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Abstract: Pre-seismic turbidity and salinity anomalies in groundwater were documented at HS04 and
HS14 monitoring wells along the East Anatolian Fault Zone (EAFZ) following the 2023 Mw 7.8 and Mw
7.6 Turkey earthquakes. By synthesizing hydrogeochemical datasets (2013-2023) with post-seismic
responses, we unravel fault-segmented groundwater evolution: (1) Northern Na-Cl and Na-HCOs; type
waters result from mixing of mantle-derived magmatic fluids (0-7% contribution) with shallow
groundwater, governed by volcanic rocks-carbonate dissolution; (2) Central-southern Ca-HCO3 and Ca-
Na-HCOs5 systems reflect shallow circulation with localized inputs from evaporites (Increased SO4*
concentration caused by dissolution of anhydrite), ophiolites (Mg?" anomalies), and seawater.
PHREEQC simulation shows that the dissolve-precipitation equilibrium of anhydrite is sensitive to the
variation of water-rock reaction intensity in the Central-southern segments of EAFZ. Coseismic
permeability changes disrupt the solubility equilibria of anhydrite, driving hydrochemical anomalies. We
propose that seismic stress redistribution induces fracture network reorganization, thereby disrupting
anhydrite solubility equilibria. Given its tectonic sensitivity and widespread occurrence, anhydrite
dissolution dynamics emerge as a potential tracer for hydrogeochemical monitoring in active fault zones.
Key words: Groundwater; Water-rock interaction; Seismic activity; PHREEQC; Anhydrite; East

Anatolian Fault Zone.
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1 Introduction

Active fault zones perturb subsurface hydrogeochemical equilibrium through dynamic rock-water
interactions, generating diagnostic anomalies in groundwater chemistry that may serve as potential
seismic precursors (Franchini et al., 2021; Ingebritsen and Manga, 2014; King et al., 2006; Luo et al.,
2023; Poitrasson et al., 1999; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wang et al., 2021).
However, the diagnostic reliability of such hydrochemical signatures faces challenges. Climatic factors
(e.g., precipitation variability and temperature fluctuations) can mask tectonic signals by altering water-
rock reaction kinetics (Okan et al., 2018), while regional heterogeneity in lithology, fracture density, and
hydrological circulation depth introduces substantial spatial variability in groundwater (Luo et al., 2023).
This study investigates the hydrogeochemical characteristics of the seismically active East Anatolian
Fault Zone (EAFZ) in eastern Turkey through a comprehensive 13-year observational dataset (2013—
2023). By systematically analyzing groundwater circulation patterns and water-rock interaction
processes along the fault system, we integrate post-seismic hydrochemical monitoring following the
February 2023 Mw 7.8 and 7.6 earthquake sequence to delineate the relationship between
hydrogeochemical anomalies and fault activity. Our findings aim to establish the relationship between
groundwater anomalies and fault zone activities, thereby advancing methodologies for groundwater-
based seismic monitoring in active fault zone systems.

The EAFZ, a ~500 km NE-SW trending left-lateral strike-slip system accommodating ~11 mm/yr of
Anatolian-Arabian plate motion with reverse thrust components (Pousse - Beltran et al., 2020), has
generated destructive seismic events throughout recorded history (Hubert-Ferrari et al., 2020; Simao et
al., 2016; Sparacino et al., 2022; Tan et al., 2008). The 2023 twin earthquakes exemplify its capacity for
massive stress release (Kwiatek et al., 2023; Ma et al., 2024; Wang et al., 2023b), producing coseismic
surface ruptures exceeding 280 km with maximum slip of 7.2+0.72 m (Liang et al., 2024). Notably,
marked hydrochemical anomalies (e.g., white water, turbidity and intermittent groundwater gushing)
were detected at monitoring wells HS04 and HS14 both before and after the earthquake (Video 1 and 2),
indicating fault-controlled fluid responses to seismic stress perturbations.

Previous studies have identified three primary fluid sources within the EAFZ system: 1) mantle-derived
magmatic fluids (Aydin et al., 2020; Italiano et al., 2013; Karaoglu et al., 2019), 2) deeply circulated

metamorphic waters (Yuce et al., 2014), and 3) Mediterranean seawater intrusion at its southern terminus
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(Yuce et al., 2014). These studies provide sufficient data support for accurate understanding of EAFZ
groundwater circulation. In this contribution, the EAFZ groundwater observation data over the past 13
years are compared with the groundwater chemical composition after the double earthquakes in 2023 to
tracing the origin of geothermal fluid, restore the water-rock interaction process, and evaluate the
influence of seismic activity on the geothermal fluid circulation process. This work provides new
constraints on tectonic controls of deep fluid migration in active fault zone systems while advancing the

application of hydrogeochemical monitoring in seismic hazard assessment.
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Fig. 1. a: A brief Map of the eastern Mediterranean region from NASADEM
(https://doi.org/10.5069/G93TIFDY). b: Geological map of EAFZ, modified from (van Hinsbergen et al.,
2024). EF: Ecemis Fault, SF: Siirgii Fault, MOF: Malatya-Ovacik Fault, GF: Goksiin Fault, YGF: Yesilgoz-
Goksiin Fault.
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2 Geologic background

Located at the intersection of Eurasia, Africa and Arabia, Turkey has a complex tectonic background
(Lanari et al., 2023; Simdo et al., 2016). Here, the collision between the Arabian and Eurasian plates was
an important tectonic process that began in the early Miocene (~ 23 Ma) and continues to the this day
(van Hinsbergen et al., 2024). This collision caused plateau uplift, volcanic eruptions, sedimentary basin
formation, and large-scale strike-slip faults in eastern Turkey, including the EAFZ (Fig. 1) (Bilim et al.,
2018; Karaoglu et al., 2018; Karaoglu et al., 2020; Whitney et al., 2023; Yonli et al., 2017; Zhou et al.,
2024).

The formation of the EAFZ is related to the northward subduction of a strong and thin lithospheric wedge
under the Arabian Plate (Nalbant et al., 2002; Sparacino et al., 2022). This subduction process led to the
formation of a stress concentration zone that eventually developed into a strike-slip fault that penetrated
the entire lithosphere, i.e. the EAFZ (Nalbant et al., 2002). In addition, because the African plate and the
Arabian plate are still moving northward, this fault zone is also accompanied by a certain thrust process,
which causes huge stresses at the plate margin (Ma et al., 2024; Over et al., 2023; Ozkan et al., 2023;
Pousse - Beltran et al., 2020; Wang et al., 2023b; Whitney et al., 2023).

The stratigraphic composition of the East Anatolian fault zone is complex, including Non-
metamorphosed Tauride nappes and Metamorphosed Tauride nappes crystallization base, Cretaceous
ophiolites and Cretaceous-Paleogene plutons. It is overlaid by clastic deposits, lacustrine deposits (such
as: Ancient Amik Lake) and volcanic cover of Upper Eocene-Oligocene to Plio-Quaternay. Faults are
widely developed in study area, including East Anatolian Fault, Ecemis Fault, Siirgii Fault, Malatya-
Ovacik Fault, Goksiin Fault, Yesilg6z-Goksiin Fault etc. (van Hinsbergen et al., 2024). These faults has
been active for a long time and has a history of devastating earthquakes, including two in February 2023
(Mw 7.8 and Mw 7.6) (Fig. 1) (Carena et al., 2023; Kwiatek et al., 2023; Ma et al., 2024; Maden and Ozt
tirk, 2015; Over et al., 2023; Ozkan et al., 2023; Pousse - Beltran et al., 2020; Tan et al., 2008; Wang et
al., 2023b).

The climate of the EAFZ is mainly a temperate continental climate with cold winters and hot and dry
summers. The average annual rainfall is between 200 mm and 600 mm, and is mainly winter rain. Due
to its inland location and low rainfall, the flow of the river is relatively small. The groundwater system

is relatively complex, and geothermal resources are mainly distributed near the fault zone and its
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controlled areas, including low or moderate temperature geothermal systems, which have great potential
for development and utilization (Aydin et al., 2020; Giile¢ and Hilton, 2016; Inguaggiato et al., 2016;

Karaoglu et al., 2019).

3 Sampling and analytical methods

16 samples of groundwater were collected in EAFZ, including hot springs, geothermal wells and river
water. HSO1-HS04 was collected from west to east along SF. HS07-HS16 was collected from north to
south along EAFZ (Fig. 1). Detailed sample collection and testing methods can be found at Luo et al.
(2023). In short, the water sample was taken with a 50 mL clean polyethylene bottle and the temperature
and pH of the water were measured and recorded. Two samples were collected at each sampling site, one
was added with ultrapure HNOs to analyse the cation content, and the other was used to analyse the anion
content and isotopic composition. All samples need to be pre-treated with a 0.45 pum filter membrane to
remove impurities before sampling.

The Hydrogen and oxygen isotopes were determined by a Picarro L2140-1 Liquid water and vapor
isotope analyzer (relative to Vienna Standard Mean Ocean Water (V - SMOW)). Precisions on the
measured §'%0 and 3D value was +0.2% (2SD) and +1% (2SD) respectively (Zeng et al., 2025). The
cation (Li*, Na*, K', Ca?*"and Mg?") and anion (F-, CI-, NOs~ and SO4>") were analysed by Dionex ICS-
900 ion chromatograph (Thermo Fisher Scientific Inc.) at the Earthquake Forecasting Key Laboratory of
China Earthquake Administration, with the reproducibility within #2% and detection limits 0.01 mg/L
(Chen et al., 2015). HCOs~ and COs>" was determined by acid-base titration with a ZDJ-100
potentiometric titrator (reproducibility within £2%). SiO, were analysed by inductively coupled plasma
emission spectrometer Optima-5300 DV (PerkinElmer Inc.) (Li et al. 2021). Trace elements were
analysed by Element XR ICP-MS at the Test Center of the Research Institute of Uranium Geology.
Multielement standard solutions (IV-ICPMS 71A, IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC
VENTURES) used for quality control. The analytical error margin of major cations and trace elements
were less than 10%. Strontium isotope ratios (¥’Sr/**Sr) were determined through triple quadrupole ICP-

MS (Agilent 8900 ICP-QQQ) with a precision of £0.001 (Liu et al., 2020).

4 Results
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Physical, chemical and isotopic compositions of groundwaters are listed in Table 1. The pH of the water
samples varied from 7.03 to 11.72, and all the samples showed weakly alkaline characteristics except
HSI15 (pH=11.72). The effluent temperature of water sample is low (8.1-32.0°C), and the highest
temperature is HS15 sample (32.0°C). HSO0S is a river sample with the lowest temperature (8.1°C). SiO,
varies from 0.38 mg/L to 84.64mg/L. HCOs; (165.72-1854.30 mg/L) is the main anion. The
concentration of SO4* range from 1.21 mg/L to 316.61 mg/L, and the concentration of SO4*" in some
samples is relatively high (e.g. HS01 (287.74 mg/L), HS03 (103.56 mg/L), HS04 (229.75 mg/L), HS14
(316.61 mg/L)). The concentration of Na* (0.42-88.93 mg/L), CI" (0.97-75.92 mg/L) and B (3.62—
1047.25 pg/L) varied synergistically. Ca?" (14.16-501.58 mg/L) is the main cation, followed by Mg>*
(0.38-116.20 mg/L). The types of groundwater include Na-Cl-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Mg-
HCO; (Fig. 2). The §'%0 and 8D of samples varied from —11.30%o to —6.55%o and —65.43%o to —34.43%o
respectively, which is near to the global meteoric water line (GMWL) (Craig, 1961) (Fig. 3), suggesting
their meteoric water origin. The 8Sr/®Sr varied from 0.7053 to 0.7135, showing the characteristics of

multi-source region mixing.

North EAFZ
Middle EAFZ
South EAFZ
This study

(middle and south EAFZ)

Fig. 2. Piper plot of sampled groundwaters in EAFZ. The groundwaters are Na-ClI-HCO3, Ca-HCO3, Ca-
HCO3-SO4 and Mg-HCQOs types. Literature data source (see Table S1 for details): (Aydin et al., 2020; Baba
et al., 2019; Karaoglu et al., 2019; Okan et al., 2018; Pasvanoglu, 2020; YASIN and YUCE, 2023; Yuce et al.,
2014)
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The composition of trace elements in groundwaters are shown in Table 2. The contents of Sr (30.13—
3244.88 pg/L) and Ba (1.89-196.48 pg/L) in the samples varied widely. Moreover, Sr and SO,*> had
obvious positive correlation. Box plot analysis showed that the Fluid-Mobile Element (FME)
concentrations of B (3.62-1047.25 ng/L), Li (0.33-89.93 ng/L) and Rb (0.14-28.91 ug/L) in some
samples were greater than the median (Fig. S1). Enrichment coefficients (EF) normalized by Ti is used
for groundwaters and rocks. The result shows that whether compared with schist, basalt or Andesite of
EAFZ, trace elements in groundwaters are all in a state of enrichment, and some elements can even be

enriched 100000 times (Fig. S2).

0
Magmatic fluid
=20
40
£ 60t
p—
a
7S
-80
© North EAFZ
© Middle EAFZ
-100 - @ SouthEAFZ
. This study
//Cold water (middle and south EAFZ)
-120 // ] ] 1 ] 1
-20 -15 -10 -5 0 5 10 15
5"0(%o)

Fig. 3. 3D and 6'80 (%0V-SMOW) values for groundwaters collected from EAFZ. The GMWL represents
the global meteoric water line (Craig, 1961). The LMWL represents the Local meteoric water line (Aydin et
al., 2020). The magmatic fluid distribution (8D = —20 + 10%., '30 = 10 + 2%.) from (Giggenbach, 1992).

Literature data source is consistent with Fig. 2.
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5 Discussion

5.1 The origin of groundwater in different segments of EAFZ

Previous studies have documented abundant geothermal resources within the EAFZ, which is
characterized by low or moderate temperature geothermal systems (Aydin et al., 2020; Baba et al., 2019).
Both aqueous and gaseous geochemical signatures indicate mixing between deep-sourced mantle/crustal
fluids and shallow groundwater reservoirs (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014).
Yuce et al. (2014) proposed that geothermal fluids at the southwest end of the EAFZ are triggered by
deep-rooted regional faults, with localized seawater intrusion. Analogously, there are deep components
involved in the geothermal fluid circulation in the middle to east section of EAFZ. However, the source
of deep components are thought to be controlled by magmatic activity rather than from deep-rooted
regional faults (Aydin et al., 2020; Italiano et al., 2013; Karaoglu et al., 2019). At the intersection of the
EAFZ and the North Anatolian Fault Zones (NAFZ), which is also known as the Karliova triple junction,
there is extensive volcanic activity that may have provided energy and components for the geothermal
fluid cycle eastern segment of the EAFZ (Bilim et al., 2018; Karaoglu et al., 2018; Karaoglu et al., 2020).
Furthermore, Italiano et al. (2013) suggested these volcanic activities may even contribute to geothermal
fluids in the middle segment of the EAFZ. These findings collectively suggest multiple tectonic controls
(volcanism, fault activity, and seawater intrusion) on EAFZ's geothermal systems.

The February 2023 earthquake sequence (Mw 7.8 and 7.6) ruptured the central EAFZ segment. A critical
question arises: Are the observed pre-seismic groundwater anomalies seismogenically linked to this
seismic event? To address this, we conducted comparative analyses of post-seismic hydrochemical data

against a decadal-scale (13-year) pre-seismic groundwater dataset, as detailed below:

5.1.1 Hydrogen and oxygen isotope characteristics of groundwaters

Hydrogen and oxygen isotopes serve as robust geochemical tracers for elucidating the origin of
geothermal fluids groundwater. As illustrated in Fig. 3, the D and §'*0 compositions of groundwater in
the EAFZ align closely with the GMWL (Craig, 1961), indicating predominant atmospheric precipitation
recharge. Notably, groundwater in the southern EAFZ proximal to the Mediterranean Sea exhibits
progressively heavier isotopic signatures toward the coast, consistent with recharge sourced from

evaporated Mediterranean seawater. In contrast, northern groundwater displays distinct '30 enrichment
10
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deviating from local meteoric trends, indicative of mixing with deep-sourced magmatic fluids—a
interpretation corroborated by widespread Quaternary volcanic activity in the northern sector (Fig. 3)
(Bilim et al., 2018; Karaoglu et al., 2018; Karaoglu et al., 2020). Conversely, central and southern
groundwater samples exhibit isotopic signatures decoupled from magmatic inputs, reflecting the absence

of active deep-seated magma reservoirs in these segments.
5.1.2 Major ion characteristics of groundwaters

The groundwater chemistry exhibits distinct spatial heterogeneity across the EAFZ segments. Northern
groundwaters are significantly enriched in Na*, K*, and CI- (Na-Cl and Na-HCOs type), whereas central
and southern segments display Ca-Mg-HCO; type waters, with localized Ca-SO. and Na-Cl anomalies
(Fig. 2). These hydrochemical disparities likely reflect fundamentally distinct recharge sources and
circulation pathways.

As discussed earlier, magmatic fluid contributions are evident in northern groundwaters. Chloride serves
as a key tracer for magmatic input (Luo et al., 2023; Pan et al., 2021). In the eastern EAFZ, CI-
concentrations span 0.4-2500 mg/L, markedly higher than central/southern values. Given the segment's
inland setting, seawater intrusion is negligible, suggesting Cl- enrichment primarily originates from
magmatic fluids. Notably, Na*/Cl- molar ratios deviate from theoretical mixing trends, with Na* excesses
implicating additional sodium sources (e.g., albite dissolution), to be detailed in Section 5.2. This
interpretation aligns with petrological and geophysical evidence of active magmatism in the eastern
EAFZ (Bilim et al., 2018; Karaoglu et al., 2018; Karaoglu et al., 2020; Maden and Oztiirk, 2015; Oyan,
2018). Integrated H-O isotopic, major ion, and volcanic activity data collectively support a mixing model
between meteoric water and magmatic fluids in the northern EAFZ.

In contrast, central and southern groundwaters exhibit lower Na* and Cl- concentrations, with sporadic
anomalies attributable to evaporite dissolution or limited seawater influence (Table 1). The Ca-Mg-HCOs3
dominance, coupled with isotopic signatures, reflects shallow circulation systems (<5 km depth) devoid
of significant deep tectonic/magmatic inputs (Table S2). Ca®* likely derives from calcite, dolomite, or
plagioclase weathering, while Mg?* sources include dolomite and serpentinite. Pre-seismic turbidity at
HS14 (Video 1) may indicate earthquake-induced disruption of water-rock equilibria.

However, the geothermal gases in the centre and south segment of EAFZ exhibit mantle-like §'3Cco,

(=5.6%o to —0.2%o0) and elevated *He/*He ratios (Rc/Ra = 0.44-4.41), contrasting with the absence of
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deep fluid signatures in groundwater (Italiano et al., 2013). Actually, this decoupling results from
fundamentally distinct migration mechanisms. Groundwater circulation operates as a shallow crustal
system dominated by meteoric recharge, structurally confined by fault architecture. Conversely,
geothermal gases predominantly represent deep-seated fluids, with their high mobility and low density
enabling efficient ascent through fractures. This explains why mantle/crustal signals are preserved in
gases but attenuated in aqueous phases.

To further constrain groundwater source area, we have calculated the thermal reservoir temperature of
EAFZ groundwater, and the results are shown in Table S2. Due to the low water-rock interaction degree
and diversity of rock types in this area, cations in water are difficult to reach water-rock equilibrium (Fig.
4). Hence, most of the cationic thermometer estimates are too large or too small, which can only be used
as areference for thermal reservoirs. Fortunately, SiO, thermometers are relatively suitable for estimating
the reservoir temperature. As can be seen from Table S2, the reservoir temperatures range from 19.81°C
to 128.09 °C (Quartz, no steam loss), which belongs to the low or moderate temperature geothermal
systems. Using the circulation depth calculation formula, the maximum circulation depth is estimated to

be 4.4km (HS04) (Table S2).

Na/1000 North EAFZ

@)

@ Middle EAFZ
@ South EAFZ
4

This study
(middle and south EAFZ)

Partially equilibrated
or mixed waters

Immature waters

K/100 80 60 40 20

Oy ‘
Mg

Fig. 4. Na-K-Mg ternary diagram of groundwaters in EAFZ. Literature data source is consistent with Fig. 2.
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5.1.3 ¥7Sr/3%Sr characteristics of groundwaters

Radiogenic strontium isotopes (¥’Sr/%°Sr) serve as robust tracers of groundwater provenance. The
measured ¥’Sr/%°Sr ratios (0.7053-0.713) across EAFZ groundwaters reflect multi-source mixing
processes. Central-southern groundwaters integrate signatures from: Shallow aquifers: Inheriting Sr from
local lithologies (ophiolites) (Oyan, 2018); Modern seawater: 8’Sr/3°Sr = 0.7092-0.7096 (Mediterranean
seawater) (Banner, 2004; Bernat et al., 1972); River inputs: Enriched ratios (>0.710) from silicate
weathering. Binary mixing models using 8’Sr/*Sr vs. Ca/Sr ratios (Fig. 5) quantify source contributions:
Carbonate weathering dominates, consistent with Ca-HCOj; hydrochemical type; Ophiolite contributions
<10% (except Mg?*-rich samples near ultramafic outcrops); Evaporite dissolution contributes 0-20%
(<50% in localized high-SO4>- zones). Sr isotope framework corroborates earlier findings of shallow-

dominated circulation in central-southern EAFZ.

0.716
I I
0.714 - o g()%
- & T -T20%
0.712 e
: 2 . |
- /) 50%
Maditerranean //_.-' 2 ¢ \\
gz 0-710 seawater .Y * sov |
2 s * //9 0% x\

87Sr/8
o
~1
o
oo
T

?
|
| ®

/: /4
‘J’ 10% \ 4

. * Magmatic fluid
0.706 |- ‘l / metasomatism
I f
Vg
0.704 | Cretaceous\ /, .
Kizildag / ¢ This study
()phi()]itc (middle and south EAFZ)
0.702 T S
10 100 1000 10000

Ca/Sr

Fig. 5. Sr/%Sr vs. Ca/Sr of groundwaters in the EAFZ. The mixing-boundary lines are built with the
following end members: Mediterranean Sea water Ca = 411ppm, Sr = 8.30ppm ¥Sr/3%Sr = 0.7092 (Banner,
2004; Bernat et al., 1972); Cretaceous Kizildag ophiolite CaO = 9.7%, Sr = 1088.10ppm 3’Sr/%Sr = 0.7032
(Oyan, 2018); Shallow groundwater (HS08) Ca = 55.34ppm, Sr = 0.06ppm 3’Sr/36Sr = 0.7150 (Affected by
silicate weathering); Evaporite CaO = 29.5%, Sr = 149ppm ¥’Sr/86Sr = 0.7085 (Giingor Yesilova and Baran,
2023).
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Fig. 6. Characteristics of chemical components of groundwaters in the EAFZ, during water-rock
interaction. The dashed line is the numerical simulation result of PHREEQC. a: Ca?" vs SO4, b: Na* vs
CI, ¢: Na*™ vs HCO3+CI™ and d: Na* vs HCOs~. The simulation calculations are detailed in Supporting

Information Part 1. Literature data source is consistent with Fig. 2.
5.2 The groundwater circulation in different segments of EAFZ

5.2.1 Water-rocks interaction

Pre-seismic whitish discoloration and turbidity anomalies observed at HS04 and HS14 groundwater
monitoring stations likely reflect seismically induced perturbations to water-rock equilibrium (Video 1
and 2). To validate this hypothesis, we conducted numerical simulations of water-rock interaction
processes across distinct segments of EAFZ, aiming to reconstruct their hydrochemical evolution.

Fig. 6 indicates pronounced disparities in groundwater chemistry between northern and central-southern
segments. As discussed, elevated Na* and C1” concentrations in northern groundwaters suggest magmatic
fluid contributions. During ascent, these deep-sourced Na-Cl rich fluids mix with shallow groundwater
while reacting with surrounding rocks. To quantify magmatic mixing ratios and reaction pathways, we

first characterized dominant lithologies in the northern EAFZ—basalt, basaltic andesite, and sedimentary
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cover (clastics and carbonates). CIPW norm calculations were employed to estimate mineral abundances,
followed by PHREEQC-based reactive transport modeling (Parkhurst and Appelo, 2013) (see
Supplementary File 1 for parameters). Simulation results (Fig. 6) demonstrate that linear correlations
between Na" and (HCOs™+ CI") arise from magmatic NaCl fluid-carbonate interactions, with magmatic
contributions accounting for 0—7% of total mixing.

In contrast, central-southern groundwaters lack magmatic signatures but exhibit Ca?>’~SO4>~ covariation
indicative of anhydrite dissolution (Fig. 6). Central segment waters reflect mixed carbonate- anhydrite
controls (30% anhydrite contribution), while southern systems are dominated by anhydrite-derived
solutes (100%), sourced from extensive evaporite deposits of the paleo-Amik Lake. Silica-enthalpy
mixing models estimate reservoir temperatures of 234°C (HS04) and 155°C (HS04) (Fig. 7a), under
which anhydrite saturation indices confirm its dissolution dominance (Fig. 7b). Notably, HS14—Ilocated
20 km from the paleo-Amik Basin—displayed prominent pre-seismic turbidity anomalies, likely
triggered by earthquake-driven disruption of anhydrite equilibrium. Coseismic changes in temperature,
pressure, fracture density, and circulation depth may have enhanced evaporite dissolution, increasing

groundwater salinity.
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Fig. 7. a: Silica-enthalpy model of groundwaters in EAFZ. b: Temperature versus variation of anhydrite
saturation indices of groudwaters in EAFZ. The enthalpies and reservoir temperatures of sample HS04 and
HS14 are 981 J/g, 234 °C and 648 J/g, 156 °C respectively. The blue diamond is sample HS08, which is river
water. At reservoir temperature, the anhydrite in HS04 and HS14 samples is saturated, indicating that

anhydrite dissolution occurs during the water-rock reaction.

5.2.2 Contribution of mantle degassing to EAFZ groundwater circulation

Geochemical studies of EAFZ geothermal gases indicate significant mantle degassing (Fig. 8), where
sulfur volatiles (e.g., SO, and H»S) ascend through fault conduits and oxidize upon mixing with shallow
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groundwater, ultimately mobilizing as SO4*

in thermal fluids. Consequently, mantle-derived sulfur
contributions to groundwater sulfate inventories cannot be disregarded. Lacking O, was detected in
EAFZ geothermal gases suggested that the dissolved oxygen may have been consumed (Italiano et al.,
2013; Yuce et al., 2014). However, it is important to note that H>S, H,, and CH4 can all react with oxygen.
Thermodynamic calculations indicate that CHs is more favorable than H,S in oxidation reactions (AG®
CH4 = -818.1 kJ/mol, AG° H,S = -494.2 kJ/mol, at 298 K and latm). In actual geothermal systems,
however, the depletion of H,S is more commonly observed than the depletion of CH4. We propose the
following possible explanations: 1) Oxidation of H,S: While thermodynamic calculations predict CHy4
oxidation first, a small amount of H>S might still be oxidized simultaneously with CHs. Due to the much
lower concentration of H,S in geothermal systems compared to CHa, H2S is consumed more quickly,
leaving CH4 with a higher residual concentration. 2) Exogenous CHs Supply: In addition to mantle-
derived CHa, other sources of CH4, such as biogenic CH4 and thermogenic CHj4 (e.g., serpentinization),

may contribute to the geothermal system. These external sources could increase the concentration of CHy

in the geothermal fluids.

10 . S ——
: /,._—--"'1"""" 1 Mantle
/s ® AT S SRS S,
- ® @f 50%Mantle
© '@
; ®l @
L o0 o ©® © & "
ut i ! ® 10%Mantle
o Pe® . o ;
~ @\ i ®
Q\\;\\Q‘\ |
0. 1F AN "‘-@-:— ________
m%Air\\ | 1%Mantle
~ i
~ .
~
-© North EAFZ .
- © Middle EAFZ 1%Air -_——_"_—E—‘—
@ SouthEAFZ rust
0. 01 el el MNP | fh ok oyl e iy
0.1 1 10 100 1000
‘He/**Ne

Fig. 8. Helium isotope ratios (R/Ra, Ra = air *He/*He = 1.39 x 10) versus “He/*’Ne ratios for EAFZ gas
samples. The mixing-boundary lines are built with the following end members: Air R/Ra = 1 and “He/*'Ne =
0.318; mantle R/Ra = 8 and “He/*’Ne = 1000; continental crust R/Ra = 0.02 and “He/*’Ne = 1000 (Sano and
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‘Wakita, 1985). Literature data source from (D'Alessandro et al., 2018; Inguaggiato et al., 2016; Italiano et al.,
2013; YASIN and YUCE, 2023; Yuce et al., 2014; Yuce and Taskiran, 2013).

However, previous studies have shown that the geothermal gas in the southern segment of EAFZ has
more crustal source components than northern segment (Fig. 8). Furthermore, isotopic evidence confirms
substantial biogenic and serpentinization-derived CH4 inputs (Italiano et al., 2013; Yan et al., 2024),
whereas H,S remains below detection thresholds. This implies that while H,S may transiently influence
redox cycling, its low abundance limits long-term impacts. Instead, post-seismic SO4>~ surges likely
originate from shallow evaporite dissolution (anhydrite) or low-temperature metamorphic anhydrite

hydration—processes amplified by coseismic fracture propagation and fluid remobilization.

5.3 Geothermal fluid circulation model in the EAFZ

As discussed above, EAFZ's geothermal fluid circulation model is shown in the Fig. 9. Beginning in the
Late Cretaceous, as the New Tethys Ocean closed, Arabia-Eurasia collision zone have accommodated
~350 km of convergence, making crust up to 45 km thick, and causing >2 km of uplift (Yonlii et al.,
2017). Arabian lithospheric mantle extends 50~150 km north beneath Anatolian crust (Whitney et al.,
2023). Subsequently, the “roll back™ and “slab break” occurred, resulting in extensive volcanic and
devastating earthquakes, including those of February 6, 2023 in East Anatolian Plateau (Zhou et al.,
2024). The collision of the Eurasian and Arabian plates caused Anatolian microplate was extruding
westwards, which lead to EAFZ at a high strike-slip rate of ~11 mm/yr (Pousse - Beltran et al., 2020),
and accompanied by counterclockwise rotation with a rotation rate of 1.053 +£0.015°/Ma (Simado et al.,
2016). In this tectonic context, EAFZ remains active for a long time. Paleoseismic studies have shown
that EAFZ has had many large earthquakes in its history (Carena et al., 2023; Hubert-Ferrari et al., 2020;
Sparacino et al., 2022; Tan et al., 2008; Yonli et al., 2017), with the largest magnitude reaching Mw 8.2
(Carena et al., 2023). Fault that cut through the crust provide channels for material and energy to rise up
from mantle, which makes EAFZ geothermal gas contain a high proportion of mantle-derived
compositions (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014).

However, the transport of geothermal gas and geothermal water appears to be decoupled. On the one
hand, deep geothermal fluid stays deep under the influence of gravity and less diffusive, compare to
geothermal gas. On the other hand, the geothermal fluid was diluted due to the infiltration of a large

amount of shallow cold water after the double earthquakes in February 2023 (Mw 7.8 and Mw 7.6). Our
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interpretation can better explain the lack of deep fluid signal in the groundwater studied in this study.
Subsequently, at a depth of 4km, gas-water interaction process was experienced. Finally rose to the
surface and discharged into the atmosphere. On the contrary, the circulating groundwater has undergone
complex water-rock interaction processes such as anhydrite, calcite, dolomite, anorthite and

serpentinization (Fig. 9).

" Fluid released
by earthquakes

Ol: olivine Anh: anhydrite
Cal: calcite  An: anorthite
20km Dol: dolomite « Sample location

35.5 36.5

a7.5

E

Fig. 9. The genesis model of the geothermal fluids in the EAFZ. The deep geothermal fluid was diluted due to
the infiltration of a large amount of shallow cold water. In the shallow crust, gas-water interaction process
and water-rock interaction processes were experienced. The gases rose to the surface and discharged into the
atmosphere. The circulating groundwater has undergone complex such as anhydrite, calcite, dolomite,

anorthite and serpentinization.

5.4 The relationship between geothermal fluid and earthquake forecasting

Earthquake forecasting is a grand goal pursued by human beings, but also one of the most difficult goals.
Various physical, chemical and biological techniques are used for earthquake forecasting (Bayrak et al.,
2015; Giileg et al., 2002; Kwiatek et al., 2023; Luo et al., 2024; Luo et al., 2023; Miller et al., 2004;
Nalbant et al., 2002; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wakita et al., 1980). As a link
between the shallow (crust) and the deep (mantle), geothermal fluids can react to various diseases just
like human blood. In earlier studies, researchers found that the anomaly of chemical indicators in

geothermal fluids could be used for earthquake forecasting e.g., (Giileg et al., 2002; King et al., 2006;
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Miller et al., 2004; Perez et al., 2008; Poitrasson et al., 1999; Tsunogai and Wakita, 1995), but due to
limited technology and funding, such research requiring long-term and large-scale monitoring is difficult
to carry out (Ingebritsen and Manga, 2014). With the advancement of technology, more and more
automated equipment and the development of 5G communication technology make long-term automatic
monitoring possible, e.g., (Barbieri et al., 2021; Boschetti et al., 2022; Franchini et al., 2021; Liang et al.,
2023; Luo et al., 2024; Luo et al., 2023; Skelton et al., 2014; Wang et al., 2023a). However, before
geothermal fluid is really used in earthquake prediction, there is a problem that must be solved (i.e. to
understand the relationship between geothermal fluid and earthquake). Its essence is to restore the origin
and evolution process of geothermal fluid (Boschetti et al., 2022).

For a long time, researchers have been searching for the information of the deep fluid in the fault zone,
trying to link the earthquake with the deep fluid activity (Liang et al., 2023; Luo et al., 2023; Yan et al.,
2024). However, deep information is easily changed during upward migration, and sometimes even lacks
deep information, just like the EAFZ groundwater in this study (Fig. 6). This seems to limit the ability
of groundwater to be used for earthquake prediction. In fact, chemical anomalies related to seismic
activity can still be found in some shallow circulating groundwater (e.g., SO4*") (Luo et al., 2023).
Moreover, the shallower water-rock interactions are more sensitive to the environment. Anhydrite are
widely distributed in nature, and its formation is related to evaporite or hydrothermal metasomatism.
Dissolution and precipitation of anhydrite are often observed in groundwater. Its solubility is greatly
affected by environmental conditions (temperature, pH, pressure surrounding rock condition etc.) and
they are potential indicators of tectonic activity. After the 2023 Mw 7.8 and 2023 Mw 7.6 earthquake, in
the absence of deep fluid signals, we observed anhydrite dissolution at central-southern segments of
EAFZ, which are likely to have been affected by seismic activity (Fig. 6). Similar SO4>" anomalies have
also been found in the eastern Tibetan Plateau (Li et al., 2021; Luo et al., 2023) and southeast China
(Wang et al., 2021). Therefore, we suggest that anhydrite can be used as a potential tectonic activity
index.

However, although anhydrite's potential as a tectonic activity proxy is significant, its shallow crustal
occurrence renders it susceptible to climatic perturbations (e.g., rainfall, evaporation). As evidenced in
Fig. 6, post-seismic SO4*>- and Ca*" concentrations show no statistically significant deviations from
background levels during quiescent periods, underscoring the challenge of filtering out climatic noise.

While statistical correlations tentatively position anhydrite dissolution as a fault activity indicator,
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advancing this paradigm requires: Long-term, high-resolution monitoring to disentangle tectonic vs.
meteoric signals; Mechanistic models integrating fracture permeability dynamics with anhydrite
solubility kinetics.

This study's key contribution lies in establishing fault-driven permeability changes as a viable driver of
anhydrite dissolution. We propose a novel conceptual framework for fault activity monitoring via
groundwater systems—one that prioritizes reactive minerals in shallow water-rock interactions over

traditional deep fluid signals.

6 Conclusions

Segmented groundwater provenance: Northern groundwaters represent mixing between mantle-derived
magmatic fluids (0—7%) and shallow meteoric waters, while central-southern systems are dominated by
carbonate-evaporite weathering with localized seawater/halite inputs.

Tectono-Climatic controls on water-rock interactions: Plagioclase-carbonate dissolution dominates
northern segments, whereas anhydrite dissolution (30-100%) in central-southern segments correlates
with fault permeability changes. Seismically enhanced fracture networks amplify evaporite dissolution,
driving hydrochemical anomalies.

Anhydrite as a tectonic activity tracer: Despite climatic noise, anhydrite dissolution kinetics exhibit
stress-state sensitivity. Their ubiquity and rapid stress response position anhydrite as a potential tracer

for real-time fault activity monitoring.
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