On the Influence of Spatial Heterogeneity of Runoff Generation on the Distributed Unit Hydrograph for Flood Prediction

Bin Yi¹,², Lu Chen¹,²,³*, Tao Xie¹,²

¹. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
². Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China
³. School of Water Resources and Civil Engineering, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, China

Correspondence: Lu Chen (chen_lu@hust.edu.cn)

Abstract: The spatial scale mismatch between runoff generation and runoff routing is an acceptable compromise but a common issue in challenging hydrological modelling. Moreover, there is hardly any report available on whether unit hydrograph (UH) that is consistent with the spatial scale of runoff generation can be computed. The objective of this study was to explore the influence of spatial heterogeneity of runoff generation on the UH for flood prediction. To this end, a novel GIS-based dynamic time-varying unit hydrograph (DTDUH) was proposed based on the time-varying unit hydrograph (TDUH). The DTDUH can be defined as a typical hydrograph of direct runoff which gets generated from one centimeter of effective rainfall falling at a uniform rate over the saturated drainage basin uniformly during a specific duration. The DTDUH was computed based on the saturated areas of the watershed instead of the global watershed. The saturated areas were extracted based on the TWI. Finally, the Longhu River basin and Dongshi River basin were selected as two case studies. Results showed that the proposed method exhibited consistent or better performance compared with that of the linear reservoir routing method, and performed better than the TDUH method. Specifically, the DTDUH method indicated good performances for the flood events with low antecedent soil moisture, and it performed consistently with the TDUH when the global watershed is nearly saturated. The
proposed method can be used for the watersheds with sparse gauging stations and limited observed rainfall and runoff data, as is the same with the TDUH method. Simultaneously, it is well applicable for the humid or mountain watershed where the saturation-excess rainfall is the dominant.

Keywords: Hydrological modelling; Distributed unit hydrograph; Runoff routing; Runoff generation; XAJ model

1. Introduction

The assumption that basins behave as linear systems (i.e., there is proportionality and additivity between excess rainfall and total storm response) has been the core to hydrology over the past century (Goodrich et al., 1997; Bunster et al., 2019). On such condition, a single response function named the UH has been widely applied to acquire the stormflow at the basin outlet (Czyzyk et al., 2020). The UH can be developed for both gauged and ungauged watersheds (Monajemi et al., 2021). For gauged basins, unit hydrographs are derived from observed data by measuring rainfall and runoff data. For ungauged basin, some synthetic methods, such as the Snyder’s method (Snyder, 1938) and Gray’s method (Gray, 1961), are used to determine the unit hydrographs from spatially averaged basin characteristics. One variation is the synthetic UH method proposed by Clark (1945), in which the UH was derived by integrating two basic features of a watershed rainfall-runoff process. Specifically, translation through water movement was characterized by time-area method, and linear reservoir routing was used to represent attenuation through storage (Cho et al., 2018; Bunster et al., 2019). This history of development was synthetized in the works of Rodríguez-Iturbe and Valdés (1979) and Gupta et al. (1980), who proposed the geomorphological instantaneous unit hydrograph (GIUH). Subsequently, the width function-based geomorphological instantaneous unit hydrograph (WFIUH) method has been...
formulated with the development of digital elevation models (DEMs) and geographic information system (GIS) technology (Seo et al., 2016). The WFIUH was derived by combining the flow paths to the outlet given by the width function with the flow celerity along the flow paths (Kirkby, 1976).

The UH method assumes the watershed response to be linear and time invariant, and rainfall to be spatially homogeneous. In contrast to the linearity assumption, basins have been shown to exhibit nonlinearity in the transformation of excess rainfall to stormflow (Bunster et al., 2019). For a small watershed, Minshall (1960) showed that significantly different UHs were produced by different rainfall intensities. To cope with this nonlinearity, Rodríguez-Iturbe et al. (1982) extended the GIUH to the geomorphoclimatic IUH (GcIUH) by incorporating excess rainfall intensity. Lee et al. (2008) proposed a variable kinematic wave GIUH accounting for time-varying rainfall intensity, which may be applicable to ungauged catchments that are influenced by high intensity rainfall. To this end, it is necessary to consider the geomorphic characteristics of the watershed and incorporate time-varying rainfall intensity in the rainfall-runoff modelling processes.

Spatially distributed travel time models, also known as Spatially Distributed Unit Hydrograph models (DUH) (Maidment et al., 1996), are a semi-analytical form of the WFIUH identified by Rigon et al. (2016) in which spatially distributed flow celerity associated with the watershed characteristics and temporally varying excess rainfall rates can be considered. In this method, the travel time of each grid cell can be calculated by dividing the travel distance of a cell to the next cell by the velocity of flow generated in that cell (Paul et al., 2018). The travel time is then summed along the flow path to obtain the total travel time from each cell to the outlet. The DUH is thus derived using the distribution of travel time from all grid cells in a watershed. Several aspects (i.e. Rainfall intensities, upstream...
contributions, watershed equilibrium) were attracted much attention to obtain more accurate travel time distributions. Some DUH methods assumed a time-invariant travel time field and ignored the dependence of travel time on excess rainfall intensity (Melesse and Graham, 2004; Noto and La Loggia, 2007; Gibbs et al., 2010; Grimaldi et al., 2010), while others suggested various UHs corresponding to different storm events, namely time-varying distributed unit hydrograph (TDUH) (Martinez et al., 2002; Sarangi et al., 2007; Du et al., 2009). The upstream contributions to the travel time estimation should also been considered in the time-varying DUH method, which was developed from a static upstream contribution to a dynamic contribution. For example, Bunster et al. (2019) developed a TDUH model that accounts for dynamic upstream contributions and compared its performance against other TDUH methods, and characterized the temporal behavior of upstream contributions and its impact on travel times in the basin. However, the methods discussed above assumed that equilibrium in each individual grid cell or global watershed can be reached before the end of the rainfall excess pulse. To this end, Yi et al. (2022) proposed a time-varying distributed unit hydrograph method for runoff routing that accounts for dynamic rainfall intensity and soil moisture content, namely the time-varying distributed unit hydrograph considering soil moisture content (TDUH-MC). Hydrologists have made great efforts to address the nonlinear issues of the UHs in the past decades, while these approximations are still acceptable compromises in challenging hydrology research.

Nevertheless, we found that these approximations discussed above neglected the influence of spatial heterogeneity of runoff generation on the UH. For instance, in a humid watershed, the excess rainfall can be more inclined to happen at near-channel areas, and sometimes in the arid zones with long-storms duration according to the saturation-excess mechanism (Li and Sivapalan, 2014). In
previous studies, the time-varying rainfall intensities were commonly considered to obtain a more accurate travel time distributions to compute the UH for the whole basin, while the depth of the excess rainfall was also considered to be uniformly distributed throughout the whole watershed (the excess rainfall actually comes from local saturated areas). The outflow hydrograph is then calculated by superimposing the response to each individual excess rainfall pulse, or equivalently by convoluting the spatially averaged excess rainfall and a UH obtained from the IUH. This indeed raised a problem that whether the unit hydrograph can reflect the realities of the runoff routing processes of an actual watershed.

The problem of spatial scale mismatch between runoff generation and confluence theory is prevalent in hydrological modeling, and hydrologists almost ignore the forecasting errors associated with this issue. For example, the Xinanjiang (XAJ) model is a conceptual hydrological model proposed by Zhao et al. (1980) for flood forecasts in the Xin’an River basin. It has been widely used in humid and semi-humid watersheds all over the world (Zhao, 1992; Zhou et al., 2019; Huang et al., 2020). In the model, two parabolic curves are adopted to represent the spatially non-uniform distribution of the tension water storage and the free water storage. In order to match the spatial scales of the runoff generation and the runoff routing, the excess rainfall generated in the saturated areas was assumed to be uniformly distributed across the whole basin. However, this assumption may result in huge errors, and there is hardly any report available on whether UH that is consistent with the spatial scale of runoff generation can be computed.

The objective of this study was therefore to explore the influence of spatial heterogeneity of runoff generation on the UH for flood prediction. The main contributions of the present study are given as
follows. 1) The DUH method was used as the basic tool to compute the DTDUH corresponding to various saturated states of the watershed. 2) The definition of the DTDUH was different with the traditional TDUH as it represented the characteristics of the runoff generated areas instead of the whole basin. 3) The XAJ model was used as the hydrological modelling framework to unify the spatial scales of the runoff generation and the confluence method. The performance of the DTDUH method was compared with that of the traditional TDUH method based on flood events. Finally, the Longhu River basin and the Dongshi River basin in the Guangdong Province, China, were selected as two case studies. The influence of spatial heterogeneity of runoff generation on the UH for flood prediction was investigated.

2. Hydrological models

2.1 Runoff generation based on the saturation-excess mechanism

Saturation-excess runoff is the major runoff mechanism in humid well-vegetated areas where infiltration rates often exceed rainfall intensity (Tromp-Van Meerveld and McDonell, 2006; Hoang et al., 2017). Many hydrological models, such as the TOPMODEL (Beven and Kirkby, 1979), the Variable Infiltration Capacity (VIC) model (Liang et al., 1994), the Probability Distributed Model (PDM) (Moore, 2007), the XAJ model (Zhao, 1992), and the Australian Water Balance Model (Boughton, 2004), simulate saturation-excess runoff by introducing a statistical distribution of tension water storage capacity using different methods. Simultaneously, a free water capacity distribution curve is usually used to divide the total runoff into the surface runoff, interflow and groundwater. In the XAJ model, two parabolic curves are adopted to represent the spatially non-uniform distribution of the tension water storage and free water storage. The functional relationships of the tension water
storage capacity curve and free water storage capacity are given by

\[\frac{A_{ps}}{A_p} = 1 - \left(1 - \frac{W}{WMM}\right)^a \] \hspace{1cm} (1)

\[\frac{A_f}{A_s} = 1 - \left(1 - \frac{S}{SMM}\right)^{EX} \] \hspace{1cm} (2)

where \(A_{ps} \) is the partial pervious area where the tension water storage capacity is less than or equal to the value \(W \), which is the tension water capacity at a point, varying from 0 to a maximum \(WMM \); \(A_p \) is the pervious area of the catchment; \(B \) is the exponential of distribution of the tension water capacity; \(A_f \) is the area where the free water storage capacity is less than or equal to the value \(S \), varying from 0 to \(SMM \); \(A_s \) is the runoff generation area; and \(EX \) is the exponential of distribution of the free water storage capacity curve.

Based on Eq. (1), when rainfall exceeds evaporation, the runoff generated in the saturated areas can be expressed by

\[R = \begin{cases} PE - WM + W_0 + WM \left(1 - \frac{PE + AU}{WMM}\right)^{1+b} & \text{if } PE + AU < WMM \\ PE - WM + W_0 & \text{if } PE + AU \geq WMM \end{cases} \] \hspace{1cm} (3)

where \(R \) is the total runoff (mm); \(WM \) is the areal mean tension water capacity (mm); \(PE \) is the rainfall which exceeds evaporation (mm); \(W_0 \) is the initial areal mean tension water storage (mm); \(AU \) is the vertical coordinate corresponding to \(W_0 \).

The total runoff \(R \), generated in a wet period in accordance with Eq. (3), can be subsequently separated into three components, including the surface runoff, interflow and groundwater (Zhao, 1992).

\[RS = \begin{cases} FR \left(PE + S - SM + SM \left(1 - \frac{PE + BU}{SM}\right)^{1+EX}\right) & \text{if } PE + BU < SMM \\ FR \left(PE + S - SM \right) & \text{if } PE + BU \geq SMM \end{cases} \] \hspace{1cm} (4)

\[FR = \frac{1}{1 + \exp \left(-b \left(PE + S - SM\right)\right)} \]
where RS, RI, RG represent the depth of the surface runoff, interflow and groundwater respectively (mm); FR, equalling to R/PE, is the proportion of the runoff producing area over the whole basin; SM is the areal mean free water capacity (mm); BU is the vertical coordinate corresponding to S (mm); and KI and KG are outflow coefficients of the free water storage to interflow and groundwater, respectively.

2.2 Derivation of the DTDUH for the surface runoff routing

The GIS-derived DUH method was employed for the surface runoff routing calculations, which allowed the velocity to be calculated on a grid cell basis over the watershed. To remove the linearity assumption, fully distributed models use routing methods which are usually computationally intensive because they solve the St. Venant equations (Bunster et al., 2019), so they are usually limited to small basins. Therefore, the DUH method is an alternative method that allows the use of distributed information in a much more efficient manner. The TDUH method was used for the computation of the UH, which considered both the time-varying rainfall intensities and the soil moisture. More details can be found in Yi et al. (2022). The DTDUH proposed in this study are computed based on the TDUH.

The schematic diagram of the DTDUH method is shown in Fig. 1.
Figure 1. Schematic diagram of the DTDUH method. The main differences between the DTDUH and TDUH lie in that the DTDUH is computed based on local areas while the TDUH is for the global watershed.

1) The drainage network can be identified based on the advanced DEM preprocessing method (Grimaldi et al., 2012). Then, the flow path collection \(\text{Road}_j \) of each grid cell \(A_j \) along the flow directions to the basin outlet can be created. For the whole basin, the flow path collection of all the grid cells \(\text{Road} \) is expressed by

\[
\text{Road} = \left\{ \text{Road}_j \mid A_j \in A \right\}
\]

where \(A_j \) \((j = 1, 2, \cdots, N) \) is the grid cell, \(N \) is the total grid cells of the basin; and \(A \) is the collection of all the grid cell.
The depth of the excess rainfall occurs only in the saturated areas when the entire basin does not reach a global saturated state, while current methods compute the DUH corresponding to the whole basin. To this end, we proposed to create a collection of flow paths for the saturated areas, and the specific formula is given by

\[\text{Road}_\alpha = \left\{ \text{Road}_j \mid A_j \in A_\alpha \right\} \] \hspace{1cm} (8)

where \(\text{Road}_\alpha \) (\(\text{Road}_\alpha \subseteq \text{Road} \)) is the flow path collection of the saturated grid cells when the soil moisture proportion is \(\alpha \); and \(A_\alpha \) is the collection of the saturated grid cells when the soil moisture proportion is \(\alpha \).

2) The flow velocity of each grid cell corresponding to the collection \(\text{Road}_\alpha \) is computed based on the watershed characteristics and the spatial-temporal distribution characteristics of rainfall and soil moisture, and the specific formula is given as Eq. (9) (Yi et al., 2022).

\[V = k \cdot S^\gamma \cdot \left(\frac{I - I_c}{I_c} \right)^2 \cdot (\alpha_t)^\gamma \] \hspace{1cm} (9)

where \(V \) (m s\(^{-1}\)) is the flow velocity; \(k \) (m s\(^{-1}\)) is the land use or flow type coefficient, \(S \) (m m\(^{-1}\)) is the slope of the grid cell; \(I \) (mm h\(^{-1}\)) is the excess rainfall intensity at time \(t \); \(I_c \) is the reference excess rainfall intensity of the basin; \(\alpha_t \) (unitless) represents the soil moisture content of the basin at time \(t \); and \(\gamma \) (unitless) is an exponent smaller than unity, which represents the nonlinear relationship between soil moisture content and flow velocity.

3) The travel time for each grid cell in collection \(\text{Road}_\alpha \) can be calculated by Eq. (10). To compute the total travel time \(\tau_i \) of flow from each cell \(i \) to the outlet, travel times along the \(R_i \) cells belonging to the flow path that starts at that cell are added based on Eq. (11).
\[\Delta \tau_j = \frac{L_j}{V} \quad \text{or} \quad \Delta \tau_j = \frac{\sqrt{2}L_j}{V} \]

(10)

\[\tau_j = \sum_{i=A_j} \Delta \tau_j \]

(11)

where \(\Delta \tau_j \) is the retention time in grid cell \(A_j \); \(\tau_j \) is the total travel time along the flow path for grid cell \(A_j \); \(L_j \) is the grid cell size. When the rasterized flow is flowing along the edges of the grid cell, the travel length is the cell size \(L_j \), whereas the travel length is \(\sqrt{2}L_j \) when it is flowing diagonally.

4) Develop a cumulative travel time map of the saturated areas instead of the whole basin based on cell-by-cell estimates for hillslope velocities. The cumulative travel time map is further divided into isochrones, which can be used to generate a time-area curve and the resulting DTDUH corresponding to the collection Road instead of Road.

2.3 Hydrological modelling framework

The XAJ model proposed by Zhao et al. (1980) was used as the hydrological modelling framework. It has been widely used in humid and semi-humid watersheds all over the world. There are four modules in the model including the evapotranspiration module, runoff generation module, runoff partition module and runoff routing module. For the evapotranspiration module, the soil profile of each sub-basin is divided into three layers, the upper, lower and deeper layers, and only when water in the layer above it has been exhausted does evaporation from the next layer occur. For the runoff generation and runoff partition modules in the XAJ model, they have been reviewed in Section 2.1.

Finally, for the runoff routing module, subsurface stormflow and subsurface runoff were considered using a free reservoir. To compare the differences of spatial scale mismatch between the runoff generation and the runoff routing, linear reservoir, TDUH and DTDUH were selected as the surface runoff routing methods. The Muskingum method was employed to produce streamflow from channel...
to the outlet of the entire basin. The XAJ modelling framework used in this study is given in Fig. 2.

Figure 2. Schematic diagram of the XAJ model.

The depths of the surface runoff calculated by Eq. (4) are obtained after a redistribution to the whole basin. As a matter of fact, the depths of the surface runoff should be calculated only over the saturated areas when the DTDUH was selected as the surface runoff routing method, which can be expressed by

\[RS'_s = \frac{RS}{FR} \]

(12)

where \(RS'_s \) is the depth of the surface runoff corresponding to the saturated areas.

When the linear reservoir, TDUH and DTDUH were used respectively for the surface runoff routing, the flow discharge at the outlet of the watershed can be computed by

\[QS_s = CS \cdot QS_{s-1} + (1 - CS) \cdot RS_s \cdot \frac{F}{3.6\Delta t} \]

(13)

\[QS_s = RS_s \otimes TDUH \]

(14)

\[QS_s = RS'_s \otimes DTDUH \]

(15)

where \(CS \) is the recession constant of the surface water storage; \(F \) (km²) is the area of the basin, and
13

is the symbol of convolution.

2.4 Model calibration and evaluation

The Shuffled Complex Evolution Algorithm (SCE-UA) technique was developed by the University of Arizona in 1992 for nonlinear, high dimensional optimization issues (Duan et al., 1992). The technique has been used extensively for calibrating hydrological models (Zhou et al., 2019). Consequently, the SCE-UA method was employed in this study to optimize the parameters of the hydrological model. An aggregated objective function made up of three measures and aimed at maximizing flow characteristics was used for the parameter calibration (Brunner et al., 2021; Yi et al., 2022; Yi et al., 2023). The aggregated objective function and three metrics are expressed by

\[E_{NS} = 1 - \frac{\sum_{t_i}^T |Q'_o - Q'_s|}{\sum_{t_i}^T |Q'_o - \overline{Q}_o|} \]
(16)

\[E_{kg} = 1 - \sqrt{(r-1)^2 + \left(\frac{\sigma_s}{\sigma_o} - 1\right)^2 + \left(\frac{\mu_s}{\mu_o} - 1\right)^2} \]
(17)

\[R_{sr} = \frac{\sum_{t_i}^T (Q'_o - Q'_s)^2}{\sum_{t_i}^T (Q'_o - \overline{Q}_o)^2} \]
(18)

\[M = 0.5 \times (1 - E_{NS}) + 0.25 \times (1 - E_{kg}) + 0.15 \times (1 - \log(E_{NS})) + 0.1 \times R_{sr} \]
(19)

where \(Q'_o \) is the observed discharge at time \(t \); \(Q'_s \) is the simulated discharge at time \(t \); \(\overline{Q}_o \) is the mean of the observed discharge; \(T \) is the duration of the flood event; \(r \) is the correlation coefficient between the observed and simulated flood; \(\sigma_s \) and \(\sigma_o \) are the standard deviation values for the simulated and observed responses, respectively; and \(\mu_s \) and \(\mu_o \) are the corresponding mean values.

Several criteria were used for the model performance evaluation, consisting of the \(E_{NS} \), the Root Mean Square Error (RMSE), the relative flood peak error (\(Q_p \)) and the flood peak time error (\(T_p \)), which can be expressed by

\[RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^T (Q'_o - Q'_s)^2} \]
(20)
\[Q_p = \frac{Q_p^\prime - Q_p^o}{Q_p^o} \]
(21)

\[T_p = T_p^\prime - T_p^o \]
(22)

where \(Q_p \) is the simulated flood peak discharge; \(Q_p^\prime \) is the observed flood peak discharge; \(T_p^\prime \) is the observed flood peak time; and \(T_p^\prime \) is the simulated flood peak time.

3. Study area and data

The Longhu River basin and the Dongshi River basin were selected as two case study watersheds. The Longhu river and the Dongshi river are located in the humid mountain area, which originate from the Hanjiang River basin of the Guangdong Province, China. The Longhu river is 17.4 km long, with a basin area of 102.7 km², and the mean slope of the basin is 2.9‰. The Dongshi river is 23.6 km long, with a basin area of 152.4 km², and the mean slope of the basin is 3.56‰. The DEM data of the two basins were collected from (http://www.gscloud.cn/). The land cover data can be accessed from (http://data.ess.tsinghua.edu.cn/). The distributions of the DEM, slope and land cover for the two basins are shown in Fig. 3.
Figure 3. Distribution of the DEM, slope and land cover. (a), (b) and (c) are the DEM, slope and land cover corresponding to the Dongshi River basin. (d), (e) and (f) are the DEM, slope and land cover corresponding to the Longhu River basin.

Additionally, the rainfall and evaporation data from meteorological stations for the two basins were collected from 1973 to 2020, and the simultaneous hourly runoff data for the outlet of the watersheds were collected as well. A total of 32 isolated storms with the observed runoff responses from 1973 to 2020 were selected to calibrate and verify the established model. The Dongshi hydrological station was built in recent years, and the flow sequences were therefore short. Specifically, 16 flood events in the Longhu River basin with 1 hour interval were collected from 1973 to 2016, and 16 flood events with 1 hour interval were collected from the Dongshi River basin from 2015 to 2020. The statistics of these flood events are shown in Table 1. The average flood peaks for the Longhu River...
basin and the Dongshi River basin are 116.7 m3/s and 73.0 m3/s, respectively. The average flood durations are about 30 h and 33 h, respectively. Moreover, to consider the initial condition, the antecedent precipitation was calculated based on the daily recession coefficient of the water storage.

Table 1. Statistics of the flood events in the Longhu and the Dongshi River basins.

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Flood events</th>
<th>Rainfall (mm)</th>
<th>Flood peak (m3/s)</th>
<th>Time duration (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longhu</td>
<td>19730508</td>
<td>80.0</td>
<td>94.5</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>19730720</td>
<td>76.7</td>
<td>180.0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>19750526</td>
<td>54.9</td>
<td>101.0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>19760702</td>
<td>73.0</td>
<td>137.0</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>19770526</td>
<td>73.8</td>
<td>90.4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19771003</td>
<td>62.1</td>
<td>97.5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>19790607</td>
<td>100.3</td>
<td>93.4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>19890502</td>
<td>46.5</td>
<td>132.0</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20030517</td>
<td>94.0</td>
<td>140.0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>20060601</td>
<td>56.0</td>
<td>96.5</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>20120527</td>
<td>118.8</td>
<td>128.0</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>20130713</td>
<td>214.4</td>
<td>228.0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20150601</td>
<td>83.4</td>
<td>85.0</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>20150831</td>
<td>102.6</td>
<td>83.2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20160430</td>
<td>111.2</td>
<td>91.0</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>20160903</td>
<td>85.4</td>
<td>89.7</td>
<td>26</td>
</tr>
<tr>
<td>Dongshi</td>
<td>20150509</td>
<td>105.2</td>
<td>62.9</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>20150721</td>
<td>132.0</td>
<td>82.0</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20160811</td>
<td>90.0</td>
<td>51.3</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>20160819</td>
<td>112.5</td>
<td>34.9</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>20161021</td>
<td>158.8</td>
<td>48.0</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>20170501</td>
<td>84.5</td>
<td>98.3</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>20170515</td>
<td>84.0</td>
<td>43.7</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20170613</td>
<td>139.2</td>
<td>37.2</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>20170929</td>
<td>71.0</td>
<td>101.2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>20180606</td>
<td>61.5</td>
<td>34.9</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>20180702</td>
<td>23.5</td>
<td>44.3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>20190418</td>
<td>86.4</td>
<td>35.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>20190609</td>
<td>107.6</td>
<td>272.0</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>20190612</td>
<td>74.0</td>
<td>100.0</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>20200522</td>
<td>67.5</td>
<td>71.0</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>20200607</td>
<td>109.3</td>
<td>50.6</td>
<td>26</td>
</tr>
</tbody>
</table>
4. Results

4.1 Calibration of parameters

4.1.1 Calibrated parameters of the DTDUH flow routing method

The core of the DUH was the calculation of the grid flow velocity. The parameters that need to be determined in Eq. (9) consist of k, S, I_c and γ, in which k was the velocity coefficient and was determined based on different underlying surface types or different flow states (Foda et al., 2017), as shown in Fig. 3(c) and Fig. 3(f). S was the grid cell slope of the study areas, which could be obtained from the DEM data of the target basin, as shown in Fig. 3(b) and Fig. 3(e). I_c was determined using hourly mean rainfall intensity of the target basin, and this parameter was 10 mm h$^{-1}$ for the two study watersheds. Additionally, parameter γ reflected the influence of soil moisture content on the flow velocity. The parameter γ of soil moisture content was determined to be 0.5 to reflect the influence of soil moisture content on the flow velocity for the two basins (Yi et al., 2022). It is noteworthy that the raster size of the two basins were divided into 30 m × 30 m. The rationality of the TDUH in these two basins had been validated in our previous research (Yi and Chen, 2022; Yi et al., 2022), and thus was not calibrated in this study.

4.1.2 Calibrated parameters of runoff generation using the XAJ model

The XAJ model was adopted as the hydrological forecasting framework, in which the surface runoff routing module was replaced by three surface runoff routing methods, and the other modules remained unchanged within the XAJ model. The objective of this study was to explore the influence of spatial heterogeneity of the runoff generation on the UH for flood prediction, and thus the parameters of the runoff generation module kept unchanged. The calibrated and validation processes are as follows:

1) The parameters of the XAJ model were calibrated using the SCEUA method, where the surface
runoff routing method was the linear reservoirs. In total, all the 32 flood events in the Longhu River basin and the Donshi River basin were used for the calibration of the XAJ + LR (linear reservoir) model without further dividing the validation period.

2) Then, the TDUH and DTDUH were derived, based on physical characteristics and rainfall intensities of watersheds. The parameters' determination method is given in Section 4.1.1. In order to verify the rationality of the TDUH and DTDUH routing methods, we calibrated XAJ+TDUH and XAJ+DTDUH models separately, and compared their performances with that of XAJ + LR model, as shown in Appendix (Fig. S1 and Fig. S2). Results show that the proposed method exhibits consistent or better performances compared with the LR routing method. Specifically, the DTDUH method performed best over the three methods for the Longhu River basin, and the time to peak error is significantly better than that of the LR method. While, for the Dongshi River basin, the performances of the LR method were slightly better than that of the proposed method, which could be the reason that the DTDUH was computed without the observed runoff, and there are various uncertainties in the conceptualization or implementation of the DTDUH.

3) Finally, the evapotranspiration module, runoff generation module and runoff separation module and their parameters obtained in Step 1) were not changed so as to discuss the performance of different runoff routing models, and the LR routing method was replaced with the TDUH and DTDUH, respectively. The XAJ model with calibrated parameters in Step 1) and TDUH as well as DTDUH were used for the validation of the XAJ + (TDUH and DTDUH) model. Since the parameters of the XAJ model were determined by the model combining with LR method, this calibration method would be more inclined to optimize the performance of XAJ + LR model. When combined with other runoff...
routing models, the accuracy of results may be affected to some extent.

4.2 Computation of the DTDUH

The TDUH was derived referring to Yi et al. (2022) and the rationality of the TDUH has been validated. The derivations of the proposed DTDUH were similar to those of the TDUH. The main differences lied in that the DTDUH was derived for a specific saturated area. In order to obtain the DTDUHs corresponding to various saturated states of the watershed, the tension water storage in each grid cell within the basin was considered to be negatively correlated with the Topographic Wetness Index (TWI) (Shi et al., 2008; Tong et al., 2018; Yuan et al., 2019). We assumed topographic information captures the runoff generation heterogeneity at the catchment scale, and the TWI was used as an index to identify rainfall–runoff similarity (Beven and Kirkby, 1979). Areas with similar TWI values are regarded as possessing equal runoff generation potential. Specifically, the areas with larger TWI values tend to be saturated first and contribute to saturation excess rainfall; but the areas with lower TWI values need more water to reach saturation and generate runoff (Gao et al., 2019).

Then, the proposed distributed unit hydrographs (DTDUH) are computed based on the saturated areas, which can be expressed by TWI. When calculating discharge using the DTDUH, we should select various DTDUH based on the time-varying soil moisture within each time interval. Theoretically, the DTDUH is different at each time interval because \(\alpha \) is ranging from 0 to 1. However, practically applying time-varying soil moisture based on DTDUH can be a complex task. In order to improve the effectiveness of the routing method, the soil moisture contents \(\alpha \) in Eq. (9) were discretized to 0.25, 0.5, 0.75 and 1 based on the distributions of the TWI. Then, a simplified DTDUH can be obtained in a certain range soil moisture content. And these ranges are presented in Table 2. The distribution of the
saturated areas corresponding to different soil proportions are shown in Fig. 4. Similarly, the ratio of
excess rainfall intensity and the reference excess rainfall intensity \(\frac{I}{I_c} \) in Eq. (9) were discretized to
0.5, 1, 1.5 and 2 in order to improve the calculation efficiency. More details can be found in Yi et al.
(2022).

Table 2. The soil moisture content \(\alpha_t \) of each interval corresponds to the discrete soil moisture \(\alpha_s \).

<table>
<thead>
<tr>
<th>Soil moisture (\alpha_t)</th>
<th>0 (\leq \alpha_t \leq 0.25)</th>
<th>0.25 < (\alpha_t \leq 0.5)</th>
<th>0.5 < (\alpha_t \leq 0.75)</th>
<th>0.75 < (\alpha_t \leq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete soil moisture (\alpha_s)</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4. Saturated areas corresponding to various soil moisture proportions, where green area
represents the saturated region and white area represents the unsaturated region. (a), (b) and (c) are the
saturated areas corresponding to 0.25, 0.5 and 0.75 soil moisture proportions for the Longhu River
basin. (d), (e) and (f) are the saturated areas corresponding to 0.25, 0.5 and 0.75 soil moisture
proportions for the Dongshi River basin.

The computed TDUHs and DTDUHs for the Longhu River basin and the Dongshi River basin
are demonstrated in Fig. 5 to Fig. 8. For instance, when the excess rainfall intensities range from 0 to
5 mm h\(^{-1}\) and the soil moisture contents are between 0 and 0.25, the TDUH used for the surface runoff
routing is corresponding to the red line in Fig. 5(a) for the Longhu River basin. Although the time to
peak and flow peak discharge can be different for various TDUHs, the areas below the curve are the
same with each other. However, the areas below the curve are not necessary the same for the DTDUH,
as the proposed DTDUH is derived from the saturated areas, as shown in Fig. 6. Only when the
watershed reaches a global saturated state will the DTDUH be the same as the TDUH. It is noteworthy
that for the same rainfall intensity, the time to peak of the DTDUHs corresponding to various soil moisture content are almost consistent with slight variations.

Figure 5. The TDUHs of the Longhu River basin. (a) $I_s = 0.5$. (b) $I_s = 1.0$. (c) $I_s = 1.5$. (d) $I_s = 2.0$.

Figure 6. The DTDUHs of the Longhu River basin. (a) $I_s = 0.5$. (b) $I_s = 1.0$. (c) $I_s = 1.5$. (d) $I_s = 2.0$.

https://doi.org/10.5194/hess-2024-51
Preprint. Discussion started: 13 March 2024
© Author(s) 2024. CC BY 4.0 License.
4.3 Errors due to spatial scale mismatch between runoff generation and runoff routing

To investigate the possible errors due to spatial scale mismatch between runoff generation and runoff routing, we assumed several sets of excess rainfall with intensities of 5, 10, 15 and 20 mm h$^{-1}$, and the saturated proportions of the basin are 0.25, 0.5, 0.75 and 1, respectively. Considering the average rainfall intensities of the two basins, the time durations of the rainfall are assumed changing...
from 1 to 4 h, and the combinations are shown in the Table 3. Thus, 16 combinations can be formed based on Table 3. For example, combination R-T1-S1 indicates there is a total depth of 20 mm excess rainfall in the global watershed with the time duration being 1 hour (20 mm h⁻¹), and the saturated proportion of the basin is 0.25. Similarly, combination R-T3-S2 indicates there is a total depth of 20 mm excess rainfall in the global watershed with the time durations being 4 hours (5 mm h⁻¹), and the saturated proportion of the basin is 0.50. Then, the flow hydrograph due to the assumed excess rainfall can be obtained using the TDUH and the DTDUH, thus to compare the errors of spatial scale mismatch between runoff generation and runoff routing. The flow hydrograph computed using the TDUH and DTDUH corresponding to the two basins are shown in Fig. 9 and Fig. 10, respectively.

Table 3. Combinations of the assumed excess rainfall, time duration and soil moisture content.

<table>
<thead>
<tr>
<th>Depth of excess rainfall (mm)</th>
<th>Time duration (h)</th>
<th>Soil moisture content</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (R)</td>
<td>1 (T1)</td>
<td>0.25 (S1)</td>
</tr>
<tr>
<td>20 (R)</td>
<td>2 (T2)</td>
<td>0.50 (S2)</td>
</tr>
<tr>
<td>20 (R)</td>
<td>3 (T3)</td>
<td>0.75 (S3)</td>
</tr>
<tr>
<td>20 (R)</td>
<td>4 (T4)</td>
<td>1.00 (S4)</td>
</tr>
</tbody>
</table>
Figure 9. Errors of the flow hydrograph due to spatial mismatch between runoff generation and runoff routing for the Longhu River basin.
Figure 10. Errors of the flow hydrograph due to spatial mismatch between runoff generation and runoff routing for the Dongshi River basin.

It can be found from Fig. 9 that the soil moisture significantly influences the results of the TDUH, while the results of the DTDUH are almost not changed with the variation of soil moisture for the Longhu River basin. When the saturated soil moisture proportion is low, the results of the two routing methods are significantly different. Simultaneously, when the saturated soil moisture proportion exceeds 0.5, the results of the TDUH and the DTDUH perform almost consistently. The differences between the results of the two methods increase with the duration of excess rainfall.

For the Dongshi River basin, it can be seen from Fig. 10 that patterns of the soil moisture and time duration on the performances are basically consistent with those of the Longhu River basin. Conversely, the soil moisture shows a more pronounced effect on the DTDUH, and the flow peak discharge become higher with the soil moisture changing from S1 to S4. It can also be found that the differences between the results of the TDUH and the DTDUH in the Dongshi River basin are smaller than those in the Longhu River basin, which means that the two routing methods will perform similarly for the Dongshi River basin.

In summary, the performances of the TDUH and DTDUH are consistent for higher soil moisture and higher rainfall intensity. When the soil moisture is low and the time duration of the excess rainfall is long, we should pay much attention to the errors due to the spatial scale mismatch between runoff generation and runoff routing. Additionally, the differences caused by this mismatch vary significantly in different watersheds.
4.4 Performances of the DTDUH for the Longhu River basin

A total of 16 isolated storms with the observed runoff responses from 1973 to 2016 were selected to explore the performances of the TDUH and DTDUH for the Longhu River basin. Since the TDUH and the DTDUH were used for the surface runoff routing, the proportions of the surface runoff had significant influence on the hydrological modelling performances. However, the performances of the model were evaluated based on the flow hydrograph at the outlet of the watershed, and the flow hydrograph was composed by three components including the surface runoff, subsurface stormflow runoff and subsurface runoff. To evaluate the performances of the TDUH and DTDUH under the condition of XAJ modelling framework, we are supposed to calculate the ratio of surface runoff to the total depth of excess rainfall, as shown in Fig. 11(a). Results show that the surface runoff accounts for most of the total depth of excess rainfall, which means that the performances of the hydrological model are mainly affected by the surface runoff routing methods. To this end, it is reasonable to compare the performances of the TDUH and DTDUH for the Longhu River basin. Simultaneously, Fig. 11(b) shows the antecedent soil moisture of the 16 flood events. The proportion of the saturated areas accounts more than 50% for most of the flood events.

Figure 11. Details of the runoff components and antecedent soil moisture of the 16 flood events for
Three surface runoff routing methods were used for the runoff simulation. Fig. 12 plots the distributions of the evaluation index using different surface runoff routing methods. Results of the four indicators show that the average NSE of the two DUH methods were low since the parameters of the XAJ model were calibrated with the linear reservoir method, hence the linear reservoir method performed the best. The results of the TDUH and DTDUH were basically consistent, and the DTDUH performed slightly better than TDUH. Noteworthily, it can be seen form Fig. 12(c) that the median of the relative error of the flood peak of the DTDUH method is increased by 10% compared to that of the
TDUH method, and the average error of the relative flood peak discharge of the proposed method is 443 significantly smaller than that of the TDUH. The average antecedent soil moisture of the Longhu River 444 basin is 77 mm which leads to a saturated proportion larger than 0.5. As discussed in the Section 4.2, 445 the performances of the TDUH and DTDUH are consistent when the saturated proportion is larger 446 than 0.5.

Additionally, we selected several flood events whose antecedent soil moisture are low and the 449 NSE is larger than 0.5 for analyses. Table 4 lists the evaluation indicators of the three methods in the 450 runoff forecasting application. It can be seen from Table 4 that all these four flood events show good 451 performances when the linear reservoir is used for the runoff routing. The antecedent soil moistures of 452 these flood events are 64, 33, 50 and 26 mm, respectively. The errors of the relative flood peak 453 discharge of the DTDUH decrease by 3%, 3%, 3% and 8% for the four flood events, compared with 454 those of the TDUH. The NSE of the TDUH and the DTDUH are consistent, and the RMSE of the 455 DTDUH is slightly lower than that of the TDUH methods. The time to flood peak is absolutely the 456 same for the two methods. It can be concluded that the DTDUH method indicates good performances 457 for the flood events with low antecedent soil moisture, and it performs consistently with the TDUH 458 when the global watershed is nearly saturated. This conclusion is consistent with that of the Section 4.2, 459 and the assumption that there will be considerable errors due to the spatial scale mismatch between 460 runoff generation and runoff routing in low antecedent soil moisture, has been validated.

Table 4. Indicators of different routing methods for the Longhu River basin.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Flood events</th>
<th>Linear reservoir</th>
<th>TDUH</th>
<th>DTDUH</th>
<th>Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE</td>
<td>19730508</td>
<td>0.93</td>
<td>0.81</td>
<td>0.84</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>19790607</td>
<td>0.73</td>
<td>0.60</td>
<td>0.60</td>
<td>–</td>
</tr>
</tbody>
</table>
Performance of the DTDUH for the Dongshi River basin

Similarly, a total of 16 isolated storms with the observed runoff responses from 2015 to 2020 were selected to explore the performances of the TDUH and DTDUH for the Dongshi River basin. The components of the runoff and the antecedent soil moisture for the 16 flood events are shown in Fig. 13(a) and Fig. 13(b). Fig. 13(a) shows that the depth of the surface runoff accounts for more than 70% of the total depth runoff and the study watershed has no subsurface stormflow, which means that the Dongshi River basin can also be well used for exploring the performances of the TDUH and the DTDUH. The average antecedent soil moisture of the 16 flood events is 87 mm, which is larger than that of the Longhu River basin.

Fig. 14 plots the distributions of the evaluation index using different flow routing methods for the Dongshi River basin. It can be seen from Fig. 14 that the linear reservoir method shows the best performances overall, and the TDUH and DTDUH have consistent performances. The consistent

<table>
<thead>
<tr>
<th>Date</th>
<th>RMSE</th>
<th>O_p</th>
<th>T_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>20130713</td>
<td>0.91 0.72 0.70</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>20161021</td>
<td>0.90 0.72 0.72</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>19730508</td>
<td>7.85 12.62 11.46</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>19790607</td>
<td>14.63 17.71 17.85</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>20130713</td>
<td>20.15 36.03 37.36</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>20161021</td>
<td>10.51 17.55 17.64</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>19730508</td>
<td>-0.15 -0.20 -0.17</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>19790607</td>
<td>-0.14 -0.14 -0.11</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>20130713</td>
<td>-0.05 -0.15 -0.12</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>20161021</td>
<td>-0.08 -0.25 -0.17</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>19730508</td>
<td>0 -4 -4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19790607</td>
<td>0 -2 -2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20130713</td>
<td>0 -1 -1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20161021</td>
<td>-3 -5 -5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Note: The symbols ↑, ↓ and - mean the performance of the DTDUH is better, lower and consistent compared with that of the TDUH.
performances of the TDUH and DTDUH can be due to the fact that the average antecedent soil moisture of these 16 flood events is high. Hence, the errors caused by the spatial scale mismatch are small.

Figure 13. Details of the runoff components and antecedent soil moisture of the 16 flood events for the Dongshi River basin. (a) Stacked bar charts of runoff components. (b) Bar charts of the antecedent soil moisture.

Figure 14. Distributions of the evaluation index based on different runoff routing methods for the
Dongshi River basin. (a) Distribution of NSE. (b) Distribution of RMSE. (c) Distribution of \(Q_p \). (d) Distribution of \(T_p \).

However, the differences of the results of the TDUH and DTDUH can be identified in specific flood event. Table 5 lists the evaluation indicators of the three methods in the runoff forecasting application for flood events No. 20170501, No. 20170515, No. 20170929 and No. 20190418. The antecedent soil moistures of these flood events are 47, 56, 53 and 66 mm, respectively. It can be found from Table 5 that the performances of the DTDUH are better than those of the TDUH. Therefore, we can conclude that the proposed DTDUH shows higher accuracy for the flood events with lower antecedent soil moisture, and these results are the same with those of the Longhu River basin.

Table 5. Indicators of different routing methods for the Dongshi River basin.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Flood events</th>
<th>Linear reservoir</th>
<th>TDUH</th>
<th>DTDUH</th>
<th>Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE</td>
<td>20170501</td>
<td>0.87</td>
<td>0.64</td>
<td>0.67</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170515</td>
<td>0.72</td>
<td>0.59</td>
<td>0.68</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170929</td>
<td>0.42</td>
<td>0.73</td>
<td>0.81</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20190418</td>
<td>0.64</td>
<td>0.53</td>
<td>0.55</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170501</td>
<td>3.01</td>
<td>4.91</td>
<td>4.71</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170515</td>
<td>3.49</td>
<td>4.25</td>
<td>3.75</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170929</td>
<td>5.67</td>
<td>3.90</td>
<td>3.25</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20190418</td>
<td>7.24</td>
<td>8.23</td>
<td>8.01</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170501</td>
<td>-0.28</td>
<td>-0.26</td>
<td>-0.10</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170515</td>
<td>0.12</td>
<td>-0.12</td>
<td>-0.10</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170929</td>
<td>0.23</td>
<td>-0.43</td>
<td>0.067</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20190418</td>
<td>-0.52</td>
<td>-0.70</td>
<td>-0.68</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170501</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20170515</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20170929</td>
<td>-2</td>
<td>2</td>
<td>1</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>20190418</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The symbols ↑, ↓ and – mean the performance of the DTDUH is better, lower and consistent compared with that of the TDUH.
5. Discussion

5.1 Forecasting performance advantage analysis of the proposed DTDUH

There is no issue on the spatial scale mismatch between runoff generation and runoff routing in the fully distributed hydrological model, since the fully distributed model solves the St. Venant equations, however, they are usually computationally intensive (Bunster et al., 2019). For the conceptual models, the spatially DUH method is an alternative method that allows the use of distributed information in a much more efficient manner. A novel DUH method was proposed in this study for the surface runoff routing, namely the DTDUH. The proposed DTDUH was computed based on the runoff generation areas instead of the whole basin. This realization was significant different with the current understandings (Gibbs et al., 2010; Goñi et al., 2019; Andrieu et al., 2021). To this end, the TDUH and the DTDUH can be used for exploring the influence of spatial heterogeneity of runoff generation on the runoff routing. The differences of the definition, assumptions as well as limitations between the current theory and the DTDUH have been concluded in Table 6.

Table 6. The differences of the definition, assumptions as well as limitations between the current theory and the DTDUH.

<table>
<thead>
<tr>
<th>Differences</th>
<th>Current theory</th>
<th>DTDUH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>A typical hydrograph of direct runoff which gets generated from one centimetre</td>
<td>A typical hydrograph of direct runoff which gets generated from one</td>
</tr>
<tr>
<td></td>
<td>of effective rainfall falling at a uniform rate over the entire drainage basin</td>
<td>centimetre of effective rainfall falling at a uniform rate over the</td>
</tr>
<tr>
<td></td>
<td>uniformly during a specific duration.</td>
<td>saturated drainage basin uniformly during a specific duration.</td>
</tr>
<tr>
<td>Assumption</td>
<td>i) The effective rainfall is uniformly distributed over the entire drainage</td>
<td>i) The effective rainfall is uniformly distributed over the saturated</td>
</tr>
<tr>
<td></td>
<td>basin.</td>
<td>drainage areas.</td>
</tr>
<tr>
<td></td>
<td>ii) The effective rainfall occurs uniformly within its specifier duration.</td>
<td>ii) The effective rainfall occurs uniformly within its specifier</td>
</tr>
<tr>
<td></td>
<td>iii) The principle time invariance.</td>
<td>duration.</td>
</tr>
</tbody>
</table>
In this study, the DTDUH was computed considering the time-varying characteristics of the saturated areas, and the excess rainfall was redistributed in the saturated areas instead of the whole basin. The diagram of the DTDUH derivation processes corresponding to various saturated soil moisture can be shown as Fig. 15. The total travel time from each saturated grid cell to the outlet is obtained by directly recording each particle's total travel time from the initial location until the particle leaves the basin. We can obtain the DTDUH when the last particle leaves the basin. There are 24 grid cells in the basin. For instance, the derivation of the TDUH corresponding to saturated proportions 25% (6 grid cells) is shown as Fig. 15(a). The DTDUH is not the same with the TDUH until the basin reach a global saturation as Fig. 15(d).

Figure 15. The diagram of the DTDUH corresponding to various soil moisture. (a) \(\alpha = 0.25 \). (b)
34

\[\alpha_s = 0.50 \] (c) \[\alpha_s = 0.75 \] (d) \[\alpha_s = 1.00 \].

For instance, when there occurs a stormflow with the depth of 10 mm in the whole basin and the saturated proportion is 50%, the actual depth of the excess rainfall in the saturated area is 20 mm. In tradition, the flow hydrograph was calculated using the TDUH as Fig 15. (d), neglecting the issues that excess rainfall particles are only on the saturated areas. This neglect leads to errors because the unsaturated areas where no excess rainfall is generated contributes to the confluence. To solve this issue, the flow hydrograph was calculated using the DTDUH as Fig. 15 (b) in this study, and in turn can improve the forecast performances of the hydrological model.

5.2 Potential shortcomings and improvements of the proposed DTDUH

Although the performances of the DTDUH methods are better than those of the TDUH methods, there are still some issues that need to be addressed: 1) A hybrid runoff generation process pattern formed by more than one mechanism can often be identified in semi-humid, semi-arid and mountain watershed, because of the heterogeneity of underlying surface conditions and meteorological factors (Hu et al., 2021; Yi et al., 2023). When there occurs more than the saturation-excess rainfall, the saturated area extraction method based on the TWI will not be applicable as the excess rainfall can also be generated from the unsaturated areas; 2) As discussed above, the saturation areas were extracted based on the TWI in this study (Tong et al., 2018; Yuan et al., 2019). When the rainfall is spatially uneven distributed over the watershed, the errors of the extracted saturated area can be huge as the grid cells with larger tension water capacity may be saturated in a shorter time than those with smaller tension water capacity. Thus, determining the time-varying saturated grid cells is a considerable challenge for the accurate hydrological forecasting, since it influences the accuracy of the DTDUH; 3)
The DTDUH can be well used for the areas with abundant surface runoff. For the semi-humid and semi-arid watershed with a large proportion of the subsurface stormflow runoff and subsurface runoff, how to develop a dynamic confluence method suitable for these regions is another challenging hydrologic issue because the mechanism of the subsurface stormflow generation is ambiguous, and quantifying the subsurface stormflow generating processes is a formidable task as the subsurface stormflow runoff and subsurface runoff cannot be observed directly.

6. Conclusions

A novel DTDUH method was proposed to explore the influence of spatial heterogeneity of runoff generation on the runoff routing. The XAJ model was used as the hydrological modelling framework. The Longhu River basin and the Dongshi River basin were selected as two case studies. The results of the three surface runoff routing methods including the linear reservoir, TDUH and DTDUH were compared. The advantages and shortcomings of the proposed method have been discussed. The main conclusions can be summarized as follows:

1. A novel DTDUH method designed for the surface runoff routing was proposed based on the TDUH method. The traditional TDUH method was derived based on the whole basin, and the proposed method was designed only for the saturated areas. The DTDUH method considered not only the time-varying rainfall intensities and soil moisture, but also the time-varying saturated areas of the watershed which were extracted based on the TWI.

2. The rationality of the proposed method was verified by comparing the performances of XAJ+LR, XAJ + TDUH and XAJ + DTDUH models, which were calibrated separately. Results shows that the proposed method exhibited consistent or better performance compared with that of the LR.
routing method, and performed better than the TDUH method.

3. The influence of spatial heterogeneity of runoff generation on the runoff routing was carried out by comparing the performances of the TDUH and the DTDUH. The performances of the proposed DTDUH has been compared with the traditional TDUH method in the Longhu River basin and the Dongshi River basin while the parameters of the runoff generation module remained the same. Results show that the DTDUH show a better performance for the flood events with low antecedent soil moisture, and when the antecedent soil moisture is high, the performance of the two methods performed consistently.

4. The differences of definition, assumptions as well as limitations between the current UH theory and the DTDUH have been discussed. Additionally, some challenges related to the DTDUH has been presented, for example, the hybrid runoff being generated more than in the saturated areas, the extraction accuracy of the time-varying saturation areas, and the spatial scale mismatch between runoff generation and runoff routing of the subsurface stormflow runoff as well as the subsurface runoff.
Data availability

Due to the strict security requirements from the departments, some or all data, models, or code generated or used in the study are proprietary or confidential in nature and may only be provided with restrictions (e.g. anonymized data).

Author contributions

Lu Chen conceived the original idea, and Bin Yi designed the methodology, developed the code and performed the study. Lu Chen, Bin Yi and Tao Xie contributed to the interpretation of the results. Bin Yi wrote the paper, and Lu Chen revised the paper.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

This study was financially supported by the National Key R&D Program of China (2023YFC3081000, 2021YFC3200400), and the Science and Technology Plan Projects of Tibet Autonomous Region (XZ202301YD0044C).

References

Snyder, F. F., 1938. Synthetic unit-graphs. Eos, Transactions American Geophysical

