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Abstract.

Recent successes with Machine Learning (ML) models in catchment hydrology have highlighted their ability to extract

crucial information from catchment properties pertinent to the rainfall-runoff relationship. In this study, we aim to identify

a minimal set of catchment signatures in streamflow that, when combined with meteorological drivers, enable an accurate

reconstruction of the entire streamflow time series. To achieve this, we utilize an Explicit Noise Conditional Autoencoder5

(ENCA), which effectively separates the influences of meteorological drivers and catchment properties on streamflow. The

ENCA architecture feeds meteorological forcing and climate attributes to the decoder in order to incentivize the encoder to

only learn features that are related to landscape properties. By isolating the effect of meteorology, these features can thus be

interpreted as landscape fingerprints. The optimal number of features is found by means of an intrinsic dimension estimator.

We train our model on the hydro-meteorologic time series data of 568 catchments of the continental United States from10

the CAMELS dataset. We compare the reconstruction accuracy with models that take as input a subset of static catchment

attributes (both climate and landscape attributes) along with the meteorological forcing variables. Our results suggest that

available landscape attributes compiled by experts can be summarized by only two relevant learnt features (or signatures),

while at least a third one is needed for about a dozen difficult to predict catchments in the central US, mainly characterized

by high aridity index. The principal components of the learnt features strongly correlate with the baseflow index and aridity15

indicators, which is consistent with the idea that these indicators capture the variability of catchment hydrological response.

The correlation analysis further indicates that soil-related and vegetation attributes are of importance.

1 Introduction

Hydrological signatures encompass descriptive statistics derived from meteorological and streamflow time series. They serve

various purposes in hydrology, such as hydrological model calibration or evaluation (Fenicia et al., 2018; Kiraz et al., 2023),20

process identification (McMillan, 2020a), and ecological characterization (Olden and Poff, 2003). Alongside with catchment

attributes (distinguished here in landscape and climate attributes), they are also used for catchment classification and regional-

ization studies (Wagener et al., 2007).
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Streamflow signatures, i.e. hydrological signatures solely based on streamflow, hold significant importance as they relate to

the variable one aims to predict and understand (Gnann et al., 2021). Hydrologists have developed diverse signatures reflecting25

different aspects of streamflow dynamics. Examples include those linked to the flow duration curve (e.g., slope of various

segments), the baseflow index, or the flashiness index. Numerous other such signatures exist. For instance, Olden and Poff

(2003) compiled a list of 171 indices from prior work, reflecting aspects associated to magnitude, frequency, duration, timing,

and rate of change of flow events. As streamflow depends on meteorological forcing and landscape attributes, streamflow

signatures generally contain information from both sources. In particular for predictions in ungauged basins, it is vital to be30

able to disentangle them.

One way of doing so is through hydrological models, which condense catchment attributes into model parameters (Wagener

et al., 2003). Previous research indicates that observed hydrographs can be represented by a handful of model parameters

(Jakeman and Hornberger, 1993). For instance, the GR4J model (Perrin et al., 2003), resulting from a continuous refinement

process aimed at balancing model complexity and performance, has only four parameters. However, these analyses are based35

on predefined model assumptions.

Model parameters can, in principle, directly be estimated from streamflow signatures. The Approximate Bayesian Computa-

tion (ABC) technique (Albert et al., 2015) has recently been used to infer model parameters from streamflow signatures - which

in this context are called summary statistics - bypassing the need to directly compare the complete time series (Fenicia et al.,

2018). If these summary statistics contained all the information necessary to estimate model parameters they would be termed40

as sufficient. Sufficiency is therefore not an inherent property of the summary statistics but depends on the specific hydrological

model and on the parameters that need to be inferred. For ABC to converge efficiently, we also want the summary statistics

to be minimal, i.e., while they should ideally encode all the parameter related information available in the streamflow, they

should encode no other information, neither from the forcing nor from the noise that is used for the simulations (Albert et al.,

2022). Such minimally sufficient summary statistics could thus be considered the relevant fingerprints of landscape features45

on the streamflow. Of course, this holds true only if the model is capable of encoding all the information in such features that

is relevant for the input-output relationship. However, recent studies show that purely data-driven models outperform process-

based models in prediction accuracy (Kratzert et al., 2019; Mohammadi, 2021), because they suggest information in catchment

attributes previously not utilized for streamflow prediction.

Our goal is to employ Machine Learning (ML) techniques to identify a minimal set of streamflow features enabling accurate50

streamflow predictions when combined with meteorological forcing. Thus, our aim is to eliminate all forcing-related informa-

tion from the streamflow, distilling features solely from the catchments themselves. We approach this objective from a purely

data-driven perspective.

To identify minimal sets of streamflow features, we employ an Explicit Noise Conditional Autoencoder (ENCA) (Albert

et al., 2022), where the bare noise utilized by the stochastic model simulator is fed into the decoder together with the learnt55

summary statistics. This way, the encoder is encouraged to encode only those features containing information on the model

parameters while disregarding the noise. Albert et al. (2022) applied ENCA to infer parameters of simple one-dimensional

stochastic maps, showing that the learnt features allow for an excellent approximation of the true posterior. In our case, instead
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of noise, we input meteorological forcing into the decoder. By feeding also climate attributes to the decoder, we encourage

the encoder to exclusively encode landscape-related information within the streamflow. Moreover, since we make use of uni-60

directional LSTM (see Appendix C), conditioning ENCA also on climate attributes could help the decoder to obtain future

information about the climate that it would not be normally able to retrieve.

In order to reduce the computational costs and learn a minimal set of catchment features, the dimension of the latent space is

chosen according to the estimation of its Intrinsic Dimension (ID) (Facco et al., 2017; Allegra et al., 2020; Denti et al., 2022).

In particular, we employ the ID estimator GRIDE (Denti et al., 2022), which is robust to noise. Learnt features will then be65

compared with known catchment attributes (both from the landscape and the climate) and hydrological signatures to provide

a hydrological interpretation and guide knowledge domain experts towards the pertinent information necessary for streamflow

prediction.

We apply our approach to the US-CAMELS dataset (Newman et al., 2015), covering several hundred catchments over the

continental US. LSTMs (Long Short-Term Memory networks) have emerged as state-of-the-art models for streamflow data-70

driven predictions. In the study of Kratzert et al. (2019), LSTMs validated on unseen catchments, enriched with static landscape

and climate attributes from Addor et al. (2017), outperformed conceptual models. First investigations towards mechanistic

interpretation of the LSTM states, e.g. linking hidden states to the dynamics of soil moisture, demonstrated the potential of

eliciting physics from data-driven models (Lees et al., 2022). Here, by linking learnt features to known catchment attributes,

we explore a further aspect in this broader field of explainable AI or interpretable ML (Molnar, 2024; Molnar et al., 2020).75

Our specific objectives are: (i) find the minimal number of dominant streamflow-features stemming from the landscape; (ii)

relate them to known landscape and climate attributes as well as established hydrological signatures. This will not only allow

us to determine how many features are required for streamflow prediction, but also to answer the question whether there is

missing information in known catchment attributes.

A similar attempt of learning signatures has recently been made by Botterill and McMillan (2023). In pursuit of an inter-80

pretable latent space on a continental scale, they employed a convolutional encoder to compress high-dimensional informa-

tion derived from meteorological forcing and streamflow data. This approach was aimed at learning hydrological signatures

(McMillan, 2020b) within the US-CAMELS dataset. Their approach differs from ours in three aspects: (i) they used a a tradi-

tional conceptual model as a decoder whereas we use an LSTM architecture which has been shown to be superior to conceptual

models when provided with catchment properties; (ii) they fed both streamflow and meteorological forcing into the encoder85

whereas we feed in only streamflow data in an attempt to separate landscape- from forcing-information; (iii) they did not at-

tempt to find a minimal number of signatures sufficient for streamflow prediction, whereas this is a primary objective of our

work.

It is important to note that our main objective is not to beat state-of-the-art models regarding their predictive performance

(Kratzert et al., 2021; Klotz et al., 2022). Our goal is rather to investigate the information content in streamflow. However, we90

believe our research will provide valuable insights into the most critical features for streamflow prediction.

3



Figure 1. Explicit Noise Conditional Autoencoder used in this study. For the hyper-parameters and the implementation details, the reader

is referred to Appendix C. The neural network architectures employed are Convolutional Neural Networks (CNN), a Fully Connected (FC)

layer and LSTM. The observed and simulated streamflows are denoted with Q and Q̂, respectively. The meteorological forcing variables are

denoted with PRCP (precipitation), SRAD (solar radiation), Tmax (maximum temperature), Tmin (minimum temperature) and Vp (vapour

pressure).

2 Models and Methods

2.1 Data

We employ the Catchments Attributes and Meteorology for Large-sample Studies (CAMELS) (Newman et al., 2015), which

consists of 671 catchments in the contiguous United States (CONUS), ranging in size from 4 to 25 ·103 km2. For this study, we95

select those 568 catchments out of 671 whose data span continuously on a daily basis the time period from 1 October 1980 to

30 September 2010, corresponding to 30 hydrological years. The first 15 years are used for training and the last 15 for testing.

Along with the streamflow time series and the meteorological forcing variables, US-CAMELS also provides information about

catchments static attributes (Addor et al., 2017), encompassing both landscape (vegetation, soil, topography and geology) and

climate. Streamflow data is retrieved from the U.S. Geological Survey gauges, while the meteorological forcing comes from the100

extended North America Land Data Assimilation Systems (NLDAS) (Kratzert, 2019) and includes maximum and minimum

daily temperature, solar radiation, vapour pressure and precipitation.
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2.2 Explicit Noise Conditional Autoencoder

We use the Explicit Noise Conditional Autoencoders (ENCA) (Albert et al., 2022), where the streamflow is fed to a convolu-

tional encoder. ENCA has been designed to distill sufficient summary statistics which contain minimal noise information from105

the output of stochastic models. Here (Figure 1 - for the detailed architectures the reader is referred to Appendix C), the noise

is substituted by all the variables we are not interested in, namely the meteorological forcing. The convolutional encoder is

thus followed by a LSTM decoder that takes as input 15 hydrological years of meteorological forcing, i.e. 5478 time points,

and nine climate attributes (reported in Table 1). The LSTM capacity is limited by the dimension of the input layer. In order

to enlarge the available capacity and capture more complex patterns from the meteorological forcing, the meteorological time110

series are first fed to a single linear layer with 1350 output units. The output of this linear layer is then concatenated with the

output of the encoder and fed to the LSTM decoder. This way the decoder sees tensors of size (BS,5478,1350+N), where

BS is the batch size (batches are selected across different catchments) and N is the latent space dimension. We opted for such

an architecture in order to extract as much static information related to the streamflow as possible.

We expect to be able to compress almost all streamflow information not already contained in the forcing into a low (N )-115

dimensional feature vector. Because they should be largely devoid of forcing information, we call these features the relevant

landscape features and explain in subsection 2.4 how we fix their number. We refer to the ENCA model with latent space

dimension N as ENCA-N . Comparing relevant landscape features with known static catchment attributes in terms of their

capacity for streamflow reconstruction will allow us to find out whether static catchment attributes lack information that is

crucial for streamflow prediction. For this comparison, we use an LSTM model augmented with catchment attributes (Addor120

et al., 2017) in the input, both steaming from the landscape and the climate. We refer to this model as Catchment Attributes

Augmented Model (CAAM). This model differs from Figure 1 solely by the fact that the latent features are substituted by

known landscape attributes. Following Kratzert et al. (2019), CAAM is fed with 27 catchment attributes (reported in Table 1),

which are representative of climate, topography, geology, soil and vegetation.

In order to mitigate numerical instability, it is crucial to standardize the catchment attributes or latent features before feeding125

the LSTM. In CAAM, we standardize the catchment attributes with the mean and standard deviation computed over all the

considered catchments. This is not possible for ENCA, since the mean and standard deviation of the latent features are not

known a priori. Therefore, we standardize the latent features by means of a batch normalization layer. This way, we ensure that

the magnitude of the LSTM input is comparable between CAAM and ENCA.

2.3 Training and Testing130

We use the first 15 years of data for training and the last 15 for testing. training is performed by maximizing the Nash-Sutcliffe

Efficiency (NSE) (Nash and Sutcliffe, 1970), defined as:

NSE = 1−
∑T

t=1

(
qsim,t − qobs,t

)2∑T
t=1

(
qobs,t −µobs

)2 , (1)
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where qobs,t and qsim,t are, respectively, the observed and predicted streamflow expressed in mm/day at day t, and µobs is the

average of the observed streamflow. We notice that maximizing the NSE is equivalent to minimizing the Mean Square Error135

(MSE) between data and prediction. Each model is trained with the Adam optimizer (Kingma and Ba, 2015), with learning

rate equal to 10−5 for 10,000 epochs. The batch size is set to 64 and the first 270 days of the predicted streamflow are excluded

when computing the loss.

We also report the three components in which NSE can be decomposed, see Eq. 4 in the main text of Gupta et al. (2009).

These components are the linear correlation coefficient (R), the bias normalized by the observed streamflow standard deviation140

(BIAS) and standard deviation ratio (STDEV). The linear correlation coefficient is related to timing, whereas STDEV measures

the streamflow variability and it is defined as

STDEV =
σsim

σobs
, (2)

where σsim and σobs are the standard deviations of the of the simulated and observed streamflows, respectively. Finally, the

BIAS is related to volume errors and it is defined as145

BIAS =
µsim −µobs

σobs
. (3)

Each algorithm is affected by noise, due to the random initialization of the neural network parameters. To minimize this

effect we run each model with four random restarts, each one providing the streamflow prediction in the whole testing period.

We compute the evaluation metrics on the predicted streamflow after averaging the streamflow over these four random restarts.

2.4 Intrinsic Dimension Estimation150

The selection of the encoder latent space dimension, specifically the number of relevant features, is informed by the ID esti-

mator GRIDE (Denti et al., 2022). We utilize the GRIDE paths, which involve estimating the ID at several distance scales at

which the data is analyzed (for an in-depth discussion on ID, refer to Appendix A). The ID intuitively measures the dimension

of the manifold where the data resides, which may be lower than the dimension of the embedding space. Most ID estimators

depend on calculating the distance scale between data points, and the estimated ID itself can vary with this distance scale.155

Figure 2, derived from Denti et al. (2022), illustrates a one-dimensional spiral dataset embedded in a three-dimensional space

with added noise. When the distance scale is too small, the data points appear to fill the space uniformly, making the manifold

seem three-dimensional. However, as the distance scale increases and the noise is bypassed, the estimated ID decreases until

the correct value of one is achieved.

To identify the dimension of the latent space of ENCA we proceed with the following methodology. First, we train an ENCA-160

N with a relatively large number of latent features N . Since we fed 27 catchment attributes to the reference model (CAAM),

we use a 27-dimensional latent space in order to have a fair comparison in terms of model capacity. We refer to this model as

ENCA-27. The exact dimension of the latent space we start with does not matter much, as long as it is larger than the expected

number of relevant landscape features. Then, we estimate the ID of the latent space, and train another ENCA with the number

of latent features equal to the estimated ID and, in turn, estimate its ID to check if the dimension of the latent space can be165
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Figure 2. Unidimensional line embedded in three dimensions. The estimated intrinsic dimension depends on the distance scale.

further reduced. We thus use the ID as a guide to progressively diminish the dimension of the latent space of the autoencoder.

However, in the end we train ENCA for several dimensions of the latent space and evaluate the information content of the

learnt features in terms of their ability to reconstruct streamflows. In Figure A1 we report GRIDE paths for different models

trained in this work.

3 Latent Space Interpretation170

The relevant features are first projected using a Principal Component Analysis (PCA), since in general the autoencoder latent

representation is in arbitrary coordinates. Doing so, we ensure a fair comparison among different random restarts, since we

change the basis of each latent space by ordering the new coordinates according to the explained variance. Finally, in order

to interpret the relevant landscape features, we report the absolute Spearman correlation (Zar, 2005) matrix among the learnt

features, static catchment attributes and hydrological signatures, which are reported in Table 1.175
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Meteorological Forcing Variables

PRCP Average daily precipitation (mm/day)

SRAD Surface incident solar radiation (W/m2)

Tmax Maximum daily atmosphere temperature (°C)

Tmin Minimum daily atmosphere temperature (°C)

Vp Nearly surface daily vapour pressure average (Pa)

Climate Attributes

Prec Mean Mean daily precipitation.

PET Mean Mean daily potential evapotranspiration.

Prec Seasonality Seasonality of precipitation estimated by using sinusoidal waves.

Fraction Snow Fraction of precipitation falling on days with T < 0 °C.

Aridity Index Ratio between the mean PET and mean precipitation.

High Prec Frequency Frequency of days with ≤ 5x mean daily precipitation.

High Prec Duration Mean duration of high precipitation events.

Low Prec Frequency Frequency of days with ≤ 1 mm/day of precipitation.

Low Prec Duration Mean duration of dry periods.

Hydrological Signatures

Q Mean Mean daily streamflow (mm/day).

Streamflow Ratio Ratio between the mean daily streamflow and mean daily precipitation.

Slope FDC Slope of the flow duration curve.

Baseflow Index Ratio between the average daily baseflow and streamflow.

Stream ELAS Streamflow precipitation elasticity.

Q5 5 % flow quantile (mm/day).

Q95 95 % flow quantile (mm/day).

High Q Frequency Frequency of high-flow days (> 9 times the median daily flow).

High Q Duration Mean duration of high flow events (number of consecutive days > 9 times the median daily flow).

Low Q Frequency Frequency of low flow days (< 0.2 x the mean daily flow).

Low Q Duration Mean duration of low-flow events (number of consecutive days < 0.2 times the mean daily flow).

HFD Mean Mean half-low-date (date on which the cumulative streamflow since October the 1st reached half

of the annual streamflow).
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Landscape Attributes

Topological Attributes

Elevation Mean Mean elevation of the catchment.

Slope Mean Mean slope of the catchment.

Area Catchment Area of the catchment.

Geological Attributes

Carbonate Rocks Fraction Carbonate sedimentary rocks fraction area in the catchment.

Geological Permeability Surface permeability (in log10 scale).

Soil Attributes

Soil Depth (Pelletier) Depth to bedrock (maximum 50 m).

Soil Depth (STATSGO) Soil depth (maximum 1.5 m).

Soil Porosity Volumetric porosity.

Soil Conductivity Saturated hydraulic conductivity.

Max Water Content Maximum water content of the soil.

Sand Fraction Fraction of sand in the soil.

Silt Fraction Fraction of silt in the soil.

Clay Fraction Fraction of clay in the soil.

Vegetation Attributes

Fraction Forest Fraction of the catchment covered by forest.

LAI Max Maximum monthly mean of leaf area index.

LAI Diff Difference between the max. and the min. monthly mean of the leaf area index.

GVF Max Maximum monthly mean of the green vegetation fraction.

GVF Diff Difference between the max. and min. monthly mean of the green vegetation fraction.

Table 1. Meteorological forcing variables, climate and landscape (topological, geological, soil and vegetation) attributes and hydrological

signatures compared in this study. Both climate and landscape attributes are fed to CAAM. ENCA models are conditioned on climate

attributes too.
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4 Results and Discussion

4.1 The Number of Relevant Landscape Features

Figure 3. NSE values for the considered models in the test period. The boxes are delimited by the 25 % and the 75 % quantiles, while the

whiskers indicate to the 5 % and 95 % quantiles. CAAM performance is similar to ENCA-2.

Figure 3 depicts the boxplot of the test NSE values for the considered models. We report and discuss the associated statistics,

the boxplots of the NSE components (R, BIAS, STDEV) and the correlations among them in Appendix B.

In terms of NSE, we observe a performance improvement from ENCA-1 to ENCA-2 in the bulk of the distribution, and a180

further minor improvement from ENCA-2 to ENCA-3. The NSE improvement between ENCA-3 and ENCA-5 is minor and is

mainly related to outliers while ENCA-5 and ENCA-27 distributions are almost identical.

In general, Figure 3 and the related statistics (Figure B1) show that increasing the number of latent features improves the

prediction accuracy of the considered metrics. Even though it is difficult to set a cut-off dimension, we can state that: i) with

more than five latent features we do not observe a performance improvement anymore, meaning that 5 features are a sufficient185

set of summary statistics of the streamflow (which, however, can still depend on the chosen encoder architecture). ii) Overall,

CAAM performance is most similar to ENCA-2. We therefore argue that known catchment attributes (selected in this study)

account for two relevant landscape features that appear to be sufficient for most catchments, while at least a third one is needed

to resolve specific catchments.

To study which catchments are most affected when using the latent features of the ENCA models in place of the known190

catchment attributes in CAAM, we report (Figure 4) the NSE difference between CAAM and ENCA-2 (left panels) or ENCA-

3 (right panels), respectively. While, for most catchments, switching from ENCA-2 to ENCA-3 does not result in a high

performance gain, we see a clear improvement on about a dozen or so catchments, mostly located in the central CONUS.

This corroborates the hypothesis that the known catchment attributes account for two relevant landscape features and the

improvement due to the third one is related to only few catchments that are particularly difficult to predict. It is interesting to195
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Figure 4. Test NSE of ENCA-2 (left panel) and ENCA-3 (right panel) versus CAAM, color-coded with the NSE difference per catchment

clipped in [-1,1]. Red means ENCA performs better, blue means CAAM performs better.

count the number of catchments for which CAAM’s NSE is negative (i.e. predictions that are worse than average streamflow)

but ENCA’s NSE is positive. This number is 17 for ENCA-2 and 15 for ENCA-3. On the other hand, the number of catchments

for which CAAM’s NSE is positive but ENCA’s negative decreases from eight (ENCA-2) to only two (ENCA-3).

Figure 5. Test NSE of ENCA models with different number of latent features, color-coded according to the NSE difference per catchment

clipped in [-1,1]. The improvement of increasing the number of latent features is significant from ENCA-2 to ENCA-3 and marginal for

more complex models. The improved catchments are mainly located in the central CONUS, dominated by arid climate conditions.

In order to evaluate the impact of additional features, we compare the performances of ENCA models differing in their

number of latent variables (Figure 5). The results corroborate our earlier findings that two features are sufficient to cover most200

of the catchments, and additional features provide information about relatively few, difficult to predict, catchments mostly

located in the central CONUS and dominated by arid climate conditions. While the number of such catchments informed by

the third feature is relatively high, additional features only have a minor effect. Indeed, adding a third feature turns seven

catchments from negative NSE to positive NSE and only leads to marginal deterioration of three other catchments. Additional

features have much less dramatic effects.205
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Note that test NSE obtained in this work are good, but still far from state-of-the-art approaches on the same dataset. For

comparison, the global model of Kratzert et al. (2019) (augmented with the same catchment attributes reported in Table 1)

achieves a median NSE of 0.74, while in this work the best model achieves a median NSE of 0.68. Later approaches (with

multiple input forcings) achieve even higher performance of 0.82 (Kratzert et al., 2021). One might be tempted to attribute

this to over-fitting due to the very large number of parameters of our architecture (about 3 million). However, the test MSE210

loss curves (Figure C1) do not support this hypothesis. Also the very long sequences fed to the LSTMs might affect their

performance, as they are known to suffer from vanishing/exploding gradients. While we use time-series of length 5478, state-

of-the-art approaches use lengths of 270 (Kratzert et al., 2019) and 365 (Kratzert et al., 2021).

4.2 Interpretation of the Relevant Feature Principal Components

Figure 6 shows the absolute Spearman correlation matrix between the principal components of the identified three relevant215

features, the known streamflow signatures and catchment attributes across different random restarts of the model. The relevant

features share information with catchment attributes and hydrological signatures. For instance, feature one carries information

about basic hydrological attributes like baseflow index and low flow frequency. Moreover, feature one is (weakly) correlated

with soil-related attributes like soil porosity and conductivity, sand, silt and clay fraction. Feature two is correlated with climatic

indicators, such as the aridity index, the mean precipitation, high and low precipitation frequency, but also with hydrological220

signatures like mean streamflow and the 95% quantile of the flow duration curve. We point out that even though the encoder is

explicitly designed to learn non-climate landscape features, we can still observe a correlation between latent features and cli-

mate attributes. This correlation can be due to collinearities between landscape and climate attributes. In this case, the collinear

attributes are those related to vegetation, like the fraction of forests and the maximum GVF (Green Vegetation Fraction), which

are obviously correlated with climate. For instance, from Figure D1 we can observe that the aridity index is highly correlated225

with the mean precipitation (0.88) and the fraction of forest (0.74), while these last two attributes are fairly correlated between

each other (0.67).

Finally, feature three is mostly correlated with high and low flow duration and frequency, signatures relating to the extremes

of streamflow. Interestingly, this principal component does not hold much information about neither landscape nor climate

attributes, indicating that it encodes catchment information that has not yet been considered or that is not related to any dis-230

cernible catchment feature. Since the third feature mainly conveys information about certain dry and hard to predict catchments,

the latter might very well be the case.

The discussed principal components, however, do not share the same amount of explained variance: feature one accounts

for about 60%, feature two for about 30% and feature three for about 10%. In Appendix E we report the correlation matrices

for the other ENCA models, where we can verify that the principal components carry the same information for streamflow235

prediction consistently across different models.

The geospatial distribution of feature importance is shown in Figure 7, where a non-trivial distribution of the features appears,

highlighting that the different features have different information content for different regions: feature one dominates in the

less to non-arid eastern CONUS, while feature two is mainly dominant in the western part. Feature three does not show such
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Figure 6. Average (plus minus the standard deviation) of the absolute Spearman correlation of relevant features principal components of

ENCA-3 with respect catchment attributes and hydrological signatures across four different random model restarts. The colors refer to the

average.

a clear spatial representation. Overall, the potential of delineating geospatial relations is another indicator that the encoder has240

learnt from the landscape signal in the data.
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Figure 7. Principal Components (PCs) of the relevant features of ENCA-3 in the CONUS. For a better comparison across different restarts,

PCs are normalized in the interval [0,1] and their sign is adjusted such that the PCs of the first catchment in the dataset are always positive.

5 Conclusions and Outlook

We employed a conditional autoencoder to distill a minimal set of streamflow features (signatures) necessary for streamflow

reconstruction in conjunction with meteorological data. Thus, these features can be interpreted as landscape fingerprints on the

streamflow. We compared these features with known catchment attributes in terms of their capacity for streamflow reconstruc-245

tion. The primary conclusions we highlight in this study are:

– For all the metrics considered, ENCAs (Explicit Noise Conditional Autoencoders) perform better than the reference

attributes enhanced model (CAAM) when the number of latent features is greater than two. In fact, two features seem to

be sufficient for most catchments, while a relatively small number of catchments, mostly located in the central CONUS,

require a third one. Including more than three features, however, only leads to marginal improvements. We therefore250

conjecture that most of the information contained in the static attributes used for CAAM, insofar as it is relevant for

streamflow prediction, can be reduced to two independent features. The third latent feature, however, seems to encode

information that is not fully contained in those static attributes.

– The correlation between attributes and importance of the relevant features (see Figure 6) suggests an ordering of the

information contained in the features for accurately predicting discharge: first, basic hydrological attributes like baseflow255

and soil-related attributes, followed by the average streamflow and the 95% flow quantile (correlated to climate due to

collinearities with vegetation-related attributes) and, third, specifics on the high and low flow, i.e. the extremes of the

hydrograph. Looking back at Figure 4, this last feature appears to encode the information that is needed to exceed the

model performance that is only based on the 27 static attributes (CAAM).
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In summary, our research reveals a significant reduction in the dimensionality of the streamflow time series. Despite the260

plethora of hydrological signatures and catchment attributes at our disposal, only a small subset proves essential for accurate

streamflow prediction. This finding echoes established results from prior studies (Jakeman and Hornberger, 1993; Edijanto

et al., 1999; Perrin et al., 2003), suggesting that hydrological systems might be effectively modelled using only a limited set of

parameters. The low dimensionality of the relevant catchment information opens up the opportunity for a better understanding

of its nature, suggesting some future research directions:265

– A promising approach could be the adoption of NeuralODEs (Höge et al., 2022), which offer a high level of interpretabil-

ity due to their low number of states. This combination of a few states and a few features may help to decipher not only

the nature of the relevant catchment information but also how it influences streamflow.

– Preliminary analysis (not shown in this paper) has revealed that the known static catchment attributes live on a low-

dimensional manifold, which is in line with our finding that only two independent features seem to capture most of270

the information that is relevant for streamflow. While the correlation-based analysis presented in this paper gives some

clues as to how these features can be interpreted, more sophisticated types of analysis like those based on Information

Imbalance (Glielmo et al., 2022) might allow for a more precise understanding of their physical nature.

Code and data availability. The US-CAMELS dataset, as well as the catchment attributes, is available at the site https://ral.ucar.edu/solutions/

products/camels. The extended NLDAS forcing dataset is available at https://doi.org/10.4211/hs.0a68bfd7ddf642a8be9041d60f40868c. All275

the code used for this work is publicly available at https://doi.org/10.5281/zenodo.13132951.
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Appendix A: The Intrinsic Dimension

In order to estimate the ID, we apply the GRIDE estimator (Denti et al., 2022). Given sample points, xi ∈ RD, for i= 1, . . . ,M ,

and a distance measure, r : RD× RD → R+, GRIDE assumes that points in a given neighbourhood are counted with a Poisson

point process with intensity ρ, which is constant at least up to the scale of the diameter of the considered neighbourhood. We280

define ri,l as the distance between the point xi and its l -th nearest neighbour. Let us define µi,n2,n1
=

ri,n2

ri,n1
, where n1 and

n2 (with 0≤ n1 ≤ n2 ≤M ) are nearest neighbours of generic order. The distribution of µi,n2,n1 can be computed in closed

form and depends only on the ID of the data while, crucially, does not depend on ρ, as long as ρ is constant in the considered

neighbourhood of i whose diameter is set by the distance between i and its n2-th nearest neighbour (Denti et al., 2022).

In order to correctly identify the ID of a dataset, a scale-independent analysis is essential. We therefore make use of GRIDE285

paths, the evolution of the ID estimate as a function of n2, which can be interpreted as the scale at which we look at the data.

We set n1 = n2/2, as usually done in the literature. As a function of n2, the ID is first expected to increase, due to the noise

present at small distance scales, and then to reach a plateau corresponding to the correct ID.

Figure A1. GRIDE evolution plot for the different ENCA models employed for the four random restarts of the models.

Figure A1 shows the GRIDE path for different ENCA models trained in this work. In particular, the ID estimate of the latent

space of ENCA-27 decreases after showing a plateau around five, then reaches a minimum around three, then increases again290

and finally collapses to low values at larger distance scale. The plateau at five motivates us to train an ENCA-5 and study its ID.

The local minimum of the GRIDE path of the latent space of ENCA-5 is consistent with an ID of three. We can deduce that,

for most of the catchments, the ID is three, while for some it can be higher. However, the fact that the GRIDE path of the latent

space of ENCA-27 shows two plateaus around five and three can be an indicator of the existence of two or more manifolds

with different IDs. From Figure 3 we see that, indeed, three features seem to capture most of the relevant information, which295
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is in line with the GRIDE path for ENCA-5.
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Appendix B: Metric Comparisons

We report some summary statistics of the NSE, R, BIAS and STDEV values across the 568 catchments considered in this

study.300

In terms of of the linear correlation coefficient R and the BIAS (left and central panels of Figure B1), we observe a similar

pattern to what we observed for the NSE distribution (Figure 3). By increasing the number of latent features to three, the bulk

distribution improves significantly. At the same time, further increasing the number of latent features improves only the BIAS

outliers.

Regarding the STDEV (right panel of Figure B1), it is clear that both CAAM and ENCA models tend to underestimate305

streamflow variability, a known issue associated with using NSE as the objective function (Gupta et al., 2009). However, the

differences between CAAM and ENCA models are less pronounced, and unlike the observations for NSE, R, and BIAS, a clear

performance hierarchy cannot be established.

Figure B1. R, BIAS and STDEV values for the considered models in the test period. The boxes are delimit by the 25 % and the 75 %

quantiles, while the whiskers indicate to the 5 % and 95 % quantiles. For these metrics as well, CAAM performance is similar to ENCA-2.

Table B1 demonstrates that increasing the number of latent features in ENCA generally enhances performance. However,

the improvement is modest between ENCA-3 and ENCA-5 and nearly negligible between ENCA-5 and ENCA-27. The perfor-310

mance of CAAM is more comparable to ENCA-2 overall, suggesting that the third latent feature is crucial for better predictions

in certain catchments, while five features appear to be the maximum number our encoder can effectively learn. Furthermore,

as shown in Figure 5, it is clear that almost all catchments that improved from ENCA-3 to ENCA-5 still exhibit very poor

performance (NSE below -1.0).

From Table B2, we can observe that the NSE is strongly correlated with the linear coefficient R and fairly correlated with315

STDEV and the correlation increases with the performance (see Figure 3). At the same time, the NSE is anti-correlated with

the BIAS, but this correlation is low. While the correlation between R and BIAS and between BIAS and STDEV is weak, the

correlation between R and STDEV is intermediate and increases with performance. These results agree with the findings of
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(Gupta et al., 2009), who showed that with optimal BIAS values, optimal NSE values are reached when R is correlated with

STDEV.320
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CAAM ENCA-1 ENCA-2 ENCA-3 ENCA-5 ENCA-27

Mean 0.52 0.47 0.50 0.53 0.58 0.59

Min -17.66 -15.08 -17.74 -14.77 -11.03 -6.62

Q5 -0.02 -0.00 0.07 0.11 0.19 0.20

Q25 0.52 0.48 0.52 0.53 0.54 0.54

NSE Median 0.67 0.65 0.68 0.68 0.68 0.68

Q75 0.76 0.75 0.76 0.76 0.77 0.77

Q95 0.85 0.85 0.85 0.86 0.85 0.86

Max 0.90 0.91 0.90 0.91 0.92 0.93

#< 0.0 31 29 22 18 14 13

Mean 0.81 0.80 0.82 0.82 0.82 0.82

Min 0.11 0.12 0.14 0.15 0.13 0.11

Q5 0.55 0.55 0.57 0.58 0.57 0.58

Q25 0.78 0.76 0.78 0.79 0.79 0.79

R Median 0.85 0.84 0.85 0.85 0.85 0.86

Q75 0.89 0.89 0.89 0.89 0.89 0.90

Q95 0.93 0.93 0.93 0.94 0.94 0.94

Max 0.97 0.97 0.97 0.97 0.97 0.97

Mean 0.05 0.05 0.05 0.02 0.02 0.01

Min -1.13 -0.86 -0.86 -1.05 -0.52 -0.63

Q5 -0.16 -0.21 -0.18 -0.17 -0.16 -0.17

Q25 -0.04 -0.06 -0.05 -0.06 -0.05 -0.06

BIAS Median 0.03 0.01 0.01 -0.01 0.00 -0.01

Q75 0.11 0.08 0.08 0.07 0.07 0.05

Q95 0.40 0.40 0.34 0.30 0.20 0.18

Max 1.70 2.87 2.53 2.03 1.70 1.28

Mean 0.82 0.77 0.80 0.76 0.78 0.77

Min 0.13 0.08 0.10 0.09 0.11 0.10

Q5 0.42 0.35 0.40 0.35 0.35 0.34

Q25 0.67 0.63 0.65 0.62 0.64 0.64

STDEV Median 0.79 0.75 0.77 0.75 0.78 0.77

Q75 0.90 0.87 0.90 0.86 0.90 0.90

Q95 1.23 1.18 1.20 1.13 1.14 1.13

Max 4.26 3.64 4.12 3.88 3.55 2.88
Table B1. Metrics comparison for different models computed in the test period. We report the mean, the minimum, the 5% quantile, the 25%

quantile, the median, the 75% quantile, the 95% quantile and the maximum values. Additionally, we report the number of catchments whose

predicted NSE values are lower than zero.
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CAAM ENCA-1 ENCA-2 ENCA-3 ENCA-5 ENCA-27

NSE - R 0.90 0.89 0.89 0.88 0.91 0.92

NSE - BIAS -0.33 -0.30 -0.33 -0.32 -0.10 -0.12

NSE - STDEV 0.28 0.29 0.29 0.40 0.48 0.50

R - BIAS -0.23 -0.33 -0.34 -0.30 -0.21 -0.20

R - STDEV 0.45 0.39 0.38 0.43 0.47 0.48

BIAS - STDEV 0.24 0.21 0.19 0.28 0.32 0.33
Table B2. Linear correlation coefficient between different metric in the models analyzed in this work. Catchments whose NSE prediction is

lower than zero are excluded.
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Appendix C: Neural Networks Details and Training Losses

We report the architecture details of the encoder (Table C1) of the ENCA models used in this work.

For the encoder, we chose a single layer uni-directional LSTM, followed by a dropout layer (with probabiliy 0.4) and a fully

connected layer that maps the LSTM output layer to the predicted output. For the LSTM, we chose a hidden size of 256

(number of memory cells), an initial forget bias of 5.325

Input Layer name Hyper-parameters Output

streamflow input (BS, 5478, 1)

streamflow Conv 1 7, 8, BN, Leakyrelu, DR(O.4) (BS, 5472, 8)

Conv 1 Avgpool 1 4 (BS, 1368, 8)

Avgpool 1 Conv 2 5, 16, BN, Leakyrelu, DR(0.4) (BS, 1364, 16)

Conv 2 Avgpool 2 4 (BS, 341, 16)

Avgpool 2 Conv 3 2, 32, BN, Leakyrelu, DR(0.4) (BS,340, 32)

Conv 3 Avgpool 3 4 (BS, 85, 32)

Avgpool 3 Flatten N/A (BS, 2720)

Flatten Linear BN, Leakyrelu, DR(0.4) (BS, 512)

Linear Output BN (BS, N)

Table C1. The Convolutional encoder architecture used in this study. Batch Normalization (BN) and Dropout (DR) with probability 0.4 are

added among layers. A last BN layer is applied to the decoder output in order to standardize the latent features. N is the number of latent

features. The batch size is indicated with BS.

In Figure C1 we report the training and test losses of some models employed. We observe that all the models employed are

about to reach a plateau, where the test loss does not decrease anymore. Though convergence is not perfectly reached due to

computational limitations, the fact that the test loss is almost at the reachable minimum is an indicator that the models are not

overfitting the dataset.

Additionally, we report the mean and standard deviations of the latent features of ENCA-5 (Table C2). We can appreciate a330

small amount of bias, even if the encoder succeeds in preserving the standard deviation of the latent features close to one. We

found a similar behaviour in the latent features of other ENCA models (not reported).

Mean 0.23 0.27 -0.07 -0.25 0.28

Standard Deviation 1.15 1.1 0.92 0.67 0.99
Table C2. Mean and standard deviation of the latent features of ENCA-5.
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Figure C1. Training MSE loss (left panel) and test loss (right panel) during training for different ENCA models. The curves shown are

obtained by averaging the losses across different random restarts. Loss variability across random restarts (not shown) is negligible.
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Appendix D: Known Attributes and Signatures Correlation

Figure D1. Absolute Spearman correlation matrix of the selected catchment attributes and hydrological signatures between each other.
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Appendix E: Effect of Random Restart

We ascertain that the random restart does not affect much the prediction accuracy (Figure E1). Apart from some catchments,335

most of them show a consistent behaviour across different random seeds.

Figure E1. Test NSE values of four random restarts for CAAM (upper left), ENCA-3 (upper right), ENCA-5 (lower left) and ENCA-27

(lower right) for the 568 catchments considered in this study. NSE values are clipped in the interval [−1,1]. We do not observe much

performance variability across different random restarts.

We report the correlation matrix between the principal components of the learnt features of ENCA-5 (Figure E2) and ENCA-

27 (Figure E3) for different random restarts. We notice a consistency across random restarts and different models. Moreover, the

correlation becomes weaker and weaker with the fourth component, indicating that three features carry most of the information

related to streamflow prediction.340
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Figure E2. Average (plus minus the standard deviation) of the absolute Spearman correlation of relevant features principal components of

ENCA-5 with respect catchment attributes and hydrological signatures across four different random model restarts. The colors refer to the

average.
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Figure E3. Average (plus minus the standard deviation) of the absolute Spearman correlation of relevant features principal components of

ENCA-27 with respect catchment attributes and hydrological signatures across four different random model restarts. The colors refer to the

average. For a better visualization, we report only the first eight Principal Components.
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