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Abstract. The value of historical data for flood frequency
analysis has been acknowledged and studied for a long time.
A specific statistical framework must be used to comply
with the censored nature of historical data, for which only
floods large enough to induce written records or to trigger5

flood marks are usually recorded. It is assumed that all floods
which exceeded a given perception threshold were recorded
as written testimonies or flood marks. Conversely, all years
without a flood record in the historical period are assumed to
have had a maximum discharge below the perception thresh-10

old. This paper proposes a binomial model that explicitly rec-
ognizes the uncertain nature of both the perception threshold
and the starting date of the historical period. This model is
applied to a case study for the Rhône River at Beaucaire,
France, where a long (1816–2020) systematic series of an-15

nual maximum discharges is available along with a collec-
tion of 13 historical floods from documentary evidence over
3 centuries (1500–1815). Results indicate that the inclusion
of historical floods reduces the uncertainty of 100- or 1000-
year flood quantiles, even when only the number of percep-20

tion threshold exceedances is known. However, ignoring the
uncertainty around the perception threshold leads to a notice-
able underestimation of flood quantile uncertainty. A quali-
tatively similar conclusion is found when ignoring the uncer-
tainty around the historical period length. However, its im-25

pact on flood quantile uncertainty appears to be much smaller
than that of the perception threshold.

1 Introduction

Flood frequency analysis (FFA) provides information on the
magnitude and frequency of flood discharges. It is used to 30

estimate the probability of flooding and manage the risk
posed by floods to human health, the environment, the econ-
omy and cultural heritage (European Union, 2007). One of
the main concerns in FFA is the difficulty of precisely esti-
mating the parameters of the chosen distribution with dis- 35

charge series of limited length (generally a few decades).
This is particularly problematic when low-probability (e.g.
an annual exceedance probability of 10−3 or 10−4) design
floods are required to ensure the safety of people and hy-
draulic structures (Apel et al., 2004; Kjeldsen et al., 2014). 40

Fortunately, sampling uncertainty can be reduced by provid-
ing additional information beyond the flood sample obtained
from discharge monitoring stations during a systematic pe-
riod. Such information can be temporal (e.g. historical data
on ancient floods), regional (e.g. discharge data from similar 45

catchments), causal (e.g. rainfall data) (Merz and Blöschl,
2008) or a combination of these (Macdonald and Sangster,
2017). This paper focuses on the treatment of historical data
in FFA.

Historical data can take a variety of forms: they may 50

be issued from testimonials (Pichard, 1995; Kjeldsen et al.,
2014); flood marks (Parkes and Demeritt, 2016; Piotte et al.,
2016; Engeland et al., 2020; METS, 2023; Renard, 2023);
or palaeoflood reconstructions derived from various proxies,
such as sedimentary deposits or riparian tree rings (Stedinger 55

and Cohn, 1986; Benito et al., 2004; Dezileau et al., 2014;
St. George et al., 2020; Engeland et al., 2020). Using his-
torical data in FFA has a long history and is now a well-

1
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established practice. Benson (1950) and Hirsch (1987) first
focused on plotting position formulas for historical floods.
Various types of historical data can be incorporated in FFA
by selecting an adequate likelihood function (Stedinger and
Cohn, 1986; Kuczera, 1999). Parameter estimation is often5

performed in a Bayesian way using Markov chain Monte
Carlo (MCMC) algorithms (Reis and Stedinger, 2005). Most
recent studies emphasize the need to take full account of un-
certainties (Neppel et al., 2010; Kjeldsen et al., 2014; Parkes
and Demeritt, 2016; Shang et al., 2021; Sharma et al., 2022).10

Although discharges from the systematic period are gener-
ally better known than those from the historical period, they
are still affected by uncertainties. However, those uncertain-
ties are often neglected when using historical data. Only a
few works propose taking them into account: Reis and Ste-15

dinger (2005) or Parkes and Demeritt (2016) consider dis-
charge uncertainty during the systematic period via the use
of a fixed percentage error, while Neppel et al. (2010) use
unknown multiplicative errors.

Historical flood data are not systematic: only floods large20

enough to induce written records or to trigger flood marks
are recorded. Such censored data can be analysed statisti-
cally thanks to the perception threshold concept (Gerard and
Karpuk, 1979; Stedinger and Cohn, 1986). The assumption
is that all floods exceeding this perception threshold were25

recorded, thus ensuring the completeness of the historical
flood record above the threshold. As a corollary, the an-
nual maximum flood discharge can be assumed to be smaller
than the perception threshold for all years in the historical
period with no recorded flood. It is possible, although not30

mandatory, to reconstruct the discharge of historical floods
above the perception threshold via the use of hydraulic mod-
els (Lang et al., 2004; Neppel et al., 2010; Machado et al.,
2015). In cases where such reconstruction is too complex,
the sole knowledge of the number of floods that exceeded the35

perception threshold during the historical period can be ex-
ploited by means of a binomial distribution, as described by
Stedinger and Cohn (1986) or Payrastre et al. (2011). This
method highlights two key quantities in historical FFA that
constitute the main focus of this paper: the perception thresh-40

old and the length of the historical period.
The perception threshold is an empirical concept that only

takes a physical meaning in specific cases. The ideal situ-
ation corresponds to the availability of a cross-section that
has not changed over time, with overflows always occurring45

above the same discharge and systematically leaving a trace
in written records or on infrastructure (flood marks) as a re-
sult of the damage caused. In such a situation, expressing the
perception threshold as a precisely estimated discharge value
is feasible. However, its estimation can be undermined by50

several factors, such as a complex river geometry or a tem-
porally varying perception of flood damage among the pop-
ulations living adjacent to the river. In spite of such uncer-
tainties, the perception threshold is assumed to be perfectly
known in the vast majority of studies, although the sensitivity55

of results to the perception threshold is often explored (Ste-
dinger and Cohn, 1986; Viglione et al., 2013; Macdonald et
al., 2014; Payrastre et al., 2011; Parkes and Demeritt, 2016).

In the same way, the length of the historical period is gen-
erally considered to be perfectly known in the historical FFA 60

methods in the literature. In principle, the historical period
(or surveying period) should start on the date when the source
of the historical information came into existence. However,
it is generally assumed to start with the first known flood and
to finish with the starting date of the systematic period. Pros- 65

docimi (2018) showed that this leads to a systematic underes-
timation of the length of the historical period and, thus, pro-
posed an unbiased estimator of the starting date of the histori-
cal period. However, this unbiased estimator is still treated as
a known value in the subsequent FFA procedure, even though 70

it is affected by considerable uncertainty.
This paper presents an FFA probabilistic model that (1)

uses the number of times a perception threshold is exceeded
over a historical period and (2) accounts for the uncertainty in
discharges during the systematic period. The key originality 75

of this model is to recognize the imperfectly known nature
of both the perception threshold and the length of the his-
torical period by making them parameters of the probabilis-
tic model. The aim is to correctly assess the uncertainties in
flood quantiles, based on historical information. 80

This FFA model and several variants are applied to a case
study based on the Rhône River at Beaucaire, France, offer-
ing a very long systematic record (1816–2020, 205 years)
with carefully determined discharge uncertainties. An uncer-
tainty propagation chain developed by Lucas et al. (2023) ac- 85

counts for errors on stage and gauging measurements as well
as rating curve estimation. In a first step, the 205-year sys-
tematic record is artificially subsampled in order to mimic a
typical mixed dataset containing about 50 years of system-
atic data and about 150 years of censored historical data. 90

This allows for the testing of the FFA models on a real-world
dataset, with the full 205-year systematic dataset providing
a precise baseline against which comparisons can be made.
The added value of precisely knowing the discharge of histor-
ical floods vs. only knowing the number of perception thresh- 95

old exceedances is also explored. In a second step, the same
FFA models are then applied to the 1816–2020 systematic
record and a collection of historical floods during the 1500–
1815 period (Pichard and Roucaute, 2014). The impact of
the various sources of uncertainty in the quantile estimates is 100

discussed.
This remainder of the paper is organized as follows: meth-

ods for historical FFA are introduced in Sect. 2; the available
data are presented in Sect. 3, and their stationarity is verified;
the FFA models are applied and compared using the artifi- 105

cially subsampled record on the 1816–2020 period in Sect. 4
and the entire dataset on the 1500–2020 period in Sect. 5;
and, finally, Sect. 6 discusses some key results of this work,
while Sect. 7 summarizes the study’s main conclusions.
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2 Probabilistic models

We first present how censored historical floods can be in-
cluded into a probabilistic model (Sect. 2.1); following this,
we move towards more specific models accounting for un-
certainties (Sect. 2.2).5

2.1 Standard treatment of censored data

2.1.1 Likelihood function

We assume that the annual maximum (AMAX) discharge Q
during systematic and historical periods is an independent
and identically distributed (i.i.d.) random variable that fol-10

lows a generalized extreme value (GEV) distribution, with
the respective location, scale and shape parameters θ = (µ,
σ , ξ ). When the shape parameter ξ is non-zero, the GEV cu-
mulative distribution function (cdf) and the probability den-
sity function (pdf) are15

F (q;θ)= exp

[
−

(
1− ξ

q −µ

σ

)1/ξ
]

and

f (q;θ)=
∂F (q;θ)

∂q
=

1
σ

(
1− ξ

q −µ

σ

)1/ξ−1

F (q;θ) . (1)

Under this parameterization, a positive shape parameter
(ξ > 0) corresponds to an upper-bounded distribution with
quantiles lower than those of the corresponding Gumbel dis-
tribution. In the opposite case (ξ < 0), the distribution is20

heavy-tailed with above-Gumbel quantiles. The Gumbel case
is obtained by continuity when ξ tends to zero.

The sample of AMAX discharges during the systematic
period covering j years is noted q = (qt )t=1,j . For the time
being, discharges are supposed to be perfectly known and not25

affected by any uncertainty. The historical sample is made
of k events that exceeded the perception threshold S over a
period of n years. Therefore, the perception threshold was not
exceeded over the remaining (n−k) years. The probability π
of exceeding the threshold S can be written as follows:30

π = (1−F (S;θ))= 1− exp

[
−

(
1− ξ

S−µ

σ

)1/ξ
]
. (2)

It is assumed that k, the number of exceedances of the per-
ception threshold, follows a binomial distribution B(n,π).
The likelihood function of a mixed sample of AMAX dis-
charges q during the systematic period spanning j years and35

the number k of exceedances of the perception threshold S
during the historical period spanning n years is as follows:

L(θ;q,k)=5
j
t=1f (qt ;θ)︸ ︷︷ ︸

(a)

[
(nk)(F (S;θ))

n−k(1−F(S;θ))k
]

︸ ︷︷ ︸
(b)

. (3)

Here, term (a) in Eq. (3) represents the likelihood for sys-
tematic data and term (b) in Eq. (3) represents the likelihood40

for historical data. By applying Bayes’ formula, the posterior
distribution p(θ |q,k) of parameters θ given systematic and
historical data is as follows:

p(θ |q,k)∝ L(θ;q;k)p (θ) . (4)

The term p(θ) represents the prior distribution of the param- 45

eters and needs to be elicited before inference. The posterior
distribution p(θ |q,k) is explored using an MCMC sampling
algorithm (Renard et al., 2006), leading to a representation of
sampling uncertainty by means of r parameter vectors 2=
(θ1, . . . , θr). The parameter vector θ̂ that maximizes the pos- 50

terior distribution is called “maxpost”. Thereafter, the prior
distribution p(θ) of the GEV parameters will be as follows:
a positive uniform distribution for µ and σ and a Gaussian
distribution with a mean of zero and a standard deviation of
0.2 for ξ , as proposed by Martins and Stedinger (2000). 55

2.1.2 Starting date of the historical period

The starting date t∗ of the historical period can be assessed by
two methods. A first method proposed by Prosdocimi (2018)
is based on the total number of exceedances of the perception
threshold. 60

Let NE=NEH (historical period)+NEC (continuous pe-
riod) denote the total number of exceedances of the percep-
tion threshold S recorded during NY years, with NY=NYH
(historical period)+NYC (continuous period). Consider-
ing the date t1 of the first known flood, which occurred 65

(NY− 1) years before the end of the systematic period, Pros-
docimi (2018) proposed choosing the starting date as fol-
lows:

t∗(Prosdocimi) = t1− (NY− 1)/NE. (5)

The idea behind this estimate is to start the historical pe- 70

riod TS years before the first known flood, where TS is the
return period of the perception threshold, estimated here as
(NY− 1)/NE.

The second method is based on the Poisson process para-
dox (Feller 1971). It takes advantage of the fact that the ex- 75

pected duration between the last T -year event and current
time is equal to the expected duration between current time
and the next T -year event. In some cases, the historical pe-
riod (including flood and no-flood information) starts before
the date t1 of the first known flood (e.g. at the creation of the 80

service in charge of surveying floods or at the date of bridge
construction where historical data are available). We denote
this date using tstart and consider the difference (t1−tstart) be-
tween these two dates. Without any knowledge of the return
period TS of the threshold but using the difference (t1−tstart), 85

we obtain the following:

t∗(Poisson) = tstart− (t1− tstart)= 2tstart− t1. (6)

2.2 Models accounting for uncertainties

We first present a binomial model for the treatment of his-
torical floods (a collection of historical floods larger than a 90
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Table 1. Characteristics of the four binomial models.

perception threshold S) and systematic floods (AMAX dis-
charges from a gauging station). This first model includes
a propagation procedure of hydrometric uncertainties from
the systematic period (Model A). We then extend this model
to take into account the perception threshold uncertainty5

(Model B), the historical period length uncertainty (Model
C), or both (Model D) (Table 1). A fifth model (Model E)
considers the case in which historical flood discharges are
known within an interval.

2.2.1 Model A: binomial model for historical floods10

and propagation of systematic discharges
uncertainties

In Eq. (3), the uncertainty of AMAX discharges for the sys-
tematic period is assumed to be negligible. As this uncer-
tainty can reach 30 % at Beaucaire during the 19th century15

(see Sect. 3.1), it seems necessary to consider it. We use
the propagation procedure accounting for both stage and rat-
ing curve uncertainties described by Lucas et al. (2023);
this leads to s = 500 realizations of AMAX discharges:(
q
(i)
t

)
t=1,j ;i=1,s

. Each realization can be used to compute20

a posterior distribution with Eq. (4), and each posterior dis-
tribution can be explored with the MCMC sampler, with
r = 500 MCMC simulations. This leads to a total of r×s pa-
rameter vectors

(
θ (i)p

)
p=1,r;i=1,s

, representing the combined

effect of sampling uncertainty and hydrometric uncertainty25

from systematic data. The maxpost parameter vector is cal-
culated using the maxpost sample of AMAX discharges. The
model described above will be referred to as Model A. The
propagation of hydrometric uncertainties from the system-
atic period described here will be carried out identically for30

all models defined in the following sections.

2.2.2 Model B: binomial model for historical floods,
accounting for perception threshold uncertainty

A single perception threshold S for the entire sample is con-
sidered here. In order to take the imperfect knowledge of S35

into account, it is possible to consider it as an unknown pa-
rameter of the model and to represent this imperfect knowl-
edge through a prior distribution. In the previous section,
the perception threshold was already part of the model, but

its value was assumed to be known, which is no longer the 40

case here. Therefore, the left-hand side of Eq. (3) becomes
L(θ ,S;q,k) instead of L(θ;q,k), while the right-hand side
remains unchanged. The posterior distribution of the param-
eters θ and S given the data is as follows:

p(θ ,S|q,k)∝ L(θ ,S;q,k)p (θ ,S) . (7) 45

This posterior distribution takes the hydrometric uncertainty
from the systematic period, the sampling uncertainty and the
perception threshold’s uncertainty into account. This model
will be referred to as Model B in the following sections. Note
that it is necessary to specify a prior distribution for the per- 50

ception threshold S that reflects the knowledge on this pa-
rameter, which is highly case-specific and can range from
very imprecise to nearly known.

2.2.3 Model C: binomial model for historical floods,
accounting for the uncertainty in the historical 55

period length

The uncertainty in the number n of years constituting the his-
torical period can be treated in the same way as described
in the previous section for the threshold S. Generally, the
ending date of the historical period is perfectly known, as 60

it also corresponds to the start of the systematic recordings.
However, the starting date t∗ of the historical sample, from
which all floods above the perception threshold are supposed
to be recorded, is generally poorly known. The number n of
years constituting the historical period can hence be treated 65

as an unknown parameter of the probabilistic model. The
perception threshold S is assumed to be perfectly known in
this case. Therefore, the left-hand side of Eq. (3) becomes
L(θ ,n;q,k). The posterior distribution of the parameters θ
and n given the data is as follows: 70

p(θ ,n|q,k)∝ L(θ ,n;q,k)p (θ ,n) . (8)

As previously stated, a prior distribution reflecting the par-
tial knowledge of the length of the historical period has to be
specified. The lack of knowledge on the length of the histor-
ical period is therefore taken into account in the model and 75

has an impact on flood quantile uncertainty. This model will
be referred to as Model C in the following sections.

2.2.4 Model D: binomial model for historical floods,
accounting for both perception threshold and
historical period length uncertainties 80

As the perception threshold S and the number n of years
of the historical period are linked by definition (with a per-
ception threshold being valid over a given duration), we fi-
nally consider a model that represents the lack of knowl-
edge about both parameters. The left part of Eq. (3) becomes 85

L(θ ,S;n;q,k). The posterior distribution of the parameters
θ , S and n given the data is as follows:

p(θ ,S,n|q,k)∝ L(θ ,S,n;q,k)p (θ ,S,n) . (9)
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This model, for which S and n are uncertain, will be called
Model D in the following sections.

2.2.5 Model E: considering historical flood discharges
within intervals

In some cases, the discharge of historical floods above the5

perception threshold can be reconstructed and taken into ac-
count in the probabilistic model (e.g. Stedinger and Cohn,
1986). As such reconstructions are typically obtained by
means of hydraulic models affected by large uncertainties,
it is also useful to consider that the reconstructed discharges10

are not perfectly known but lie within intervals. Several ex-
amples of such models exist in the literature (e.g. Payrastre et
al., 2011, or Parkes and Demeritt, 2016). The corresponding
likelihood can be written as follows:

L(θ;q,y,k)=
∏j

t=1
f (qt ;θ)

∏k

i=1
[F(y

sup
i ;θ)

−F(yinf
i ;θ)](F (S;θ))

n−k, (10)15

where qt corresponds to the j floods of the systematic period
and yi corresponds to the k floods of the historical period
whose discharge values lie within the interval

[
yinf
i ,y

sup
i

]
.

The posterior distribution of the model is as follows:

p(θ |q,y,k)∝ L(θ;q,y,k)p (θ) . (11)20

Here, the perception threshold and the length of the histor-
ical period are assumed to be perfectly known. This model
will be referred to as Model E in the following sections. The
quantiles can be compared with the results of the binomial
models, for which only the number k of perception threshold25

exceedance S is known.

3 Case study: the Rhône River at Beaucaire

3.1 Discharge data over 5 centuries

We first consider the 205-year-long daily discharge series of
the Rhône River at Beaucaire, France, from 1816 to 202030

(catchment area of 95 590 km2). Daily stage measurements
started in 1816. The gauging station was used until the con-
struction of the Vallabrègues hydroelectric scheme in 1967,
which led to the derivation of a part of the discharge. Conse-
quently, the gauging station was relocated 2 km downstream,35

in order to measure the total discharge (i.e. downstream from
the restitution of the diverted discharge). The Vallabrègues
Dam has no impact on the discharge at the station, as it has
a very limited storage capacity and is opened during floods
to cancel the backwater effect that it creates for low flows. A40

set of 500 realizations of AMAX floods from 1816 to 2020
is available from Lucas et al. (2023), accounting for several
sources of hydrometric uncertainty. The estimated 95 % dis-
charge uncertainty varies from 30 % (19th century) to 5 %
(1967–2020).45

Figure 1. (a) The Rhône River at Beaucaire, AMAX flood dis-
charges with their 95 % uncertainty intervals (1816–2020, system-
atic period; Lucas et al., 2023) and C4-class floods from 1500 to
1815 (HISTRHÔNE database). (b) The cumulative number of C4-
class floods and peak-over-threshold floods (systematic period) with
the 95 % Poisson process confidence interval.

Secondly, a collection of historical flood testimonies from
1500 to 1815 is available from the HISTRHÔNE database
(Pichard and Roucaute, 2014). We focus on the 13 extreme
floods (in 1529, 1548, 1570, 1573, 1674, 1694, 1705, 1706,
1711, 1745, 1755, 1801 and 1810), referenced as C4-class 50

events: “extreme flood and inundation”. This ensemble is
considered to be a comprehensive survey of the most damag-
ing floods of the historical period. The perception threshold S
is about 9000 m3 s−1 according to Pichard et al. (2017). Fig-
ure 1a shows the available flood discharge sample with the 55

corresponding uncertainties. Note that we used a very uncer-
tain prior for the perception threshold in order to more clearly
highlight its impact.

3.2 Stationarity tests

As the probabilistic models described in Sect. 2 assume that 60

AMAX values are independent and identically distributed
(i.i.d.), statistical tests should be applied to check the station-
arity of both systematic and historical periods.
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3.2.1 Systematic data

The Pettitt step-change test (Pettitt, 1979) and Mann–Kendall
trend test (Mann, 1945; Kendall, 1948) were applied to the
maxpost series of AMAX discharges during the 1816–2010
period. The respective p values of 0.15 and 0.4 indicate no5

significant change. The segmentation procedure proposed by
Darienzo et al. (2021) was also applied, as it allows one to
account for the uncertainty around AMAX discharges. This
procedure indicates that the optimum number of segments is
equal to 1, confirming the absence of significant change.10

3.2.2 Historical data

The historical data used here (13 extreme C4-class floods)
can be interpreted as peak-over-threshold (POT) values, as
they correspond to all floods that exceeded the perception
threshold S. Moreover, there is no year with more than one15

C4-class flood during the 1500–1815 period. AMAX values
from the continuous period larger than 9000 m3 s−1 can also
be viewed as POT values, as the 14 largest values from the
daily record (in 1840, 1856, 1886, 1889, 1896, 1900, 1907,
1910, 1935, 1951, 1993, 1994, 2002 and 2003) are from dif-20

ferent years. Assuming that the number of occurrences of
POT discharges follows a Poisson process, it is possible to
compute a confidence interval for the cumulative number Nt
of POT values during a period 0–t (Lang et al., 1999) and
to verify that the experimental curve is inside the limits of25

the interval. The Poisson test is applied to the whole pe-
riod 1500–2020, using POT values from both historical and
systematic periods (1500–1815 and 1816–2020). Figure 1b
shows that the experimental curve is within the 95 % confi-
dence interval. Hence, the whole sample can be considered30

to be stationary.

4 Flood frequency analysis on the 1816–2020 period

4.1 Subsampled datasets

In this section, the GEV distribution fitted with AMAX dis-
charges from the 1816–2020 period (including the propaga-35

tion of hydrometric uncertainty described in Sect. 2.2, Model
A) is used as a reference and is referred to as “AMAX long”.
It can be compared with GEV distributions estimated with
subsampled data, where only part of the available informa-
tion is used:40

– The first subsample contains a short sample of AMAX
discharges during the 1970–2020 period, referred to as
“AMAX short”. It corresponds to the typical length of
hydrometric series in France, about 50 years of record,
leading to a large extrapolation of the estimated distri-45

bution towards large quantiles (100-year or 1000-year
return period).

– The second subsample is a mixed sample, with AMAX
discharges for the 1970–2020 period and a collection of
historical values for the 1816–1969 period, referred to 50

as “Mixed A”–“Mixed E”, according to the model used.
A perception threshold S = 9000 m3 s−1 leads to a col-
lection of 10 historical floods. When using Model B (or
Model D), we consider a vague normal prior distribution
on the perception threshold: N (9000;2000), with 2000 55

being the standard deviation. When using Model C (or
Model D), we consider a uniform prior distribution on
the starting date of the historical period:U [1316;1816],
corresponding to a large uncertainty (500 years).

Results with systematic data only (AMAX long and 60

AMAX short) or with a mixed sample (AMAX short+ 10
historical floods) are presented for the estimation of Q100
and Q1000 floods (Fig. 2b), parameters (ξ , S and t∗) (Ta-
ble 2) and GEV distributions (Fig. 2a). The plotting posi-
tion formula proposed by Hirsch (1987) for a mixed sample 65

with AMAX values from a continuous period and historical
discharges larger than a perception threshold is applied. The
Appendix provides a procedure for a case in which historical
flood discharges are unknown, using only exceedances of the
threshold. 70

4.2 Value of adding historical information from the
1816–1969 period

Unsurprisingly, when the length of the systematic record
(∼ 50 years) is too short compared with the target return
period (∼ 100 or 1000 years), the results are highly uncer- 75

tain (AMAX short in Fig. 2). A binomial model exploiting
historical flood events notably reduces uncertainty when the
perception threshold S is known (Mixed A and Mixed C in
Fig. 2b), although not achieving the precision obtained with
205 years of systematic records (AMAX long in Fig. 2b). Ac- 80

counting for the uncertainty in the threshold S (Mixed B and
Mixed D in Fig. 2b) increases the uncertainty in flood quan-
tiles and nearly annihilates the interest of historical flood oc-
currences.

The main part of the uncertainty comes from the estima- 85

tion of the shape parameter ξ , which governs the behaviour
of the tail of the distribution. Note that all of the estimates are
close to zero and slightly positive (Table 2), corresponding to
an upper-bounded distribution. As might be expected, the es-
timate of parameter ξ is much more precise with a long series 90

(AMAX long) of 2 centuries than with a short series (AMAX
short) of 5 decades. The use of historical data through a bi-
nomial model is not very efficient with respect to reducing
uncertainty in the shape parameter ξ (Table 2). Overall, the
maxpost estimate of the Q100 and Q1000 quantiles are very 95

close for all models (Fig. 2b). In the next sections, the impact
of accounting for the uncertainties in the perception threshold
S and the starting date t∗ of the historical period is assessed
in more detail.
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Table 2. Maxpost estimation± the posterior standard deviation (expressed as a percentage) for Q100 and Q1000 floods and the ξ , S and t∗

parameters (1816–2020 period).

4.3 Impact of considering that the perception threshold
is uncertain

The use of Model B reflects a lack of knowledge on the per-
ception threshold, which becomes a parameter of the model.
Figure 2b shows that the quantile uncertainty estimated with5

Model B is much greater than with Model A and that it is
close to the one obtained with systematic data only (AMAX
short). Therefore, poor knowledge of the perception thresh-
old has major consequences for the quantile estimates, as it
greatly reduces the value of using historical occurrences. The10

true value of the perception threshold is S = 9000 m3 s−1.
The prior and posterior distributions of the threshold S are
shown in Fig. 3a. It can be seen that the posterior esti-
mate for Model B (9163 m3 s−1) is close to the true value
(9000 m3 s−1) and that the model has effectively improved15

the knowledge of the threshold compared with the prior dis-
tribution N (9000;2000). The posterior uncertainty in the
shape parameter ξ for Model B is greater than that of Model
A and, thus, becomes almost identical to that of AMAX short
(Table 2). In real-world case studies, specifying a more pre-20

cise prior should limit this impact and should, hence, be con-
sidered to be a priority objective for historical FFA.

4.4 Impact of considering that the historical period
length is uncertain

Model C is used to represent the lack of knowledge on the25

length of the historical period. In Fig. 2b, the maxpost quan-
tile estimates for Model C have slightly higher values than
the estimates for Model A. This may be due to the underes-
timation of the length of the historical period, as can be seen
in Fig. 3b. The maxpost date is 1833, whereas the series ac-30

tually begins in 1816. This 17-year underestimation can be
explained by a greater frequency of floods above the thresh-
old S during the systematic period (4 floods during 50 years,

i.e one exceedance every 12.5 years) than during the histor-
ical period (10 floods during 153 years, i.e one exceedance 35

every 15 years). This imbalance is probably due to sampling
variability, as no break or trend was detected by the station-
arity tests in Sect. 3.2. The posterior distribution of the start-
ing date t∗ for Model C (Fig. 3b) is much more precise than
the prior distribution and is strongly asymmetric. The uncer- 40

tainty around the quantiles estimated by Model C is very sim-
ilar to that estimated by Model A (Fig. 2b), as is the distribu-
tion of the shape parameter (Table 2). Overall, these results
indicate that a poor knowledge of the length of the historical
period has less impact on the precision of quantile estimates 45

than poor knowledge of the perception threshold.

4.5 Impact of considering that both the perception
threshold and the historical period length are
uncertain

Model D assumes that both S and n are uncertain in the prob- 50

abilistic model. The maxpost quantiles estimated in Fig. 2b
are close to the reference values. In contrast, the width of the
credibility interval is large and lies between that of Model B
and Model C. Although the estimate is more accurate than
with a short series (AMAX short), it remains very impre- 55

cise for the 1000-year flood. Figure 3 helps to understand the
origin of this large uncertainty. The posterior distribution of
the perception threshold S, although with a maxpost value
(9332 m3 s−1) close to the true value (9000 m3 s−1), is very
imprecise with a large standard deviation (883 m3 s−1). The 60

perception threshold S appears to be slightly less precisely
estimated than with Model B (Table 2), with a posterior stan-
dard deviation of 9 % and 8 %, respectively. The starting date
of the historical period is even more difficult to estimate, par-
ticularly in comparison with the estimate from Model C. It 65

can be seen that the posterior distribution t∗ of Model D is
very similar to the prior uniform distribution (Fig. 3b), al-



8 M. Lucas et al.: A more comprehensive uncertainty framework for historical flood frequency analysis

Figure 2. (a) GEV quantiles with their 95 % credibility intervals,
displaying an example of two different models and datasets: the
GEV model on AMAX values (AMAX short 1970–2020) and the
binomial Model A on a mixed sample (1816–2020). (b) The Q100
and Q1000 floods with their 95 % credibility intervals displayed as
error bars. AMAX long refers to the sample for the 1816–2020 pe-
riod; AMAX short refers to the sample for the 1970–2020 period;
and Mixed A, B, C and D refer to a mixed sample (“historical”
floods in the 1816–1969 period and AMAX 1970–2020) for vari-
ous statistical models.

though it is slightly asymmetrical and shows a maximum not
far from the true value (the year 1816). However, the flood
discharge quantiles are less uncertain for Model D than for
Model B. The precise reasons for this are unclear at this stage
but might be due to some correlations between parameters.5

In particular, the Pearson correlation coefficient ρ is equal to
0.44 and 0.42 between the length of the historical period n
and the perception threshold S and between the perception
threshold S and the shape parameter ξ , respectively.

4.6 Value of estimating the peak discharge of the 10

historical flood

Binomial models A, B, C and D only use information on
the number of times k that a perception threshold S is ex-
ceeded over a period of n years. The discharge of histori-
cal floods that have exceeded the threshold is therefore ig- 15

nored. Model E allows peak discharge estimates (with un-
certainty) to be taken into account. The results are shown in
Fig. 4. There is a reduction in uncertainty of around 25 %
for Q1000 with Model E compared with binomial Model A
(posterior standard deviations of 2255 and 3019 m3 s−1, re- 20

spectively). However, the uncertainty in Model E remains
around 65 % greater than that of the GEV 1816–2020 model
for Q1000. Although it is not a necessary condition for us-
ing historical data, knowledge of the discharge of histori-
cal floods does reduce the uncertainty around extreme quan- 25

tiles. However, these results are only valid for the perception
threshold S used here, which has a return period of about
15 years (with 14 exceedances during 205 years). Stedinger
and Cohn (1986) and Payrastre et al. (2011) showed that the
difference in uncertainty between the results of these two 30

types of models tends to decrease as the return period of the
perception threshold increases towards 50 years or so, until
it becomes negligible above this magnitude. This encourages
the use of the number of exceedances of a perception thresh-
old when it is not possible to obtain better information on 35

historical floods.

5 Flood frequency analysis on the 1500–2020 period

In the previous section, we used a synthetic case study from a
205-year systematic record (1816–2020), which gives a base-
line to compare the performance of five proposed models (A, 40

B, C, D and E) with known parameters (S and n). The sys-
tematic record has been artificially subsampled into a mixed
dataset that contains 51 years of systematic data (1970–2020)
and 154 years of censored historical data larger than a known
perception threshold (1816–1969). In this section, binomial 45

models (A, B, C and D) are applied to a 500-year-long case
study, using the 205-year systematic record (1816–2020) and
a collection of historical floods from HISTRHÔNE database
(1500–1815). This time, S and n are not perfectly known.

5.1 Prior on the perception threshold S and the 50

starting t∗ of the historical period

Binomial models A, B, C and D are now applied to a mixed
sample over the period from 1500 to 2020, with AMAX val-
ues for the systematic period from 1816 to 2020 and occur-
rences of flood above the perception threshold for the his- 55

torical 1500–1815 period. The perception threshold and the
starting date of the historical period are not known precisely,
and a first analysis is carried out with vague priors, with
S ∼N (9000;2000) and t∗ ∼ U [1129;1529]. By definition,
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Figure 3. Prior and posterior distributions of (a) the perception threshold S and (b) the starting date t∗ of the historical period (1816–
2020 period). The solid vertical lines represent the maxpost estimate of the parameter for each of the models, whereas the dashed black lines
represent the reference values (S = 9000 m3 s−1 and t∗ = 1816). The dashed vertical green and pink lines in panel (b) represent the estimates
of t∗ from Eqs. (5) and (6), respectively.

Figure 4. TheQ100 andQ1000 floods with their 95 % credibility intervals displayed as error bars. AMAX long refers to an annual maximum
sample for the 1816–2020 period; Mixed refers to a mixed sample (“historical” floods in the 1816–1969 period and AMAX 1970–2020).
Model A uses only the number of times that the perception threshold has been exceeded, whereas Model E considers the peak discharge
(and its uncertainty) of each historical flood that exceeded threshold S. Perception threshold S and the start date of historical period t∗ are
considered perfectly known (models A and E).

the historical period begins, at the latest, on the date of the
first known historical flood in 1529. The lower limit of the
uniform distribution is arbitrarily set 400 years before the
date of the first historical flood in order to represent the lack
of knowledge on t∗.5

A second analysis will refine the results of Model D,
with more accurate prior estimates of S and t∗ used for
the historical 1500–1815 period, based on information of
the systematic 1816–2020 period. The application of Model

D with these more informative priors will be referred to 10

as Model D∗. Figure 5 cross-references C4-class (extreme)
floods occurring between 1816 and 2000 according to the
HISTRHÔNE database (Pichard et al., 2017) and the es-
timated AMAX discharge values on the same period (Lu-
cas et al., 2023). A total of 5 amongst 14 C4-class floods 15

are below the threshold S = 9000 m3 s−1. Even account-
ing for discharge uncertainty, three C4-class floods are still
fully below the threshold S. As the flood ranking of the
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Figure 5. AMAX flood discharges (1816–2000) from Lucas et
al. (2023) (in grey) cross-referenced with C4-class floods from the
HISTRHÔNE database (in red). The horizontal line corresponds to
the estimated perception threshold S = 9000 m3 s−1.

HISTRHÔNE database is based on physical impacts (e.g.
morphologic river changes and city submersions), it is not
possible to have a direct match between C4-class floods and
an exact discharge threshold. We refine the prior distribution
N (9000;500), with a standard deviation of 500 m3 s−1 (in-5

stead of 2000 m3 s−1 with Model D). No C4-class flood is
fully below the 95 % prior 8000–10 000 interval.

Considering the 13 C4 floods in the HISTRHÔNE
database (1500–1815) and the 14 floods higher than a thresh-
old S = 9000 m3 s−1 during the 1816–2020 period, we have10

two possible estimates of the starting date t∗ of the historical
period:

– t∗(Prosdocimi) = 1511 (from Eq. 5), with knowledge of
the date of the first known flood (t1 = 1529), the to-
tal number of threshold exceedances (NE= 13 (C415

floods)+ 14 (AMAX>S) = 27) and the total number
of years (NY= 2020–1529= 491 years);

– t∗(Poisson) = 1471 (from Eq. 6), with knowledge of the
starting date of the surveying period (tstart = 1500).

We refine the prior distribution of t∗ as U [1471;1529],20

with a width of 58 years (instead of 400 years with Model
D).

5.2 Results with a vague prior on the perception
threshold and the historical period length

Results with systematic data only (AMAX) on the 1816–25

2020 period or with a mixed sample (AMAX+ 13 historical
floods) on the 1500–2020 period are presented for the esti-
mation of Q100 and Q1000 floods (Fig. 6) and parameters (ξ ,
S and t∗) (Table 3).

The results with a mixed sample for the 1500–2020 period30

show that the uncertainty in Q100 and Q1000 floods (Fig. 6a)
is lower than with AMAX values for the 1816–2020 period
for models assuming a known perception threshold (models

A and C). For these two models (Model A and Model C), the
maxpost quantiles are also slightly lower (by around 5 %) 35

than with AMAX values for the 1816–2020 period (Fig. 6a).
As for the subsamples in Sect. 4, this suggests that poor
knowledge of the perception threshold (models B and D) is
more detrimental to the precision of estimated quantiles than
poor knowledge of the historical period length (models C and 40

D). In particular, these differences can be explained by look-
ing at the posterior distributions of the parameters S and t∗

(Fig. 6b).
The posterior standard deviations for the perception

threshold (models B and D) are relatively small (around 45

500 m3 s−1 for both models) and the distributions mostly lie
above the prior value of 9000 m3 s−1 (maxpost values around
9600 m3 s−1; Table 3). The starting date t∗ of the historical
period is more precisely estimated with Model C than with
Model D, whose posterior distribution is very close to the 50

prior distribution. For both models, the maxpost estimates of
t∗ are almost 30 years higher than the assumed value of 1500.
In particular, the posterior distribution for Model C shows a
maximum for the year 1529, which corresponds to the date
of the first flood in the sample. 55

This trend towards a higher threshold and a shorter histor-
ical period could be a symptom of the non-exhaustiveness
of the extreme floods (C4 category) in the HISTRHÔNE
database, despite the fact that the stationarity hypothesis of
the Poisson test over the 1500–2020 period was not rejected 60

(Fig. 1b). Once again, we can compare the rate of occurrence
of floods above the threshold S = 9000 m3 s−1 for each of
the two samples. For the historical sample, 13 floods were
observed over 316 years, i.e. one exceedance every 24 years.
For the systematic sample, there were 14 floods over a pe- 65

riod of 205 years, i.e. one exceedance every 15 years. This
larger frequency of S exceedances of the systematic period,
whether due to sampling variability, climatic variability or
the non-exhaustiveness of the historical data, leads to the es-
timation of a higher perception threshold and/or a shorter his- 70

torical period length.

5.3 Refining prior distributions of the perception
threshold and the historical period length

The previous analysis is refined using narrower prior distri-
butions of the perception threshold S and the starting date t∗ 75

of the historical period. A comparison of the binomial mod-
els D and D∗ and the AMAX GEV 1816–2020 model is pre-
sented in Fig. 7a. It can be seen that the uncertainty in the
quantiles is about 15 % lower than the reference forQ100 and
Q1000. Maxpost estimates are also reduced by approximately 80

3 % for both return periods. Therefore, the use of historical
floods appears relevant to reduce the uncertainty in the quan-
tiles, even in the case where S and n are uncertain. It can also
be noted that the elicitation of more informative priors (see
Falconer et al., 2022, for a methodological review) reduced 85

the standard deviation of the posterior distribution for Q1000
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Figure 6. (a) The Q100 and Q1000 floods with their 95 % credibility intervals displayed as error bars. AMAX long refers to the annual
maximum sample for the 1816–2020 period; Mixed A, B, C and D refer to a mixed sample (“historical” floods in the 1500–1815 period and
AMAX for 1816–2020) for various statistical models. (b) Posterior distribution of (left) the perception threshold S and (right) the starting
date t∗ of the historical period (1500–2020 period). The solid vertical lines represent the parameter maxpost estimates for each model,
whereas the dashed black lines represent the reference values (S = 9000 m3 s−1 and t∗ = 1500). The dashed vertical green and pink lines
(right) represent the estimates of t∗ by Eqs. (5) and (6), respectively.

by about 25 % (comparison of Model D with vague priors for
S and t∗ and Model D∗ with refined priors).

The posterior distributions of S and t∗ are shown in
Fig. 7b. Once again, the posterior distribution of the per-
ception threshold is shifted towards values higher than the5

assumed value of 9000 m3 s−1, with a maxpost threshold at
9386 m3 s−1. The posterior distribution of t∗ is again very
close to the prior distribution, with a slightly higher density
for the years close to the date of the first flood. Here, the
maxpost estimate of t∗ is 1526, i.e. a historical period length10

that is 26 years shorter than expected. Therefore, doubt re-
mains as to the completeness of the historical sample or the
inter-sample stationarity as described in the previous section.

6 Discussion

6.1 Main findings for the 1816–2020 period 15

By using the probabilistic models described in Sect. 2 on an
artificially degraded sample whose characteristics are well
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Table 3. Maxpost estimation± the posterior standard deviation (expressed as a percentage) for Q100 and Q1000 floods and the ξ , S and t∗

parameters (1816–2020 and 1500–2020 periods).

Figure 7. (a) The Q100 and Q1000 floods with their 95 % credibility intervals displayed as error bars. AMAX long refers to an annual
maximum sample for the 1816–2020 period; Mixed D∗ refers to a mixed sample (“historical” floods in the 1500–1815 period and AMAX
for 1816–2020), with refined priors for S and t∗. (b) Posterior distributions of (left) the perception threshold S and (right) the starting date
t∗ of the historical period for the two mixed models, Mixed D and Mixed D∗. The solid vertical lines represent the maxpost estimate of the
parameter for each of the models, whereas the dashed black lines represent the reference values (S = 9000 m3 s−1 and t∗ = 1500).



M. Lucas et al.: A more comprehensive uncertainty framework for historical flood frequency analysis 13

known, it is possible to assess the impact of limited knowl-
edge of the perception threshold S and the length n of the
historical period on the estimation of extreme quantiles. The
results show that poor knowledge of the perception thresh-
old has a greater impact than poor knowledge of the his-5

torical period length. Even if the maxpost estimates of the
perception threshold for models B and D are close to the
true value (9000 m3 s−1), the uncertainty resulting from de-
termining the threshold has a strong impact on quantile un-
certainty. Furthermore, the estimation of the historical period10

length in the case of Model C is also quite imprecise, but this
has little impact on the uncertainty in the results when com-
pared with those of Model A. The comparison of Model A,
for which only the number of exceedances of the perception
threshold is known, with Model E, for which the discharge15

of historical floods is known within an uncertainty interval,
demonstrated the value of reconstructing the discharge of
each historical flood.

Finally, the results for the 1816–2020 period suggest that
the quantile uncertainty may be underestimated when the20

perception threshold and the historical period length are un-
duly considered to be perfectly known. The models proposed
in this paper allow us to account for imperfect knowledge
when estimating extreme quantiles.

6.2 Main findings for the 1500–2020 period25

Application of the binomial Model D to a mixed sample with
the discharge estimate of AMAX values for the systematic
1816–2020 period and a collection of 13 historical floods
from 1500 to 1815 allows the uncertainty around the percep-
tion threshold S and the historical period length to be con-30

sidered. Priors of Model D were refined, in order to have a
more realistic assessment of threshold S and the starting date
t∗ of the historical period. This refined model, called Model
D∗, gives the following results:

– Despite the fact that the available AMAX flood series35

for the 1816–2020 period is really long (205 years), it
is possible to reduce the uncertainty in the flood quan-
tiles (Fig. 7a) by adding information on 13 exceedances
of a threshold S = 9000 m3 s−1 during 3 prior centuries
(period 1500–1815) and prior knowledge about S and40

t∗.

– The refinement of the prior distributions for the thresh-
old S and the starting date t∗ with Model D∗ gives a
more precise assessment of flood quantiles than with
Model D (Fig. 7a). The posterior standard deviation (ex-45

pressed as a percentage) of theQ1000 quantile decreases
from 11 % to 8 % (Table 3). In both cases, consider-
ing the perception threshold S to be uncertain has much
more of an impact on the uncertainty in the results than
considering a lack of knowledge about the length of the50

historical period.

Figure 8. Flood distribution and the 95 % confidence interval of
Model D∗ (mixed sample: systematic period 1816–2020+ 13 his-
torical exceedances on 1500–1815, refined prior on S and t∗). The
experimental distribution is shown in black (AMAX values) or red
(exceedances of the perception threshold).

– The combination of an increased perception threshold
(Smaxpost = 9386 m3 s−1 vs. Sprior = 9000 m3 s−1) and a
reduced span of the historical period (t∗maxpost = 1526
vs. t∗prior = 1500) may be a symptom of the non- 55

exhaustiveness of floods in the historical samples
in the HISTRHÔNE database, even though no non-
stationarity of the frequency of floods was detected
(Fig. 1b). As the historical flood inventory is based on
physical impacts, it may be sensitive to some changes 60

in land settlement and flood protection.

– The flood distribution and 95 % credibility interval of
Model D∗ are represented in Fig. 8. AMAX values are
reported with their uncertainty (from 5 % to 30 %), and
historical floods are reported as exceedances. Informa- 65

tion on floods during 3 prior centuries (1500–1815) re-
duces the level of extrapolation towards extreme floods
(flood of record has a plotting position around the 1000-
year return period in Fig. 8, rather than a 400-year return
period, as shown in Fig. 2a, for the 1816–2020 period). 70

7 Conclusion

This paper proposes binomial models for the inclusion of
historical data into FFA; these models explicitly recognize
the uncertain nature of both the perception threshold and the
starting date of the historical period. 75

The models are first tested with a 205-year-long series of
AMAX values for the outlet of the Rhône River at Beaucaire,
France. The time series has been artificially subsampled in
order to mimic a historical context, considering AMAX val-
ues for a 50-year period (1970–2020) and a collection of 10 80
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“historical” floods during the 1816–1969 period. The esti-
mated quantiles were compared with estimates from a GEV
model with AMAX values for the entire period (1816–2020).
Considering that the perception threshold is perfectly known
when this is not the case can lead to a significant underesti-5

mation of the uncertainty in flood quantiles. This also holds
for the length of the historical period, although to a much
lesser extent. In the case of this subsample, the use of his-
torical data makes it possible to reduce the uncertainty in the
quantiles compared with the sole use of the short systematic10

sample (1970–2020), considering uncertainties in the thresh-
old S and the starting date t∗ of the historical period. The
binomial model estimate with known S and t∗ (Model A)
was then compared to an estimate for which historical flood
discharges are known within an interval (Model E). In Beau-15

caire, the use of the historical flood discharges turned out to
be slightly more informative than the use of the sole number
of exceedances of the perception threshold.

The paper also presents the results of the binomial model
with a mixed sample of 205 AMAX values (1816–2020 pe-20

riod) and 13 occurrences of historical floods (1500–1815 pe-
riod). The addition of historical information for 3 centuries
reduces the uncertainty in the Q100 and Q1000 flood quan-
tiles (about 15 %), despite only the number of exceedances
being known. However, some doubts remain about the com-25

pleteness of the historical sample, as the posterior estimation
of S and t∗ are larger than the prior.

The stationarity hypothesis may be challenged by climatic
variability at Beaucaire, as trends in flood magnitudes have
been identified in several regions of Europe (Hall et al., 2014;30

Blöschl et al., 2020) and France (Giuntoli et al., 2019). To
date, there are no rules in France for accounting for the im-
pact of climate change on flood risk estimates. However,
it is still possible to integrate temporal changes in climate
processes or watershed characteristics into the probabilistic35

model itself, as increasingly described in the literature (see
Salas et al., 2018, for an overview). It is also important to
note that, although outside of the FFA scope, such long se-
ries remain interesting for the study of the long-term variabil-
ity in floods over several centuries and of their value for risk40

awareness and memory.

Appendix A: Plotting position for unknown historical
floods

The exceedance probability of the ith value q(i) of a sample
(q(1) ≥ . . . ≥ q(N)), sorted by decreasing value, is as fol-45

lows:

p′i = Prob
[
Q> q(i)

]
=

i− a

N + 1− 2a
, (A1)

using, for example, a = 0.44, the optimum value for a Gum-
bel distribution (Cunnane, 1978).

Hirsch (1987) proposed splitting a mixed sample, formed50

by
(
q1, . . .,qNYC

)
AMAX values during NYC years (contin-

uous period) and NEH historical values larger than a percep-
tion threshold S during NYH years (historical period), into
two subsamples:

– NE exceedances of the threshold S for the whole period 55

(divided into NEH and NEC exceedances for the histor-
ical and continuous periods, respectively), during NY
years, with NY=NYH+ NYC years,

Prob
[
Q> q(i)

]
=

(
NE
NY

)
p′i =

(
NE
NY

)
i− 0.44

NE+ 0.12
i = 1,NE; (A2)

– floods lower than S for the continuous period, 60

Prob
[
Q> q(i)

]
=

(
NE
NY

)
+

(
1−

NE
NY

)
(i−NS)− 0.44

NYC−NEC+ 0.12
i = NE+ 1,NYC+NEH. (A3)

In the current case study, as the discharge of historical
floods is not known (only threshold exceedance), it is not
possible to rank all values of the mixed sample. A way to
circumvent this problem is to randomly rank the historical 65

unknown floods amongst the NEC floods larger than S dur-
ing the continuous period. This is done using the following
steps:

– Step 1. Randomly sample (without replacement) the
rank of the NEC floods of the continuous period within 70

the whole period using sample (x = 1: NE, size=NEC,
replace=FALSE) (R code).

– Step 2. As we know the values of the NEC floods larger
than S during the continuous period, apply the ranks
just sampled to them (i.e. the smallest sample rank is 75

assigned to the largest flood, etc.).

– Step 3. Assign the remaining ranks to the NEH floods
larger than S during the historical period.

As we assigned ranks to all exceedances of the threshold
S for the whole period, we are able to compute their plotting 80

position with Eq. (A2). Let q1 ≥ . . .≥ qNEC ≥ S denote the
known discharges of the continuous period larger than the
threshold S, with their corresponding ranks r1 < .. . < rNEC .
We now assign an interval to the unknown historical dis-
charges (see Fig. 8): 85

– If r1> 1, we have (r1− 1) historical flood discharges
larger than q1. They will be plotted with vertical dashed
lines larger than q1.

– If (ri+1−ri)>1, we have (ri+1−ri) historical flood dis-
charges within the interval [qi+1, qi]. They will be plot- 90

ted with vertical dashed lines larger than 1/2 (qi+qi+1).
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– If rNEC < NE, we have (NE - rNEC) historical flood dis-
charges within the interval [S, qNEC ]. They will be plot-
ted with vertical dashed lines larger than 1/2 (S+qNEC).

This order is random, but it makes it possible to draw the
empirical distribution of floods and to compare it with the5

estimated GEV distributions.
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