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Abstract 8 

The value of historical data for flood frequency analysis has been acknowledged and studied 9 
for a long time. A specific statistical framework must be used to comply with the censored 10 
nature of historical data, for which only floods large enough to induce written records or to 11 
trigger flood marks are usually recorded. It is assumed that all floods having exceeded a given 12 
perception threshold were recorded as written testimonies or flood marks. Conversely, all years 13 
without a flood record in the historical period are assumed to have a maximum discharge below 14 
the perception threshold. This paper proposes a Binomial model which explicitly recognizes 15 
the uncertain nature of both the perception threshold and the starting date of the historical 16 
period. This model is applied to a case study for the Rhône River at Beaucaire, France, where 17 
a long (1816-2020) systematic series of annual maximum discharges is available along with a 18 
collection of 13 historical floods from documentary evidences over three centuries (1500-19 
1815). Results indicate that the inclusion of historical floods reduces the uncertainty of 100- or 20 
1000-year flood quantiles, even when only the number of perception threshold exceedances is 21 
known. However, ignoring the uncertainty around the perception threshold leads to a 22 
noticeable underestimation of flood quantiles uncertainty. A qualitatively similar conclusion is 23 
found when ignoring the uncertainty around the historical period length. However, its impact 24 
on flood quantiles uncertainty appears to be much smaller than that of the perception threshold. 25 
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1. Introduction 34 

Flood Frequency Analysis (FFA) provides information on the magnitude and frequency of 35 
flood discharges. It is used to estimate the probability of flooding and manage the risk posed 36 
by floods to human health, the environment, the economy and cultural heritage (European 37 
Union, 2007). One of the main concerns in FFA is the difficulty to precisely estimate the 38 
parameters of the chosen distribution with discharge series of limited length (a few decades, 39 

generally). This is particularly problematic when low-probability (e.g. annual exceedance 40 
probability 10-3 or 10-4) design floods are required to ensure the safety of people and hydraulic 41 
structures (Apel et al., 2004; Kjeldsen et al., 2014). Fortunately, sampling uncertainty can be 42 
reduced by providing additional information beyond the flood sample obtained from discharge 43 
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monitoring stations during a systematic period. Such information can be temporal (e.g. 44 
historical data on ancient floods), regional (e.g. discharge data from similar catchments), causal 45 
(e.g. rainfall data) (Merz and Bloschl, 2008), or a combination of these (Macdonald and 46 
Sangster, 2017). This paper focuses on the first option and on the treatment of historical data in 47 
FFA. 48 

Historical data can take a variety of forms. Historical data may be issued from testimonials 49 
(Pichard, 1995; Kjeldsen et al., 2014), flood marks (Parkes and Demeritt, 2016; Piotte et al., 50 
2016; Engeland et al., 2020; METS, 2023; Renard, 2023), or paleoflood reconstructions derived 51 
from various proxies such as sedimentary deposits or riparian tree rings (Stedinger and Cohn, 52 
1986; Benito et al., 2004; Dezileau et al., 2014; St. George et al., 2020; Engeland et al., 2020). 53 
Using historical data in FFA has a long history and is now a well-established practice. Benson 54 
(1950) and Hirsch (1987) first focused on plotting position formulas for historical floods. 55 
Various types of historical data can be incorporated in FFA by selecting an adequate likelihood 56 
function (Stedinger and Cohn, 1986; Kuczera, 1999). Parameter estimation is often performed 57 
in a Bayesian way using Markov Chain Monte Carlo (MCMC) algorithms (Reis and Stedinger, 58 
2005). Most recent studies emphasize the need to take full account of uncertainties (Neppel et 59 
al., 2010; Kjeldsen et al. 2014; Parkes and Demeritt, 2016; Shang et al., 2021; Sharma et al., 60 
2022). Although discharges from the systematic period are generally much better known than 61 

those from the historical period, they are still affected by uncertainties. However, those 62 
uncertainties are often neglected when using historical data. Only a few works propose to take 63 
them into account: Reis and Stedinger (2005) or Parkes and Demeritt (2016) consider discharge 64 
uncertainty during the systematic period via the use of a fixed percentage error, while Neppel 65 
et al. (2010) use unknown multiplicative errors.  66 

Historical flood data are not systematic: only floods large enough to induce written records or 67 
to trigger flood marks are recorded. Such censored data can be analysed statistically thanks to 68 
the perception threshold concept (Gerard and Karpuk, 1979; Stedinger and Cohn, 1986). The 69 
assumption is that all floods exceeding this perception threshold were recorded, thus ensuring 70 
the completeness of the historical flood record above the threshold. As a corollary, the annual 71 

maximum flood can be assumed to be smaller than the perception threshold for all years in the 72 
historical period with no recorded flood. It is possible, albeit not mandatory, to reconstruct the 73 

discharge of historical floods above the perception threshold via the use of hydraulic models 74 
(Lang et al., 2004; Neppel et al., 2010; Machado et al., 2015). In cases where such 75 
reconstruction is too complex, the sole knowledge of the number of floods having exceeded the 76 
perception threshold during the historical period can be exploited by means of a Binomial 77 
distribution, as described by Stedinger and Cohn (1986) or Payrastre et al. (2011). This 78 
description highlights two key quantities in historical FFA that constitute the main focus of this 79 
paper: the perception threshold and the length of the historical period.  80 

The perception threshold is an empirical concept that only takes a physical meaning in specific 81 
cases. The ideal situation corresponds to the availability of a cross-section that has not changed 82 
over time, with overflows always occurring above the same discharge and systematically 83 
leaving a trace in written records or on infrastructures (flood marks) as a result of the damage 84 
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caused. In such a situation, expressing the perception threshold as a precisely-estimated 85 
discharge value is feasible. However, this ideal situation rarely holds, and the estimation of the 86 
perception threshold can be undermined by many factors including the difficulty to precisely 87 
estimate discharge, the temporally-varying perception of flood damages by populations living 88 
adjacent to the river, etc. In spite of such uncertainties, the perception threshold is assumed to 89 
be perfectly known in the vast majority of studies, although the sensitivity of results to the 90 
perception threshold is often explored (Stedinger and Cohn, 1986, Viglione et al., 2013; 91 
Macdonald et al., 2014; Payrastre et al., 2011; Parkes and Demeritt, 2016). 92 

The length of the historical period is generally considered to be perfectly known in the historical 93 
FFA methods of the literature. In principle, the historical period (or surveying period) should 94 
start at the date when the source of the historical information started to exist. However, it is 95 
generally assumed to start with the first known flood and to finish with the starting date of the 96 
systematic period. Prosdocimi (2018) showed that this leads to a systematic underestimation of 97 
the length of the historical period and proposes an unbiased estimator of the starting date of the 98 
historical period. However, this unbiased estimator is still treated as a known value in the 99 
subsequent FFA procedure, whereas it is affected by considerable uncertainty. 100 

This paper presents an FFA probabilistic model that uses the number of times a perception 101 
threshold is exceeded over an historical period, and takes into account the uncertainty of 102 

discharges during the systematic period. The key originality of this model is to recognize the 103 
imperfectly-known nature of both the perception threshold and the length of the historical 104 
period by making them parameters of the probabilistic model. The aim is to correctly assess the 105 
uncertainties of flood quantiles, based on historical information. 106 

This FFA model and several variants are applied to a case study based on the Rhône River at 107 
Beaucaire, France, offering a very long systematic record (1816-2020, 205 years), with 108 
discharge uncertainties carefully determined. An uncertainty propagation chain developed by 109 
Lucas et al. (2023) accounts for errors on stage and gauging measurements, and rating curve 110 

estimation. In a first step, the 205-year systematic record is artificially subsampled in order to 111 
mimic a typical mixed dataset containing about 50 years of systematic data and about 150 years 112 

of censored historical data. This allows testing of the FFA models on a real-world dataset, with 113 
the full 205-year systematic dataset providing a precise baseline against which comparisons can 114 

be made. The added value of precisely knowing the discharge of historical floods vs. only 115 
knowing the number of perception threshold exceedances is also explored. In a second step, the 116 
same FFA models are then applied to the 1816-2020 systematic record and a collection of 117 
historical floods during the 1500-1815 period (Pichard and Roucaute, 2014). The impact of the 118 
various sources of uncertainty on quantile estimates is discussed. 119 

This paper is organized as follows. Methods for historical FFA are introduced in section 2. 120 
Available data are presented in section 3 and their stationarity is verified. The FFA models are 121 
then applied and compared using the artificially subsampled record on the 1816-2020 period 122 
(section 4), and then to the entire dataset on the 1500-2020 period (section 5). Section 6 123 
discusses some key results of this work and section 7 summarizes its main conclusions. 124 
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2. Probabilistic models 125 

We first present how censored historical floods can be included into a probabilistic model 126 
(section 2.1) and then move towards more specific models accounting for uncertainties (section 127 
2.2). 128 

2.1 Standard treatment of censored data 129 

Likelihood function 130 

We assume that the annual maximum (AMAX) discharge Q during systematic and historical 131 
periods is an i.i.d. (independent and identically distributed) random variable that follows a 132 
Generalized Extreme Value (GEV) distribution, with location, scale, shape parameters θ = (μ, 133 
σ, ξ). When the shape parameter ξ is non-zero, the GEV cumulative distribution function (cdf) 134 
and the probability density function (pdf) are: 135 

���; �� = �	
 �− 1 − � ���
� �� �⁄ �

and
���; �� = ����;��

�� = �
� 1 − � ���

� �� ���⁄  ���; ��.
   (1) 136 

Under this parametrization, a positive shape parameter (ξ > 0) corresponds to an upper-bounded 137 
distribution with quantiles lower than those of the corresponding Gumbel distribution. In the 138 
opposite case (ξ < 0), the distribution is heavy-tailed with above-Gumbel quantiles. The Gumbel 139 

case is obtained by continuity when ξ tends to zero. 140 

The sample of AMAX discharges during the systematic period covering j years is noted ! =141 
��"�"#�,%. For the time being discharges are supposed to be perfectly known and not affected 142 

by any uncertainty. The historical sample is made of k events having exceeded the perception 143 

threshold S over a period of n years. Therefore, the perception threshold was not exceeded over 144 

the remaining (n – k) years. The probability & of exceeding the threshold S can be written as: 145 

& = '1 − ��(; ��) = 1 − exp �− 1 − � -��
� �� �⁄ � (2) 146 

It is assumed that k, the number of exceedances of the perception threshold, follows a Binomial 147 
distribution ℬ(n, π). The likelihood function of a mixed sample of AMAX discharges q during 148 

the systematic period spanning j years and the number k of exceedances of the perception 149 
threshold S during the historical period spanning n years is: 150 

.��; !, /� =
∏ ���"; ��%

"#�122232224 56
/� '��(; ��)7�8'1 − ��(; ��)8912222222222322222222224

�:� �;�
 (3) 151 

Here, term (a) in Eq. (3) represents the likelihood for systematic data and term (b) in Eq. (3) 152 
represents the likelihood for historical data. By applying Bayes formula, the posterior 153 
distribution p(θ|q, k) of parameters θ given systematic and historical data is: 154 


��|!, /� ∝ .��; !; /�
��� (4) 155 
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The term p(θ) represents the prior distribution of the parameters and needs to be elicited before 156 
inference. The posterior distribution p(θ|q, k) is explored via a MCMC method (Renard et al., 157 
2006), leading to a representation of sampling uncertainty by means of r parameter vectors 158 

Θ = (θ1, ..., θr). The parameter vector �> that maximizes the posterior distribution is called 159 

maxpost. Thereafter, the prior distribution p(θ) of the GEV parameters will be as follows: a 160 
positive Uniform distribution for μ and σ, and a Gaussian distribution with mean zero and 161 
standard deviation 0.2 for ξ, as proposed by Martins and Stedinger (2000). 162 

Starting date of the historical period 163 

The starting date t∗ of the historical period can be assessed by two methods. 164 

Let NE = NEH (historical period) + NEC (continuous period) denote the total number of 165 
exceedances of the perception threshold S recorded during NY years, with NY = NYH (historical 166 
period) + NYC (continuous period). Considering the date t1 of the first known flood, which 167 
occurred (NY - 1) years before the end of the systematic period, Prosdocimi (2018) proposed to 168 
choose the starting date as: 169 

@�Prosdocimi�∗ = @� − �HI − 1� HJ⁄  (5) 170 

The idea behind this estimate is to start the historical period TS years before the first known 171 
flood, where TS is the return period of the perception threshold, estimated here as (NY – 1) / NE. 172 

In some cases, the historical period (including flood and no-flood information) starts before the 173 
date t1 of the first known flood (for instance, at the creation of the service in charge of surveying 174 
floods, or at the date of bridge construction where historical data is available). Let denote this 175 
date tstart, and consider the difference (t1 - tstart) between these two dates. A second possible 176 
estimate, based on the Poisson process paradox (Feller, 1971), takes advantage that the expected 177 
duration between the last T-year event and current time is equal to the expected duration 178 
between current time and the next T-year event. Without any knowledge of the return period TS 179 
of the threshold, but using the difference (t1 - tstart), we have:  180 

@�Poisson�∗ = @K"LM" − �@� −  @K"LM"  � = 2@K"LM" - @� (6) 181 

2.2 Models accounting for uncertainties 182 

We first present Binomial models for historical floods known to be larger than a perception 183 

threshold, with a propagation procedure for both stage and rating curve uncertainties (model A), 184 
or with parameters accounting for uncertainties on perception threshold (model B), length of 185 
the historical period (model C) or both (model D). Table 1 summarizes which Binomial model 186 
accounts for uncertainty, and/or historical period length. A fifth model E considers the case 187 
when historical discharges are known within an interval. 188 

  189 
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Table 1: Characteristics of the four Binomial models 190 

Binomial 
model 

Perception 
threshold S 

Historical 
period length n 

Model A Fixed Fixed 

Model B Uncertain Fixed 

Model C Fixed Uncertain 

Model D Uncertain Uncertain 
 191 

Model A: Binomial model for historical floods and propagation of systematic discharges 192 
uncertainties 193 

In equation (3), the uncertainty in the AMAX discharges for the systematic period is assumed 194 
to be negligible. As this uncertainty can reach 30% at Beaucaire during the XIXth century (see 195 
following section 3.1), it seems necessary to consider it. We use the propagation procedure 196 
accounting for both stage and rating curve uncertainties described by Lucas et al. (2023), that 197 

leads to s = 500 realisations of AMAX discharges: '�"�P�)"#�,%;P#�,K. Each realization can be 198 

used to compute a posterior distribution with equation (4), and each posterior distribution can 199 
be explored with the MCMC sampler. This leads to a total of r × s parameter vectors 200 

�Q
�P��Q#�,M;P#�,K representing the combined effect of sampling uncertainty and hydrometric 201 

uncertainty for systematic data. The maxpost parameter vector is calculated using the maxpost 202 
sample of AMAX discharges. The model described above will be referred to as model A. The 203 
propagation of hydrometric uncertainties from the systematic period described here will be 204 
carried out identically for all models defined in the following sections. 205 

Model B: Binomial model for historical floods, accounting for perception threshold 206 
uncertainty 207 

A single perception threshold S for the entire sample is considered here. In order to take into 208 
account the imperfect knowledge of S, it is possible to consider it as an unknown parameter of 209 
the model, and to represent this imperfect knowledge through a prior distribution. In the 210 
previous section, the perception threshold was already part of the model, but its value was 211 
assumed to be known, which is no longer the case here. Therefore, the left-hand side of equation 212 

(3) becomes .��, (; !, /� instead of .��; !, /�, while its right-hand side remains unchanged. 213 
The posterior distribution of the parameters θ and S given the data is: 214 


��, (|!, /� ∝ .��, (; !, /�
��, (� (7) 215 

This posterior distribution takes into account the hydrometric uncertainty of the systematic 216 
period, the sampling uncertainty and the uncertainty of the perception threshold. This model 217 
will be referred to as model B in the following sections. Note that it is necessary to specify a 218 
prior distribution for the perception threshold S which reflects the knowledge on this parameter, 219 
which is highly case-specific and can range from very imprecise to nearly-known. 220 
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Model C: Binomial model for historical floods, accounting for the uncertainty of the 221 
historical period length 222 

The uncertainty in the number n of years constituting the historical period can be treated in the 223 
same way as described in the previous section for the threshold S. Generally, the ending date of 224 
the historical period is perfectly known, as it also corresponds to the start of the systematic 225 
recordings. However, the starting date t* of the historical sample, from which all floods above 226 
the perception threshold are supposed to be recorded, is generally poorly known. The number 227 
n of years constituting the historical period can hence be treated as an unknown parameter of 228 
the probabilistic model. The perception threshold S is assumed to be perfectly known in this 229 

case. Therefore, the left-hand side of equation (3) becomes .��, 6; !, /�. The posterior 230 
distribution of the parameters θ and n given the data is: 231 


��, 6|!, /� ∝ .��, 6; !, /�
��, 6� (8) 232 

As previously, a prior distribution reflecting the partial knowledge of the length of the historical 233 
period has to be specified. The lack of knowledge of the length of the historical period is 234 
therefore taken into account in the model and has an impact on the uncertainty of the results. 235 
This model will be referred to as model C in the following sections.  236 

Model D: Binomial model for historical floods, accounting for both perception threshold 237 
and historical period length uncertainties 238 

Since the perception threshold S and the number n of years of the historical period are linked 239 
by definition (a perception threshold being valid over a given duration), we finally consider a 240 
model which represents the lack of knowledge about both parameters. The left part of equation 241 

(3) becomes .��, (; 6; !, /�. The posterior distribution of the parameters θ, S and n given the 242 
data is: 243 


��, (, 6|!, /� ∝ .��, (, 6; !, /�
��, (, 6� (9) 244 

This model for which S and n are uncertain will be called model D in the following sections. 245 

Model E: Considering historical flood discharges within intervals 246 

In some cases, the discharge of historical floods above the perception threshold can be 247 
reconstructed and taken into account in the probabilistic model (e.g. Stedinger and Cohn, 1986). 248 

Since such reconstructions are typically obtained by means of hydraulic models affected by 249 
large uncertainties, it is also useful to consider that the reconstructed discharges are not 250 
perfectly known but lie within intervals. Several examples of such models exist in the literature 251 
(e.g. Payrastre et al., 2011 or Parkes and Demeritt, 2016). The corresponding likelihood can be 252 
written as: 253 

.��; !, R, /� = ∏ ���"; �� ∏ S�'TP
KUQ; �) − �'TP

P7V; �)W'��(; ��)7�88P#�
%
"#�  (10) 254 

where qt corresponds to the j floods of the systematic period and yi to the k floods of the 255 

historical period whose discharge lies within the interval STP
P7V; TP

KUQW. The posterior distribution 256 

of the model is: 257 


��|!, R, /� ∝ .��; !, R, /�
��� (11) 258 
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Here, the perception threshold and the length of the historical period are assumed to be perfectly 259 
known. This model will be referred to as model E in the following sections. The quantiles can 260 
be compared with the results of the Binomial models, for which only the number k of perception 261 
threshold exceedance S is known. 262 

3. Case study: The Rhône River at Beaucaire 263 

3.1 Discharge data over five centuries 264 

We first consider the 205-year long daily discharge series of the Rhône River at Beaucaire, 265 
France, from 1816 to 2020 (catchment area: 95 590 km2). Daily stage measurements started in 266 
1816. The gauging station has been used until the construction of the Vallabrègues hydroelectric 267 
scheme in 1967, which led to the derivation of a part of the discharge. Consequently, a new 268 
gauging station was installed 2 km downstream from the restitution of the diverted discharges. 269 
This new station has been used ever since. The Vallabrègues Dam has no impact on the 270 
discharge at the station because it has a very limited storage capacity and it is opened during 271 
floods to cancel the backwater effect it creates for low flows. A set of 500 realisations of AMAX 272 
floods from 1816 to 2020 is available from Lucas et al. (2023), accounting for several sources 273 
of hydrometric uncertainty. The estimated 95% discharge uncertainty varies from 30% (XIXth 274 
century) to 5% (1967-2020). Secondly, a collection of historical flood testimonies from 1500 275 
to 1815 is available from the HISTRHÔNE database (https://histrhone.cerege.fr/) (Pichard and 276 
Roucaute, 2014). We focus on the 13 extreme floods (in 1529, 1548, 1570, 1573, 1674, 1694, 277 
1705, 1706, 1711, 1745, 1755, 1801 and 1810), referenced as the C4 class: “extreme flood and 278 
inundation”. This ensemble is considered to be a comprehensive survey of the most damaging 279 
floods of the historical period. The perception threshold S is about 9000 m3/s according to 280 
Pichard et al. (2017). Figure 1a shows the available flood discharge sample with the 281 
corresponding uncertainties. Note that we used a very uncertain prior for the perception 282 
threshold in order to highlight its impact more clearly. 283 

3.2 Stationarity tests 284 

As the probabilistic models described in section 2 assume that AMAX values are independent 285 

and identically distributed (i.i.d.), statistical tests should be applied to check the stationarity of 286 
both systematic and historical periods. 287 

Systematic data 288 

The Pettitt step-change test (Pettitt, 1979) and Mann-Kendall trend test (Mann, 1945; Kendall, 289 
1948) were applied to the maxpost series of AMAX discharges during the 1816-2010 period. 290 
The p-values of 0.15 and 0.4, respectively, indicate no significant change. The segmentation 291 
procedure proposed by Darienzo et al. (2021) was also applied since it allows accounting for 292 
the uncertainty around AMAX discharges. This procedure indicates that the optimum number 293 
of segments is equal to one, confirming the absence of significant change.  294 

Historical data 295 
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The historical data used here (13 extremes floods of C4 class) can be interpreted as peak-over-296 
threshold (POT) values, since they correspond to all floods having exceeded the perception 297 
threshold S and that no year has more than one C4 flood during the 1500-1815 period. AMAX 298 
values from the continuous period larger than 9000 m3/s can also be viewed as POT values as 299 
the 14 largest values (in 1840, 1856, 1886, 1889, 1896, 1900, 1907, 1910, 1935, 1951, 1993, 300 
1994, 2002 and 2003) are from different years. Assuming that the number of occurrences of 301 
POT discharges follows a Poisson process, it is possible to compute a confidence interval for 302 
the cumulative number Nt of POT values during a period [0; t] (Lang et al., 1999) and to verify 303 
that the experimental curve is inside the limits of the interval. The Poisson test is applied on the 304 
whole period 1500-2020, using POT values from both historical and systematic periods (1500-305 
1815 and 1816-2020). Figure 1b shows that the experimental curve is within the 95% 306 
confidence interval. The whole sample can hence be considered as stationary. 307 

 308 

 309 

Figure 1: (a) The Rhône River at Beaucaire, AMAX flood discharges with 95% uncertainty intervals (1816-310 
2020, systematic period, (Lucas et al., 2023) and C4 class floods from 1500 to 1815 (HISTRHÔNE database); 311 

(b) Cumulated number of C4 class floods and POT floods (systematic period) with 95% Poisson process 312 
confidence interval 313 
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4. Flood Frequency Analysis on the 1816-2020 period 314 

4.1 Subsampled data sets 315 

In this section, the GEV distribution fitted with AMAX discharges from the 1816-2020 period 316 
(including the propagation of hydrometric uncertainty described in section 2.2, model A) is used 317 
as a reference and is noted AMAX long. It can be compared with GEV distributions estimated 318 
with subsampled data, where only part of the available information is used: 319 

• Short sample containing AMAX discharges during the 1970-2020 period, noted AMAX 320 
short. It corresponds to the typical length of hydrometric series in France, about 50 years of 321 
record, leading to a large extrapolation of the estimated distribution towards large quantiles 322 
(100-year or 1000-year return period).  323 

• Mixed sample, with AMAX discharges on the 1970-2020 period and a collection of 324 
historical values on the 1816-1969 period, noted Mixed A,…, Mixed E, according to the model 325 
used. A perception threshold S = 9000 m3/s leads to a collection of 10 historical floods. When 326 
using model B (or D), we consider a vague Normal prior distribution on the perception 327 

threshold: H�9000; 2000�, 2000 being the standard deviation. When using model C (or D), we 328 

consider a Uniform prior distribution on the starting date of the historical period: 329 

Z[1316; 1816_, corresponding to a large uncertainty (500 years). 330 

Results with systematic data only (AMAX long and AMAX short) or with a mixed sample 331 
(AMAX short + 10 historical floods) are presented for the estimation of Q100 and Q1000 floods 332 
(Figure 2b), parameters (ξ, S, t*) (Table 2) and GEV distributions (Figure 2a). The plotting 333 
position formula proposed by Hirsch (1987) in case of a mixed sample with AMAX values 334 
from a continuous period and historical discharges larger than a perception threshold is applied. 335 
The appendix gives a procedure in case where historical flood discharges are unknown, using 336 
only exceedances of the threshold. 337 

Table 2: Maxpost estimation ± posterior standard deviation expressed in percentage for Q100 and Q1000 338 
floods, and (ξ, S, t*) parameters (1816-2020 period) 339 

Data set 
AMAX values AMAX short + historical data (1816-1969) 

AMAX long 
(1816-2020) 

AMAX short 
(1970-2020) 

Mixed A Mixed B Mixed C Mixed D Mixed E 

Quantiles 
(m3/s) 

�̀aa 11451 
± 6% 

11076 
± 23% 

11132 
± 11% 

11302 
± 21% 

11517 
± 7% 

11147 
±18% 

11286 
± 8% 

�̀aaa 13919 
± 10% 

13154 
± 50% 

13367 
± 23% 

13622 
± 43% 

14069 
± 15% 

13262 
± 36% 

13827 
± 16% 

Parameters 

� 
0.058 
± 76% 

0.077 
± 132% 

0.062 
± 142% 

0.058 
± 176% 

0.041 
± 202% 

0.074 
± 130% 

0.035 
± 191% 

S 

(m3/s) 
/ / / 

9163 
± 8% 

/ 
9332 
± 9% 

/ 

@∗ / / / / 
1833 
± 4% 

1785 
± 6% 

/ 
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 340 

Figure 2: (a) GEV quantiles with 95% credibility intervals, example of two different models and datasets: GEV 341 
model on AMAX values (AMAX short 1970-2020) and binomial Model A on mixed sample (1816-2020); (b) 342 

Q100 and Q1000 floods with 95% credibility intervals displayed as error bars. AMAX long refers to the sample 343 
on the 1816-2020 period; AMAX short refers to the sample on the 1970-2020 period; Mixed A-B-C-D refers to a 344 

mixed sample (“historical” floods on the 1816-1969 period and AMAX 1970-2020) for various statistical 345 
models. 346 
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4.2 Value of adding historical information from the 1816-1969 period 347 

Unsurprisingly, when the length of the systematic record (~50 years) is too short compared with 348 
the target return period (~100 or 1000 years), the results are highly uncertain (AMAX short in 349 
Figure 2). A Binomial model exploiting historical flood events notably reduces uncertainty 350 
when the perception threshold S is known (Figure 2b, Mixed A and Mixed C), although not 351 
achieving the precision obtained with 205 years of systematic records (Figure 2b, AMAX long). 352 
Accounting for the uncertainty on threshold S (Figure 2b, Mixed B and Mixed D) increases the 353 

uncertainty of flood quantiles and nearly annihilates the interest of historical flood occurrences. 354 

The main part of the uncertainty comes from the estimation of the shape parameter ξ, which 355 
governs the behaviour of the tail of the distribution. Note that all the estimates are close to zero 356 
and slightly positive (Table 2), which corresponds to an upper-bounded distribution. As might 357 
be expected, the estimate of parameter ξ is much more precise with a long series (AMAX long) 358 
of two centuries than with a short series (AMAX short) of 5 decades. The use of historical data 359 
through a Binomial model is not very efficient in reducing uncertainty on the shape parameter 360 
ξ (Table 2). Overall, the maxpost estimate of Q100 and Q1000 quantiles are very close for all 361 
models (Figure 2b). In the next sections, the interest of accounting for the uncertainties in the 362 
perception threshold S and the starting date t* of the historical period is assessed in more detail. 363 

4.3 Impact of considering the perception threshold uncertain 364 

The use of model B reflects a lack of knowledge of the perception threshold, which becomes a 365 
parameter of the model. Figure 2b shows that the quantile uncertainty estimated with model B 366 
is much greater than with model A, and is close to the one obtained with systematic data only 367 
(AMAX short). Poor knowledge of the perception threshold therefore has major consequences 368 
for the quantile estimates, since it greatly reduces the value of using historical occurrences. The 369 
true value of the perception threshold is S = 9000 m3/s. The prior and posterior distributions of 370 
the threshold S are shown in Figure 3a. It can be seen that the posterior estimate for model B 371 
(9163 m3/s) is close to the true value (9000 m3/s), and that the model has effectively improved 372 

the knowledge of the threshold compared with the prior distribution H�9000; 2000�. The 373 
posterior uncertainty of the shape parameter ξ for model B is greater than that of model A and 374 

thus becomes almost identical to that of AMAX short (Table 2). In real-world case studies, 375 
specifying a more precise prior should limit this impact and should hence be considered as a 376 
priority objective for historical FFA. 377 

4.4 Impact of considering the historical period length uncertain 378 

Model C is used to represent the lack of knowledge on the length of the historical period. In 379 

Figure 2b, the maxpost quantile estimates for model C have slightly higher values than the 380 
estimates for model A. This may be due to the underestimation of the length of the historical 381 
period, as can be seen in Figure  3b. The maxpost date is 1833, whereas the series actually 382 
begins in 1816. This underestimation by 17 years can be explained by a greater frequency of 383 
floods above the threshold S during the systematic period (4 floods during 50 years, i.e one 384 
exceedance every 12.5 years) than during the historical period (10 floods during 153 years, i.e 385 
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one exceedance every 15 years). This imbalance is probably due to sampling variability as no 386 
break or trend was detected by the stationarity tests in section 3.2. The posterior distribution of 387 
the starting date t* for model C (Figure 3b) is much more precise than the prior distribution, 388 
and is strongly asymmetric. The uncertainty around the quantiles estimated by model C is very 389 
similar to that estimated by model A (Figure 2b), as is the distribution of the shape parameter 390 
(Table 2). Overall, these results indicate that a poor knowledge of the length of the historical 391 
period has less impact on the precision of quantile estimates than poor knowledge of the 392 
perception threshold. 393 

 394 

Figure 3: Prior and posterior distributions of: (a) the perception threshold S; (b) the starting date t* of the 395 
historical period (1816-2020 period). The solid vertical lines represent the maxpost estimate of the parameter for 396 
each of the models, and the black dashed lines represent the reference values (S = 9000 m3/s and t* = 1816). The 397 

green and pink dashed vertical lines (b) represent the estimates of t* from equations (5) and (6). 398 

4.5 Impact of considering both the perception threshold and the historical 399 
period length uncertain 400 

Model D assumes that both S and n are uncertain in the probabilistic model. The maxpost 401 
quantiles estimated in Figure 2b are close to the reference values. In contrast, the width of the 402 
credibility interval is large and lies between that of models B and C. Although the estimate is 403 
more accurate than with a short series (AMAX short), it remains very imprecise for the 1000-404 
year flood. Figure 3 helps understanding the origin of this large uncertainty. The posterior 405 
distribution of the perception threshold S, although with a maxpost value (9332 m3/s) close to 406 
the true value (9000 m3/s), is very imprecise with a large standard deviation (883 m3/s). The 407 
perception threshold S appears to be slightly less precisely estimated than with model B (Table 408 
2), with respectively posterior standard deviation of 9% and 8%. The starting date of the 409 
historical period is even more difficult to estimate, particularly in comparison with the estimate 410 
from model C. It can be seen that the posterior distribution t* of model D is very similar to the 411 
prior Uniform distribution (Figure 3b), although it is slightly asymmetrical and shows a 412 
maximum not far from the true value (the year 1816). However, the flood discharge quantiles 413 
are less uncertain for model D than for model B. The precise reasons for this are unclear at this 414 
stage but this might be due to some correlations between parameters. In particular, the Pearson 415 
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correlation coefficient ρ is respectively equal to 0.44 and 0.42 between the length of the 416 
historical period n and the perception threshold S, as well as between the perception threshold 417 
S and the shape parameter ξ. 418 

4.6 Value of estimating the peak discharge of historical flood  419 

Binomial models A, B, C and D only use information on the number of times k a perception 420 
threshold S is exceeded over a period of n years. The discharge of historical floods that have 421 
exceeded the threshold is therefore ignored. Model E allows peak discharge estimates (with 422 

uncertainty) to be taken into account. The results are shown in Figure 4. There is a reduction in 423 
uncertainty of around 25% for Q1000 with model E compared to Binomial model A (posterior 424 
standard deviations of 2255 and 3019 m3/s, respectively). However, the uncertainty of model E 425 
remains around 65% greater than that of the GEV 1816-2020 model for Q1000. Although it is 426 
not a necessary condition for using historical data, knowledge of the discharge of historical 427 
floods does reduce the uncertainty around extreme quantiles. However, these results are only 428 
valid for the perception threshold S used here, which has a return period of about 15 years (with 429 
14 exceedances during 205 years). Stedinger and Cohn (1986) and Payrastre et al. (2011) 430 
showed that the difference in uncertainty between the results of these two types of models tends 431 
to reduce as the return period of the perception threshold increases towards 50 years or so, until 432 
it becomes negligible above this magnitude. This encourages the use of the number of 433 
exceedances of a perception threshold when it is not possible to have better information on 434 
historical floods. 435 

 436 

Figure 4: Q100 and Q1000 floods with 95% credibility intervals displayed as error bars. AMAX long refers to an 437 
annual maximum sample on the 1816-2020 period; Mixed refers to a mixed sample (“historical” floods on the 438 

1816-1969 period and AMAX 1970-2020). Model A uses only the number of times the perception threshold has 439 
been exceeded, while Model E considers the peak discharge (and its uncertainty) of each historical flood that 440 

exceeded threshold S. Perception threshold S and start date of historical period t* are considered perfectly known 441 
(models A and E). 442 
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5. Flood Frequency Analysis on the 1500-2020 period 443 

In the previous section, we used a synthetic case study from a 205-year systematic record (1816-444 
2020), which gives a baseline to compare the performance of five proposed models (A, B, C, 445 
D, E) with known parameters (S and n). The systematic record has been artificially subsampled 446 
into a mixed data set, containing 51 years of systematic data (1970-2020) and 154 years of 447 
censored historical data larger than a known perception threshold (1816-1969). In this section, 448 
Binomial models (A, B, C, D) are applied to a 500-year long case study, using the 205-year 449 

systematic record (1816-2020) and a collection of historical floods from HISTRHÔNE database 450 
(1500-1815). This time, S and n are not perfectly known. 451 

 452 
Figure 5: AMAX flood discharges (1816-2000) from Lucas et al. (2023) (in grey) cross-referenced with C4 453 

floods from HISTRHÔNE database (in red). The horizontal line corresponds to the estimated perception 454 
threshold S = 9000 m3/s. 455 

5.1 Prior on the perception threshold S and the starting t* of the historical 456 
period 457 

Binomial models A, B, C and D are now applied on a mixed sample over the period 1500-2020, 458 
with AMAX values for the systematic period 1816-2020 and occurrences of flood above the 459 
perception threshold for the historical 1500-1815 period. The perception threshold and the 460 
starting date of the historical period are not known precisely, and a first analysis is carried out 461 

with vague priors, with ( ∼ H�9000; 2000� and @∗ ∼ Z[1129; 1529_. By definition, the 462 
historical period begins, at the latest, on the date of the first known historical flood in 1529. The 463 

lower limit of the Uniform distribution is arbitrarily set 400 years before the date of the first 464 
historical flood in order to represent the lack of knowledge of t*. 465 

A second analysis will refine results of model D, with more accurate prior estimates of S and t* 466 
used for the historical 1500-1815 period, based on information of the systematic 1816-2020 467 
period. The application of model D with these more informative priors will be referred to as 468 

model D∗. Figure 5 cross-references C4 (extreme) floods occurring between 1816 and 2000 469 
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according to the HISTRHÔNE database (Pichard et al., 2017) and the estimated AMAX 470 
discharge values on the same period (Lucas et al., 2023). Five amongst fourteen C4 floods are 471 
below the threshold S = 9000 m3/s. Even accounting for discharge uncertainty, three C4 floods 472 
are still fully below the threshold S. As the flood ranking of the HISTRHÔNE database is based 473 
on observed damages, it is therefore not possible to have a direct match between C4 floods and 474 

an exact discharge threshold. We refine the prior distribution H�9000; 500�, with a standard 475 
deviation of 500 m3/s (instead of 2000 m3/s with model D). No C4 flood is fully below the 95% 476 
prior interval [8000; 10 000].  477 

Considering the thirteen C4 floods of the HISTRHÔNE database (1500-1815) and the fourteen 478 
floods higher than a threshold S = 9000 m3/s during the 1816-2020 period, we have two possible 479 

estimates of the starting date t∗ of the historical period: 480 

• t*(Prosdocimi) = 1511 (from eq. 5), with the knowledge of the date of the first known flood (t1 481 
= 1529), the total number of threshold exceedances (NE = 13 (C4 floods) + 14 (AMAX > S) = 482 
27), and the total number of years (NY = 2020 – 1529 = 491 years); 483 

• t*( Poisson) = 1471 (from eq. 6), with the knowledge of the starting date of the surveying period 484 
(tstart = 1500). 485 

We refine the prior distribution of t* as Z[1471; 1529_, with a width of 58 years (instead of 486 
400 years with model D). 487 

5.2 Results with vague prior on the perception threshold and the historical 488 
period length 489 

Results with systematic data only (AMAX) on the 1816-2020 period or with a mixed sample 490 
(AMAX + 13 historical floods) on the 1500-2020 period are presented for the estimation of Q100 491 
and Q1000 floods (Figure 6) and parameters (ξ, S, t*) (Table 3). 492 

Table 3: Maxpost estimation ± posterior standard deviation expressed in percentage for Q100 and Q1000 floods, 493 
and (ξ, S, t*) parameters (1816-2020 and 1500-2020 periods) 494 

Data set 
AMAX 

1816-2020 

AMAX + historical data (1500-1815) 

Mixed A Mixed B Mixed C Mixed D Mixed D* 

Quantiles 
(m3/s) 

�̀aa 
11451 
± 6% 

10977 
± 4% 

11438 
± 6% 

10975 
± 4% 

11336 
± 7% 

11118 
± 5% 

�̀aaa 
13919 
± 10% 

13149 
± 6% 

13875 
± 10% 

13139 
± 6% 

13721 
± 11% 

13421 
± 8% 

Parameters 

� 
0.058 
± 76% 

0.073 
± 52% 

0.060 
± 73% 

0.074 
± 51% 

0.061 
± 72% 

0.063 
± 63% 

S 

(m3/s) 
/ / 

9628 
± 5% 

/ 
9613 
± 6% 

9386 
± 4% 

@∗ / / / 
1527 
± 3% 

1529 
± 4% 

1526 
± 1% 

The results with a mixed sample on the 1500-2020 period show that the uncertainty on Q100 495 
and Q1000 floods (Figure 6a) is lower than with AMAX values on the 1816-2020 period for 496 
models assuming a known perception threshold (models A and C). For these two models A and 497 
C, the maxpost quantiles are also slightly lower (by around 5%) than with AMAX values on the 498 
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1816-2020 period (Figure 6a). In the same way as with subsamples on section 4, this suggests 499 
that poor knowledge of the perception threshold (models B and D) is more detrimental to the 500 
precision of estimated quantiles than poor knowledge of the historical period length (models C 501 
and D). In particular, these differences can be explained by looking at the posterior distributions 502 

of the parameters S and t∗ (Figure 6b). 503 

 504 

Figure 6: (a) Q100 and Q1000 floods with 95% credibility intervals displayed as error bars. AMAX long refers 505 
to the annual maximum sample on the 1816-2020 period; Mixed A-B-C-D refer to a mixed sample (“historical” 506 

floods on the 1500-1815 period and AMAX for 1816-2020) for various statistical models. (b) Posterior 507 
distribution of: (left) the perception threshold S; (right) the starting date t* of the historical period (1500-2020 508 
period). The solid vertical lines represent the parameter maxpost estimates for each model and the black dashed 509 

lines represent the reference values (S = 9000 m3/s and t* = 1500). The green and pink dashed vertical lines 510 
(right) represent the estimates of t* by equations (5) and (6). 511 
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The posterior standard deviations for the perception threshold (models B and D) are relatively 512 
small (around 500 m3/s for both models) and the distributions are lying mostly above the prior 513 
value of 9000 m3/s (maxpost values around 9600 m3/s, Table 3). The starting date t* of the 514 
historical period is more precisely estimated with model C than with model D, whose posterior 515 

distribution is very close to the prior distribution. For both models, the maxpost estimates of t∗ 516 
are almost 30 years higher than the assumed value of 1500. In particular, the posterior 517 
distribution for model C shows a maximum for the year 1529, which corresponds to the date of 518 
the first flood in the sample. 519 

This trend towards a higher threshold and a shorter historical period could be a symptom of the 520 
non-exhaustiveness of the extreme floods (C4 category) of the HISTRHÔNE database, despite 521 
the fact that the stationarity hypothesis of the Poisson test over the 1500-2020 period was not 522 
rejected (Figure 1b). Once again, we can compare the rate of occurrence of floods above the 523 
threshold S = 9000 m3/s for each of the two samples. For the historical sample, 13 floods were 524 
observed over 316 years, i.e. one exceedance every 24 years. For the systematic sample, there 525 
were 14 floods over a period of 205 years, i.e. one exceedance every 15 years. This larger 526 
frequency of S exceedances of the systematic period, whether due to sampling variability, 527 
climatic variability or the non-exhaustiveness of the historical data, leads to the estimation of a 528 
higher perception threshold and/or a shorter historical period length. 529 

5.3 Refining prior distributions of the perception threshold and the 530 
historical period length 531 

The previous analysis is refined using narrower prior distributions of the perception threshold 532 

S and the starting date t∗ of the historical period. A comparison of the Binomial models D and 533 

D∗ and the AMAX GEV 1816-2020 model is presented in Figure 7a. It can be seen that the 534 
uncertainty of the quantiles is smaller by about 15% compared to the reference for Q100 and 535 
Q1000. Maxpost estimates are also reduced by approximately 3% for both return periods. The 536 
use of historical floods therefore appears relevant to reduce the uncertainty of the quantiles, 537 

even in the case where S and n are uncertain. It can also be noted that the elicitation of more 538 
informative priors (see Falconer et al., 2022 for a methodological review) reduced the standard 539 

deviation of the posterior distribution for Q1000 by about 25% (comparison of model D with 540 

vague priors on S and t*, and model D∗ with refined priors). 541 

The posterior distributions of S and t∗ are shown in Figure 7b. Once again, the posterior 542 
distribution of the perception threshold is shifted towards values higher than the assumed value 543 

of 9000 m3/s, with a maxpost threshold at 9386 m3/s. The posterior distribution of t∗ is again 544 
very close to the prior distribution, with a slightly higher density for the years close to the date 545 

of the first flood. The maxpost estimate of t∗ is here 1526, i.e. a length of the historical period 546 
26 years shorter than expected. Therefore, a doubt remains as to the completeness of the 547 
historical sample or the inter-sample stationarity as described in the previous section. 548 
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 549 

Figure 7: (a) Q100 and Q1000 floods with 95% credibility intervals displayed as error bars. AMAX long refers 550 
to an annual maximum sample on the 1816-2020 period; Mixed D* refers to a mixed sample (“historical” floods 551 
on the 1500-1815 period and AMAX for 1816-2020), with refined priors on S and t*. (b) Posterior distributions 552 
of (left) the perception threshold S; (right) the starting date t* of the historical period for the two mixed models 553 

D and D*. The solid vertical lines represent the maxpost estimate of the parameter for each of the models and the 554 
black dashed lines represent the reference values (threshold S = 9000 m3/s; starting date t* = 1500). 555 

6. Discussion 556 

6.1 Main findings on the 1816-2020 period 557 

By using the probabilistic models described in section 2 on an artificially degraded sample 558 
whose characteristics are well known, it is possible to assess the impact of limited knowledge 559 
of the perception threshold S and the length n of the historical period on the estimation of 560 
extreme quantiles. The results show that poor knowledge of the perception threshold has a 561 
greater impact than poor knowledge of the historical period length. Even if the maxpost 562 
estimates of the perception threshold for models B and D are close to the true value (9000 m3/s), 563 
the uncertainty resulting from determining the threshold has a strong impact on quantiles 564 
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uncertainty. Furthermore, the estimation of the historical period length in the case of model C 565 
is also quite imprecise, but this has little impact on the uncertainty of the results when compared 566 
with those of model A. The comparison of model A, for which only the number of exceedances 567 
of the perception threshold is known, with model E, for which the discharge of historical floods 568 
is known within an uncertainty interval, demonstrated the value of reconstructing the discharge 569 
of each historical flood.  570 

Finally, the results on the 1816-2020 period suggest that the quantiles uncertainty may be 571 
underestimated when the perception threshold and the historical period length are unduly 572 
considered to be perfectly known. The models proposed in this paper allow us to account for 573 
imperfect knowledge when estimating extreme quantiles. 574 

6.2 Main findings on the 1500-2020 period 575 

Application of the Binomial model D to a mixed sample with discharge estimate of AMAX 576 
values on the systematic 1816-2020 period and a collection of 13 historical floods from 1500 577 
to 1815 allows the uncertainty around the perception threshold S and the historical period length 578 
to be considered. Priors of model D were refined, in order to have a more realistic assessment 579 
of threshold S and the starting date t* of the historical period. This refined model, called model 580 
D*, gives the following results: 581 

• Despite the fact that the available AMAX flood series on the 1816-2020 period is really long 582 
(205 years), it is possible to reduce the uncertainty of the flood quantiles (Figure 7a) by adding 583 
information of 13 exceedances of a threshold S = 9000 m3/s during three prior centuries (period 584 
1500-1815) and prior knowledge about S and t*; 585 

• The refinement of the prior distributions on the threshold S and the starting date t*, with 586 
model D*, gives a more precise assessment of flood quantiles than with model D (Figure 7a). 587 
Posterior standard deviation (expressed in %) of Q1000 quantile decreases from 11% to 8% 588 
(Table 3). In both cases, considering the perception threshold S as being uncertain has much 589 
more impact on the uncertainty of the results than considering a lack of knowledge about the 590 

length of the historical period; 591 

• The combination of an increased perception threshold (Smaxpost = 9386 m3/s vs Sprior = 9000 592 

m3/s) and a reduced span of the historical period (t*
maxpost = 1526 vs t*

prior = 1500) may be the 593 
symptom of the non-exhaustiveness of floods in the historical samples of the HISTRHÔNE 594 
database, even though no non-stationarity of the frequency of floods was detected (Figure 1b). 595 
As the historical flood inventory is based on damages, it may be sensitive to some changes in 596 
damage perception. 597 

• Flood distribution and 95% credibility interval of model D* are represented in Figure 8. 598 
AMAX values are reported with their uncertainty (from 5% to 30%) and historical floods as 599 

exceedances. Information on floods during three prior centuries (1500-1815) reduces the level 600 
of extrapolation towards extreme floods (flood of record has a plotting position around the 601 

1000-year return period in Figure 8, instead of a 400-year return period in Figure 2a for the 602 
1816-2020 period). 603 
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 604 

Figure 8: Flood distribution and 95% confidence interval of model D* (Mixed sample: systematic period 1816-605 
2020 + 13 historical exceedances on 1500-1815, refined prior on S and t*). Experimental distribution in black 606 

(AMAX values) or red (exceedances of the perception threshold). 607 

7. Conclusion 608 

This paper proposes Binomial models for the inclusion of historical data into FFA, which 609 
explicitly recognize the uncertain nature of both the perception threshold and the starting date 610 
of the historical period. 611 

The models are first tested with a 205-year long series of AMAX values for the outlet of the 612 
Rhône River at Beaucaire, France. Lucas et al. (2023) produced a detailed analysis of the 613 
uncertainty of this flood discharge series. It has been artificially subsampled in order to mimic 614 
a historical context, considering AMAX values on a 50-year period (1970-2020) and a 615 

collection of 10 “historical” floods during the 1816-1969 period. The estimated quantiles were 616 
compared with estimates from a GEV model with AMAX values for the entire period (1816-617 
2020). Considering that the perception threshold is perfectly known when this is not the case 618 
can lead to a significant underestimation of the uncertainty of flood quantiles. This also holds 619 
for the length of the historical period but to a much lesser extent. In the case of this subsample, 620 
the use of historical data makes it possible to reduce the uncertainty of the quantiles compared 621 
to the sole use of the short systematic sample (1970-2020), considering uncertainties on the 622 
threshold S and the starting date t* of the historical period. The Binomial model estimate with 623 
known S and t* (model A) was then compared to an estimate for which historical flood 624 
discharges are known within an interval (model E). In Beaucaire, the use of the historical flood 625 
discharges turned out to be slightly more informative than the use of the sole number of 626 
exceedances of the perception threshold. According to Stedinger and Cohn (1986) and Payrastre 627 
et al. (2011), the magnitude of the perception threshold has a direct influence on the uncertainty 628 
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of the results in the case of the Binomial model. The advantage of a model based on historical 629 
flood discharges instead of a Binomial model tends to be reduced when the perception threshold 630 
is large, especially with a return period greater than 50 years. In Beaucaire, the return period of 631 
the perception threshold S is about 15 years, which explains the advantage of model E over 632 
model A in this specific case. 633 

The shape parameter estimated at Beaucaire is positive, corresponding to an upper-bounded 634 
GEV distribution (with the parametrization used in this paper). Therefore, the general 635 
conclusions discussed above may not apply to other series leading to negative shape parameters 636 
and hence heavy-tailed distributions. The methodology proposed in this paper should therefore 637 
be applied in future work to a diverse collection of real-life case studies, and possibly to 638 
synthetic data as well, in order to understand its properties in more depth. 639 

The paper also presents the results of the Binomial model with a mixed sample of 205 AMAX 640 
values (1816-2020 period) and 13 occurrences of historical floods (1500-1815 period). The 641 
addition of historical information for three centuries reduces the uncertainty of Q100 and Q1000 642 
flood quantiles (about 15%), despite only the number of exceedances being known. However, 643 
some doubts remain about the completeness of the historical sample, as the posterior estimation 644 
of S and t* are larger than the prior. Although the stationarity of the data has been checked, it is 645 
likely that the long series used in this paper is impacted by the imperfect completeness of the 646 

historical sample, which is based on damage perception. Indeed, the damage perception has 647 
probably evolved throughout the last five centuries at Beaucaire. Directly linking the 648 
consequences of a flood to its peak discharge is risky, as physical (levee failure, duration of 649 
flood…) or anthropic factors (population density, flood control policy, media coverage or 650 
politic context…) could impact the stationarity and the availability of the data. Therefore, it 651 
seems important to keep this in mind while using historical data, particularly during data 652 
collection. Using the whole set of available data doesn’t always seem to be the best solution, as 653 
the exhaustiveness of the data must be the first criterion. Thus, as demonstrated in this article, 654 
it is essential to carry out a complete assessment of the various sources of uncertainty in order 655 
to decide to what extent the addition of historical information is useful to improve the estimation 656 

of flood risk.  657 

Stationarity hypothesis may also be challenged by climatic variability at Beaucaire, as trends 658 

in flood magnitudes have been identified in several regions of Europe (Hall et al., 2014; Blöschl 659 
et al., 2020) and France (Giuntoli et al., 2019). To date, there are no rules in France for taking 660 
into account of the impact of climate change on flood risk estimates. However, it is still possible 661 
to integrate temporal changes in climate processes or watershed characteristics within the 662 
probabilistic model itself, as increasingly described in the literature (see Salas et al., 2018, for 663 
an overview). It is also important to note that out of the FFA scope, such long series remain 664 
interesting for the study on the long-term variability of floods over several centuries, and their 665 
value for risk awareness and memory. 666 
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9. Appendix: Plotting position for unknown historical floods 679 

The exceedance probability of the ith value q(i) of a sample (q(1) ≥ … ≥ q(N)) sorted by 680 
decreasing value is: 681 


′P = hij;[` > ��l�_ = P�L
mn��oL (A1) 682 

using for example a = 0.44, the optimum value for a Gumbel distribution (Cunnane, 1978). 683 

Hirsch (1987) proposed to split a mixed sample, formed by '��, … , �mqr) AMAX values during 684 

NYC years (continuous period) and NEH historical values larger than a perception threshold S 685 
during NYH years (historical period), into two sub-samples: 686 

• NE exceedances of the threshold S on the whole period (divided into NEH and NEC 687 
exceedances on the historical and continuous periods), during NY years, with NY= NYH + 688 
NYC years: 689 

hij;[` > ��l�_ = ms
mq� 
′P = ms

mq� P�a.tt
msna.�o i = 1, NE (A2) 690 

• floods lower than S on the continuous period: 691 

hij;[` > ��l�_ = ms
mq� + 1 − ms

mq� �P�m-��a.tt
mqr�msrna.�o i = NE +1, HIv + HJw (A3) 692 

In the current case study, as the discharge of historical floods is not known (only threshold 693 
exceedance), it is not possible to rank all values of the mixed sample. A way to circumvent this 694 
problem is to randomly rank the historical unknown floods amongst the NEC floods larger than 695 
S during the continuous period: 696 

• Step 1: randomly sample without replacement the rank of the NEC floods of the continuous 697 
period within the whole period: sample(x = 1:NE, size = NEC, replace = FALSE) (R code); 698 

• Step 2: as we know the values of the NEC floods larger than S during the continuous period, 699 
apply the ranks just sampled to them (i.e. the smallest sample rank is assigned to the largest 700 
flood, etc.); 701 
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• Step 3: assign the remaining ranks to the NEH floods larger than S during the historical 702 
period. 703 

As we assigned ranks to all exceedances of the threshold S on the whole period, we are able to 704 

compute their plotting position with equation (A2). Let denote �� ≥ ⋯ ≥ �msr ≥ ( the known 705 

discharges of the continuous period larger than the threshold S, with their corresponding ranks 706 

i� < ⋯ < imsr. We now assign an interval to the unknown historical discharges (see Figure 8): 707 

• If r1 > 1, we have (r1 - 1) historical flood discharges larger than q1. They will be plotted with 708 

vertical dashed lines larger than q1; 709 

• If (ri+1 - ri) > 1, we have (ri+1 - ri) historical flood discharges within the interval [qi+1; qi]. 710 
They will be plotted with vertical dashed lines larger ½ (qi + qi+1); 711 

• If imsr < HJ, we have (NE - imsr) historical flood discharges within the interval [S; �msr]. 712 

They will be plotted with vertical dashed lines larger ½ (S + �msr). 713 

This ordering is random, but it makes it possible to draw the empirical distribution of floods 714 
and to compare it with the estimated GEV distributions. 715 
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