 

models when boundary conditions are modified (changes in precipitation and 

temperature). 

3. Evaluation 

Overall, the manuscript has the potential to be a good contribution, however, there are 

certain aspects mentioned in the questions below that should be taken into account 

before moving on to the next steps.  

Response: Thanks for your recognition and valuable suggestions. Please find our 

replies below.  

3.1 Major comments: 



◼ The code is not published, and the authors indicate that it will be opened once 

the manuscript is accepted. I strongly recommend the editor to ask for an open 

code during the review process, as it increases the transparency of the study. I 

also tried to look for the code of the previous study (Li et al., 2023b) however I 

was not able to find it. 

Response: Thanks for your suggestions. We opened the source code in the revised 

manuscript.  

◼ They also indicate that the discharge information is not publicly available due 

to privacy reasons. Even though this reason is valid and outside of the 

capabilities of the authors, it automatically makes the study non-reproducible, 

which is especially important when machine learning methods are being 

proposed. 

Response: Thanks for your suggestions. To enhance the transparency and reproducible 

of our study, we provided the simulated results in Yellow in the revised manuscript. 

◼ The printing quality of all figures should be improved. When I zoom in, I cannot 

see the details. I suggest the authors print the figures in 300 dpi. 

Response: We have improved the printing quality in the revised manuscript.  

◼ The authors do not show the subbasins they used to create the distributed model. 

I encourage them to include this information. Also, I was not able to find 

information of the amount of subbasins they used. 

Response: We used the green lines in Figure 2 to show the delineated river networks 

within three basins, which determines the shape and number of delineated sub-basins. 

Referring to the number of sub-basins divided by THREW model, we delineated the 

Yellow, Yangtze, and Lancang into 83, 99, and 63 sub-basins. The detailed sub-basins 

information will be added in the revised manuscript.  

◼ One major concern is that they are not considering any routing method. 

Consequently, even with a distributed model they just sum up the discharge 

coming from each subbasin. Moreover, the authors are working with large 

basins (over 90 000 km2 according to the manuscript) in which the routing 

processes can become highly relevant. Is there a reason why no routing is being 



used? 

Response: We agree with the reviewer that the routing method is important for 

hydrological modeling, especially in large basins. In this study, to achieve the coupling 

between physical models and neural networks and the simultaneous training of both the 

physical models and neural networks, all equations are formulated to be differentiable 

to ensure operating within the differential programming framework (DPF). The 

technical requirements of DPF limit the consideration of routing methods in our hybrid 

hydrological models. To compensate for the lack of consideration of the routing process, 

we calculate the river length from each sub-basin to the basin outlet and employ this 

static attribute as the inputs of ENNs to implicitly characterize the routing process 

within the basin. We will discuss this limitation in the revised manuscript.  

◼ The good performance of the distributed models can also be attributed to the 

fact that one has a more flexible model. More flexible models can get a better 

fit to the data, but this is not directly related to having a distributed version. 

One way to test this hypothesis is to use the same number of models you used 

in the distributed version but let them receive the same data (similar to Feng, 

2022). If your models performed better, then you can say that the distributed 

nature of the models is beneficial, and the improvement is not just because of 

the increase in flexibility. If the performance is the same, then it would mean 

that the distributed version (especially without any routing) does not give an 

advantage. 

Response: Feng et al. (2022) conceptualized each basin as being composed of multiple 

parallel components to represent spatial heterogeneity. The inputs of all components are 

assumed to be same and the parameters in different components are acquired 

independently. So theses models only enhanced model flexibility by setting more 

parameters but did not represent the spatial heterogeneity in the real world. Different 

from Feng et al. (2022), we developed hybrid models in a distributed manner similar 

with traditional distributed hydrological models. All parameters of physical models are 

calculated based on the static attributes of sub-basins. And all ENNs for replacement of 

different internal modules utilized static attributes and dynamic driving variables as 



inputs. Our models can better represent spatial heterogeneity and are less flexible than 

models of Feng et al. (2022). And if the model inputs of all sub-basins are set the same, 

parameters in all sub-basins will be same, which means that all outputs are also same 

and the final results are same or similar with lumped models. Besides, Patil and Stieglitz 

(2015) demonstrated that our backbone model, the distributed EXP-Hydro model, 

outperform the lumped version by capturing spatial heterogeneity. Therefore, compared 

with lumped models, our distributed hybrid models are enhanced due to the 

consideration of spatial heterogeneity but not the improvement of model flexibility.  

◼ In Section 3.2 the authors present the results of the evaluation on untrained 

gauges. One can see that for the MT subbasin the performance of three models 

completely drops when compared to the performance in the original basin 

(TNH). Why? In the text it was mentioned that “the models show comparatively 

poorer performance in runoff modeling at the MT station” but it was never 

explained why. Also, the discharge range (Figure 5) of the subbasins is similar, 

so is there a reason for the big differences in performance? 

Response: Thanks for your suggestion. The upper reaches of the source region of the 

Yellow (the basin above the MT Hydrological Station) are characterized by high 

altitude and low temperatures. The alpine hydrological processes, including soil freeze-

thaw, snow, and ice processes, significantly impact runoff processes. These influences 

are more pronounced compared to the entire source region of the Yellow, making 

hydrological modeling more challenging. The distributed EXP-Hydro, lacks the 

capability to accurately depict these alpine hydrological processes, resulting in 

relatively low simulation accuracy. In contrast, the ENNs, which represent these 

processes, are better at capturing them, demonstrating superior accuracy. This also 

proves that the coupled model constructed in this study can effectively learn and 

represent these hydrological processes. We will add detailed explain in the revised 

manuscript.  

3.2 Minor comments: 

◼ Line 25: Is the word ‘almost’ a typo? 

Response: “almost” has been deleted in the revised version.  



◼ Line 32: Saying that process-based models can be used to understand the entire 

hydrological system including all internal processes is an overstatement, 

especially if you are referring to conceptual models. Conceptual models are 

mostly based on parameterized (empirical) relationships that somehow account 

for our understanding of the system, however the physics behind them is not 

much.   

Response: We agree with the reviewer that it is an overstatement. This sentence is 

revised as “They can be used to advance scientific understanding about the hydrological 

systems and provide the insight into the response of hydrological processes to climate 

changes”.  

◼ Line 122: It is not clear what the authors mean. Are the parameters the same 

for all basins or do they change? 

Response: We want to show that the parameters of all sub-basins within the basin are 

assumed to be the same in distributed EXP-Hydro model. It has been revised as “The 

calibration parameters of all sub-basins within the basin are assumed to be the same in 

distributed EXP-Hydro model, while many of them related to sub-basin attributes 

should be different”.  

◼ Line 145: It would be better to create a table to specify the characteristics of 

each model.  

Response: Thanks for your suggestion. We will create a table to specify the 

characteristics of each model. 

Table 1. Design details of different hybrid models. “√” represents that the model 

employs the corresponding ENNs while “×” means not.  

Model 𝐄𝐍𝐍𝛉 𝐄𝐍𝐍𝐒 𝐄𝐍𝐍𝐌 𝐄𝐍𝐍𝐐 Temperature is the input of 

𝐄𝐍𝐍𝐐 

𝑫𝑴 × × × × × 

𝑫𝑴𝜽 √ × × × × 

𝑫𝑴𝜽−𝑸 √ × × √ × 

𝑫𝑴𝜽−𝑸−𝑻 √ × × √ √ 



𝑫𝑴𝜽−𝑸𝑺𝑴 √ √ √ √ × 

𝑫𝑴𝜽−𝑸𝑺𝑴−𝑻 √ √ √ √ √ 

◼ Line 158:  Hochreiter and Schmidhuber, 1997 created the LSTM architecture, 

but in this line, it sounds like they proposed the architecture for hydrological 

modelling. This paper should of course be cited, but not mixed with the other 

papers of hydrological applications. 

Response: We have revised this citation in the next version.  

◼ Figure 2. How was the spatial discretization of the basins? This should be 

included in the paper.  

Response: Similar with the fourth comment and response in the major comment, we 

will add the detailed description about spatial discretization of the basin.  

◼ Line 195: What does suites of experiments mean? Shouldn´t it be set of 

experiments? 

Response: We will revised as “set of experiments” in the revised manuscript.  

◼ Line 242-244: The PFAB values show a difference, but the changes of 0.01 in 

NSE are not significant. This can be just because of the initialization of the 

model. I do not agree that there is evidence to support that one model has an 

augmented ability to simulate overall runoff process. 

Response: We agree with the reviewer that the 𝐷𝑀𝜃 model cannot be demonstrated to 

achieve an augmented ability to simulate overall runoff process. It has been revised as 

“Specifically, the comparison results show that 𝐷𝑀𝜃  model exhibits a closed but 

slightly better performance than the 𝐷𝑀 model in overall runoff modeling, with an 

increase 𝑁𝑆𝐸 and 𝑚𝑁𝑆𝐸 of 0.01-0.03 in all three basins. Additionally, lower 𝑃𝐹𝐴𝐵 

results imply that the 𝐷𝑀𝜃 model contributes to an improved performance in peak 

runoff modeling. The incorporation of ENNs to represent spatial heterogeneity of 

calibration parameters can reduce the peak simulation biases and slightly improve the 

overall performance.” 

◼ Figure 3: The size of the figure should be increased, right now it is hard to see 

the details of the hydrographs. Also, the authors should use the same line width 



for all models. Right now, some lines look thicker than others, which gives a 

bias to the figure. The last hydrograph does not have values on the y-axis. 

Response: We will increase the size of all figures and revise the line width in Figure 3 

in the revised manuscript.  

◼ Line 263: The authors say that when one includes air temperature in the ENN 

there is an evident enhancement of the model performance. The PFAB values 

vary a bit more, but the differences in NSE values are extremely small (0.01 for 

4 cases, 0.02 for 1 case and 0.03 for another). This is just one metric 

summarizing more tha99n 5 years of data. I do not agree that NSE values show 

an evident enhancement of the model performance. 

Response: We agree with the reviewer. This statement has been revised as “Results 

indicate that 𝐷𝑀𝜃−𝑄𝑆𝑀−𝑇  and 𝐷𝑀𝜃−𝑄−𝑇  models exhibit improved performance in 

peaking runoff modeling compared to the 𝐷𝑀𝜃−𝑄𝑆𝑀  and 𝐷𝑀𝜃−𝑄  models, 

respectively. This enhancement is evident through closed 𝑁𝑆𝐸 and 𝑚𝑁𝑆𝐸 and lower 

𝑃𝐹𝐴𝐵 in all three basins”.  

◼ Figure 5e: How are the attributes being normalized? I do not understand how 

the area of the subbasins is comparable with the area of the entire basin.  Also, 

why is the figure showing a range when referring to static attributes?  This 

figure is not explained in the text. 

Response: Thanks for your comment. Figure 5e shows 9 static attributes, except river 

length in Table A1, of all sub-basins within the basin. These static attributes are 

additional inputs of ENNs to capture the spatial heterogeneity among sub-basins among 

basins. Four lines represent static attribute ranges of the four basins with the four 

hydrological stations (TNH, JG, MQ, and MT) as the outlet. Among them, the basin 

with the TNH as the outlet is the largest basins and contains other three basins. These 

attributes of all sub-basins in four basins are normalized based on Equation 1. The 

normalized attributes are final inputs of ENNs. Figure 5 are intended to show the 

meteorological and hydrological difference among four basins. We will add some 

description about Figure 5 in the revised manuscript.  



𝑥𝑁 =
𝑥 − 𝑥𝑚𝑖𝑛−𝑇𝑁𝐻

𝑥𝑚𝑎𝑥−𝑇𝑁𝐻 − 𝑥𝑚𝑖𝑛−𝑇𝑁𝐻
 (1) 

𝑥 and 𝑥𝑁 represent the initial and normalized attributes, respectively. 𝑥𝑚𝑖𝑛−𝑇𝑁𝐻 and 

𝑥𝑚𝑎𝑥−𝑇𝑁𝐻 represent the minimum and maximum variables among sub-basins within 

the basin with the TNH as the outlet.  

◼ Figure 7. The figure title indicates that the grey and yellow shading indicate 

annual and monthly responses. However, there are no shadings in the figure. 

Response: We want to illustrate that annual responses are showed in the grey 

background while monthly responses in the yellow background. The caption of Figure 

7 is revised as “Relative change of annual (grey background) and monthly(yellow 

background) runoff response to the perturbed precipitation (a-c) and air temperature (d-

f) in Yellow, Yangtze, and Lancang, respectively”.  

◼ Figure 8. I suggest the authors use a proper name for the figure and not just 

refer to another figure. 

Response: It will be revised as “Figure 8. Runoff responses to altered temperature in 

the Yellow, Yangtze, and Lancang basins (a-c for annual; d-f for monthly). The error 

bars in panels a-c and the shaded areas in panels d-f denote the range of simulated runoff”  

 

Feng, D., Liu, J., Lawson, K., et al. (2022). Differentiable, Learnable, Regionalized 

Process‐Based Models With Multiphysical Outputs can Approach State‐Of‐

The‐Art Hydrologic Prediction Accuracy. Water Resources Research 58(10). 

Patil, S.D. and Stieglitz, M. (2015). Comparing spatial and temporal transferability of 

hydrological model parameters. Journal of Hydrology 525, 409-417. 

 

For Reviewer #2 

 

The paper developed a hybrid framework that integrates a distributed process-based 

hydrological model and embedded neural networks (ENNs) for streamflow modeling 

in large alpine basins. The distributed EXP-Hydro model uses multiple mathematical 

equations to describe hydrological systems, including precipitation, snowmelt, runoff, 



and baseflow, which can be replaced by neural networks. The hybrid framework 

performs well in both gauged and ungauged basins across three large alpine basins. My 

major concerns are as follows:  

Response: Thanks for your recognition and valuable suggestions. Please find our 

replies below.  

Major comments: 

1. I suggest the authors rewrite the abstract, as it is too long. Some sentences should 

be moved to the introduction or results sections of the manuscript.  

Response: Thanks for your suggestion. We will rewrite the abstract in the revised 

manuscript.  

“Alpine basins are important water sources for human life and reliable hydrological 

modeling can enhance the water resource management in alpine basins. Recently, 

hybrid hydrological models, coupling process-based models and deep learning, exhibit 

considerable promise in hydrological simulations. However, a notable limitation of 

existing hybrid models lies in their failure to incorporate spatial information within the 

basin and describe alpine hydrological processes, which restricts their applicability in 

hydrological modeling in large alpine basins. To address this issue, we develop a set of 

hybrid distributed hydrological models by employing a distributed process-based 

model as the backbone, and utilizing embedded neural networks (ENNs) to 

parameterize and replace different internal modules. The proposed models are tested on 

three large alpine basins on the Tibetan Plateau. A climate perturbation method is 

further used to test the applicability of the hybrid models to analyze the hydrological 

sensitivities to climate change in large alpine basins. Results indicate that proposed 

hybrid hydrological models can perform well in predicting runoff processes and 

simulating runoff component contributions in large alpine basins. The optimal hybrid 

model with Nash-Sutcliffe efficiency coefficients (NSEs) higher than 0.87 shows 

comparable performance to state-of-the-art DL models. The hybrid distributed model 

also exhibits remarkable capability in simulating hydrological processes at ungauged 

sites within the basin, markedly surpassing traditional distributed models. Besides, the 

results also show reasonable patterns in the analysis of the hydrological sensitivities to 



climate change. Overall, this study provides a high-performance tool enriched with 

explicit hydrological knowledge for hydrological prediction and improves our 

understanding about the hydrological sensitivities to climate change in large alpine 

basins.” 

2. The differences between the distributed models and the corresponding lumped 

models are unclear. From the manuscript, it appears that the only difference is that 

the lumped model simulates discharge for the entire basin, while the distributed 

model simulates discharge for each subbasin, and then summarizes the discharge 

for all the subbasins. Runoff routing is an important process in distributed 

hydrological models, which is also crucial for large basins. Please explain why 

river routing is missing. 

Response: Thanks for your suggestion. In this study, we employ the distributed EXP-

Hydro model as the backbone model. Compared with the lumped version, the 

distributed EXP-Hydro model first delineate the entire basin into many sub-basins, and 

all hydrological processes are calculated in each sub-basin. The final basin runoff is 

acquired by summing the runoff outputs from all basins. Besides, our hybrid models 

utilized ENNs to parameterize and replace internal modules. We used static basin 

variables as the inputs of ENNs to represent the spatial heterogeneity within different 

sub-basins. On the other hand, we agree with the reviewer that the routing method is 

important for hydrological modeling, especially in large basins. However, to achieve 

the coupling between physical models and neural networks and the simultaneous 

training of both the physical models and neural networks, all equations are formulated 

to be differentiable to ensure operating within the differential programming framework 

(DPF). The technical requirements of DPF limit the consideration of routing methods 

in our hybrid hydrological models. To compensate for the lack of consideration of the 

routing process, we calculate the river length from each sub-basin to the basin outlet 

and employ this static attribute as the inputs of ENNs to implicitly characterize the 

routing process within the basin. We will discuss this limitation in the revised 

manuscript.  



3. Please demonstrate the importance of using subbasins in alpine basins due to the 

significant variability of precipitation and temperature in space. Additionally, the 

sensitivity of the area threshold for the subbasins is not discussed in the manuscript. 

While the authors may have experience defining the threshold in Tibetan basins, it 

is unclear how this applies to other basins 

Response: Thanks for your suggestion. Many studies have demonstrated that our study 

basins exhibit significant spatial heterogeneity in precipitation and air temperature due 

to large topographical variations and complex weather systems (Ma et al. 2018, You et 

al. 2015). We will add this discussion in the revised manuscript. Besides, we used the 

green lines in Figure 2 to show the delineated river networks within three basins, which 

determines the shape and number of delineated sub-basins. Referring to the number of 

sub-basins divided by the THREW model, we delineated the Yellow, Yangtze, and 

Lancang into 83, 99, and 63 sub-basins. The detailed sub-basins information will be 

added in the revised manuscript. 

4. The significance of model performance is not discussed in the manuscript. For 

example, DMθ-Q-T and DMθ-QSM-T have very close NSE values in the Yellow 

River and Lancang River. If the authors only trained the model once, it is unclear 

if the differences are statistically significant.  

Response: We agree with the reviewer that a slight improvement in the NSE does not 

significantly demonstrate an enhancement of the model. In the revised manuscript, we 

will reassess the improvements of these models to enhance the credibility of the results.  

5. The authors conducted a series of sensitivity tests of runoff to climate change. 

However, it is difficult to explain the internal structure of a neural network and 

how we can trust the extrapolated results. For example, the model was not trained 

on a 20% increase in precipitation, meaning the perturbed scenarios are 

extrapolations. It would be more accurate to refer to this as model sensitivity to 

dynamic inputs rather than concluding runoff sensitivities to climate change.  

Response: Many studies demonstrated that the performance of deep learning in 

simulating data outside the training range is significantly lower than within the training 

range. In this study, we introduced certain physical mechanisms into the deep learning 



model to enhance the physical consistency of the simulation results. To evaluate the 

model's performance in simulating data outside the training range, we used the climate 

perturbation method to assess the sensitivity of runoff processes to changes in 

temperature and precipitation. Although we did not use the perturbed data for training, 

our results were compared with existing studies, demonstrating the reasonableness of 

our simulation results and the ability to analyze the sensitivity of runoff processes to 

climate change. Besides, numerous studies have employed similar methods, using 

physical hydrological models to evaluate the sensitivity of runoff processes to climate 

change (Cui et al. 2023). We will include additional explanations in the revised 

manuscript. 

6. The improvement in streamflow estimation is important. However, it would be 

interesting to investigate when and where these improvements occur. Please 

analyze the spatial differences between the deep learning models and the EXP-

Hydro model in simulated discharge 

Response: Thanks for your suggestion. This study employed three metrics, including 

NSE, mNSE and PFAB, to evaluate the model improvement in different aspects. To 

further investigate when and where these improvements occur, we will add some 

analysis in the revised manuscript.  

7. I found it hard to follow many sentences; please polish the language. Some 

examples are listed below.  

Response: Thanks for your suggestion. We will polish the language in the full 

manuscript.  

Minor comments: 

1. Line 25: Alpine basins are important water sources, playing a crucial role in various 

aspects of human life and the environment, such as domestic water supply, 

irrigation, hydropower generation, and climate regulation. Please rewrite the 

sentence. 

Response: Thanks for your suggestion. This sentence will be revised in the manuscript.  

2. Line 26: The performance of a hydrological model can be accurate, to describe the 

model, use reliable could be better. 



Response: The “accurate” has been revised as “reliable” in the revised manuscript.  

3. Line 27: shorten the sentence and use ‘climate change and adaption’. 

Response: This sentence is revised as “Developing reliable hydrological models is 

crucial for managing floods and improving water use efficiency under climate change.”. 

4. Line 31: These models depend on physical laws and empirical knowledge. 

Response: This sentence is revised as “These models depend on physical laws and 

empirical knowledge to describe physical processes and are grounded in well-defined 

physical mechanisms.” 

5. Line 32-34: The sentence is too long. In addition, are these hydrological models 

sufficient to understand all hydrological processes? 

Response: It will be revised as “They can be used to advance scientific understanding 

about the hydrological systems and provide the insight into the response of hydrological 

processes to climate changes” 

6. Line 41: streamflow/discharge forecasting, snow water equivalent modeling, and 

groundwater level mapping. Please rewrite the sentence.  

Response: We agree with the reviewer and the rewritten sentence is “They showcased 

exceptional model performance across diverse hydrological domains, including 

streamflow/discharge forecasting (Kratzert et al. 2018, Lees et al. 2021, Liu et al. 2021), 

snow water equivalent modeling (Duan and Ullrich 2021), and groundwater level 

mapping (Nourani et al. 2022, Solgi et al. 2021). ” 

7. Figure 2. Please add some subplots to show the spatial variability of precipitation 

and temperature, which is the main reason for using the distributed schemes. Please 

show the subbasins and indicate the amount of subbasins. 

Response: We agree with the revised manuscript and we will add some subplots to 

show the spatial variability of precipitation and air temperature and sub-basins.  

8. Line 86: …the proposed models… 

Response: Thanks for your suggestion and we will revise in the revised version.  

9. Line 87-88: Can the ENNs produce optimal parameters? 

Response: The differential programming framework ensures that the training 

parameters of hybrid models are similar to those of the deep learning model. By 



utilizing sufficient observed runoff data, although it cannot ensure obtaining the optimal 

parameters, it does ensure that the parameters are as fully trained as possible.  

10. Line 203: The training period is 26 years and the evaluation/testing period is only 

6 years. Is this setting reasonable? Why not set the same length for the training and 

testing? Please explain. 

Response: The proposed hybrid models, similar to deep learning, have numerous 

parameters that need to be trained, requiring a large amount of observational data. Due 

to the limited availability of observed data, we set the training period to 26 years and 

the testing period to 6 years. To ensure a fair comparison, we set the calibration/training 

and validation periods for the comparison models, including the physical model and the 

deep learning model, to be the same as those for the hybrid models.  

11. Line 247: I don’t think an improvement of NSE from 0.06 to 0.09 is a substantial 

improvement. Please rewrite the sentence. 

Response: We agree with the reviewer and the “substantial” and “noteworthy” have 

been revised as “slight” and “small”. 
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