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Abstract.  

There is unequivocal evidence that climate change will change the risk profile of dams, which are critical pieces of 

infrastructure that safeguard water supply and provide flood mitigation for populated areas. However, the challenges involved 10 

in estimating the probability of extreme floods under climate change have meant that few studies have estimated the plausible 

changes in the risk of extreme floods that have the potential to overtop dams. A recent examination of contemporary scientific 

findings pertinent to climate change impacts on flood risk has informed the projection of extreme flood risk and dam 

overtopping risk estimates made here. We project changes in the exceedance probabilities of overtopping risk for 18 large 

dams in Australia under a range of global warming assumptions, where consideration is given to the impacts of climate change 15 

on rainfall depth, rainfall temporal pattern, and rainfall losses resulting from changes in antecedent catchment wetness. We 

used event-based flood modelling and Monte Carlo sampling to appropriately represent the range of uncertainties associated 

with projecting estimates of extreme flood risk. Our results are presented in terms of changes per degree of global warming, 

which facilitates their interpretation in terms of different greenhouse gas emission scenarios and future time horizons. We 

found that increases in rainfall depth had the largest impact on increasing dam overtopping flood risk for all 18 dams under 20 

climate change. Under 4ºC of global warming, which approximates conditions towards the end of this century under a high 

emissions scenario, the risk of overtopping floods was between 2.4-17 times that of historical conditions for the 18 dams 

investigated. We also found that the risk of overtopping has more than doubled compared to the historical baseline for four of 

the dams investigated here as a result of global warming that has already occurred.  
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Graphical abstract 25 

 

1  Introduction 

The number of flood disasters has risen, more than doubling in the last two decades (2000-2019 compared with 1980-1999) 

(Yaghmaei et al., 2020), and associated financial losses over the past five years have amounted to $320 billion (USD) (Munich 

Re, 2024), which are expected to continue increasing with global warming (Wasko et al., 2021b). The estimation of extreme 30 

flood risk is therefore essential for managing flood responses and mitigation strategies including planning, design, and 

management of infrastructure, emergency responses, and the setting of insurance premiums. The changing risk of rare floods 

under climate change is of particular concern with respect to large high-risk infrastructure such as nuclear power plants (Prasad 

et al., 2011) and large dams (Nathan and Weinmann, 2019a), where failures would threaten lives, livelihoods, and facilities 

integral to supporting economic activity. The theoretical basis for estimating flood risk under a stationary climate is a relatively 35 

mature science and a degree of consensus is reflected in national guidelines for flood risk estimation that are widely used in 

practice throughout many parts of the world (Wasko et al., 2021a). However, it has long been recognised that global warming 

is changing the hydrological cycle (e.g. Mitchell, 1989; Trenberth, 1999) and hence changing flood risk (Barnett et al., 2008; 

Matalas, 1997).  
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There is irrefutable evidence that climate change has already impacted on elements that drive floods such as the frequency, 40 

intensity, and duration of rainfalls (Emori and Brown, 2005; Kunkel et al., 2013; Trenberth et al., 2003), with further changes 

projected to occur in the future. In addition to shifting the depth, location, and timing of moisture delivered during a flood 

event, changes in rainfall patterns also alter catchment moisture stores (Ho et al., 2022; Wasko et al., 2020; Woldemeskel and 

Sharma, 2016), which impact the subsequent flood response (e.g. Garg and Mishra, 2019; Ivancic and Shaw, 2015; Massari et 

al., 2023; Sivapalan et al., 2005). The impact of climate change on floods has been widely recognised in the scientific literature 45 

(Bates et al., 2008; Kundzewicz et al., 2014). However, quantifying future flood risk is an ongoing challenge due to the 

compounding effects of aleatory (e.g. natural variability), epistemic (e.g. knowledge-based), and deep (e.g. climate change) 

uncertainties. Translating the available knowledge of climate change impacts on floods into guidance to inform practical 

applications for estimating flood risk, particularly extreme flood risk, is therefore relatively immature (Wasko et al., 2021a).  

Much of the scientific literature pertaining to the impact of climate change on floods is focused on non-stationary flood 50 

frequency analysis (Salas et al., 2018; Stedinger and Griffis, 2011). However, non-stationary flood frequency approaches 

accounting for climate change have not been widely adopted in industry guidelines due to limited findings of robust and 

meaningful covariates for informing non-stationarity (Faulkner et al., 2020; Wasko et al., 2021a). Another approach widely 

used in the scientific literature is the “chain-of-models” approach, where climate projections from general circulation models 

are downscaled and bias-correct to create local inputs for flood analysis (Hakala et al., 2019). While results from studies using 55 

a chain-of-models approach have been adopted in some flood estimation guidelines (e.g. Flood risk assessments: climate 

change allowances, 2024; Natural Resources Wales, Welsh Government, 2022; Willems, 2013), the method involves the 

propagation of cascading uncertainties. Consequently, existing guidelines for assessing the impacts of climate change on 

extreme floods either overly simplify the complexities of estimating the risks involved, or are dependent on methods that that 

are too uncertain to justify their adoption in practice (Wasko et al., 2021a). 60 

Many studies have acknowledged climate change as a source of increased risk to dams and the research focus has largely been 

on informing operational rules or adaptive management in the context of long-term changes in water supplies and demands 

(e.g. Fluixá-Sanmartín et al., 2021; Madani and Lund, 2010; Malerba et al., 2022; Tanaka et al., 2006). Some of these studies 

have included the consideration of a wide scope of climate change induced risks (e.g. changes in sedimentation rates, changes 

in water demands, and changes in population exposure) (Fluixá-Sanmartín et al., 2019), without explicitly quantifying changes 65 

in dam overtopping risk. These studies used a chain-of-models approach resulting in projections of risk that range several 

orders of magnitude due to differences between general circulation model outputs. In contrast, examinations of climate change 

impacts on dam overtopping risk based on historical records have been based on the detection of trends in overtopping risk 

(Ahmadisharaf and Kalyanapu, 2015) or the prevailing hydroclimatology (Hwang and Lall, 2024). To date, there are a minimal 

number of studies quantifying the impact of climate change on dam overtopping risk. One such study by Lee and You (2013) 70 
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provided a conceptual example intended for exploring the relative sensitivities of dam overtopping risk to changes in rainfall 

and reservoir capacity with time under climate change. As a result, uncertainties in the runoff response were not considered 

and the rates of change used to represent climate change were neither explicitly linked with scenarios of climate change nor 

global warming. Another study by Lompi et al. (2023) considered climate change using downscaled outputs from 12 climate 

models under two emission scenarios in a chain-of-models approach. There is an imperative for dam owners to better 75 

understand the change in risk of extreme floods with the potential to overtop dams given the risk to downstream communities 

and industries dependent on the reservoir storage, as well as the potential for dams to be a device for mitigating climate change 

impacts (Boulange et al., 2021). 

Our analysis is focussed on assessing the shift in the likelihood that dams will be overtopped by floods in a warming climate. 

We investigate the performance of 18 large water-supply dams across Australia, which span different climates and catchment 80 

sizes. The analysis is based on the use of event-based flood modelling implemented within a stochastic framework as this is 

an approach that is well suited to explicitly considering the impacts of global warming on the salient flood drivers. Specifically, 

this includes the consideration of changes in rainfall intensities with temperature over a range of event magnitudes up to and 

including estimates of the Probable Maximum Precipitation (PMP) (Jakob et al., 2009; Visser et al., 2022); the rates of change 

in storm temporal patterns with temperature (Visser et al., 2023); and changes in catchment antecedent wetness (Ho et al., 85 

2022, 2023). The impacts of climate change on these flood drivers are considered both individually and in combination, and 

for a range of different degrees of global warming. We use a baseline time period of 1961-1990, which is herein referred to as 

the historic period. The historic period approximates the mid-point for much of the information used to derive the design 

information provided in Australian Rainfall and Runoff (the national flood guidelines for Australia), which establishes a 

baseline of historic flood risk with which to compare climate change impacts. This differs from the 1850-1900 pre-industrial 90 

baseline period relevant to the Paris Agreement resulting in a difference of approximately 0.3°C of global warming between 

the pre-industrial baseline period and the 1961-1990 historic period used here. 

2  Materials and methods 

2.1 Case study locations 

The 18 dams assessed in this study are owned and managed by nine major water agencies and utilities who are responsible for 95 

the largest dams in Australia. These 18 dams are primarily water supply dams and are all classified as large dams with wall 

heights ranging from 16-166 m. The catchments upstream of these dams range from 28-15,300 km2 and are located across 

arid, temperate, and tropical climate zones (see Fig. 1 and Table 1). The case study dams are distributed across the Australian 

continent with the majority located in the more populous temperate climate zones. Together, these dams are subject to a diverse 

range of extreme storm mechanisms as distinguished by their classification between different zones used for estimating the 100 
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probable maximum precipitation (PMP zones). Australia is divided into five PMP zones with the most prominent division 

being that of areas impacted by tropical storms, which are included in the Revised Generalised Tropical Storm Method 

(GTSMR – coastal and south-west Western Australia (SWWA)), and the south east of the continent, which is covered by the 

Generalised Southeast Australia Method (GSAM – coastal and inland) (see Fig. 1). 

 105 

Figure 1: Location of the 18 dams used for estimating flood risk under climate change in Australia and the associated zones used for 
estimating probable maximum precipitation. 
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Table 1: Catchment sizes, climate zones, PMP zones, and Natural Resource Management (NRM) regions of dam sites used for 
estimating flood risk under climate change. 

Dam owner Dam name Area 
(km2) 

Köppen 
Climate zone 

PMP zone State 
Jurisdiction 

NRM region 

Murray Darling Basin 
Authority 

Hume  15300 Cfa GSAM inland NSW Murray Basin 

Snowy Hydro Guthega 91 Cfb GSAM inland NSW Southern Slopes 

Tantangara 460 Cfb GSAM inland NSW Murray Basin 

WaterNSW Windamere 1109 Cfa GSAM inland NSW Central Slopes 

Split Rock 1618 Cfa GTSMR coastal NSW Central Slopes 

Dept. of Regional 
Development, 
Manufacturing and Water 

Peter Faust 270 Aw GTSMR coastal QLD Wet Tropics 

Teemburra 66 Cwa GTSMR coastal QLD Wet Tropics 

Seqwater Somerset 1340 Cfa GTSMR coastal QLD East Coast 

Wivenhoe 7020 Cfa GTSMR coastal QLD East Coast 

Sunwater Bjelke-
Petersen 

1670 Cfa GTSMR coastal QLD East Coast 

HydroTas Murchison 735 Cfb West coast Tasmania TAS Southern Slopes 

Wayatinah 2130 Cfb GSAM coastal TAS Southern Slopes 

Melbourne Water Cardinia 28 Cfb GSAM coastal VIC Southern Slopes 

Thomson 487 Cfb GSAM coastal VIC Southern Slopes 

Upper Yarra 337 Cfb GSAM coastal VIC Southern Slopes 

Water Corporation 
(Western Australia) 

Harding 1071 BWh GTSMR coastal WA Rangelands 

Samson 
Brook 

64 Csb GTSMR SWWA WA Southern and South-
Western Flatlands 

Serpentine 665 Csb GTSMR SWWA WA Southern and South-
Western Flatlands 

Köppen Climate zone abbreviations: Aw: equatorial, dry winter; BWh: arid, desert, hot; Cfa: warm temperate, fully humid hot 110 

summer; Cfb: warm temperate, fully humid, warm summer; Csb: warm temperate, dry, warm summer; Cwa: warm temperate, 

dry winter, hot summer. Jurisdiction abbreviations: NSW: New South Wales; QLD: Queensland; TAS: Tasmania; WA: 

Western Australia. 

2.2 Event-based modelling 

Flood exceedance probabilities were derived using event-based modelling within a Monte-Carlo framework. Event-based 115 

models were used as this method is best suited for both estimating extreme floods as well as explicitly accounting for climate 

change (Wasko et al., 2024a) while Monte-Carlo sampling allows for probabilistic sampling of the joint probabilities of flood 

inputs (Filipova et al., 2019; Kuczera et al., 2006; Nathan and Weinmann, 2019b). A schematic of the event-based modelling 
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process is shown in Fig. 2. The event-based runoff and streamflow routing procedures used in RORB (Laurenson, 1964; 

Laurenson et al., 2010; Mein et al., 1974) were adopted here and emulated in the R software environment, referred to as 120 

R2ORB. This emulator handles data inputs, performs calculations, and generates outputs in a bespoke manner that enabled the 

analysis to focus on the aspects of flooding most relevant to exploring climate change impacts. For each dam, the contributing 

catchment was modelled as a semi-distributed conceptual node-link model. The catchments were divided into sub areas, 

ranging in number from 4-19 subareas across the 18 case studies, to represent the stream network that allowed for rainfall to 

be spatially distributed. 125 

 

Figure 2: Schematic of event-based flood modelling showing data inputs, models, model parameters, calculated outputs, and 
estimated hydrographs. 

For each event, we assumed that the reservoir was at a full supply level prior to the storm and only assessed flood events 

resulting from the critical duration storm, that is, the storm duration identified in previous dam assessments conducted by the 130 

dam owners as the storm duration that produced the largest reservoir outflows for extreme storms. We adopted the rainfall 

spatial distribution patterns used by the dam owners and these were fixed for each Monte Carlo simulation. The rainfall excess 

was calculated for each sub area using the initial loss continuing loss (ILCL) model and data inputs of rainfall depth, temporal 

distribution, and spatial distribution. The rainfall excess was then routed through the catchment model to calculate the outflow 

hydrograph. The outflow hydrograph was simulated 20,000 times by stochastically sampling rainfall depths, the initial loss 135 

parameter, and the rainfall temporal distribution in order to derive the outflow flood frequency curve. (See Appendix A for 

more details on the rainfall runoff model, the ILCL model, sampling approach, and derivation of the outflow flood frequency 

curve.) The R2ORB models were configured to reproduce inflow and outflow hydrographs and flood frequency curves 

produced by the dam owners. 

2.3 Assessing impacts of climate change 140 

Climate change impacts on floods were examined by comparing outflow flood frequency curves derived from event-based 

modelling using information on rainfall depth, storm temporal patterns, and rainfall losses, as described above and in Appendix 
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A. Investigations into climate change impacts on the spatial distribution of rainfall have shown that the spatial extents of storms 

are changing (e.g. Chang et al., 2016; Ghanghas et al., 2023, 2024; Lochbihler et al., 2017; Wasko and Sharma, 2017) but 

results are as yet inconclusive and storm spatial patterns are therefore unchanged in this study. We report the impacts of climate 145 

change in terms of the relative shift in the annual exceedance probability (AEP) of the Dam Crest Flood (DCF) computed 

under historic (1961-1990) and future climatic conditions. The DCF is the flood event which, when routed through the dam 

storage, results in a peak water level that just reaches the crest level of the dam. The exceedance probability of the DCF is thus 

indicative of the probability that the dam is overtopped by a flood. Reporting climate impacts in terms of the relative shift in 

the overtopping risk provides a non-dimensional metric that facilitates comparison across dams of different sizes and 150 

configurations, though it should be stressed that this metric should not be directly equated with the risk of dam failure as dams 

vary in their ability to accommodate overtopping for different depths and durations. 

We calculated the relative shift (RS) in the risk of overtopping as follows: 

𝑅𝑆 =
𝐴𝐸𝑃!"#,%
𝐴𝐸𝑃!"#

 (1) 

where AEPDCF,p is the projected annual exceedance probability of the notional DCF under increased mean global temperature, 

and AEPDCF is the annual exceedance probability of the DCF under historic conditions. The metric indicates the projected 155 

change in overtopping risk due to climate change, where a value of RS larger than 1 indicates an increased overtopping risk, 

while values less than 1 represent a decreased overtopping risk. For example, if the AEP of the notional DCF under historic 

climatic conditions is estimated to be 1 in 1,000,000, and the corresponding AEP under future climate is estimated to be 1 in 

500,000, the relative shift in risk (RS) is 2.0; that is, the risk of a flood overtopping a dam is projected to double for the adopted 

climate scenario. Conversely, if the estimated AEP of the DCF under climate change is 1 in 2,000,000, then overtopping risk 160 

halves (i.e. RS = 0.5).  

The impacts of climate change were assessed using rates of change (or uplift factors) that varied with the degree of global 

warming, as applied to storm depth, temporal patterns and initial losses. Our assessment of climate change impacts was 

conditioned upon changes in mean global temperature as this is the primary driver of changes in atmospheric circulation and 

moisture availability, which is also well simulated in general circulation models (Graham, 1995). Assessing the impacts of 165 

climate change with respect to increases in global temperatures also enables results to be translated to scenarios of climate 

change, future time horizons, and associated rates of global warming that are of interest to the dam owners. For example, our 

results based on a 4°C increase in mean global temperature approximates a high emissions scenario towards the end of the 21st 

century (see Fig. 3). The rates of changed used here to represent climate change impacts are consistent with the information 

provided from a systematic review, metanalysis, and summary by Wasko et al. (2024a, b) and were first assessed individually, 170 
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and then in combination in response to increases in global temperature of 1-5°C in 1°C increments. The range of global 

warming explored was chosen to facilitate the interpretation of the results under a variety of global climate change scenarios 

and commonly considered future time horizons. The rationale for the rates of change used to adjust the flood drivers under 

global warming are provided below. 

 175 

Figure 3: Projected temperature increases associated with AR6 shared socioeconomic pathways relative to 1961-1990 and their 
associated uncertainties. Incremental increases in mean global temperature are plausible as a result of different climate scenarios at 
different future time horizons as shown by (solid black) circles for 1-4°C increases. Data from Fyfe et al. (2021) in IPCC (2021b). 

2.3.1 Rainfall Depth 

There is substantial evidence that rainfall depths increase with increased global temperatures (Ali et al., 2021; Allan and Soden, 180 

2008; Emori and Brown, 2005). In Australia, the relationship between temperature and rainfall has been investigated using 

both observed records (Hardwick Jones et al., 2010; Herath et al., 2018; Zhang et al., 2019) as well as modelled results 

(Chevuturi et al., 2018; Ju et al., 2021). Investigations into the association of rainfall with temperature in Australia have 

typically yielded results where the central tendencies of daily rainfall changes are in accordance with the Clausius-Clapeyron 

relationship, with greater associations found for rainfalls with shorter duration and those in tropical regions (Magan et al., 185 
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2020; Visser et al., 2021; Wasko et al., 2018). The impact of increased temperatures on rainfall depth in Australia have been 

found to be consistent with investigations elsewhere in the world (e.g. Allan and Soden, 2008; Gutiérrez et al., 2021). 

Evidence from both observed and modelled results motivate efforts to update IDF estimates (Jayaweera et al., 2023; Schlef et 

al., 2023) and there has been recognition that this also applies to estimates of the probable maximum precipitation (PMP) 

(Kunkel et al., 2013; Salas et al., 2020; Wasko et al., 2024a), which is the theoretical maximum precipitation for a given 190 

duration and location (WMO, 2009). To date, changes in atmospheric water vapour content, at rates that approximate the 

Clausius-Clapeyron relationship, have been identified as the primary driver of increased PMP estimates, while evidence of, 

and the ability to resolve, changes in storm efficiency have been limited (Kunkel et al. 2013). Estimates of the PMP are 

invariably dependent on the method and assumptions used to derive estimates and adopting the operational procedure used by 

the relevant jurisdiction’s authority is therefore essential to producing appropriate projections of the PMP under climate change 195 

(Stratz and Hossain, 2014).  

In Australia, generalised methods are used to derive estimates of the PMP, which allow for data to be drawn from larger spatial 

regions to inform local estimates (see PMP zones in Fig. 1) by considering similarities in atmospheric dynamics and topography 

and thus the mechanisms driving extreme rainfall (WMO, 2009). Visser et al. (2022) assessed climate change impacts on PMP 

estimates using the operational methods used by the Bureau of Meteorology, Australia’s national weather, climate, and water 200 

agency. In their study, it was found that persisting increases in dewpoint temperatures drive increases in PMP estimates and 

subsequent projections of dewpoint temperatures yielded increases in PMP estimates under climate change slightly above the 

Clausius-Clapeyron relationship. The findings of Visser et al. (2022) are in agreement with international findings of climate 

change impacts on PMP estimates (Kao Shih-Chieh et al., 2019; Rastogi et al., 2017; Rouhani and Leconte, 2020).  

We therefore assessed changes in storm depth based on a rate of change of 8%/°C as recommended in Wasko et al. (2024b) 205 

for critical storm durations 24 hours or longer and a rate of change of 9%/°C and 8.4%/°C for 12 hour and 18 hour storm 

durations respectively, noting our adopted rate of change factor is consistent with the results examining changes in rainfall 

depth and PMP depth with temperature in Australia. The rate of change factor was applied as follows in Eq. (2): 

𝐼% = 𝐼 × )1 +
𝛼
100.

∆'
 (2) 

where Ip is the projected rainfall depth, I is the historical design rainfall depth or intensity (e.g. from historic IDF curves or 

PMP estimates), α is the rate of change in units of %/°C, and ∆T is the change in global (land and ocean) temperature. 210 

https://doi.org/10.5194/hess-2024-403
Preprint. Discussion started: 9 January 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

2.3.2 Storm temporal patterns 

The PMP zone-specific temporal patterns for each dam were used to estimate the baseline flood frequency (Bureau of 

Meteorology, 2006; Green et al., 2005; Nathan, 1992; Walland et al., 2003). These temporal patterns are comprised of around 

ten storm patterns for different durations and different standard catchment areas. Information on how storm temporal patterns 

are expected to change in a warming climate were derived from Visser et al. (2023). The changes in storm temporal patterns 215 

were examined using a measure of the proportion of the storm event duration at which 50% of the cumulative precipitation 

has occurred, denoted D50, where values of D50 range between 0 and 100%. Storms with a D50 value of less than 50% are 

classified as “front-loaded events”, while D50 values greater than 50% are “rear-loaded” events. It is expected that under climate 

change D50 values will slightly decrease in most regions meaning that storms are predominantly becoming more frontally 

loaded.  220 

Climate change impacts on storm temporal patterns were assessed using the Köppen-Geiger zone-specific rate of change 

factors (%/°C) from Fig. 9 in Visser et al. (2023). These rate of change factors are shown in Table 2 for the climate zones 

and storm durations relevant to this study that were calculated in Visser et al. (2023). The rate of change factor for the 

longest duration storm was adopted when the critical duration storm exceeded the length of storms analysed in Visser et al. 

(2023). The calculation of the percentage change in D50 is shown in Eq. (3). 225 

∆𝐷() = 1)1 +
𝛼!()
100.

∆'
− 13 × 100 (3) 

where αD50 is the rate of change factor for D50. The change in D50 was calculated in response to 1°C increases in temperature 

and rounded to the nearest percentage change. For example, applying a temporal pattern rate of change factor of -4%/°C under 

a 4°C increase in global temperature would result in a DD50 of -15%. 

Table 2. Rate of change factors for storm temporal patterns by Köppen-Geiger zone (Aw: Equatorial, dry winter; Cfa: Warm 
temperate, fully humid, hot summer; Cfb: Warm temperate, fully humid, warm summer; Csb: Warm temperate, dry, warm 230 
summer; Cwa: Warm temperate, dry winter, hot summer; BWh: Arid, desert, hot). Numbers in parenthesis show the number of 
dams located in each zone. 

Duration (hr) Aw (1) Cfa (6) Cfb (7) Csb (2) Cwa (1) BWh (1) 

12 -0.12 -0.58 -0.29 0.17 -0.45 -0.50 

18 0.03 -0.27 -0.90 0.10 1.07  

24  -0.42 0.26    

36  -1.09     

https://doi.org/10.5194/hess-2024-403
Preprint. Discussion started: 9 January 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

 

For Monte Carlo simulations under historic climate conditions, the influence of natural variability in temporal patterns is 

accounted for by randomly selecting patterns from the available ensemble using a uniform distribution. To account for the 235 

tendency for storm patterns to become more front-loaded with warmer global temperature, the temporal patterns were sampled 

non-uniformly in order to achieve the targeted average shift in D50 as shown in Eq. (4): 

𝐷()44444 + ∆𝐷() =
∑ 𝑤* ∙ 𝐷(),*+
*,-

𝑛  (4) 

where n is the number of temporal patterns, wi is the weighting of the ith temporal pattern where 𝑤* ≠
-
+
 when ∆𝐷() ≠ 0, and 

D50,i is the D50 of the ith temporal pattern. In a uniform sampling of the temporal patterns 𝑤* =
-
+
 and ∆𝐷() = 0. The weights 

needed to achieve the target ∆D50 were determined using a random sampling of 10,000 sets of weights such that ∑𝑤* = 1, 240 

whilst minimising var(D50) to ensure as even a sampling of temporal patterns as possible to achieve the targeted shift in D50 to 

an accuracy of 10-5. 

2.3.3 Rainfall losses 

Projections of changes in initial and continuing loss were undertaken, respectively, for 205 and 273 catchments across Australia 

(Ho et al., 2023). The catchments used in the study by Ho et al. (2023) were selected where a statistically significant 245 

relationship (at a significance level of a = 0.05) could be found between losses and antecedent soil moisture for 3-day rainfall 

events that were equalled or exceeded, on average, 5 times per year (a 5 EY event). It was found that across most of Australia, 

rainfall losses are projected to increase under all climate change scenarios, with the largest increases seen for higher emission 

scenarios further into the future. Some exceptions included areas of western Tasmania and north-east Queensland where 

rainfall losses are projected to decrease slightly.  250 

Projections of changes in rainfall losses were averaged over regions with similar hydroclimatic characteristics, termed “Natural 

Resource Management” (NRM) regions. These region-specific rainfall loss rates of change were derived from the results of 

Ho et al. (2023) but only used data from events that were equalled or exceeded on average once per year (1 EY), as opposed 

to the results presented in Ho et al. (2023), which included more common 5 EY events. The revised event selection was made 

here to help exclude the more frequent events where the soil moisture deficit may not have been fully satisfied by the incident 255 

rainfall. These regionally aggregated rainfall loss rates of change are documented in Wasko et al. (2024b) and are shown in 

Table 3 for the NRM regions relevant to the dams considered in this study. There was insufficient data to project changes in 

losses in the Rangelands NRM region. Consequently, values from the Monsoonal North NRM region were adopted as this was 
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the closest proximity NRM region to the dam located in the Rangelands NRM region. The rates of change were applied to the 

mean parameter of the initial loss and to the constant value of the continuing loss. 260 

Table 3. Rates of change for rainfall losses, initial (IL) and continuing loss (CL), by Natural Resource Management (NRM) region. 

NRM IL (%/°C) CL (%/°C) 
Wet Tropics 0.8 1.4 
East Coast 2.0 3.8 
Central Slopes 1.1 2.0 
Murray Basin  3.1 6.7 
Rangelands - - 
Monsoonal North 2.4 4.4 
Southern Slopes 3.9 8.5 
Southern and South-Western Flatlands 4.5 5.6 

3  Results 

We derived flood frequency curves in response to changes in the three different flood drivers, individually and combined, for 

each case study catchment, considering increases in global temperature of 1-5ºC. An example of the shifts in the derived flood 

frequency under climate change is shown for one of the catchments in north-east Australia in Fig. 4 (the results are anonymised 265 

here to avoid any inferences being made about the risk of overtopping to downstream communities). The red dashed horizontal 

line represents the notional dam crest flood (DCF), the black curve represents the flood frequency curve under historical 

climatic conditions, and progressively darker grey lines show results for increasing degrees of global warming. 
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Figure 4 Example of derived outflow flood frequency curves resulting from changes in the flood driver of (a) rainfall depth; (b) 270 
temporal patterns; (c) rainfall losses); and (d) a combination of all three flood drivers. 

The shift in the reservoir outflow flood frequency curve resulting from changes in storm depth under different degrees of global 

warming is shown in Fig. 4(a). The adopted rate of change value for precipitation depth in response to climate change is 

positive, meaning that rainfall depths are estimated to increase with increasing temperature. The derived flood frequency curves 

considering changes in rainfall depth under climate change are consequently steeper than the historic flood frequency curve 275 

representing an increased risk of the DCF being exceeded. The steeper flood frequency curves in response to changes in storm 

depth seen for this example in Fig. 4(a) are representative of the changes obtained due to increases in rainfall depths across all 

the case studies. In this example, the probability of exceeding the DCF is 2.6´10-5 (approximately 1 in 38500) under historical 

climate conditions. This probability increases to 3.5´10-4 under a 5ºC increase in global temperatures resulting in the relative 

risk of overtopping increasing by 13.5. 280 

The effect of changes in storm temporal patterns under global warming on the outflow flood frequency curve for this example 

case study site is shown in Fig. 4(b). In this example, the rate of change for the storm temporal patterns was negative, meaning 

that storms will become increasingly front loaded under climate change resulting in the probability of exceeding the DCF 

decreasing. However, the decreases in the probability of exceeding the DCF were not continuous with increases in global 

temperature. At this site, a global temperature increase of 4ºC resulted in the largest change in overtopping risk. In addition to 285 

both the sign and magnitude of the temporal pattern shift the impact of changes in storm temporal patterns on flood risk are 
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dependent on a catchment’s time of concentration and existing storm attributes. As a result, the direction of change in the 

probability of extreme floods resulting from changes in storm pattern are specific to each catchment. 

Shifts in the dam overtopping risk in response to changes in rainfall loss under climate change are shown in Fig. 4(c). For this 

site, the increases in rainfall losses are small relative to the design rainfall depths at the probabilities of interest to the DCF 290 

resulting in a very small decrease in the risk of floods exceeding the DCF under climate change. The impact of changes in 

rainfall losses on the risk of exceeding the DCF differed in magnitude between catchments in different regions. As seen in 

Table 3, the rates of change range from 0.8-4.5%/°C for initial losses and 1.4-8.5%/°C for continuing losses and the resulting 

decreases to the risk of exceeding the DCF were notable for some locations. 

The combined impacts of changes in storm depth, storm temporal pattern, and rainfall loss in response to 1-5°C of global 295 

warming are shown for this example case study site in Fig. 4(d) showing an overall increase in the risk of floods exceeding the 

DCF. A comparison of Fig. 4(a)-(c) with Fig. 4(d) shows that changes in rainfall depth exert the largest influence over changes 

in flood risk under climate change, a finding that was universal across the dams investigated. From these derived flood 

frequency estimates we calculated the relative shift in the risk of the DCF (see Eq. (1)) to summarise the results recalling that 

values less than 1 represent a decreased risk while values greater than 1 represent an increased risk in floods exceeding the 300 

DCF. 

The shifts in overtopping risk due to each flood driver are shown as box plots in Fig. 5(a) – (c) with Fig. 5 (d) showing the 

response to the combined impacts of all three flood drivers. Each box plot is a summary of the results across the 18 dams. For 

each flood driver, five box plots are shown representing increasing degrees of global warming. Similar to the results shown in 

Fig. 4, a comparison between Fig. 5(a) and (d) show that the flood risk resulting from changes in all the flood drivers is most 305 

influenced by changes in the rainfall depth. However, the differences between Fig. 5(a) and (d) also reveal that the effects of 

changes in temporal patterns and rainfall losses are not negligible, despite their relatively small impacts when considered 

individually (see Fig. 5(b) and (c) noting the different scales on the y-axes compared to Fig. 5(a) and (d)). Interestingly, while 

the impacts of rainfall losses on reducing flood risk are magnified with increased global warming, the impact of changes in 

temporal patterns do not necessarily change uni-directionally with increased global temperature. In addition, the direction of 310 

change in the storm temporal pattern was not indicative of the direction of change in the derived flood frequency curve. All 

catchments show decreases in flood risk in response to 1-3 ºC global temperature increases, while some of the catchments 

experience an increased flood risk under 4-5ºC of warming. These results indicate that changes in peak outflows in response 

to changes in temporal patterns are catchment specific and likely dependent on the catchment’s time of concentration and other 

storm attributes such as the spatial distribution of rainfall. 315 
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Figure 5. Box plots of the relative shift in the annual exceedance probability (AEP) of the dam crest flood (DCF) for all 18 dams 
resulting from changes in (a) rainfall depth (outliers not shown), (b) temporal pattern, (c) rainfall losses, and (d) all three flood 
drivers combined. Box plots show the median and interquartile range (IQR). Whiskers show the minimum and maximum values 320 
that lie within 1.5 times the IQR of the median value. Outliers are not shown. Dashed blue line represents the historical baseline. 

Overall, the impact of global warming increases the exceedance probability of the DCF at most locations, noting that a 

temperature increase of 1ºC approximates present conditions due to the baseline period of 1961-1990 adopted here (see Table 

B 1 showing projections of global mean surface temperature changes for the current and near term period). The degree to 

which climate change is projected to increase the probability of a flood exceeding the DCF appear to be catchment- and dam-325 

dependent. For example, Fig. 5(d) shows that under a 4ºC increase in global temperature, which approximates projected 

temperatures towards the end of the 21st century under medium to high emission scenarios (see Fig. 3 and Table B 1), the risk 

of overtopping due to all drivers combined ranges from 2.4 to 17 times (median of 5.5) greater than the historic risk across the 

different dams. 
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4  Discussion 330 

It is necessary to translate knowledge from the realms of scientific theory, investigation, and experimentation to practice (Kiem 

and Austin, 2013). The estimation of flood risk under climate change is a challenging endeavour due to the dynamic nature of 

flood mechanisms even under stationary climate assumptions. Yet projecting flood risk under climate change is critical to 

ensuring that the risk is adequately managed particularly in high hazard systems with long (i.e. several decades to century-

long) economic life-spans, such as large dams and nuclear power plants, which need to withstand extreme flood events under 335 

both current and future climate conditions. A scientific review aimed at consolidating the available information relevant to 

estimating floods under climate change in Australia was recently conducted by Wasko et al. (2024a) and the findings from the 

review were used to inform the rates of change used in this study. The work presented here was undertaken contemporaneously 

to an update of the Australian flood guidelines (Wasko et al., 2024b) also based on the summary findings of Wasko et al. 

(2024a) while another study focused on more frequent events by O’Shea et al. (2024). The exchange between developing the 340 

new guidelines and the study presented here and that of O’Shea et al. (2024) was intended to ensure the practicality of the new 

guidelines, demonstrate an approach that could be translated globally for estimating flood risk under climate change elsewhere 

in the world, as well as providing insights into the impact of climate change on flood risk for the case studies. 

The 18 case studies considered here represent a broad sample of catchment and dam sizes, with all dams meeting the ICOLD 

classification of large dams (ICOLD, 2011), located across a range of climate zones. We found that changes to the overtopping 345 

risk were most sensitive to changes in precipitation depth in response to global warming across all dams. While changes in 

temporal patterns and rainfall losses had a relatively smaller impact, they were not inconsequential. For many of the smaller 

catchments located in the southern temperate regions of Australia changes in rainfall losses and temporal patterns moderated 

the increased flood risk resulting from increased rainfall depth under climate change. It is also plausible that shifts in temporal 

patterns and rainfall losses will be more critical for more frequent floods compared with the extreme floods considered here, 350 

where changes in the extreme rainfalls relevant to overtopping floods overwhelm the changes in rainfall losses or temporal 

patterns. A supporting result was found in a study by O’Shea et al. (2024) focused on frequent (i.e. 1 in 5 AEP) and rare (i.e. 

1 in 50 AEP) floods in response to climate change impacts on rainfall depth and rainfall losses. They found that flood peaks 

were more sensitive to climate change for more frequent floods compared with rare floods. O’Shea et al. (2024) also found a 

heightened sensitivity in the catchment located in a temperate climate compared to the catchment located in a tropical region. 355 

The increased sensitivity in response to shifts in rainfall losses can be attributed to the smaller runoff ratios associated with 

more frequent flood events as well as the smaller runoff ratios typical of Australian catchments located in temperate climates 

(Wasko and Guo, 2022), which make them more sensitive to changes in rainfall losses.  

The ability to generalise likely climate change impacts on relative changes in overtopping risk based on dam-specific attributes, 

such as climate zone, catchment size, rainfall-runoff characteristics, reservoir capacity, and the configuration of outlet works 360 
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(e.g. whether dam outflows are controlled by gates or fixed crest spillway) would be a valuable finding. Thus far, the sample 

size of catchments investigated both here and in the study by O’Shea et al. (2024) are insufficient to definitively conclude 

whether sensitivities in flood risk under climate change can be associated with specific catchment characteristics, or, for this 

study, specific dam characteristics. At present, projecting estimates of dam overtopping flood risk as an indicator of dam failure 

requires a thorough site-specific investigation.  365 

We used a conservative assumption that reservoirs are at full supply level prior to the storm, an assumption that provides a 

worst-case scenario with respect to the subsequent estimation of outflow flood risk. It is anticipated that, all other things being 

equal, climate change will result in larger demands for water resulting in increased drawdown and evaporation of reservoirs 

prior to floods thereby increasing the potential for dams to attenuate floods, while impacts on the frequency and depth of storms 

will modify reservoir recharge. Indeed, the study by Lompi et al. (2023) for a dam in northern Spain showed that the near-term 370 

(2040) overtopping risk was reduced under a moderate emission scenario as a result of increased reservoir airspace. The 

interaction between increased reservoir airspace prior to a storm and increased precipitation depth under climate change has 

yet to be explored in the context of examining overtopping risk for the dams in this study. Such an investigation would require 

estimation of a distribution of the initial reservoir level under climate change for each dam. Continuous flood models are well 

suited to assessing higher frequency flood events relevant to changes in water demand and supply, in contrast to event-based 375 

models used here to estimate extreme flood risk relevant to the economic design life span of dams. However, the difference in 

time scales relevant to estimating changes in reservoir airspace (i.e. years to decades) means that the consideration of decadal 

variability, in addition to climate change, becomes pertinent (Kiem et al., 2003; Malakar et al., 2024; Micevski et al., 2006). 

Information from decadal climate forecasts could potentially be used to inform shifts in stochastic weather generators relevant 

to continuous flood modelling (Dykman et al., 2024; Steinschneider and Brown, 2013) or rainfall intensity frequency duration 380 

curves relevant to event-based modelling (Jayaweera et al., 2023). In addition to accounting for climate variability and change, 

a comprehensive model of reservoir airspace would also consider broad policy decisions regarding the augmentation of water 

supply, demand management, and population change, considerations that are in the realm of deep uncertainty. 

The change in global temperature was used as the covariate for projecting impacts of climate change on the flood drivers 

considered in this study, an approach recommended by Kunkel et al. (2020). General circulation models are able to model 385 

temperature with a high degree of confidence at both global and regional scales (IPCC, 2021a). Our approach therefore 

capitalises on one of the more reliable outputs from modelling projections of climate change. The choice of using a global 

spatial scale was made to be both consistent with IPCC projections as well as being representative of the primary driver of 

changes in atmospheric circulation and moisture stores. While it may seem intuitive to employ regional, or more local 

downscaled, projections of temperature given their demonstrated fidelity in general circulation models, the use of temperature 390 

on smaller spatial scales as a covariate of extreme rainfall has yielded inconsistent results (Chan et al., 2016; Wang et al., 
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2017). In contrast, global temperatures have been found to be better predictors of Australian rainfall (Jayaweera et al., 2024; 

Roderick et al., 2020). Furthermore, conditioning our assessment of changes in flood risk under climate change on global 

temperature mean that the flood assessment can be conducted independent of projections of climate change, which is an 

involved process that includes developing scenarios, evaluating the suitability of general circulation models, evaluating 395 

downscaling and bias correcting methods, and selecting a manageable and representative suite of ensemble runs to consider. 

There is, however, value in finer spatial resolution numerical models in assessing flood risk under climate change for new dam 

sitings as local climate impacts resulting from changes in land use and land cover have been shown to result in increases in 

estimations of the PMP of over 10% (Stratz and Hossain, 2014). 

The work presented here provides a basis for estimating changes in overtopping risk resulting from changes in the salient flood 400 

drivers. Estimating the risk of overtopping floods under climate change can be used to inform broader assessments of 

compounding dam risk that include consideration of rates of sedimentation and changes in the exposure of downstream 

populations and industries reliant on reservoir storages over time (Fluixá-Sanmartín et al., 2018). Such estimates can also 

inform decisions regarding relicensing or reoperating existing dams under climate change (Ho et al., 2017; Pittock and 

Hartmann, 2011; Watts et al., 2011). We note that our study only used the approximate central tendencies of the rates of change 405 

for adjusting rainfall depths, temporal patterns, and rainfall losses and only presented the best estimate of overtopping flood 

risk under climate change. We recommend that future studies explore the relative sources of uncertainties associated with the 

rates of change used for considering climate change and existing aleatory and epistemic uncertainties. 

In addition to developing sound guidelines for practitioners to implement, the challenge of communicating and improving the 

understanding of flood risk in the broader population remains (Pielke, 1999) and with it the need to improve the communication 410 

of flood risk (Read and Vogel, 2015). Updating estimates of flood risk under climate change can also ensure ex post evaluations 

of flood disasters are appropriately informed and attributions to climate change are not erroneously made at the expense of 

identifying and resolving other factors (Doss-Gollin James et al., 2020). It is crucial that communications of flood risk occur 

in parallel with improving understanding of the intended utility of water infrastructure so that levels of public confidence and 

expectations with respect to the preventative capacity of flood infrastructure are reasonable (Lave and Lave, 1991). We 415 

demonstrate here that it is possible to estimate changes in extreme flood risk under climate change, but there is a societal 

imperative to act upon this knowledge and to recognise our increasing exposure to flood risk that results in part from climate 

change but more broadly from an expanding portfolio of assets in flood zones (Kundzewicz et al., 2014) that can be motivated 

by perverse economic incentives (Gourevitch et al., 2023). 
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5  Conclusion 420 

We present the first assessment of changes in flood-induced dam overtopping risk under climate change based on contemporary 

understandings of climate change impacts on key flood drivers. Our assessment explicitly considers climate change impacts 

on rainfall depth, storm temporal patterns, and rainfall losses and was conducted in a manner designed to be readily adopted 

in industry applications. We estimated projections of flood risk conditional upon scenarios of increased mean global 

temperatures using event-based flood modelling and Monte Carlo simulation to consider the joint probabilities of the salient 425 

flood drivers. 

For the 18 dams examined, we found that the impacts of climate change under 4ºC global warming increases the risk of floods 

exceeding the dam crest flood by 2.4-17 times (with a median value of 5.5) compared to estimates based on historic climate 

conditions. Furthermore, current levels of global warming relative to the period used to inform historic flood risk estimates in 

Australia mean that the risk of floods exceeding the dam crest flood is already more than twice as probable for four of the 18 430 

dams investigated. Of the three flood drivers considered, changes in extremely rare rainfall depths relevant to dam crest floods 

had the largest impact increasing the overtopping flood risk by around an order of magnitude for most dams under 4ºC of 

global warming. In contrast, the change in extreme flood risk resulting from changes in temporal patterns were marginal and 

the magnitude of impacts appear contingent on how runoff is routed through the catchment. Changes in rainfall losses slightly 

decreased the risk of overtopping floods across all locations resulting in the impact of increased rainfall intensity being slightly 435 

dampened.  

Given the complex interaction of flood drivers, it is currently not possible to provide heuristics for estimating changes in flood 

risk under climate change based on attributes such as catchment location, climate zone, or catchment or dam size. Assessments 

of climate change impacts on flood risk need to instead, at present, be assessed in a site-specific manner. Our study provides 

a practical approach for estimating extreme flood and dam overtopping risk under climate change that aligns with approaches 440 

widely used by practitioners making it feasible to be adopted globally. 

Appendix A 

For each case study dam, a semi-distributed conceptual node-link model of the catchment was used to represent the storage 

and routing of streamflow, where nodes represent either the centroid of a subarea where rainfall is added or junctions in the 

conceptual stream network, and links represent the main tributary streams along which streamflow is routed. Such node-link 445 

networks provide a simplified characterisation of the drainage network and are commonly used in event-based modelling 

(Pilgrim and Cordery, 1993). The catchments were divided into sub-areas where rainfall was assumed to be uniform within 

each subarea. 
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The initial loss continuing loss model (ILCL) was used to partition rainfall into rainfall losses and runoff that is then routed 

through the catchment stream network. Rainfall losses are separated into two components being the initial loss, which 450 

represents the depth of rainfall required to sufficiently wet the catchment before runoff commences, and the continuing loss, 

which is the rate of rainfall loss that occurs once the initial loss has been satisfied through to the end of the rainfall event. The 

runoff, or rainfall excess, Xt, at each time step is expressed as shown in Eq. (A1): 

𝑋. =

⎩
⎪
⎨

⎪
⎧ 0 for	 CD𝑃*

.

*,-

E ≤ 𝐼𝐿

𝑚𝑎𝑥(0, 𝑃. − 𝐶𝐿) for	 CD𝑃*
.

*,-

E > 𝐼𝐿

	 (A1) 

Where P is the rainfall depth (mm) and the subscript t or i denotes the timestep (hr), IL is the initial loss parameter, and CL is 

the continuing loss parameter (mm/hr). The ILCL model  was selected from a range of commonly used rainfall loss models as 455 

it is recommended design flood estimation in Australia (Hill and Thomson, 2019) and it has been shown to be most suitable 

for applications where estimates are made for floods that exceed the magnitude of observations (O’Shea et al., 2021). 

The rainfall excess was then routed through the catchment stream network using a non-linear storage routing power function 

based on continuity as shown in Eq. (A2). This was used to model the attenuation and delay of runoff (i.e. overland flow) from 

a subarea, the routing of a hydrograph through a reach, as well as the routing of a hydrograph through a reservoir. 460 

𝑆 = 𝑘𝑄/ (A2) 

where S is the storage (m3), Q is the outflow (m3/s), m is a dimensionless exponent, and k is a dimensional empirical coefficient. 

A value of m = 0.8 widely adopted in general practice was used here and represents the degree of non-linearity in the catchment 

response. The coefficient, k, is the product of kc, which represents the relative storage and delay of streamflow of the catchment, 

and kr, which is the relative delay time of each reach storage: kc was obtained by calibration to observed flood events, while kr 

is dependent on the relative reach length. Baseflows were added to the reservoir inflows to account for delayed streamflow 465 

contributions from prior rainfalls (these were generally less than 1% of the peak flows), and outflows from the dam were 

calculated using appropriate storage-outflow relationships representative of the dam storage configuration and outlet works. 

The outflow flood frequency curve for each dam was derived in response to the critical duration storm using the Total 

Probability Theorem (Haan, 2002; Nathan et al., 2003; Nathan and Weinmann, 2019b). Rainfall depths were sampled by using 

a stratified Monte Carlo sampling over the standardised normal probability domain of rainfall depths. This stratified sampling 470 
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enables rare rainfall events to be sufficiently sampled. Here, the rainfall distribution was stratified into 100 divisions with 200 

samples in each division, thus each flood frequency curve was based on the simulation of 20,000 flood events. 

The flood exceedance quantiles were then calculated using Total Probability Theorem as shown in Eq.(A3). 

𝑃(𝑋 > 𝑥) =D𝑃(𝑋 > 𝑥|𝐶*)𝑝(𝐶*)
*

 (A3) 

where Ci is the conditioning variable (i.e. rainfall) with values that fall within the ith interval, X is the calculated flood value 

and hence the term P(X>x|Ci) is the conditional probability that the flood outcome X generated from Ci exceeds x. The term 475 

p(Ci) is the probability that the conditioning variable falls within the ith interval.  

In addition to the sampling of rainfall depths, temporal patterns were stochastically selected from an ensemble obtained from 

observed storms (Green et al., 2019), and initial rainfall losses were sampled from an empirical distribution based on the 

findings of Hill et al. (2014). 

Appendix B 480 

Table B 1. IPCC Sixth Assessment Report (AR6) global mean surface temperature change projections for four Shared 
Socioeconomic Pathway (SSP) climate scenarios relative to 1961-1990 baseline (which is notionally representative of the mid-point 
for much of the information used to derive the design information provided in ARR2019). The 90% uncertainty interval is provided 
in parentheses†.  

Time horizon SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

Current and near-term (2021-2040) (◦C)  1.2 (0.9-1.5) 1.2 (0.9-1.5) 1.2 (0.9-1.5) 1.3 (1.0-1.6) 

Medium-term (2041-2060) (◦C) 1.4 (1.0-1.9) 1.7 (1.3-2.2) 1.8 (1.4-2.3) 2.1 (1.6-2.7) 

Long-term (2081-2100) (◦C)  1.5 (1.0-2.1) 2.4 (1.8-3.2) 3.3 (2.5-4.3) 4.1 (3.0-5.4) 

†Projections are adapted from the Summary for Policymakers of the Working Group I Contribution to the 485 

Intergovermental Panel on Climate Change Sixth Assessment Report (Fyfe et al., 2021; IPCC, 2021b) 
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