
Learning Landscape Features from Streamflow with Autoencoders
Alberto Bassi1,2, Marvin Höge2, Antonietta Mira3,4, Fabrizio Fenicia2, and Carlo Albert2

1Department of Computer Science, ETH Zurich, Switzerland
2Swiss Federal Institute for Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
3Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
4Insubria University, Como, Italy

Correspondence: Alberto Bassi (abassi@ethz.ch)

Abstract.

Understanding the number and types of signatures that best describe streamflow time series is a crucial objective in hydro-

logical science, serving applications such as catchment classification, hydrological model development and calibration. With

the main objective of learning a minimal number of streamflow features, we employ an explicit noise conditional autoencoder

(ENCA), which, together with meteorological forcings, allows for an accurate reconstruction of the whole streamflow time5

series. The ENCA architecture feeds the meteorological forcing to the decoder in order to incentivize the encoder to only learn

features that are related to landscape properties. By isolating the effect of meteorology, these features can thus be interpreted

as landscape fingerprints. The optimal number of features is found by means of an intrinsic dimension estimator. We train

our model on the hydro-meteorologic time series data of 568 catchments of the continental United States from the CAMELS

dataset. We compare the reconstruction accuracy with state-of-the-art models that take as input a subset of static catchment10

attributes (both climate and landscape attributes) along with the meteorological forcing variables. Our results suggest that avail-

able static catchment attributes compiled by experts account for almost all the relevant information about the rainfall-runoff

relationship. Yet, these catchment attributes can be summarized by only two relevant learnt features (or signatures), while a

third one is needed for about a dozen difficult catchments in the central US, mainly characterized by high aridity index and

intermittent flow. The principal components of the learnt features strongly correlate with the baseflow index and aridity indi-15

cators, which is consistent with the idea that these indicators capture the variability of catchment hydrological response and

relate to needed model complexity. The correlation analysis further indicates that soil-related and vegetation attributes are of

high importance. Finally, in the attempt to interpret the learnt catchment features, we relate them to typical hydrological model

components, with specific reference to the parameters of the GR4J model and their function on the hydrograph.

1 Introduction20

Hydrological signatures encompass descriptive statistics derived from meteorological and streamflow time series. They serve

various purposes in hydrology, such as hydrological model calibration or evaluation (Fenicia et al., 2018; Kiraz et al., 2023),

process identification (McMillan, 2020a), and ecological characterization (Olden and Poff, 2003). Alongside with catchment
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attributes (distinguished here in landscape and climate attributes), they are also used for catchment classification and regional-

ization studies (Wagener et al., 2007).25

Streamflow signatures, i.e. hydrological signatures solely based on streamflow, hold significant importance as they relate to

the variable one aims to predict and understand (Gnann et al., 2021). Hydrologists have developed diverse signatures reflecting

different aspects of streamflow dynamics. Examples include those linked to the flow duration curve (e.g., slope of various

segments), the baseflow index, or the flashiness index. Numerous other such signatures exist. For instance, Olden and Poff

(2003) compiled a list of 171 indices from prior work, reflecting aspects associated to magnitude, frequency, duration, timing,30

and rate of change of flow events. As streamflow depends on meteorological forcing and landscape attributes, streamflow

signatures generally contain information from both sources. In particular for predictions in ungauged basins, it is vital to be

able to disentangle them.

One way of doing so is through hydrological models, which condense catchment attributes into model parameters (Wagener

et al., 2003). Previous research indicates that observed hydrographs can be represented by a handful of model parameters35

(Jakeman and Hornberger, 1993). For instance, the GR4J model (Perrin et al., 2003), resulting from a continuous refinement

process aimed at balancing model complexity and performance, has only four parameters. However, these analyses are based

on predefined model assumptions.

Model parameters can, in principle, directly be estimated from streamflow signatures. The Approximate Bayesian Computa-

tion (ABC) technique (Albert et al., 2014) has recently been used to infer model parameters from streamflow signatures - which40

in this context are called summary statistics - bypassing the need to directly compare the complete time series (Fenicia et al.,

2018). If these summary statistics contained all the information necessary to estimate model parameters they would be termed

as sufficient. Sufficiency is therefore not an inherent property of the summary statistics but depends on the specific hydrological

model and on the parameters that need to be inferred. For ABC to converge efficiently, we also want the summary statistics

to be minimal, i.e., while they should ideally encode all the parameter related information available in the streamflow, they45

should encode no other information, neither from the forcing nor from the noise that is used for the simulations (Albert et al.,

2022). Such minimally sufficient summary statistics could thus be considered the relevant fingerprints of landscape features

on the streamflow. Of course, this holds true only if the model is capable of encoding all the information in such features that

is relevant for the input-output relationship. However, recent studies show that purely data-driven models might outperform

process-based models in prediction accuracy (Kratzert et al., 2019; Mohammadi, 2021), becuase they suggest information in50

catchment attributes previously not utilized for streamflow prediction.

Our goal is to employ Machine Learning (ML) techniques to identify a minimal set of streamflow features enabling accurate

streamflow predictions when combined with meteorological forcing. Thus, our aim is to eliminate all forcing-related informa-

tion from the streamflow, distilling features solely from the catchments themselves. We approach this objective from a purely

data-driven perspective, aiming to reduce assumptions relative to traditional process-based modeling.55

To identify minimal sets of streamflow features, we employ a novel ML architecture recently proposed for extracting mini-

mally sufficient summary statistics from noisy outputs of stochastic models. The architecture is an Explicit Noise Conditional

Autoencoder (ENCA) (Albert et al., 2022), where the bare noise utilized by the stochastic model simulator is fed into the de-
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coder together with the learnt summary statistics. This way, the encoder is encouraged to encode only those features containing

information on the model parameters while disregarding the noise. Albert et al. (2022) applied ENCA to infer parameters of60

simple one-dimensional stochastic maps, showing that the learnt features allow for an excellent approximation of the true pos-

terior. In our case, instead of noise, we input meteorological forcing into the decoder and encourage the encoder to exclusively

encode landscape-related information within the streamflow. In order to reduce the computational costs and learn a minimal

set of catchment features, the dimension of the latent space is chosen according to the estimation of its Intrinsic Dimension

(ID) (Facco et al., 2017; Allegra et al., 2020; Denti et al., 2022). In particular, we employ the ID estimator GRIDE (Denti65

et al., 2022), which is robust to noise. Learnt features will then be compared with known catchment attributes (both from the

landscape and the climate) and hydrological signatures to provide a hydrological interpretation and guide knowledge domain

experts towards the pertinent information necessary for streamflow prediction.

We apply our approach to the US-CAMELS dataset (Newman et al., 2015), covering several hundred catchments over the

continental US. In order to benchmark our results, we used previous modelling work on the same dataset. LSTMs (Long Short70

Term Memory networks) have emerged as state-of-the-art models for data-driven predictions in ungauged basins. In the study

of Kratzert et al. (2019), LSTMs validated on unseen catchments, enriched with static landscape and climate attributes from

Addor et al. (2017), outperformed conceptual models. First investigations towards mechanistic interpretation of the LSTM

states, e.g. linking hidden states to the dynamics of soil moisture, demonstrated the potential of eliciting physics from data-

driven models (Lees et al., 2022). Here, by linking learnt features to known catchment attributes, we explore a further aspect75

in this broader field of explainable AI or interpretable ML (Molnar, 2024; Molnar et al., 2020).

Our specific objectives are: (i) find the minimal number of dominant streamflow-features stemming from the landscape; (ii)

relate them to known landscape and climate attributes as well as established hydrological signatures. This will not only allow

us to determine how many features are required for streamflow prediction, but also to answer the question whether there is

missing information in known catchment attributes.80

A similar attempt of learning signatures has recently been made by Botterill and McMillan (2023). In pursuit of an inter-

pretable latent space on a continental scale, they employed a convolutional encoder to compress high-dimensional informa-

tion derived from meteorological forcing and streamflow data. This approach was aimed at learning hydrological signatures

(McMillan, 2020b) within the US-CAMELS dataset. Their approach differs from ours in three aspects: (i) they used a a tradi-

tional conceptual model as a decoder whereas we use an LSTM architecture which has been shown to be superior to conceptual85

models when provided with catchment properties; (ii) they fed both streamflow and meteorological forcing into the encoder

whereas we feed in only streamflow data in an attempt to separate landscape- from forcing-information; (iii) they did not at-

tempt to find a minimal number of signatures sufficient for streamflow prediction, whereas this is a primary objective of our

work.

It is important to note that our main objective is not to beat state-of-the-art models regarding their predictive performance in90

ungauged basins. Our goal is rather to investigate the information content in streamflow. However, we believe our research will

provide valuable insights into the most critical features for streamflow prediction. Ultimately, this knowledge may be utilized

for prediction in ungauged catchments in the future.
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Figure 1. Explicit Noise Conditional Autoencoder used in this study. For the hyper-parameters and the implementation details, the reader

is referred to Appendix C. The neural network architectures employed are Convolutional Neural Networks (CNN), a Fully Connected (FC)

layer and LSTM. The observed and simulated streamflows are denoted with Q and Q̂, respectively. The meteorological forcing variables are

denoted with PRCP (precipitation), SRAD (solar radiation), Tmax (maximum temperature), Tmin (minimum temperature) and Vp (vapour

pressure).

2 Models and Methods

2.1 Data95

We employ the Catchments Attributes and Meteorology for Large-sample Studies (CAMELS) (Newman et al., 2015), which

consists of 671 catchments in the contiguous United States (CONUS), ranging in size from 4 to 25 · 103 km2. For this study,

we select those 568 catchments out of 671 whose data span continuously on a daily basis the time period from 1 October

1980 to 30 September 2010, corresponding to 30 hydrological years. The first 15 years are used for calibration and the last

15 for validation. Along with the streamflow time series and the meteorological forcing variables, US-CAMELS also provides100

information about catchments static attributes (Addor et al., 2017), encompassing both landscape (vegetation, soil, topography

and geology) and climate. Streamflow data is retrieved from the U.S. Geological Survey gauges, while the meteorological

forcing comes from the North America Land Data Assimilation Systems (NLDAS) and includes maximum and minimum

daily temperature, solar radiation, vapour pressure and precipitation.
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2.2 Explicit Noise Conditional Autoencoder105

We use the Explicit Noise Conditional Autoencoders (ENCA) (Albert et al., 2022), where the streamflow is fed to a convo-

lutional encoder. ENCA has been designed to distill sufficient summary statistics which contain minimal noise information

from the output of stochastic models. Here, the noise is substituted by all the variables we are not interested in, namely the

meteorological forcing. The convolutional encoder is thus followed by a LSTM decoder that takes as input 15 hydrological

years of meteorological forcing, i.e. 5478 values (Figure 1 - for the detailed architectures the reader is referred to Appendix C).110

The memory cells of the LSTM are limited by the dimension of the input layer. In order to enlarge the memory available and

capture more complex patterns from the meteorological forcing, the meteorological time series are first fed to a single linear

layer with 1350 output units. The output of this linear layer is then concatenated with the output of the encoder and fed to the

LSTM decoder. This way the decoder sees tensors of size (B,5478,1350+S), where B is the batch size (batches are selected

across different catchments) and S is the latent space dimension. We opted for such an architecture in order to extract as much115

static information related to the streamflow as possible.

Obviously, setting the latent dimension equal to the length of the entire time-series would allow for a perfect streamflow

reconstruction. However, we expect to be able to compress almost all information not already contained in the forcing into

a much smaller number of features. Because they should be largely devoid of forcing information, we call them the relevant

landscape features and explain in the next section how we fix their number. We refer to the ENCA model with latent space120

dimension equal to N as ENCA-N . Comparing relevant landscape features with known static catchment attributes in terms of

their capacity for streamflow reconstruction will allow us to find out whether static catchment attributes lack information that

is crucial for streamflow prediction. For this comparison, we use an LSTM model augmented with catchment attributes (Addor

et al., 2017) in the input. We refer to this model as Catchment Attributes Augmented Model (CAAM). This model differs

from Figure 1 solely by the fact that the latent features are substituted by known catchment attributes. Following Kratzert et al.125

(2019), CAAM is fed with 27 catchment attributes (reported in Table 1 and denoted with a *), which are representative of

climate, topology, geology, soil and vegetation. As a control case, we also report the results obtained with ENCA-0, which is

given neither catchment attributes nor learnt features as inputs.

In order to mitigate numerical instability, it is crucial to standardize the catchment attributes or latent features before feeding

the LSTM. In CAAM, we standardize the catchment attributes once and for all with the mean and standard deviation computed130

over all the considered catchments. This is not possible for ENCA, since the mean and standard deviation of the latent features

are not known a priori. Therefore, we standardize the latent features by mean of a batch normalization layer. This way, we

ensure that the magnitude of the LSTM input is comparable between CAAM and ENCA.

2.3 The Intrinsic Dimension

To identify the dimension of the latent space we proceed with the following methodology. First, we train an ENCA-N with a135

relatively large number of latent features N . Since we fed 27 catchment attributes to the reference model (CAAM), we used a

27-dimensional latent space in order to have a fair comparison in terms of model capacity. We refer to this model as ENCA-27.
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Figure 2. GRIDE evolution plot for the ENCA-27 (left) and the ENCA-5 (right) latent spaces for one random restart. The other restarts show

a similar pattern.

The dimension of the latent space does not matter so much, as long as it is larger than the expected number of relevant landscape

features. Then, we estimate the ID of the latent space (see below), and train another ENCA with the number of latent features

equal to the estimated ID and, in turn, estimate its ID to check if the dimension of the latent space can be further reduced.140

In order to estimate the ID, we apply the GRIDE estimator (Denti et al., 2022). Given sample points, xi ∈ RD, for i =

1, . . . ,M , and a distance measure, r : RD × RD → R+, GRIDE assumes that points in a given neighbourhood are counted

with a Poisson point process with intensity ρ, which is constant at least up to the scale of the diameter of the considered

neighbourhood. We define ri,l as the distance between the point xi and its l -th nearest neighbour. Let us define µi,n2,n1 = ri,n2
ri,n1

,

where n1 and n2 (with 0≤ n1 ≤ n2 ≤M ) are nearest neighbours of generic order. The distribution of µi,n2,n1 can be computed145

in closed form and depends only on the ID of the data while, crucially, does not depend on ρ, as long as ρ is constant in the

considered neighbourhood of i whose diameter is set by the distance between i and its n2-th nearest neighbour (Denti et al.,

2022).

In order to correctly identify the ID of a dataset, a scale-independent analysis is essential. We therefore make use of GRIDE

paths, the evolution of the ID as a function of n2, which can be interpreted as the scale at which we look at the data. We150

set n1 = n2/2, as is usually done in the literature. As a function of n2, the ID is first expected to increase, due to the noise

present at small distance scales, and then to reach a plateau corresponding to the correct ID. Figure 2 shows the GRIDE path

for increasing values of n1 from 1 to 270. The left panel shows that the ID estimate of the latent space of ENCA-27 decreases
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after showing a plateau around five, then reaches a minimum around three, then increases again and finally collapses to low

values at larger distance scale. The plateau at five motivates us to train an ENCA-5 and study its ID. The right panel of Figure 2155

shows that the local minimum of the GRIDE path of the latent space of ENCA-5 is consistent with an ID of three. We can

deduce that, for most of the catchments, the ID is three, while for some it can be higher. However, the fact that the GRIDE path

of the latent space of ENCA-27 shows two plateaus around five and three can be an indicator of the existence of two or more

manifolds with different IDs. We will see below that, indeed, three features seem to capture most of the relevant information,

which is in line with the GRIDE path for ENCA-5 (right plot in Figure 2).160

Note that, at increasingly large scales, the GRIDE estimator is not reliable anymore since the assumption of locally homoge-

neous intensity of the Poisson process - on which it relies - may fail to hold. With real data it is usually difficult to ascertain the

scale at which the local homogeneity assumption is valid. We use the ID as a guide to reduce the dimension of the latent space

of the autoencoder. However, in the end we train ENCA for several dimensions of the latent space and evaluate the information

content of the learnt features in terms of their ability to reconstruct streamflows.165

2.4 Training and Validation

We use the first 15 years of data for calibration and the last 15 for validation. Calibration is performed by maximizing the

Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), defined as:

NSE = 1−
∑T

t=1

(
qsim,t− qobs,t

)2

∑T
t=1

(
qsim,t−µobs

)2 , (1)

where qobs,t and qsim,t are, respectively, the observed and predicted streamflow expressed in mm/day at day t, and µobs is the170

average of the observed streamflow. We notice that maximizing the NSE is equivalent to minimizing the Mean Square Error

(MSE) between data and prediction. Each model is trained with the Adam optimizer (Kingma and Ba, 2015), with learning

rate equal to 10−5 for a maximum of 20 · 103 epochs and early stopping with patience of 2 · 103 epochs. The models with best

validation NSE is then chosen. The batch size is set to 64 and the first 270 days of the predicted streamflow are excluded when

computing the loss.175

Since the NSE overweight flow peaks due to the square values, it is not well suited to asses the performance on low flow

regimes. Therefore, following Kratzert et al. (2019) we also report the percentage bias, defined as

BIAS =
µsim−µobs

µobs
. (2)

In addition, to assess the performance in streamflow variability, we report the standard deviation ratio of the streamflow

logarithm, defined as180

LOG−STDEV =
σlog(sim)

σlog(obs)
, (3)

where σlog(sim) and σlog(obs) are the standard deviations of the logarithm of the simulated and observed streamflows, respec-

tively.
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Each algorithm is affected by noise, due to the random initialization of the neural network parameters. To minimize this

effect we run each model with four random restarts, each one providing the streamflow prediction in the whole validation185

period. We compute the evaluation metrics on the predicted streamflow after averaging the streamflow over these four random

restarts.

2.5 Latent Space Interpretation

The relevant features are first projected using a Principal Component Analysis (PCA), since in general the autoencoder latent

representation is in arbitrary coordinates. By doing this, we ensure a fair comparison between different random restarts, since190

we change the basis of each latent space by ordering the new coordinates according to the explained variance. Finally, in order

to interpret the relevant landscape features, we report the Spearman correlation (Zar, 2005) matrix between the learnt features

and static catchment attributes and hydrological signatures, which are reported in Table 1.
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Meteorological Forcing Variables

PRCP Average daily precipitation (mm/day)

SRAD Surface incident solar radiation (W/m2)

Tmax Maximum daily atmosphere temperature (°C)

Tmin Minimum daily atmosphere temperature (°C)

Vp Nearly surface daily vapour pressure average (Pa)

Climate Attributes

Prec Mean∗ Mean daily precipitation.

PET Mean∗ Mean daily potential evapotranspiration.

Prec Seasonality∗ Seasonality of precipitation estimated by using sinusoidal waves.

Fraction Snow∗ Fraction of precipitation falling on days with T < 0 °C.

Aridity Index∗ Ratio between the mean PET and mean precipitation.

High Prec Frequency∗ Frequency of days with ≤ 5x mean daily precipitation.

High Prec Duration∗ Mean duration of high precipitation events.

Low Prec Frequency∗ Frequency of days with ≤ 1 mm/day of precipitation.

Low Prec Duration∗ Mean duration of dry periods.

streamflow Ratio Ratio between the mean daily streamflow and mean daily precipitation.

Stream ELAS Streamflow precipitation elasticity.

Hydrological Signatures

Q Mean Mean daily streamflow (mm/day).

Slope FDC Slope of the flow duration curve.

Baseflow Index Ratio between the average daily baseflow and streamflow.

Q5 5 % flow quantile (mm/day).

Q95 95 % flow quantile (mm/day).

High Q Frequency Frequency of high-flow days (> 9 times the median daily flow).

High Q Duration Mean duration of high flow events (number of consecutive days > 9 times the median daily flow).

Low Q Frequency Frequency of low flow days (< 0.2 x the mean daily flow).

Low Q Duration Mean duration of low-flow events (number of consecutive days < 0.2 times the mean daily flow).

Zero Q Frequency Frequency of days with streamflow = 0 mm/day.

HFD Mean Mean half-low-date (date on which the cumulative streamflow since October the 1st reached half of the annual streamflow).

Landscape Attributes

Topological Attributes

Elevation Mean∗ Mean elevation of the catchment.

Slope Mean∗ Mean slope of the catchment.

Area Catchment∗ Area of the catchment.

Geological Attributes

Carbonate Rocks Fraction∗ Carbonate sedimentary rocks fraction area in the catchment.

Geological Porosity Subsurface porosity.

Geological Permeability∗ Surface permeability (in log10 scale).

Soil Attributes

Soil Depth (Pelletier)∗ Depth to bedrock (maximum 50 m).

Soil Depth (STATSGO)∗ Soil depth (maximum 1.5 m).

Soil Porosity∗ Volumetric porosity.

Soil Conductivity∗ Saturated hydraulic conductivity.

Max Water Content∗ Maximum water content of the soil.

Sand Fraction∗ Fraction of sand in the soil.

Silt Fraction∗ Fraction of silt in the soil.

Clay Fraction∗ Fraction of clay in the soil.

Water Fraction Fraction of the top 1.5 m marked as water.

Organic Fraction Fraction of the soil depth (STATSGO) marked as organic material.

Other Fraction Fraction of the soil depth (STATSGO) marked as other.

Vegetation Attributes

Fraction Forest∗ Fraction of the catchment covered by forest.

LAI Max∗ Maximum monthly mean of leaf area index.

LAI Diff∗ Difference between the max. and the min. monthly mean of the leaf area index.

GVF Max∗ Maximum monthly mean of the green vegetation fraction.

GVF Diff∗ Difference between the max. and min. monthly mean of the green vegetation fraction.

Root Depth 50 50 % percentile extracted from a root distribution based on IGBP land cover

Root Depth 99 99 % percentile extracted from a root distribution based on IGBP land cover

Table 1. Meteorological forcing variables, climate and landscape (topological, geological, soil and vegetation) attributes and hydrological

signatures compared in this study. The attributes fed to CAAM are denoted with a ∗.

9

https://doi.org/10.5194/hess-2024-47
Preprint. Discussion started: 20 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 3. Validation NSE, BIAS and LOG-STDEV values for the considered models. The NSE and BIAS distributions of the attributes

augmented model (CAAM) lie between ENCA with 2 and 3 latent features. ENCA tends to underestimate the flow variability, which

approaches one by increasing the number of latent features.

3 Results and Discussion

3.1 The Number of Relevant Landscape Features195

Figure 3 depicts the boxplot of the validation NSE, BIAS and LOG-STDEV values for the considered models. The associated

statistics are reported in Appendix A. In all the metrics considered, the control model ENCA-0 achieves the worst results,

which is consistent with what Kratzert et al. (2019) found. In particular, the big performance difference between ENCA-0 and

CAAM is an indicator of the utility of the information contained in the 27 selected catchment attributes in terms of streamflow

prediction.200

In general, Figure 3 and the related statistics (Table A1) show also that increasing the number of latent features improves

the prediction accuracy of the considered metrics. All the ENCA-N models (for N > 0) perform better (with respect all the

metrics considered) than the control case ENCA-0.

In terms of NSE, we observe a performance improvement from ENCA-1 to ENCA-2 in the bulk of the distribution, and

a further improvement from ENCA-2 to ENCA-3 which produces a lower number of NSE outliers. The NSE improvements205

between ENCA-3 and ENCA-27 are minor both in the outliers and in the bulk distribution. In terms of the BIAS, we observe a

similar pattern. By increasing the number of latent features, the bulk distribution improves significantly. However, we observe

the biggest gap between ENCA-2 and ENCA-3 and this gap is mostly related to high BIAS outliers. Overall, CAAM perfor-

mance is most similar to ENCA-2 in terms of BIAS and NSE. We therefore argue that catchment attributes collected by experts

account for two relevant landscape features that appear to be sufficient for most catchments, while at least a third one is needed210

to resolve specific catchments.
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Figure 4. Validation NSE of ENCA-2 (left panel) and ENCA-3 (right panel) versus CAAM, color-coded with the NSE difference per

catchment clipped in [-1,1]. Red means ENCA performs better, blue means CAAM performs better.

Finally, regarding LOG-STDEV, it is evident that both CAAM and ENCA models tend to underestimate the streamflow vari-

ability. The results of ENCA-27 are most similar to CAAM while all other ENCA variants result in lower LOG-STDEV values.

We hypothesize that ENCA models perform worse than CAAM in LOG-STDEV because of the different standardization pro-

cedure employed. However, the general underestimation of streamflow variability was also described in other LSTM-based215

hydrological modelling investigations (e.g. Kratzert et al., 2019). It can partly be attributed to using NSE as objective function

for training which puts more weight on matching high flow. Also, using daily averaged data means covering faster dynamics

and variability in the system. In addition, LSTM models that are trained on these data might not capture all the dynamics of

even this daily data using the static attributes in CAMELS - that themselves are averages over entire catchments. The ENCA

results show lower but increasing LOG-STDEV values indicating that using more latent features might help to better match the220

hydrograph variability. At the same time, ENCA-27, that would be “free” to learn whatever feature it deems necessary to be

encoded to match the hydrograph variability, does now exceed the CAAM performance in this respect and this might confirm

the existence of an upper bound to the LSTMs performance.

To study which catchments are most affected when using the latent features of the ENCA models in place of the known

catchment attributes in CAAM, we report (Figure 4) the NSE difference between CAAM and ENCA-2 (left panels) or ENCA-225

3 (right panels), respectively. While, for most catchments, switching from ENCA-2 to ENCA-3 does not result in a high

performance gain, we see a clear improvement on about a dozen or so catchments, mostly located in the central CONUS.

This corroborates the hypothesis that the collected catchment attributes account for two relevant landscape features and the

improvement due to the third one is related to only few catchments that are particularly difficult to predict. It is interesting

to count the number of catchments for which CAAM fails (negative NSE values, i.e. predictions that are worse than average230

streamflow) but ENCA succeeds (positive NSE values). This number increases from 13 (ENCA-2) to 21 (ENCA-3). On the

other hand, there are only 9 (3) catchments, for which CAAM succeeds but ENCA-2 (-3) fails.

In order to evaluate the impact of additional features, we compare the performances of ENCA models differing in their

number of latent variables (Figure 5). The results corroborate our earlier findings that two features are sufficient to cover most

of the catchments, and additional features provide information about relatively few, difficult to predict, mostly catchments in235

the central CONUS dominated by arid climate conditions. While the number of such catchments informed by the third feature

is relatively high, additional features only have a minor effect. Indeed, adding a third feature turns 15 catchments from failures
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Figure 5. Validation NSE of ENCA models with different number of latent features, color-coded according to the NSE difference per catch-

ment clipped in [-1,1]. The improvement of increasing the number of latent features is significant from ENCA-2 to ENCA-3 and marginal

for more complex models. The improved catchments are mainly located in the central CONUS, dominated by arid climate conditions.

(negative NSE) to successes (positive NSE) and only leads to marginal deterioration on a few other catchments. Additional

features have much less dramatic effects. In order to understand the characteristic of the improved catchments, in Appendix B

we report the performance metrics and some attributes of the 15 catchments failing under ENCA-2, but succeeding under240

ENCA-3. They are generally characterized by high aridity indexes and intermittent flows, i.e. time-windows in the streamflow

time series with low to zero flow, and are for this reason very difficult to predict.

Note, in Figure 2 we computed the GRIDE paths of the ENCA-27 and ENCA-5 latent spaces and concluded that most

catchments can be characterized by only three relevant landscape features, while more are only needed for a few special cases.

This discrepancy may arise due to the presence of two or more manifolds with different IDs in the latent space of ENCA. An245

interesting direction of investigation would be to study this latent space with the ID estimator HIDALGO (Allegra et al., 2020),

which allows consideration of multiple manifolds with different IDs.

3.2 Interpretation of the Relevant Feature Principal Components

Figure 6 shows the Spearman correlation matrix between the principal components of identified three relevant features and

the known streamflow signatures and catchment attributes across different random restarts of the model. The relevant features250

share information with catchment attributes and hydrological signatures. For instance, feature one carries information about

basic hydrological attributes like baseflow index and low flow frequency. Moreover, feature one is (weakly) correlated with

soil-related attributes like soil porosity and conductivity, sand, silt and clay fraction. Feature two is correlated with climatic

indicators, such as the aridity index, the mean precipitation, high and low precipitation frequency, but also with hydrological

signatures like mean discharge and the 95% quantile of the flow duration curve. We point out that even though the encoder is255

explicitly designed to learn non-climate landscape features, we can still observe a correlation between latent features and cli-
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Figure 6. Spearman correlation matrix of the relevant features principal components of ENCA-3 with respect catchment attributes and

hydrological signatures across four different random model restarts.
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Figure 7. Principal components of the relevant features of ENCA-3 in the CONUS.

mate attributes. This correlation can be due to collinearities between landscape and climate attributes. In this case, the collinear

attributes are those related to vegetation, like the fraction of forests and the maximum GVF (Green Vegetation Fraction), which

are obviously correlated with climate. Finally, feature three is mostly correlated with high and low flow duration and frequency,

signatures relating to the extremes of streamflow. Interestingly, this principal component does not hold much information about260

neither landscape nor climate attributes, indicating that it encodes catchment information that has not yet been considered or

that is not related to any discernible catchment feature. Since the third feature mainly conveys information about certain dry

and hard to predict catchments, the latter might very well be the case. The discussed principal components, however, do not

share the same amount of explained variance: feature one accounts for about 60%, feature two for about 30% and feature three

for about 10%. In Appendix E we report the correlation matrices for the other ENCA models, where we can verify that the265

principal components carry the same information for streamflow prediction consistently across different models. A specific

analysis of the correlation between NSE improvements and certain static attributes is provided in Appendix D.

The geospatial distribution of feature importance is shown in Figure 7, where a non-trivial distribution of the features appears,

highlighting that the different features have different information content for different regions: feature one dominates in the

less to non-arid eastern CONUS, while feature two is mainly dominant in the western part. Feature three does not show such270

a clear spatial representation. Overall, the potential of delineating geospatial relations is another indicator that the encoder has

learnt from the landscape signal in the data.

The elicitation of principal feature components further allows us to pinpoint a subset of the particularly bad performing

catchments. These catchments show intermittent flows and they are characterized by relatively high aridity indices (see Ap-

pendix B for the catchment characteristic and the hydrographs). Figure 8 depicts the learnt features of ENCA-3, color-coded275

according to baseflow index (a), aridity (b) and the high flow frequency (c). These are the attributes that show the highest

correlation with the learnt features of ENCA-3. The red diamonds represent those 15 catchments failing under ENCA-2, but

succeeding under ENCA-3 (see also Table B1). They mainly lie in a sub-region of the latent space characterized by high aridity

and low baseflow.
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Figure 8. Relevant features of ENCA-3 for a random restart, colored-coded according some standardized catchment attributes which correlate

strongly with the first three principal components. Red diamonds are those catchments whose prediction has improved from failure (ENCA-

2) to success (ENCA-3). These catchments are characterized by intermittent flows.

3.3 Relationship between Relevant Features and Parameters in Conceptual Models280

In the literature, a great number of conceptual models are available. It is well known that only a handful of parameters can

be reliably estimated from the rainfall-streamflow data (Jakeman and Hornberger, 1993), indicating that models with a few

parameters and states, like the GR3J (Edijanto et al., 1999) and its successor GR4J (Perrin et al., 2003), must capture the

main features of a hydrograph through their structure and parameters. As a consequence, in makes sense to try to relate the

parameters of such models to the learnt features identified in this work.285

The GR4J model has only four parameters that can be related to specific characteristics of a hydrological system: (i) the max-

imum capacity of the production store; (ii) the groundwater exchange coefficient that influences the catchment mass balance;

(iii) the maximum capacity of the routing store; (iv) the time base of the unit hydrograph that controls the time lag between

rainfall and streamflow.

It is conceivable that the number of parameters that need to be calibrated to a specific catchment should be similar to the290

number of non-meteorological features in the runoff and thus to the minimal number of features needed by ENCA to make

good runoff reconstructions. Although a one-to-one mapping may not be possible, we can try to connect these parameters to

the relevant learnt features: The first GR4J parameter (maximum capacity of production store) could be related to the second

feature (vegetation attributes) since it relates to how much water actually ends up in storage or streamflow and how much is

evapotranspired. This threshold parameter in the rainfall-runoff relationship has been related to the root zone and to vegetation295

indicators (obviously also related to climate) by previous work (Gao et al., 2014). The first relevant feature can be related with

the third GR4J parameter that relates to the routing store capacity. In particular, the routing store capacity in GR4J mainly

affects streamflow recessions. The first relevant feature is related to baseflow, therefore arguably related to a similar fingerprint

the hydrograph. Soil-related attributes have been traditionally related to baseflow (Gnann et al., 2021) which underpins the

relation to subsurface storage.300
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Including the third ENCA-found feature improved performance notably. Meanwhile, it could only weakly be related to static

catchment attributes showing some correlation to high and low flow hydrological indices regarding frequency and duration,

and to vegetation attributes in Figure 6. Further, including this feature generally helped minimizing the gap between baseflow

predictions and observations as it is shown in Figure B1. While the former correlation relates to timing in the hydrograph, the

latter two points refer to the water-balance or hydrograph magnitude.305

Hence, we conjecture that feature three relates to the two other parameters in GR4J: time lag and groundwater exchange

coefficient. First, the third feature results in a smoothing of hydrographs and buffering of discharge spikes (as indicated in

Figure B1). In GR4J, the time lag parameter has a similar effect, in other hydrological models this is sometimes referred to as a

routing parameter. Hence, the third feature appears to play a role in regulating the timing of increase and decrease of the memory

states of the LSTM. It is noteworthy that these hidden and cell states of the LSTM essentially resemble the role traditionally310

held by reservoirs in conceptual models and that any routing routine or time lag parameter in conceptual hydrological models

acts as a convolutional filter to match the reservoir output to the observed hydrograph. Second, we conjecture that it accounts

for offsets in the water balance (see Figure B1) potentially due to water exchange with other catchments. Such a relaxation

of a strictly enforced water balance for a modelled catchment further improves the model performance. Interestingly, it was

shown that when using LSTMs for streamflow prediction a strictly enforced water balance deteriorates model performance315

(Frame et al., 2022). From a hydrological perspective this makes sense: even if the surface delineation of a catchment might be

well known, the subsurface delineation might not be identical and unknown exchange fluxes may occur. Further, the observed

water inputs and outputs of the system are per se subject to uncertainty and therefore a full closure of the water balance is not

guaranteed. LSTMs appear to account for resulting offsets which also holds for our LSTM-ENCA.

Overall, these potential resemblances illustrate how the learning mechanism encapsulates distinctive hydrological character-320

istics embedded in the model’s parameters, making them at least partially interpretable.

4 Conclusions

We employed a new kind of autoencoder to distill a minimal set of streamflow features (signatures) necessary for stream-

flow reconstruction in conjunction with meteorological data. Thus, these features can be interpreted as landscape fingerprints

on the streamflow. We compared these features with known catchment attributes in terms of their capacity for streamflow325

reconstruction. The primary conclusions we highlight in this study are:

– ENCAs (Explicit Noise Conditional Autoencoders) perform better in terms of NSE and BIAS than the reference at-

tributes enhanced model (CAAM) when the number of latent features is greater than two. In fact, two features seem to

be sufficient for most catchments, while a relatively small number of catchments, mostly located in the central CONUS,

require a third one. Including more than three features, however, only leads to marginal improvements. We therefore330

conjecture that most of the information contained in the static attributes used for CAAM, insofar as it is relevant for

streamflow prediction, can be reduced to two independent features. The third latent feature, however, seems to encode

information that is not fully contained in those static attributes.
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– The correlation between attributes and importance of the relevant features (see Figure 6) suggests an ordering of the

information contained in the features for accurately predicting discharge: first, basic hydrological attributes like baseflow335

and soil-related attributes, followed by the average streamflow and the 95% flow quantile (correlated to climate due to

collinearities with vegetation-related attributes) and, third, specifics on the high and low flow, i.e. the extremes of the

hydrograph. Looking back at Figure 4, this last feature appears to encode the information that is needed to exceed the

model performance that is only based on the 27 static attributes (CAAM).

In summary, our research reveals a significant reduction in the dimensionality of the streamflow time series. Despite the340

plethora of hydrological signatures and catchment attributes at our disposal, only a small subset proves essential for accurate

streamflow prediction. This finding echoes established results from prior studies (Jakeman and Hornberger, 1993; Edijanto

et al., 1999; Perrin et al., 2003), suggesting that hydrological systems might be effectively modelled using only a limited set of

parameters. The low dimensionality of the relevant catchment information opens up the opportunity for a better understanding

of its nature, suggesting some future research directions:345

– A promising approach could be the adoption of NeuralODEs (Höge et al., 2022), which offer a high level of interpretabil-

ity due to their low number of states. This combination of a few states and a few features may help to decipher not only

the nature of the relevant catchment information but also how it influences streamflow.

– Preliminary analysis (not shown in this paper) has revealed that the known static catchment attributes live on a low-

dimensional manifold, which is in line with our finding that only two independent features seem to capture most of350

the information that is relevant for streamflow. While the correlation-based analysis presented in this paper gives some

clues as to how these features can be interpreted, more sophisticated types of analysis like those based on Information

Imbalance (Glielmo et al., 2022) might allow for a more precise understanding of their physical nature.

Code and data availability. The US-CAMELS dataset, as well as the catchment attributes, is available at the site https://ral.ucar.edu/solutions/

products/camels. All the code used for this work is publicly available at the site https://github.com/abassi98/AE4Hydro.355
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Appendix A: Validation Metrics

We report some summary statistics of the NSE, BIAS and LOG-STDEV values across the 568 catchments considered in this

study. Table A1 shows that the greatest performance gap in terms of the NSE is obtained for the mean, the minimum and the 5%

quantile between ENCA-2 and ENCA-3, indicating that the third latent feature is needed to improve prediction in particularly

difficult catchments. A similar pattern is shown by the BIAS, whereas the biggest gap is found in the mean, maximum and360

95% quantile. Instead, we observe a general tendency of ENCA models to underestimate the flow variability.
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CAAM ENCA-0 ENCA-1 ENCA-2 ENCA-3 ENCA-5 ENCA-27

Mean 0.48 0.06 0.43 0.43 0.54 0.55 0.59

Min -23.78 -71.46 -18.62 -22.45 -10.66 -9.61 -6.50

Q5 -0.05 -0.61 -0.03 -0.10 0.11 0.13 0.16

Q25 0.54 0.42 0.48 0.51 0.52 0.54 0.55

NSE Median 0.69 0.60 0.65 0.67 0.68 0.68 0.70

Q75 0.77 0.73 0.74 0.76 0.76 0.77 0.78

Q95 0.85 0.83 0.85 0.85 0.85 0.86 0.86

Max 0.91 0.90 0.92 0.89 0.92 0.92 0.93

Mean 0.22 0.37 0.29 0.32 0.17 0.14 0.09

Min -0.55 -0.66 -0.82 -0.67 -0.69 -0.59 -0.61

Q5 -0.22 -0.23 -0.27 -0.24 -0.26 -0.26 -0.25

Q25 -0.05 -0.02 -0.05 -0.06 -0.08 -0.10 -0.10

BIAS Median 0.07 0.12 0.09 0.05 0.04 0.01 0.00

Q75 0.24 0.38 0.31 0.26 0.21 0.18 0.14

Q95 1.16 1.81 1.52 1.66 0.87 0.94 0.60

Max 6.03 15.26 11.12 15.63 8.64 7.16 6.85

Mean 0.82 0.78 0.76 0.75 0.79 0.80 0.86

Min 0.09 0.08 0.07 0.06 0.09 0.09 0.10

Q5 0.23 0.19 0.23 0.18 0.27 0.20 0.32

Q25 0.60 0.51 0.56 0.56 0.60 0.59 0.67

LOG-STDEV Median 0.78 0.70 0.72 0.73 0.75 0.75 0.81

Q75 0.95 0.87 0.88 0.88 0.91 0.88 0.96

Q95 1.44 1.47 1.36 1.33 1.33 1.38 1.52

Max 7.23 10.95 3.81 4.03 4.26 4.66 3.72

Table A1. Metrics comparison for different models. We report the mean, the minimum, the 5% quantile, the 25% quantile, the median, the

75% quantile, the 95% quantile and the maximum values of the distribution of validation values for the three metrics considered in this work.
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Figure B1. Observed and predicted (CAAM, ENCA-2 and ENCA-3) hydrographs for those 15 catchments whose NSE is improved from

negative (ENCA-2) to positive (ENCA-3).

Appendix B: Analysis of Improved Catchments from ENCA-2 to ENCA-3

In Figure B1 we report the hydrographs of the catchments failing under ENCA-2 (i.e. with NSE values below zero), but

succeeding under ENCA-3 (i.e. with NSE values above zero). We report the corresponding validation metrics (NSE, BIAS and365

LOG-STDEV) and some catchment attributes in Table B1.
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Catchment ID Baseflow Index Aridity Index Q95 High Flow Frequency BIAS LOG-STDEV NSE

CAAM ENCA-2 ENCA-3 CAAM ENCA-2 ENCA-3 CAAM ENCA-2 ENCA-3

05120500 0.47 1.55 0.20 57.20 0.97 1.66 0.67 0.60 0.17 0.25 0.09 -0.16 0.19

05123400 0.44 1.44 0.32 157.35 1.41 2.01 0.72 0.11 0.06 0.09 -0.00 -0.27 0.22

06332515 0.13 2.04 0.08 34.95 3.56 4.05 2.09 0.23 0.21 0.32 -0.14 -0.19 0.06

06339500 0.25 1.90 0.13 35.75 2.21 2.66 1.09 0.51 0.38 0.65 -0.07 -0.10 0.10

06406000 0.70 1.66 0.33 12.35 0.52 1.00 0.49 0.64 0.37 0.67 0.24 -0.04 0.25

06447000 0.33 2.08 0.20 33.30 2.67 2.85 1.17 0.22 0.16 0.43 -0.87 -0.90 0.15

06450500 0.72 1.61 0.23 2.10 0.52 1.29 0.46 1.85 0.65 1.34 0.15 -0.69 0.22

06452000 0.43 1.74 0.28 25.00 3.41 2.03 0.83 0.27 0.29 0.70 -1.94 -0.49 0.16

07148400 0.54 1.68 0.40 13.75 0.64 1.27 0.53 1.20 0.41 0.60 0.13 -0.18 0.43

07301500 0.54 1.79 0.13 7.15 1.28 2.69 1.07 0.24 0.16 0.45 0.11 -2.12 0.26

08324000 0.64 2.00 0.59 19.90 1.35 1.71 0.93 0.71 0.57 0.71 -0.25 -0.86 0.27

09404450 0.78 2.86 0.41 3.75 0.36 1.33 0.47 0.96 0.72 0.75 0.42 -1.02 0.39

10258500 0.30 3.82 0.14 121.90 5.24 7.71 4.03 0.12 0.13 0.40 -0.33 -0.51 0.29

10259200 0.27 4.76 0.17 127.00 2.54 5.37 1.92 0.20 0.11 0.44 0.34 -0.01 0.23

13083000 0.84 2.11 0.53 0.00 0.19 0.28 0.13 1.64 1.28 1.28 -0.28 -0.10 0.33

Table B1. Catchments failing under ENCA-2, but succeeding under ENCA-3. These catchments are characterized by high aridity indexes

and intermittent flows.
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Input Layer name Hyper-parameters Output

streamflow input (bs, 5478, 1)

streamflow Conv 1 7, 8, BN, Leakyrelu, DR(O.4) (bs, 5472, 8)

Conv 1 Avgpool 1 4 (bs, 1368, 8)

Avgpool 1 Conv 2 5, 16, BN, Leakyrelu, DR(0.4) (bs, 1364, 16)

Conv 2 Avgpool 2 4 (bs, 341, 16)

Avgpool 2 Conv 3 2, 32, BN, Leakyrelu, DR(0.4) (bs,340, 32)

Conv 3 Avgpool 3 4 (bs, 85, 32)

Avgpool 3 Flatten N/A (bs, 2720)

Flatten Linear BN, Leakyrelu, DR(0.4) (bs, 512)

Linear Output BN (bs, N)

Table C1. The Convolutional encoder architecture used in this study. Batch Normalization (BN) and Dropout (DR) with probability 0.4 are

added between layers. A last BN layer is applied to the decoder output in order to standardize the latent features. N is the number of latent

features.

Hidden size Initial forget bias LSTM layers Dropout Bi-directional

256 5.0 1 0.4 False

Table C2. LSTM hyper-parameters. We choose standard hyper-parameters used in the literature (Kratzert et al., 2019).

Appendix C: Neural Networks Details

We report the architecture details of the encoder (Table C1) and the LSTM decoder (Table C2) of the ENCA used in this work.
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Figure D1. NSE difference between ENCA-3 and ENCA-2, clipped in [-1,1], vs some static attributes and signatures.

Appendix D: Performance Correlation with Known Attributes

We also report the NSE difference between ENCA-3 and ENCA-2 versus the values of some chosen known static attributes370

(Figure D1). We can clearly appreciate a correlation between the performance improvement of ENCA-3 with respect CAAM

for those catchments with baseflow index greater than 0.25, and for aridity indexes greater than 1.0, indicating that the learnt

features are particularly important for improving the prediction accuracy in more arid catchments and for those basins with

greater amount of underground water. A similar pattern is present for the Q95, which can be explained by the fact that autoen-

coders tend to improve the prediction of high flow peaks.375

23

https://doi.org/10.5194/hess-2024-47
Preprint. Discussion started: 20 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure E1. Validation NSE of the four random restarts for CAAM (upper left), ENCA-2 (upper right), ENCA-3 (lower left) and ENCA-27

(lower right) for the 568 catchments considered across four random restarts of the model. We do not observe much performance variability

across different random restarts of the models.

Appendix E: Effect of Random Restart

We clearly ascertain that the random restart does not affect much the prediction accuracy (Figure E1). Apart from some

catchments, most of them show a consistent behaviour across different random seeds.

We report the correlation matrix between the principal components of the learnt features of ENCA-4 (Figure E2), ENCA-

5 (Figure E3) and ENCA-27 (Figure E4) for different random restarts. We notice a consistency across random restarts and380

different models. Moreover, the correlation becomes weaker and weaker with the fourth component, indicating that 3 features

carry most of the information related to streamflow prediction.
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Figure E2. Spearman correlation matrix of the relevant features principal components of ENCA-4 with respect to the selected catchment

attributes and hydrological signatures across four different random restarts of the model.
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Figure E3. Spearman correlation matrix of the relevant features principal components of ENCA-5 with respect to the selected catchment

attributes and hydrological signatures across four different random restarts of the model.
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Figure E4. Spearman correlation matrix of the relevant features principal components of ENCA-27 with respect to the selected catchment

attributes and hydrological signatures across four different random restarts of the model.
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