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Abstract.

which;-together-with-meteorological-foreings,allows-for Recent successes with Machine Learning (ML) models in catchment
relationship. In this study, we aim to identify a minimal set of catchment signatures in streamflow that, when combined with
meteorological drivers, enable an accurate reconstruction of the whele-entire streamflow time series. To achieve this, we utilize
catchment properties on streamflow. The ENCA architecture feeds the-meteorological-foreing-meteorological forcing and

climate attributes to the decoder in order to incentivize the encoder to only learn features that are related to landscape prop-
erties. By isolating the effect of meteorology, these features can thus be interpreted as landscape fingerprints. The optimal
number of features is found by means of an intrinsic dimension estimator. We train our model on the hydro-meteorologic time
series data of 568 catchments of the continental United States from the CAMELS dataset. We compare the reconstruction
accuracy with state-ef-the-art-models that take as input a subset of static catchment attributes (both climate and landscape
attributes) along with the meteorological forcing variables. Our results suggest that available statie-eatchment-landscape at-

tributes compiled by experts aceount-for-almost-all-the-relevant-information-about-the-rainfall-runoff relationship—Yetthese
catchmentattributes-can be summarized by only two relevant learnt features (or signatures), while at least a third one is needed
for about a dozen difficult to predict catchments in the central US, mainly characterized by high aridity indexand-intermittent
flew. The principal components of the learnt features strongly correlate with the baseflow index and aridity indicators, which
is consistent with the idea that these indicators capture the variability of catchment hydrological responseand-relate-to-needed
moedel-eomplexity. The correlation analysis further indicates that soil-related and vegetation attributes are of high-impertanee-
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1 Introduction

Hydrotogical-signatnres Hydrological signatures encompass descriptive statistics derived from meteorological and streamflow
time series. They serve various purposes in hydrology, such as hydrological model calibration or evaluation (Fenicia et al.,

2018; Kiraz et al., 2023), process identification (McMillan, 2020a), and ecological characterization (Olden and Poff, 2003).
Alongside with catchment attributes (distinguished here in landscape and climate attributes), they are also used for catchment
classification and regionalization studies (Wagener et al., 2007).

Streamflow-signaturesStreamflow signatures, i.e. hydrological signatures solely based on streamflow, hold significant impor-
tance as they relate to the variable one aims to predict and understand (Gnann et al., 2021). Hydrologists have developed diverse
signatures reflecting different aspects of streamflow dynamics. Examples include those linked to the flow duration curve (e.g.,
slope of various segments), the baseflow index, or the flashiness index. Numerous other such signatures exist. For instance,
Olden and Poff (2003) compiled a list of 171 indices from prior work, reflecting aspects associated to magnitude, frequency,
duration, timing, and rate of change of flow events. As streamflow depends on meteorological forcing and landscape attributes,
streamflow signatures generally contain information from both sources. In particular for predictions in ungauged basins, it is
vital to be able to disentangle them.

One way of doing so is through Aydrelogical-modetshydrological models, which condense catchment attributes into #odel
parameters model parameters (Wagener et al., 2003). Previous research indicates that observed hydrographs can be represented
by a handful of model parameters (Jakeman and Hornberger, 1993). For instance, the GR4/#odet GR4J model (Perrin et al.,
2003), resulting from a continuous refinement process aimed at balancing model complexity and performance, has only four
parameters. However, these analyses are based on predefined model assumptions.

Model parameters can, in principle, directly be estimated from streamflow signatures. The Approximate Bayesian Compu-
tation (ABC) technique (Albert et al., 2015) has recently been used to infer model parameters from streamflow signatures -
which in this context are called swmmary-statisties summary statistics - bypassing the need to directly compare the complete
time series (Fenicia et al., 2018). If these summary statistics contained all the information necessary to estimate model param-
eters they would be termed as s#fficientsufficient. Sufficiency is therefore not an inherent property of the summary statistics but
depends on the specific hydrological model and on the parameters that need to be inferred. For ABC to converge efficiently,
we also want the summary statistics to be minimaiminimal, i.e., while they should ideally encode all the parameter related
information available in the streamflow, they should encode no other information, neither from the forcing nor from the noise
that is used for the simulations (Albert et al., 2022). Such minimally sufficient summary statistics could thus be considered the
relevant fingerprints of landscape features on the streamflow. Of course, this holds true only if the model is capable of encoding
all the information in such features that is relevant for the input-output relationship. However, recent studies show that purely
data-driven models might-outperform process-based models in prediction accuracy (Kratzert et al., 2019; Mohammadi, 2021),
beeuase-because they suggest information in catchment attributes previously not utilized for streamflow prediction.

Our goal is to employ Machine Learning (ML) techniques to identify a minimal set of streamflow features enabling accurate

streamflow predictions when combined with meteorological forcing. Thus, our aim is to eliminate all forcing-related informa-



60

65

70

75

80

85

90

tion from the streamflow, distilling features solely from the catchments themselves. We approach this objective from a purely

data-driven perspective;a

To 1dent1fy minimal sets of streamflow features, we employ a—ﬂevel—M{TafehﬁeeﬂifHeeeﬁfb/—pﬁ)pe%ed—fer—mﬁﬂg

is-an Explicit Noise Condi-

tional Autoencoder (ENCA) (Albert et al., 2022), where the bare noise utilized by the stochastic model simulator is fed into
the decoder together with the learnt summary statistics. This way, the encoder is encouraged to encode only those features
containing information on the model parameters while disregarding the noise. Albert et al. (2022) applied ENCA to infer pa-
rameters of simple one-dimensional stochastic maps, showing that the learnt features allow for an excellent approximation of
the true posterior. In our case, instead of noise, we input meteorological forcing into the decoderand-. By feeding also climate
attributes to the decoder, we encourage the encoder to exclusively encode landscape-related information within the streamflow.

Moreover, since we make use of uni-directional LSTM (see Appendix C), conditioning ENCA also on climate attributes could

In order to reduce the computational costs and learn a minimal set of catchment features, the dimension of the latent space is
chosen according to the estimation of its Intrinsic Dimension (ID) (Facco et al., 2017; Allegra et al., 2020; Denti et al., 2022).
In particular, we employ the ID estimator GRIDE (Denti et al., 2022), which is robust to noise. Learnt features will then be
compared with known catchment attributes (both from the landscape and the climate) and hydrological signatures to provide
a hydrological interpretation and guide knowledge domain experts towards the pertinent information necessary for streamflow
prediction.

We apply our approach to the US-CAMELS dataset (Newman et al., 2015), covering several hundred catchments over the
i et—LSTMs (Long
Short-Term-Short-Term Memory networks) have emerged as state-of-the-art models for streamflow data-driven predictionsin

ungauged-basins. In the study of Kratzert et al. (2019), LSTMs validated on unseen catchments, enriched with static landscape

continental US.

and climate attributes from Addor et al. (2017), outperformed conceptual models. First investigations towards mechanistic
interpretation of the LSTM states, e.g. linking hidden states to the dynamics of soil moisture, demonstrated the potential of
eliciting physics from data-driven models (Lees et al., 2022). Here, by linking learnt features to known catchment attributes,
we explore a further aspect in this broader field of explainable Al or interpretable ML (Molnar, 2024; Molnar et al., 2020).

Our specific objectives are: (i) find the minimal number of dominant streamflow-features stemming from the landscape; (ii)
relate them to known landscape and climate attributes as well as established hydrological signatures. This will not only allow
us to determine how many features are required for streamflow prediction, but also to answer the question whether there is
missing information in known catchment attributes.

A similar attempt of learning signatures has recently been made by Botterill and McMillan (2023). In pursuit of an inter-
pretable latent space on a continental scale, they employed a convolutional encoder to compress high-dimensional informa-
tion derived from meteorological forcing and streamflow data. This approach was aimed at learning hydrological signatures
(McMillan, 2020b) within the US-CAMELS dataset. Their approach differs from ours in three aspects: (i) they used a a tradi-

tional conceptual model as a decoder whereas we use an LSTM architecture which has been shown to be superior to conceptual
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models when provided with catchment properties; (ii) they fed both streamflow and meteorological forcing into the encoder
whereas we feed in only streamflow data in an attempt to separate landscape- from forcing-information; (iii) they did not at-
tempt to find a minimal number of signatures sufficient for streamflow prediction, whereas this is a primary objective of our
work.

It is important to note that our main objective is not to beat state-of-the-art models regarding their predictive performance in

ungauged-basins(Kratzert et al., 2021; Klotz et al., 2022). Our goal is rather to investigate the information content in stream-

flow. However, we believe our research will provide valuable insights into the most critical features for streamflow prediction.

2 Models and Methods

2.1 Data

We employ the Catchments Attributes and Meteorology for Large-sample Studies (CAMELS) (Newman et al., 2015), which
consists of 671 catchments in the contiguous United States (CONUS), ranging in size from 4 to 25 - 103 km?. For this study,
we select those 568 catchments out of 671 whose data span continuously on a daily basis the time period from 1 October
1980 to 30 September 2010, corresponding to 30 hydrological years. The first 15 years are used for ealibration-training and
the last 15 for validationtesting. Along with the streamflow time series and the meteorological forcing variables, US-CAMELS
also provides information about catchments static attributes (Addor et al., 2017), encompassing both landscape (vegetation,
soil, topography and geology) and climate. Streamflow data is retrieved from the U.S. Geological Survey gauges, while the
meteorological forcing comes from the extended North America Land Data Assimilation Systems (NLDAS) (Kratzert, 2019)

and includes maximum and minimum daily temperature, solar radiation, vapour pressure and precipitation.
2.2 Explicit Noise Conditional Autoencoder

We use the Explicit Noise Conditional Autoencoders (ENCA) (Albert et al., 2022), where the streamflow is fed to a convolu-
tional encoder. ENCA has been designed to distill sufficient summary statistics which contain minimal noise information from
the output of stochastic models. Here (Figure 1 - for the detailed architectures the reader is referred to Appendix C), the noise
is substituted by all the variables we are not interested in, namely the meteorological forcing. The convolutional encoder is thus
followed by a LSTM decoder that takes as input 15 hydrological years of meteorological forcing, i.e. 5478 wvalues{(—for-the
detailed-architecturesthereaderisreferred-te-time points, and nine climate attributes (reported in Table 1). The memory-celis-of
the-=STM-are- LSTM capacity is limited by the dimension of the input layer. In order to enlarge the memeory-available-available
capacity and capture more complex patterns from the meteorological forcing, the meteorological time series are first fed to a

single linear layer with 1350 output units. The output of this linear layer is then concatenated with the output of the encoder

and fed to the LSTM decoder. This way the decoder sees tensors of size {B+5478;4356—5)whereB-(BS,5478,1350 + N
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Figure 1. Explicit Noise Conditional Autoencoder used in this study. For the hyper-parameters and the implementation details, the reader
is referred to Appendix C. The neural network architectures employed are Convolutional Neural Networks (CNN), a Fully Connected (FC)
layer and LSTM. The observed and simulated streamflows are denoted with @) and Q. respectively. The meteorological forcing variables are
denoted with PRCP (precipitation), SRAD (solar radiation), Tmax (maximum temperature), Tmin (minimum temperature) and Vp (vapour

pressure).

where B is the batch size (batches are selected across different catchments) and -5-/V is the latent space dimension. We opted

for such an architecture in order to extract as much static information related to the streamflow as possible.

reconstruction—However,-we-We expect to be able to compress almost all streamflow information not already contained in the
forcing into a much-smaller-number-of-featureslow (INV)-dimensional feature vector. Because they should be largely devoid of
forcing information, we call them-these features the relevant landscape features and explain in the-nextseetion-subsection 2.3
how we fix their number. We refer to the ENCA model with latent space dimension egualte-N as ENCA-N. Comparing
relevant landscape features with known static catchment attributes in terms of their capacity for streamflow reconstruction will
allow us to find out whether static catchment attributes lack information that is crucial for streamflow prediction. For this com-
parison, we use an LSTM model augmented with catchment attributes (Addor et al., 2017) in the input, both steaming from
the landscape and the climate. We refer to this model as Catchment Attributes Augmented Model (CAAM). This model differs
from Figure 1 solely by the fact that the latent features are substituted by known eatehment-landscape attributes. Following
Kratzert et al. (2019), CAAM is fed with 27 catchment attributes (reported in Table land-denoted-with-a—*), which are repre-

sentative of climate, tepelogytopography, geology, soil and vegetation. As-a-control-case,—we-also-report-the results-obtained

h N A -O—uh
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In order to mitigate numerical instability, it is crucial to standardize the catchment attributes or latent features before feeding
the LSTM. In CAAM, we standardize the catchment attributes ence-and-for-all-with the mean and standard deviation computed
over all the considered catchments. This is not possible for ENCA, since the mean and standard deviation of the latent features

are not known a priori. Therefore, we standardize the latent features by mean-means of a batch normalization layer. This way,

we ensure that the magnitude of the LSTM input is comparable between CAAM and ENCA.
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We-use-the-first-Testing We use the first 15 years of data for ealibration-training and the last 15 for validation—Calibration
testing. training is performed by maximizing the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), defined as:

Z;r‘zl (qsim,t - (]obsdf)2 ZtT:l (QSim,t - QObs,t)2
Y1 (it = )" 0 (ot = tots)”

NSE=1— (1)

where gops,¢ and ggm, ¢ are, respectively, the observed and predicted streamflow expressed in mm/day at day ¢, and pps is the
average of the observed streamflow. We notice that maximizing the NSE is equivalent to minimizing the Mean Square Error

(MSE) between data and prediction. Each model is trained with the Adam optimizer (Kingma and Ba, 2015), with learning

rate equal to 10" for a
validation NSE-s-then-ehosen—The-10, 000 epochs. The batch size is set to 64 and the first 270 days of the predicted streamflow

are excluded when computing the loss.

BIAS _ HMsim — Hobs ]

Hobs

logarithm;-defined-as-We also report the three components in which NSE can be decomposed, see Eq. 4 in the main text of
Gupta et al. (2009). These components are the linear correlation coefficient (R), the bias normalized by the observed streamflow

standard deviation (BIAS) and standard deviation ratio (STDEV). The linear correlation coefficient is related to timing, whereas

STDEV measures the streamflow variability and it is defined as

Olog(sim) Osim
LOG - STDEVSTDEV = ————+ , 2)
Tlog(obs) Tobs
where Frogrsmy 8t FrogronsT Tsing a0d Tons are the standard deviations of the togarithm-of the simulated and observed stream-
flows, respectively. Finally, the BIAS is related to volume errors and it is defined as
BIAS — Hoim—fobs 3)
Oobs

Each algorithm is affected by noise, due to the random initialization of the neural network parameters. To minimize this
effect we run each model with four random restarts, each one providing the streamflow prediction in the whole validation
testing period. We compute the evaluation metrics on the predicted streamflow after averaging the streamflow over these four

random restarts.

2.3 LatentSpace InterpretationIntrinsic Dimension Estimation

The relevantfeatares-selection of the encoder latent space dimension, specifically the number of relevant features, is informed
by the ID estimator GRIDE (Denti et al., 2022). We utilize the GRIDE paths, which involve estimating the ID at several
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Figure 2. Unidimensional line embedded in three dimensions. The estimated intrinsic dimension depends on the distance scale.

distance scales at which the data is analyzed (for an in-depth discussion on ID, refer to Appendix A). The ID intuitivel

measures the dimension of the manifold where the data resides, which may be lower than the dimension of the embeddin

space. Most ID estimators depend on calculating the distance scale between data points, and the estimated ID itself can val

with this distance scale. Figure 2, derived from Denti et al. (2022), illustrates a one-dimensional spiral dataset embedded in

a three-dimensional space with added noise. When the distance scale is too small, the data points appear to fill the space

uniformly, making the manifold seem three-dimensional. However, as the distance scale increases and the noise is bypassed

the estimated ID decreases until the correct value of one is achieved.

To identify the dimension of the latent space of ENCA we proceed with the following methodology. First, we train an
ENCA-N with a relatively large number of latent features IV. Since we fed 27 catchment attributes to the reference model
(CAAM), we use a 27-dimensional latent space in order to have a fair comparison in terms of model capacity. We refer to this
model as ENCA-27. The exact dimension of the latent space we start with does not matter much, as long as it is larger than
the expected number of relevant landscape features. Then, we estimate the 1D of the latent space, and train another ENCA
with the number of latent features equal to the estimated ID and, in turn, estimate its ID to check if the dimension of the latent
space can be further reduced. We thus use the ID as a guide to progressively diminish the dimension of the latent space of
the autoencoder. However, in the end we train ENCA for several dimensions of the latent space and evaluate the information
content of the learnt features in terms of their ability to reconstruct streamflows. In Figure Al we report GRIDE paths for

different models trained in this work.

3 Latent Space Interpretation

The relevant features are first projected using a Principal Component Analysis (PCA), since in general the autoencoder latent
representation is in arbitrary coordinates. By-deing-thisDoing so, we ensure a fair comparison between-among different random

restarts, since we change the basis of each latent space by ordering the new coordinates according to the explained variance.



Finally, in order to interpret the relevant landscape features, we report the absolute Spearman correlation (Zar, 2005) matrix

255 between-among the learnt featuresand-, static catchment attributes and hydrological signatures, which are reported in Table 1.
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Meteorological Forcing Variables

PRCP_ Average daily precipitation (mm/day)
SRAD Surface incident solar radiation (W/m?)

Tmax Maximum daily atmosphere temperature (°C
Tmin Minimum daily atmosphere temperature (°C
Vp_ Nearly surface daily vapour pressure average (Pa

Climate Attributes

Prec Mean Mean daily precipitation.

PET Mean Mean daily potential evapotranspiration.

Prec Seasonality Seasonality of precipitation estimated by using sinusoidal waves.
Aridity Index Ratio between the mean PET and mean precipitation.

High Prec Frequency Frequency of days with < 5x mean daily precipitation.

High Prec Duration Mean duration of high precipitation events.

Low Prec Frequency Frequency of days with < | mm/day of precipitation.

Low Prec Duration Mean duration of dry periods.

Hydrological Signatures

QMean Mean daily streamflow (mm/day).

Streamflow Ratio Ratio between the mean daily streamflow and mean daily precipitation.
Slope FDC | Slope of the flow duration curve.

Baseflow Index Ratio between the average daily baseflow and streamflow.
Stream ELAS Streamflow precipitatipp elasticity.

Q5 5 % flow quantile (mm/day).



Landscape Attributes

Topological Attributes

Slope Mean Mean slope of the catchment.
Area Catchment Area of the catchment,

Geological Attributes

Carbonate Rocks Fraction Carbonate sedimentary rocks fraction area in the catchment.
Geological Permeabilit Surface permeability (in log10 scale).

Soil Depth (Pelletier) Depth to bedrock (maximum 50 m).
Soil Depth (STATSGO) Soil depth (maximum 1.5 m).
Soil Porosity Volumetric porosity.

Vegetation Attributes

LAIMax Maximum monthly mean of leaf area index.
LALDiff Difference between the max. and the min. monthly mean of the leaf area index.
GVE Diff Difference between thi2nax. and min. monthly mean of the green vegetation fraction.

Table 1. Meteorological forcing variables, climate and landscape (topological, geological, soil and vegetation) attributes and hydrological
signatures compared in this study. Both climate and landscape attributes are fed to CAAM. ENCA models are conditioned on climate



4 Results and Discussion

4.1 The Number of Relevant Landscape Features
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Figure 3. NSE values for the considered models in the test period. The boxes are delimited by the 25 % and the 75 % quantiles, while the
whiskers indicate to the 5 % and 95 % quantiles. CAAM performance is similar to ENCA-2.
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Figure 3 depicts the bexplotefboxplot of the test NSE values for the validation NSE; BIAS-and EOG-STDEV-valuesfor-the

constdered-models—The-assoctated-statisties-are-reported-in-considered models. We report and discuss the associated statistics
the boxplots of the NSE components (R, BIAS, STDEV) and the correlations among them in Appendix B. In-al-the-metries

In terms of NSE, we observe a performance improvement from ENCA-1 to ENCA-2 in the bulk of the distribution, and a
further minor improvement from ENCA-2 to ENCA-3whichproduces-alowernumberof NSE-outliers. The NSE improvements

improvement between ENCA-3 and ENCA-5 is minor and is mainly related to outliers while ENCA-5 and ENCA-27 are-minor
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In general, Figure 3 and the related statistics (Figure B1) show that increasing the number of latent features -—the-bulk
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refated-to-high-BiAS-eutliers-improves the prediction accuracy of the considered metrics. Even though it is difficult to set a
cut-off dimension, we can state that: i) with more than five latent features we do not observe a performance improvement
anymore, meaning that 5 features are a sufficient set of summary statistics of the streamflow (which, however, can still depend
on the chosen encoder architecture). ii) Overall, CAAM performance is most similar to ENCA-2in-terms-of BIAS-and-INSE.

We therefore argue that eatchment-attributes-eoHeeted-by-experts-known catchment attributes (selected in this study) account

for two relevant landscape features that appear to be sufficient for most catchments, while at least a third one is needed to

resolve specific catchments.
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Figure 4. Validation-Test NSE of ENCA-2 (left panel) and ENCA-3 (right panel) versus CAAM, color-coded with the NSE difference per
catchment clipped in [-1,1]. Red means ENCA performs better, blue means CAAM performs better.

To study which catchments are most affected when using the latent features of the ENCA models in place of the known
catchment attributes in CAAM, we report (Figure 4) the NSE difference between CAAM and ENCA-2 (left panels) or ENCA-
3 (right panels), respectively. While, for most catchments, switching from ENCA-2 to ENCA-3 does not result in a high
performance gain, we see a clear improvement on about a dozen or so catchments, mostly located in the central CONUS. This

corroborates the hypothesis that the eelleeted-known catchment attributes account for two relevant landscape features and the

14
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improvement due to the third one is related to only few catchments that are particularly difficult to predict. It is interesting to
count the number of catchments for which CAAMfails(negative NSE-values;’s NSE is negative (i.e. predictions that are worse
than average streamflow) but ENCAsteeeeds{positive NSE-values)’s NSE is positive. This number inereasesfrom13-+is 17 for
ENCA-2 yto-2+-and 15 for ENCA-3). On the other hand, there-are-onty-9-(3)-catehments—the number of catchments for which
CAAMsueeeedsbut’s NSE is positive but ENCA’s negative decreases from eight (ENCA-2(-) to only two (ENCA-3)fails.
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Figure 5. Validation-Test NSE of ENCA models with different number of latent features, color-coded according to the NSE difference
per catchment clipped in [-1,1]. The improvement of increasing the number of latent features is significant from ENCA-2 to ENCA-3

and marginal for more complex models. The improved catchments are mainly located in the central CONUS, dominated by arid climate

conditions.

In order to evaluate the impact of additional features, we compare the performances of ENCA models differing in their
number of latent variables (Figure 5). The results corroborate our earlier findings that two features are sufficient to cover most
of the catchments, and additional features provide information about relatively few, difficult to predict, moestly—eatchments
catchments mostly located in the central CONUS and dominated by arid climate conditions. While the number of such catch-
ments informed by the third feature is relatively high, additional features only have a minor effect. Indeed, adding a third
feature turns +5-catchments-from-faitures(negative NSE--to-suceesses(positive NSE-)-seven catchments from negative NSE to
positive NSE and only leads to marginal deterioration of-a-few-of three other catchments. Additional features have much less

dramatic effects. In

Note that test NSE obtained in this work are good, but still far from state-of-the-art approaches on the same dataset. For
comparison, the
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i 3 ¢ W i WS 3 -ehis y se-global model of
Kratzert et al. (2019) (augmented with the same catchment attributes reported in Table 1) achieves a median NSE of 0.74, while

in this work the best model achieves a median NSE of 0.68. Later a

erformance of 0.82 (Kratzert et al., 2021). One might be tempted to attribute this to over-fitting due to the presenee-of-twe

or-more—mmanifoldessath-4 aran D n—the latent-epnace—o LN\ A A n—1nteres

with-different bsvery large number of parameters of our architecture (about 3 million). However, the test MSE loss curves
(Figure C1) do not support this hypothesis. Also the very long sequences fed to the LSTMs might affect their performance,
as they are known to suffer from vanishing/exploding gradients. While we use time-series of length 5478, state-of-the-art
approaches use lengths of 270 (Kratzert et al.. 2019) and 365 (Kratzert et al., 2021).

4.2 Interpretation of the Relevant Feature Principal Components

Figure 6 shows the absolute Spearman correlation matrix between the principal components of the identified three relevant
featuresand-, the known streamflow signatures and catchment attributes across different random restarts of the model. The
relevant features share information with catchment attributes and hydrological signatures. For instance, feature one carries
information about basic hydrological attributes like baseflow index and low flow frequency. Moreover, feature one is (weakly)
correlated with soil-related attributes like soil porosity and conductivity, sand, silt and clay fraction. Feature two is correlated
with climatic indicators, such as the aridity index, the mean precipitation, high and low precipitation frequency, but also with
hydrological signatures like mean diseharge-streamflow and the 95% quantile of the flow duration curve. We point out that even
though the encoder is explicitly designed to learn non-climate landscape features, we can still observe a correlation between
latent features and climate attributes. This correlation can be due to collinearities between landscape and climate attributes.
In this case, the collinear attributes are those related to vegetation, like the fraction of forests and the maximum GVF (Green
Vegetation Fraction), which are obviously correlated with climate. For instance, from Figure D1 we can observe that the aridity
index is highly correlated with the mean precipitation (0.88) and the fraction of forest (0.74)

fairly correlated between each other (0.67).

Finally, feature three is mostly correlated with high and low flow duration and frequency, signatures relating to the extremes

, while these last two attributes are

of streamflow. Interestingly, this principal component does not hold much information about neither landscape nor climate
attributes, indicating that it encodes catchment information that has not yet been considered or that is not related to any dis-
cernible catchment feature. Since the third feature mainly conveys information about certain dry and hard to predict catchments,
the latter might very well be the case.

The discussed principal components, however, do not share the same amount of explained variance: feature one accounts
for about 60%, feature two for about 30% and feature three for about 10%. In Appendix E we report the correlation matrices
for the other ENCA models, where we can verify that the principal components carry the same information for streamflow

prediction consistently across different models.
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Figure 6. Average (plus minus the standard deviation) of the absolute Spearman correlation matrix-of the-relevant features principal compo-
nents of ENCA-3 with respect catchment attributes and hydrological signatures across four different random model restarts. The colors refer

to the average.

The geospatial distribution of feature importance is shown in Figure 7, where a non-trivial distribution of the features appears,
highlighting that the different features have different information content for different regions: feature one dominates in the
less to non-arid eastern CONUS, while feature two is mainly dominant in the western part. Feature three does not show such
a clear spatial representation. Overall, the potential of delineating geospatial relations is another indicator that the encoder has

learnt from the landscape signal in the data.
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Figure 7. Principal eemponents-Components (PCs) of the relevant features of ENCA-3 in the CONUS. For a better comparison across
different restarts, PCs are normalized in the interval |0, 1] and their sign is adjusted such that the PCs of the first catchment in the dataset are

always positive.
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5 Conclusions and Outlook

We employed a newkind-of-conditional autoencoder to distill a minimal set of streamflow features (signatures) necessary

for streamflow reconstruction in conjunction with meteorological data. Thus, these features can be interpreted as landscape

fingerprints on the streamflow. We compared these features with known catchment attributes in terms of their capacity for

streamflow reconstruction. The primary conclusions we highlight in this study are:

For all the metrics considered, ENCAs (Explicit Noise Conditional Autoencoders) perform better in-terms-of NSE-and
BIAS-than the reference attributes enhanced model (CAAM) when the number of latent features is greater than two.
In fact, two features seem to be sufficient for most catchments, while a relatively small number of catchments, mostly
located in the central CONUS, require a third one. Including more than three features, however, only leads to marginal
improvements. We therefore conjecture that most of the information contained in the static attributes used for CAAM,
insofar as it is relevant for streamflow prediction, can be reduced to two independent features. The third latent feature,

however, seems to encode information that is not fully contained in those static attributes.

The correlation between attributes and importance of the relevant features (see Figure 6) suggests an ordering of the
information contained in the features for accurately predicting discharge: fFirstfirst, basic hydrological attributes like
baseflow and soil-related attributes, followed by the average streamflow and the 95% flow quantile (correlated to climate
due to collinearities with vegetation-related attributes) and, third, specifics on the high and low flow, i.e. the extremes of
the hydrograph. Looking back at Figure 4, this last feature appears to encode the information that is needed to exceed

the model performance that is only based on the 27 static attributes (CAAM).

In summary, our research reveals a significant reduction in the dimensionality of the streamflow time series. Despite the

plethora of hydrological signatures and catchment attributes at our disposal, only a small subset proves essential for accurate

streamflow prediction. This finding echoes established results from prior studies (Jakeman and Hornberger, 1993; Edijanto

et al.,

1999; Perrin et al., 2003), suggesting that hydrological systems might be effectively modelled using only a limited set of

parameters. The low dimensionality of the relevant catchment information opens up the opportunity for a better wnderstanding

understanding of its nature, suggesting some future research directions:

A promising approach could be the adoption of NeuralODEs (Hoge et al., 2022), which offer a high level of interpretabil-
ity due to their low number of states. This combination of a few states and a few features may help to decipher not only

the nature of the relevant catchment information but also how it influences streamflow.

Preliminary analysis (not shown in this paper) has revealed that the known static catchment attributes live on a low-
dimensional manifold, which is in line with our finding that only two independent features seem to capture most of
the information that is relevant for streamflow. While the correlation-based analysis presented in this paper gives some
clues as to how these features can be interpreted, more sophisticated types of analysis like those based on Information

Imbalance (Glielmo et al., 2022) might allow for a more precise understanding of their physical nature.
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Code and data availability. The US-CAMELS dataset, as well as the catchment attributes, is available at the site https://ral.ucar.edu/solutions/
445 products/camels. The extended NLDAS forcing dataset is available at https://doi.org/10.4211/hs.0a68bfd7ddf642a8be9041d60f40868c. All
the code used for this work is publicly available at https://doi.org/10.5281/zenodo.13132951.
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Appendix A: Validatien-MetriesThe Intrinsic Dimension

eRP fori=1,...,.M

and a distance measure, 7 : RP x RP — Rt GRIDE assumes that points in a given neighbourhood are counted with a Poisson

oint process with intensity p, which is constant at least up to the scale of the diameter of the considered neighbourhood. We
define r; ; as the distance between the point x; and its [ -th nearest neighbour. Let us define y; = "Lm2 where ny and

In order to estimate the ID, we apply the GRIDE estimator (Denti et al., 2022). Given sample points, X;

no (with 0 < ny < ny < M) are nearest neighbours of generic order. The distribution of 1, can be computed in closed

form and depends only on the ID of the data while, crucially, does not depend on p, as long as p is constant in the considered

neighbourhood of 7 whose diameter is set by the distance between 7 and its no-th nearest neighbour (Denti et al., 2022).

In order to correctly identify the ID of a dataset, a scale-independent analysis is essential. We therefore make use of GRIDE

aths, the evolution of the ID estimate as a function of n,, which can be interpreted as the scale at which we look at the data.

We set n; = no /2, as usually done in the literature. As a function of no, the ID is first expected to increase, due to the noise

resent at small distance scales, and then to reach a plateau corresponding to the correct ID,
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Figure A1. GRIDE evolution plot for the different ENCA models employed for the four random restarts of the models.

Figure A1 shows the GRIDE path for different ENCA models trained in this work. In particular, the ID estimate of the latent

space of ENCA-27 decreases after showing a plateau around five, then reaches a minimum around three, then increases again

and finally collapses to low values at larger distance scale. The plateau at five motivates us to train an ENCA-5 and study its ID.

The local minimum of the GRIDE path of the latent space of ENCA-5 is consistent with an ID of three. We can deduce that

for most of the catchments, the ID is three, while for some it can be higher. However, the fact that the GRIDE path of the latent

space of ENCA-27 shows two plateaus around five and three can be an indicator of the existence of two or more manifolds
with different IDs. From Figure 3 we see that, indeed, three features seem to capture most of the relevant information, which
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is in line with the GRIDE path for ENCA-5.
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Appendix B: Metric Comparisons

We report some summary statistics of the NSE, BIAS-and -OG-STPEV-R, BIAS and STDEYV values across the 568 catchments
considered in this study.

In terms of of the linear correlation coefficient R and the BIAS (left and central panels of Figure B1), we observe a similar
pattern to what we observed for the NSE distribution (Figure 3). By increasing the number of latent features to three, the bulk

distribution improves significantly. At the same time, further increasing the number of latent features improves only the BIAS

outliers.

Regarding the STDEV (right panel of Figure BI), it is clear that both CAAM and ENCA models tend to underestimate

streamflow variability, a known issue associated with using NSE as the objective function (Gupta et al., 2009). However, the

differences between CAAM and ENCA models are less pronounced, and unlike the observations for NSE, R, and BIAS, a clear

erformance hierarchy cannot be established.
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Figure B1. R, BIAS and STDEV values for the considered models in the test period. The boxes are delimit by the 25 % and the 75 %

uantiles, while the whiskers indicate to the 5 % and 95 % quantiles. For these metrics as well, CAAM performance is similar to ENCA-2.

Table B1 s

quantie-demonstrates that increasing the number of latent features in ENCA generally enhances performance. However, the

improvement is modest between ENCA-2-3 and ENCA-3indieating-5 and nearly negligible between ENCA-5 and ENCA-27,

The performance of CAAM is more comparable to ENCA-2 overall, suggesting that the third latent feature is needed—to

OB AT arlv_diff hian A milas nottasen houn b tha DTA harane tha higga

the-flew—vartability—crucial for better predictions in certain catchments, while five features appear to be the maximum number
our encoder can effectively learn. Furthermore, as shown in Figure 5, it is clear that almost all catchments that improved from
ENCA-3 to ENCA-5 still exhibit very poor performance (NSE below -1.0).
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Appendix C: Analysis-ef Improved-Catchmentsfrom ENCA-2te ENCA-3

From Table B, we can observe that the NSE is strongly correlated with the linear coefficient R and fairly correlated with
490 STDEV and the correlation increases with the performance (see Figure 3). At the same time, the NSE is anti-correlated with
the BIAS, but this correlation is low. While the correlation between R and BIAS and between BIAS and STDEV is weak, the
correlation between R and STDEV is intermediate and increases with performance. These results agree with the findings of
(Gupta et al., 2009), who showed that with optimal BIAS values. optimal NSE values are reached when R is correlated with

STDEV.
495
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Mean 048052 0:06-0.47_ 0:43-0.50_ 043053 0:54-0.58_
Min 23.78-17.66 “74:46-15.08 -48:62-17.74 22451477 -10-66-11.03
Q5 -0:05-0.02 -0:61-0.00 -0:03-0.07 -6-46-0.11 643-0.19
Q25 0:54-0.52 0:42-0.48 9:5+0.52 0.53 0.54
NSE Median 0:69-0.67 0:66-0.65 0:67-0.68 0.68 0.68
Q75 0:770.76_ 6:73-0.75 9:74-0.76 0.76 0.77
Q95 0.85 0-83-0.85 0.85 0.86 0.85
Max 0.90 0.91 0.90 091 0.92
Mean 0220381 0:37-0.80_ 0:290.82 032082 047082
Min_ o1 02 0.14 6:09-05_ 03
Q25 -0:05-0.04 -0:02-0.06 -0.05 -0.06 -0:08-0.05
BIAS Median 6:67-0.03 642-0.01 0-09-6-:05-6:04-0.01 -0.01 0.00
Max 6:03-1.70 15:262.87 H422.53 +5:63-2.03 8:64-1.70
Mean 0.82 6:78-0.77 0.80 0.76 6:750.78
Min 0:09-0.13_ 0.08 0:67-0.10_ 0:06-0.09 0:09-0.11
Qs 023042 049035 023040 048035 027035
LOG-STPEVSTDEYV  Median 0:78-0.79 6:76-0.75 6:72-0.77 873-0.75 6:750.78
Q75 6:95-0.90 0.87 6:88-0.90 0:88-0.86_ 6:94-0.90
Max 723426 16:95-3.64 384412 4:03-3.88 4263.55

Table B1. Metrics comparison for different models computed in the test period. We report the mean, the minimum, the 5% quantile, the 25%
quantile, the median, the 75% quantile, the 95% quantile and the maximum valuesef-, Additionally, we report the distribution-number of
validation-catchments whose predicted NSE values for-the-three-metries-considered-in-this-werkare lower than zero.

26



NSE-R_
NSE - BIAS an
NSE - STDEV
R-BIAS
R-STDEY
BIAS - STDEV.

Table B1. Catehmentsfatting-under ENCA-2-butsuceeeding-under ENCA-3Linear correlation coefficient between different metric in the

models analyzed in this work. These-eatehments—-Catchments whose NSE prediction is lower than zero are characterized-by-high-aridity
indexes-and-ntermittent-flowsexcluded.
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Appendix C: Neural Networks Details and Training Losses

We report the architecture details of the encoder (Table C1) and-the L-STM-decoder-(-of the ENCA models used in this work.
For the encoder, we chose a single layer uni-directional LSTM, followed by a dropout layer (with probabiliy 0.4) and a full

500 connected layer that maps the LSTM output layer to the predicted output. For the LSTM, we chose a hidden size of 256
number of memory cells), an initial forget bias of 5.

Input Layer name Hyper-parameters Output
streamflow input (BS, 5478, 1)
streamflow Conv 1 7, 8, BN, Leakyrelu, DR(0.4) (BS, 5472, 8)
Conv 1 Avgpool 1 4 (BS, 1368, 8)
Avgpool 1 Conv 2 5, 16, BN, Leakyrelu, DR(0.4) | (BS, 1364, 16)
Conv 2 Avgpool 2 4 (BS, 341, 16)
Avgpool 2 Conv 3 2,32, BN, Leakyrelu, DR(0.4) | (BS,340, 32)
Conv 3 Avgpool 3 4 (BS, 85, 32)
Avgpool 3 Flatten N/A (BS, 2720)
Flatten Linear BN, Leakyrelu, DR(0.4) (BS, 512)
Linear Output BN (BS, N)

Table C1. The Convolutional encoder architecture used in this study. Batch Normalization (BN) and Dropout (DR) with probability 0.4 are
added among layers. A last BN layer is applied to the decoder output in order to standardize the latent features. /V is the number of latent

features. The batch size is indicated with BS.

505  HiddensizeIn Figure Cl we report the training and test losses of some models employed. We observe that all the models
employed are about to reach a plateau, where the test loss does not decrease anymore. Though convergence is not perfectly.
reached due to computational limitations, the fact that the test loss is almost at the reachable minimum is an indicator that the
models are not overfitting the dataset.

Additionally, we report the mean and standard deviations of the latent features of ENCA-5 (Table C2). We can appreciate a

510  small amount of bias, even if the encoder succeeds in preserving the standard deviation of the latent features close to one. We
found a similar behaviour in the latent features of other ENCA models (not reported).
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Figure C1. Training MSE loss (left panel) and test loss (right panel) during training for different ENCA models. The curves shown are

obtained by averaging the losses across different random restarts. Loss variability across random restarts (not shown) is negligible.

Mean Initiak-forgetbias0.23  ESTMHayers-0.27  Dropout-0.07  Bi-direetional-0.25  0.28
256-heightStandard Deviation 56115 1 04092 False0.67 099,
Table C2. LSTM-hyper-parameters—We-ehoose-Mean and standard hyper-parameters-used-in-deviation of the literature-(Kratzert-et-ak;2049)

latent features of ENCA-S.
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Figure D1. Absolute Spearman correlation matrix of the selected catchment attributes and hydrological signatures between each othe
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Appendix E: Effect of Random Restart

We clearly-ascertain that the random restart does not affect much the prediction accuracy (Figure E1). Apart from some

catchments, most of them show a consistent behaviour across different random seeds.
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Figure E1. Vatidation-Test NSE values of the-four random restarts for CAAM (upper left), ENCA-2-3 (upper right), ENCA-3-5 (lower left)
and ENCA-27 (lower right) for the 568 catchments considered across—fourrandem-restarts-of-in this study. NSE values are clipped in the
medelinterval [—1, 1]. We do not observe much performance variability across different random restartsof-the-models.

We report the correlation matrix between the principal components of the learnt features of ENCA-4-0O;-ENCA-5 (Figure E2)
525 and ENCA-27 (Figure E3) for different random restarts. We notice a consistency across random restarts and different models.
Moreover, the correlation becomes weaker and weaker with the fourth component, indicating that 3-three features carry most

of the information related to streamflow prediction.

32



Prec Mean 0.18 + 0.06 0.68 + 0.03 0.17 £ 0.12 0.14 +0.11 0.04 = 0.04 L0

PET Mean [N 0.43 + 0.02 0.11 + 0.09 0.03 + 0.01 0.09 + 0.03

) MEIESEOGEIIAAR 0.10 £0.05 | 031+006 0.04+0.04  017+011  0.16+0.04
© Hrelanlo il Al VAR 036 +0.06 @ 026+001 0.18+0.04 0.27%0.07 0.5+ 0.03
E Aridity Index JGBEEINY 0.15+0.09 0.12%0.09  0.04%0.03
O High Prec Frequency -JRUSEESIIM 0007 S RN T X R X X
UM Il alo]glE 024 £0.02 023+0.03 020+0.04 | 028+010 0.10+0.09
Low Prec Frequency JRUSEENX 0.12+0.09  0.09+0.04  0.05+0.03 o8
Low Prec Duration 0.07 + 0.03 0.51 + 0.05 0.23 + 0.07 0.25 + 0.06 0.09 + 0.05

Q Mean 0.08 + 0.02 84 + 0.04 0.15 + 0.05 0.09 + 0.06 0.05 + 0.05

Streamflow Ratio JECBUENNERE 0.80 + 0.03  [EONERENN RN 0% TIEN NN Xy = KoY

© Slope FDC 0.06 + 0.03 0.55 + 0.07 0.09 + 0.04 0.13 + 0.07 0.10 + 0.06
p

% Baseflow Index { WEa-=0E] 020+ 0.10 = 0.34+0.06  0.08 +0.06 0.08 + 0.05

o Stream ELAS 0.25 + 0.05 0.47 + 0.04 0.10 + 0.07 0.10 + 0.06 0.06 + 0.05

2 [eR® 037 +005 | 056+008 | 032+010 0.07+004  0.06 +0.04

E, Q95 0.10 + 0.07 0.83 + 0.05 0.14 + 0.12 0.09 + 0.05 0.07 + 0.03

R s [T sWOR S (=T [SI-IolaYAR 034 =003 | 032+011 | 045%007 | 0.08+006 0.010.01

Il ONDINYalo]glE 0.13+004 | 040+0.09 & 047+0.08 015+011 0.04=0.03

Low Q Frequency JHUZEESE] 0.23+0.10 | 0.46+0.05 0.06 +0.05 0.05 + 0.03

[NVRONDIV[ - Al 0.21 £0.03 0.21+0.09 | 051+003 012+002 0.03+0.03

IRV EE I 030+002 023+005 010+0.07 034+014 0.7 +0.07

S Elevation Mean 0.35 + 0.02 0.02 + 0.01 0.19 + 0.06 0.23 +0.14 0.13 + 0.07

Q SICII-MIEET e 0.26 +0.04 = 0.30+0.04  0.07+005 017+0.14  0.16 + 0.06

[ Area Catchment JEZEXNP] 0.17 £0.04  0.15%0.03  0.09 +0.03 0.03 £ 0.02

8 Carb. Rocks Fraction 0.08 + 0.02 0.06 + 0.03 0.11 + 0.02 0.03 + 0.03 0.10 + 0.05

U] [CILo]MIREIqqME 011001  0.07+0.03  0.11%0.05 0.08+0.04  0.050.04

Soil Depth (Pelletier) 0.16 + 0.03 0.14 +0.04  0.04 +0.04  0.15%0.10 0.16 = 0.07
Soil Depth (STATSGO) 0.03 + 0.02 0.03 + 0.03 0.05 + 0.03 0.14 + 0.07 0.11 + 0.07
SlINYeI o |a8 030+002 003002 003%00l 007007 0.07+0.03

o] @e)qleiaid\Vila%® 039+003 020+004 005+004 0.07£0.09 007 % 0.02
Max Water Content -JUSFEXX} 0.02 + 0.02 0.09 + 0.05 0.13 + 0.06 0.10 + 0.02
Sand Fraction 0.32 +0.02 0.11 + 0.04 0.03 + 0.03 0.10 + 0.05 0.10 + 0.03

Silt Fraction JUPEEINP) 0.24 £0.02  0.04+0.02  0.07 +0.02 0.08 + 0.05
[OEVAZCIae]gJ§ 038 +0.04  027+004 007+002 010%008 0.3 0.02
FEEINIICESEE 0.05 + 0.04 [WOS8E01047 0.11+0.09 0.06+0.05  0.09 + 0.04
(IW\RVFY® 016+004 & 046+004 020+008 016015  0.05=0.03

LAI Diff BN NE] 0.43 + 0.04 0.24 + 0.06 0.20 + 0.13 0.07 + 0.02

GVF Max B 0.52 + 0.04 0.16 + 0.09 0.15 + 0.12 0.04 + 0.03

GVF Diff JPLEN 019 £0.03  0.15+0.02 023+0.08 0.11*0.14

1 2 3 4 5
Relevant Features Principal Components

Soil

Vege.

Figure E2. Average (plus minus the standard deviation) of the absolute Spearman correlation matrix—of the-relevant features principal
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