Supplement to: Dynamic assessment of rainfall erosivity in Europe: evaluation of EURADCLIM
ground-radar data
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Figure S1: Comparison between rainfall erosivity calculated based on the 30-min rainfall data and based
on the rainfall erosivity calculated based on the disaggregated rainfall data (i.e., where 25 % of rainfall was
considered in first 30-min and 75 % of rainfall in second 30-min).
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Figure S2: Comparison between annual rainfall erosivity for GloREDa (Panagos et al., 2023),
EURADCLIM (this study), GloREDsatE (Das et al., 2024), IMERG (Das et al., 2024) and CMORPH (Bezak
et al., 2022). Only European countries (country-average values were used) covered by EURADCLIM are
shown.
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Figure S3: Comparison between the average annual rainfall erosivity (MJ mm ha* h'?) for Austria derived
based on the GIoREDa (upper) and EURADCLIM (lower) predictions. Linear features represent the
propagation of artefacts into the unadjusted EURADCLIM-derived rainfall erosivity.
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Figure S4: Comparison between annual rainfall erosivity (MJ mm ha* h') for Poland derived based on the
EURADCLIM (upper) and GloREDa (lower) datasets.
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Figure S5: Comparison between rainfall erosivity (R) (MJ mm ha! h't) calculated using IMERG dataset (a), GlIoRESatE
dataset (b) and CMORPH (c) for Europe. Maps a) and b) are adopted after Das et al. (2024). Map c) is adopted after
Bezak et al. (2022).



o
o p—
M~
o
o p—
o
T o
g 37
£
E 38 4
- <
=
= S 4
— o
Q
2 o
5 &7
w
()
S 4 o January
A 'f'}&._‘ A May
C August
o | B®® October
T T T T | T T T
0 100 200 300 400 500 600 700

GloREDa [(MJ*mm/(ha*h))]

Figure S6: Comparison between monthly rainfall erosivity for January, May, August and October based
on the EURADCLIM (x-axis) and GIoREDa (y-axis) datasets.
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Figure S7: Quantile-Quantile plots between GIoREDa and EURADCLIM EI30 events for the year 2013.
Points are coloured based on the country. It should be noted that both x and y axis are shown in log-scale.
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Figure S8: Comparison between spatial rainfall erosivity (E130) patterns detected by EURADCLIM for the
event that occurred on the 20" of June 2013 and the corresponding GIoREDa station measurements.
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Figure S9: A comparison between the absolute % error between event rainfall depth predictions by
EURADCLIM and computed E130 value. The central dotted line depicts an equal ratio of relative error on

the rainfall depth predictions to the error on the EI30.
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Figure S10: Left: Comparisons of predicted rainfall depth and EI30 from EURADCLIM against rain gauge
measurements in Slovenia between 2016 and 2020. Right: Monthly evaluations of the predicted EI30 and
rainfall depth via the Kling-Gupta index using an unlimited 130 (blue) and an 130 limited to 80 mm/h (black).
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Figure S11: Location specific evaluations of EURADCLIM predictions of EI130 across Slovenia between
2016 and 2020. The KGE represents the Kling-Gupta Efficiency.
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Figure S12: Comparison of impact of different 130 threshold values applied to the EURADCLIM-derived
EI30 for the Slovenian stations included in the GIoREDa for the 2016-2020 period. The points show the
trend in the Kling-Gupta Efficiency when differing limits were applied in the calculation of EI30. ”N
limited” shows the number of EI30 events affected for each 130 limit, showing the changing number of
impacted events when limits (less) stricter limits are applied.
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Figure S13: The populations of event-scale 130 in which the 99" percentile EI130 value was exceeded by
EURADCLIM (Yes) or not (No) compared to GloREDa. Each data point is generated based on the 99th
percentile EI130 value per country per month (i.e. 12 values per country). The histograms show the general
separability of populations, in which overpredictions at high quantiles are characterised by unrealistic 130
values derived from EURADCLIM.



