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Abstract: Pre-seismic turbidity and salinity anomalies in groundwater were documented at HS04 and 15 

HS14 monitoring wells along the East Anatolian Fault Zone (EAFZ) following the 2023 Mw 7.8 and Mw 16 

7.6 Turkey earthquakes. By synthesizing hydrogeochemical datasets (2013-2023) with post-seismic 17 

responses, we unravel fault-segmented groundwater evolution: (1) Northern Na-Cl and Na-HCO3 type 18 

waters result from mixing of mantle-derived magmatic fluids (0-7% contribution) with shallow 19 

groundwater, governed by volcanic rocks-carbonate dissolution; (2) Central-southern Ca-HCO3 and Ca-20 

Na-HCO3 systems reflect shallow circulation with localized inputs from evaporites (Increased SO4
2- 21 

concentration caused by dissolution of anhydrite), ophiolites (Mg2+ anomalies), and seawater. 22 

PHREEQC simulation shows that the dissolve-precipitation equilibrium of anhydrite is sensitive to the 23 

variation of water-rock reaction intensity in the Central-southern segments of EAFZ. Coseismic 24 

permeability changes disrupt the solubility equilibria of anhydrite, driving hydrochemical anomalies. We 25 

propose that seismic stress redistribution induces fracture network reorganization, thereby disrupting 26 

anhydrite solubility equilibria. Given its tectonic sensitivity and widespread occurrence, anhydrite 27 

dissolution dynamics emerge as a potential tracer for hydrogeochemical monitoring in active fault zones. 28 

Key words: Groundwater; Water-rock interaction; Seismic activity; PHREEQC; Anhydrite; East 29 

Anatolian Fault Zone. 30 
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1 Introduction 31 

Active fault zones perturb subsurface hydrogeochemical equilibrium through dynamic rock-water 32 

interactions, generating diagnostic anomalies in groundwater chemistry that may serve as potential 33 

seismic precursors (Franchini et al., 2021; Ingebritsen and Manga, 2014; King et al., 2006; Luo et al., 34 

2023; Poitrasson et al., 1999; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wang et al., 2021). 35 

However, the diagnostic reliability of such hydrochemical signatures faces challenges. Climatic factors 36 

(e.g., precipitation variability and temperature fluctuations) can mask tectonic signals by altering water-37 

rock reaction kinetics (Okan et al., 2018), while regional heterogeneity in lithology, fracture density, and 38 

hydrological circulation depth introduces substantial spatial variability in groundwater (Luo et al., 2023). 39 

This study investigates the hydrogeochemical characteristics of the seismically active East Anatolian 40 

Fault Zone (EAFZ) in eastern Turkey through a comprehensive 13-year observational dataset (2013–41 

2023). By systematically analyzing groundwater circulation patterns and water-rock interaction 42 

processes along the fault system, we integrate post-seismic hydrochemical monitoring following the 43 

February 2023 Mw 7.8 and 7.6 earthquake sequence to delineate the relationship between 44 

hydrogeochemical anomalies and fault activity. Our findings aim to establish the relationship between 45 

groundwater anomalies and fault zone activities, thereby advancing methodologies for groundwater-46 

based seismic monitoring in active fault zone systems. 47 

The EAFZ, a ~500 km NE-SW trending left-lateral strike-slip system accommodating ~11 mm/yr of 48 

Anatolian-Arabian plate motion with reverse thrust components (Pousse‐Beltran et al., 2020), has 49 

generated destructive seismic events throughout recorded history (Hubert-Ferrari et al., 2020; Simão et 50 

al., 2016; Sparacino et al., 2022; Tan et al., 2008). The 2023 twin earthquakes exemplify its capacity for 51 

massive stress release (Kwiatek et al., 2023; Ma et al., 2024; Wang et al., 2023b), producing coseismic 52 

surface ruptures exceeding 280 km with maximum slip of 7.2±0.72 m (Liang et al., 2024). Notably, 53 

marked hydrochemical anomalies (e.g., white water, turbidity and intermittent groundwater gushing) 54 

were detected at monitoring wells HS04 and HS14 both before and after the earthquake (Video 1 and 2), 55 

indicating fault-controlled fluid responses to seismic stress perturbations. 56 

Previous studies have identified three primary fluid sources within the EAFZ system: 1) mantle-derived 57 

magmatic fluids (Aydin et al., 2020; Italiano et al., 2013; Karaoğlu et al., 2019), 2) deeply circulated 58 

metamorphic waters (Yuce et al., 2014), and 3) Mediterranean seawater intrusion at its southern terminus 59 
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(Yuce et al., 2014). These studies provide sufficient data support for accurate understanding of EAFZ 60 

groundwater circulation. In this contribution, the EAFZ groundwater observation data over the past 13 61 

years are compared with the groundwater chemical composition after the double earthquakes in 2023 to 62 

tracing the origin of geothermal fluid, restore the water-rock interaction process, and evaluate the 63 

influence of seismic activity on the geothermal fluid circulation process. This work provides new 64 

constraints on tectonic controls of deep fluid migration in active fault zone systems while advancing the 65 

application of hydrogeochemical monitoring in seismic hazard assessment. 66 

 67 
Fig. 1. a: A brief Map of the eastern Mediterranean region from NASADEM 68 
(https://doi.org/10.5069/G93T9FD9). b: Geological map of EAFZ, modified from (van Hinsbergen et al., 69 
2024). EF: Ecemiş Fault, SF: Sürgü Fault, MOF: Malatya-Ovacık Fault, GF: Göksün Fault, YGF: Yeşilgöz-70 
Göksün Fault. 71 
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2 Geologic background 72 

Located at the intersection of Eurasia, Africa and Arabia, Turkey has a complex tectonic background 73 

(Lanari et al., 2023; Simão et al., 2016). Here, the collision between the Arabian and Eurasian plates was 74 

an important tectonic process that began in the early Miocene (~ 23 Ma) and continues to the this day 75 

(van Hinsbergen et al., 2024). This collision caused plateau uplift, volcanic eruptions, sedimentary basin 76 

formation, and large-scale strike-slip faults in eastern Turkey, including the EAFZ (Fig. 1) (Bilim et al., 77 

2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020; Whitney et al., 2023; Yönlü et al., 2017; Zhou et al., 78 

2024). 79 

The formation of the EAFZ is related to the northward subduction of a strong and thin lithospheric wedge 80 

under the Arabian Plate (Nalbant et al., 2002; Sparacino et al., 2022). This subduction process led to the 81 

formation of a stress concentration zone that eventually developed into a strike-slip fault that penetrated 82 

the entire lithosphere, i.e. the EAFZ (Nalbant et al., 2002). In addition, because the African plate and the 83 

Arabian plate are still moving northward, this fault zone is also accompanied by a certain thrust process, 84 

which causes huge stresses at the plate margin (Ma et al., 2024; Över et al., 2023; Özkan et al., 2023; 85 

Pousse‐Beltran et al., 2020; Wang et al., 2023b; Whitney et al., 2023). 86 

The stratigraphic composition of the East Anatolian fault zone is complex, including Non-87 

metamorphosed Tauride nappes and Metamorphosed Tauride nappes crystallization base, Cretaceous 88 

ophiolites and Cretaceous-Paleogene plutons. It is overlaid by clastic deposits, lacustrine deposits (such 89 

as: Ancient Amik Lake) and volcanic cover of Upper Eocene-Oligocene to Plio-Quaternay. Faults are 90 

widely developed in study area, including East Anatolian Fault, Ecemiş Fault, Sürgü Fault, Malatya-91 

Ovacık Fault, Göksün Fault, Yeşilgöz-Göksün Fault etc. (van Hinsbergen et al., 2024). These faults has 92 

been active for a long time and has a history of devastating earthquakes, including two in February 2023 93 

(Mw 7.8 and Mw 7.6) (Fig. 1) (Carena et al., 2023; Kwiatek et al., 2023; Ma et al., 2024; Maden and Özt94 

ürk, 2015; Över et al., 2023; Özkan et al., 2023; Pousse‐Beltran et al., 2020; Tan et al., 2008; Wang et 95 

al., 2023b). 96 

The climate of the EAFZ is mainly a temperate continental climate with cold winters and hot and dry 97 

summers. The average annual rainfall is between 200 mm and 600 mm, and is mainly winter rain. Due 98 

to its inland location and low rainfall, the flow of the river is relatively small. The groundwater system 99 

is relatively complex, and geothermal resources are mainly distributed near the fault zone and its 100 
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controlled areas, including low or moderate temperature geothermal systems, which have great potential 101 

for development and utilization (Aydin et al., 2020; Güleç and Hilton, 2016; Inguaggiato et al., 2016; 102 

Karaoğlu et al., 2019). 103 

3 Sampling and analytical methods 104 

16 samples of groundwater were collected in EAFZ, including hot springs, geothermal wells and river 105 

water. HS01-HS04 was collected from west to east along SF. HS07-HS16 was collected from north to 106 

south along EAFZ (Fig. 1). Detailed sample collection and testing methods can be found at Luo et al. 107 

(2023). In short, the water sample was taken with a 50 mL clean polyethylene bottle and the temperature 108 

and pH of the water were measured and recorded. Two samples were collected at each sampling site, one 109 

was added with ultrapure HNO3 to analyse the cation content, and the other was used to analyse the anion 110 

content and isotopic composition. All samples need to be pre-treated with a 0.45 μm filter membrane to 111 

remove impurities before sampling.  112 

The Hydrogen and oxygen isotopes were determined by a Picarro L2140-I Liquid water and vapor 113 

isotope analyzer (relative to Vienna Standard Mean Ocean Water (V - SMOW)). Precisions on the 114 

measured δ18O and δD value was ±0.2% (2SD) and ±1% (2SD) respectively (Zeng et al., 2025). The 115 

cation (Li+, Na+, K+, Ca2+and Mg2+) and anion (F−, Cl−, NO3− and SO4
2−) were analysed by Dionex ICS-116 

900 ion chromatograph (Thermo Fisher Scientific Inc.) at the Earthquake Forecasting Key Laboratory of 117 

China Earthquake Administration, with the reproducibility within ±2% and detection limits 0.01 mg/L 118 

(Chen et al., 2015). HCO3
– and CO3

2– was determined by acid-base titration with a ZDJ-100 119 

potentiometric titrator (reproducibility within ±2%). SiO2 were analysed by inductively coupled plasma 120 

emission spectrometer Optima-5300 DV (PerkinElmer Inc.) (Li et al. 2021). Trace elements were 121 

analysed by Element XR ICP-MS at the Test Center of the Research Institute of Uranium Geology. 122 

Multielement standard solutions (IV-ICPMS 71A, IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC 123 

VENTURES) used for quality control. The analytical error margin of major cations and trace elements 124 

were less than 10%. Strontium isotope ratios (87Sr/86Sr) were determined through triple quadrupole ICP-125 

MS (Agilent 8900 ICP-QQQ) with a precision of ±0.001 (Liu et al., 2020). 126 

4 Results 127 
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Physical, chemical and isotopic compositions of groundwaters are listed in Table 1. The pH of the water 128 

samples varied from 7.03 to 11.72, and all the samples showed weakly alkaline characteristics except 129 

HS15 (pH=11.72). The effluent temperature of water sample is low (8.1–32.0°C), and the highest 130 

temperature is HS15 sample (32.0°C). HS08 is a river sample with the lowest temperature (8.1°C). SiO2 131 

varies from 0.38 mg/L to 84.64mg/L. HCO3
– (165.72–1854.30 mg/L) is the main anion. The 132 

concentration of SO4
2– range from 1.21 mg/L to 316.61 mg/L, and the concentration of SO4

2– in some 133 

samples is relatively high (e.g. HS01 (287.74 mg/L), HS03 (103.56 mg/L), HS04 (229.75 mg/L), HS14 134 

(316.61 mg/L)). The concentration of Na+ (0.42–88.93 mg/L), Cl– (0.97–75.92 mg/L) and B (3.62–135 

1047.25 μg/L) varied synergistically. Ca2+ (14.16–501.58 mg/L) is the main cation, followed by Mg2+ 136 

(0.38–116.20 mg/L). The types of groundwater include Na-Cl-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Mg-137 

HCO3 (Fig. 2). The δ18O and δD of samples varied from –11.30‰ to –6.55‰ and –65.43‰ to –34.43‰ 138 

respectively, which is near to the global meteoric water line (GMWL) (Craig, 1961) (Fig. 3), suggesting 139 

their meteoric water origin. The 87Sr/86Sr varied from 0.7053 to 0.7135, showing the characteristics of 140 

multi-source region mixing. 141 

 142 
Fig. 2. Piper plot of sampled groundwaters in EAFZ. The groundwaters are Na-Cl-HCO3, Ca-HCO3, Ca-143 
HCO3-SO4 and Mg-HCO3 types. Literature data source (see Table S1 for details): (Aydin et al., 2020; Baba 144 
et al., 2019; Karaoğlu et al., 2019; Okan et al., 2018; Pasvanoglu, 2020; YASİN and YÜCE, 2023; Yuce et al., 145 
2014) 146 
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The composition of trace elements in groundwaters are shown in Table 2. The contents of Sr (30.13–147 

3244.88 μg/L) and Ba (1.89–196.48 μg/L) in the samples varied widely. Moreover, Sr and SO4
2– had 148 

obvious positive correlation. Box plot analysis showed that the Fluid-Mobile Element (FME) 149 

concentrations of B (3.62–1047.25 μg/L), Li (0.33–89.93 μg/L) and Rb (0.14–28.91 μg/L) in some 150 

samples were greater than the median (Fig. S1). Enrichment coefficients (EF) normalized by Ti is used 151 

for groundwaters and rocks. The result shows that whether compared with schist, basalt or Andesite of 152 

EAFZ, trace elements in groundwaters are all in a state of enrichment, and some elements can even be 153 

enriched 100000 times (Fig. S2). 154 

 155 
Fig. 3. δD and δ18O (‰V-SMOW) values for groundwaters collected from EAFZ. The GMWL represents 156 
the global meteoric water line (Craig, 1961). The LMWL represents the Local meteoric water line (Aydin et 157 
al., 2020). The magmatic fluid distribution (δD = −20 ± 10‰, δ18O = 10 ± 2‰) from (Giggenbach, 1992). 158 
Literature data source is consistent with Fig. 2. 159 
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5 Discussion 164 

5.1 The origin of groundwater in different segments of EAFZ 165 

Previous studies have documented abundant geothermal resources within the EAFZ, which is 166 

characterized by low or moderate temperature geothermal systems (Aydin et al., 2020; Baba et al., 2019). 167 

Both aqueous and gaseous geochemical signatures indicate mixing between deep-sourced mantle/crustal 168 

fluids and shallow groundwater reservoirs (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014). 169 

Yuce et al. (2014) proposed that geothermal fluids at the southwest end of the EAFZ are triggered by 170 

deep-rooted regional faults, with localized seawater intrusion. Analogously, there are deep components 171 

involved in the geothermal fluid circulation in the middle to east section of EAFZ. However, the source 172 

of deep components are thought to be controlled by magmatic activity rather than from deep-rooted 173 

regional faults (Aydin et al., 2020; Italiano et al., 2013; Karaoğlu et al., 2019). At the intersection of the 174 

EAFZ and the North Anatolian Fault Zones (NAFZ), which is also known as the Karliova triple junction, 175 

there is extensive volcanic activity that may have provided energy and components for the geothermal 176 

fluid cycle eastern segment of the EAFZ (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020). 177 

Furthermore, Italiano et al. (2013) suggested these volcanic activities may even contribute to geothermal 178 

fluids in the middle segment of the EAFZ. These findings collectively suggest multiple tectonic controls 179 

(volcanism, fault activity, and seawater intrusion) on EAFZ's geothermal systems. 180 

The February 2023 earthquake sequence (Mw 7.8 and 7.6) ruptured the central EAFZ segment. A critical 181 

question arises: Are the observed pre-seismic groundwater anomalies seismogenically linked to this 182 

seismic event? To address this, we conducted comparative analyses of post-seismic hydrochemical data 183 

against a decadal-scale (13-year) pre-seismic groundwater dataset, as detailed below: 184 

5.1.1 Hydrogen and oxygen isotope characteristics of groundwaters 185 

Hydrogen and oxygen isotopes serve as robust geochemical tracers for elucidating the origin of 186 

geothermal fluids groundwater. As illustrated in Fig. 3, the δD and δ18O compositions of groundwater in 187 

the EAFZ align closely with the GMWL (Craig, 1961), indicating predominant atmospheric precipitation 188 

recharge. Notably, groundwater in the southern EAFZ proximal to the Mediterranean Sea exhibits 189 

progressively heavier isotopic signatures toward the coast, consistent with recharge sourced from 190 

evaporated Mediterranean seawater. In contrast, northern groundwater displays distinct δ18O enrichment 191 
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deviating from local meteoric trends, indicative of mixing with deep-sourced magmatic fluids—a 192 

interpretation corroborated by widespread Quaternary volcanic activity in the northern sector (Fig. 3) 193 

(Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020). Conversely, central and southern 194 

groundwater samples exhibit isotopic signatures decoupled from magmatic inputs, reflecting the absence 195 

of active deep-seated magma reservoirs in these segments. 196 

5.1.2 Major ion characteristics of groundwaters 197 

The groundwater chemistry exhibits distinct spatial heterogeneity across the EAFZ segments. Northern 198 

groundwaters are significantly enriched in Na+, K+, and Cl− (Na-Cl and Na-HCO3 type), whereas central 199 

and southern segments display Ca-Mg-HCO3 type waters, with localized Ca-SO₄ and Na-Cl anomalies 200 

(Fig. 2). These hydrochemical disparities likely reflect fundamentally distinct recharge sources and 201 

circulation pathways. 202 

As discussed earlier, magmatic fluid contributions are evident in northern groundwaters. Chloride serves 203 

as a key tracer for magmatic input (Luo et al., 2023; Pan et al., 2021). In the eastern EAFZ, Cl− 204 

concentrations span 0.4–2500 mg/L, markedly higher than central/southern values. Given the segment's 205 

inland setting, seawater intrusion is negligible, suggesting Cl− enrichment primarily originates from 206 

magmatic fluids. Notably, Na+/Cl− molar ratios deviate from theoretical mixing trends, with Na+ excesses 207 

implicating additional sodium sources (e.g., albite dissolution), to be detailed in Section 5.2. This 208 

interpretation aligns with petrological and geophysical evidence of active magmatism in the eastern 209 

EAFZ (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020; Maden and Öztürk, 2015; Oyan, 210 

2018). Integrated H-O isotopic, major ion, and volcanic activity data collectively support a mixing model 211 

between meteoric water and magmatic fluids in the northern EAFZ. 212 

In contrast, central and southern groundwaters exhibit lower Na+ and Cl− concentrations, with sporadic 213 

anomalies attributable to evaporite dissolution or limited seawater influence (Table 1). The Ca-Mg-HCO3 214 

dominance, coupled with isotopic signatures, reflects shallow circulation systems (<5 km depth) devoid 215 

of significant deep tectonic/magmatic inputs (Table S2). Ca2+ likely derives from calcite, dolomite, or 216 

plagioclase weathering, while Mg2+ sources include dolomite and serpentinite. Pre-seismic turbidity at 217 

HS14 (Video 1) may indicate earthquake-induced disruption of water-rock equilibria. 218 

However, the geothermal gases in the centre and south segment of EAFZ exhibit mantle-like δ13CCO₂ 219 

(−5.6‰ to −0.2‰) and elevated 3He/4He ratios (Rc/Ra = 0.44–4.41), contrasting with the absence of 220 
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deep fluid signatures in groundwater (Italiano et al., 2013). Actually, this decoupling results from 221 

fundamentally distinct migration mechanisms. Groundwater circulation operates as a shallow crustal 222 

system dominated by meteoric recharge, structurally confined by fault architecture. Conversely, 223 

geothermal gases predominantly represent deep-seated fluids, with their high mobility and low density 224 

enabling efficient ascent through fractures. This explains why mantle/crustal signals are preserved in 225 

gases but attenuated in aqueous phases. 226 

To further constrain groundwater source area, we have calculated the thermal reservoir temperature of 227 

EAFZ groundwater, and the results are shown in Table S2. Due to the low water-rock interaction degree 228 

and diversity of rock types in this area, cations in water are difficult to reach water-rock equilibrium (Fig. 229 

4). Hence, most of the cationic thermometer estimates are too large or too small, which can only be used 230 

as a reference for thermal reservoirs. Fortunately, SiO2 thermometers are relatively suitable for estimating 231 

the reservoir temperature. As can be seen from Table S2, the reservoir temperatures range from 19.81oC 232 

to 128.09 oC (Quartz, no steam loss), which belongs to the low or moderate temperature geothermal 233 

systems. Using the circulation depth calculation formula, the maximum circulation depth is estimated to 234 

be 4.4km (HS04) (Table S2). 235 

 236 

Fig. 4. Na-K-Mg ternary diagram of groundwaters in EAFZ. Literature data source is consistent with Fig. 2. 237 
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5.1.3 87Sr/86Sr characteristics of groundwaters 238 

Radiogenic strontium isotopes (87Sr/86Sr) serve as robust tracers of groundwater provenance. The 239 

measured 87Sr/86Sr ratios (0.7053–0.713) across EAFZ groundwaters reflect multi-source mixing 240 

processes. Central-southern groundwaters integrate signatures from: Shallow aquifers: Inheriting Sr from 241 

local lithologies (ophiolites) (Oyan, 2018); Modern seawater: 87Sr/86Sr = 0.7092–0.7096 (Mediterranean 242 

seawater) (Banner, 2004; Bernat et al., 1972); River inputs: Enriched ratios (>0.710) from silicate 243 

weathering. Binary mixing models using 87Sr/86Sr vs. Ca/Sr ratios (Fig. 5) quantify source contributions: 244 

Carbonate weathering dominates, consistent with Ca-HCO3 hydrochemical type; Ophiolite contributions 245 

<10% (except Mg2+-rich samples near ultramafic outcrops); Evaporite dissolution contributes 0–20% 246 

(≤50% in localized high-SO4
2− zones). Sr isotope framework corroborates earlier findings of shallow-247 

dominated circulation in central-southern EAFZ. 248 

 249 

Fig. 5. 87Sr/86Sr vs. Ca/Sr of groundwaters in the EAFZ. The mixing-boundary lines are built with the 250 
following end members: Mediterranean Sea water Ca = 411ppm, Sr = 8.30ppm 87Sr/86Sr = 0.7092 (Banner, 251 
2004; Bernat et al., 1972); Cretaceous Kızıldağ ophiolite CaO = 9.7%, Sr = 1088.10ppm 87Sr/86Sr = 0.7032 252 
(Oyan, 2018); Shallow groundwater (HS08) Ca = 55.34ppm, Sr = 0.06ppm 87Sr/86Sr = 0.7150 (Affected by 253 
silicate weathering); Evaporite CaO = 29.5%, Sr = 149ppm 87Sr/86Sr = 0.7085 (Güngör Yeşilova and Baran, 254 
2023).  255 
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 256 

Fig. 6. Characteristics of chemical components of groundwaters in the EAFZ, during water-rock 257 
interaction. The dashed line is the numerical simulation result of PHREEQC. a: Ca2+ vs SO42–, b: Na+ vs 258 
Cl–, c: Na+ vs HCO3–+Cl– and d: Na+ vs HCO3–. The simulation calculations are detailed in Supporting 259 
Information Part 1. Literature data source is consistent with Fig. 2. 260 

5.2 The groundwater circulation in different segments of EAFZ 261 

5.2.1 Water-rocks interaction 262 

Pre-seismic whitish discoloration and turbidity anomalies observed at HS04 and HS14 groundwater 263 

monitoring stations likely reflect seismically induced perturbations to water-rock equilibrium (Video 1 264 

and 2). To validate this hypothesis, we conducted numerical simulations of water-rock interaction 265 

processes across distinct segments of EAFZ, aiming to reconstruct their hydrochemical evolution. 266 

Fig. 6 indicates pronounced disparities in groundwater chemistry between northern and central-southern 267 

segments. As discussed, elevated Na+ and Cl− concentrations in northern groundwaters suggest magmatic 268 

fluid contributions. During ascent, these deep-sourced Na-Cl rich fluids mix with shallow groundwater 269 

while reacting with surrounding rocks. To quantify magmatic mixing ratios and reaction pathways, we 270 

first characterized dominant lithologies in the northern EAFZ—basalt, basaltic andesite, and sedimentary 271 
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cover (clastics and carbonates). CIPW norm calculations were employed to estimate mineral abundances, 272 

followed by PHREEQC-based reactive transport modeling (Parkhurst and Appelo, 2013) (see 273 

Supplementary File 1 for parameters).  Simulation results (Fig. 6) demonstrate that linear correlations 274 

between Na+ and (HCO3
−+ Cl−) arise from magmatic NaCl fluid-carbonate interactions, with magmatic 275 

contributions accounting for 0–7% of total mixing. 276 

In contrast, central−southern groundwaters lack magmatic signatures but exhibit Ca2+−SO4
2− covariation 277 

indicative of anhydrite dissolution (Fig. 6). Central segment waters reflect mixed carbonate- anhydrite 278 

controls (30% anhydrite contribution), while southern systems are dominated by anhydrite-derived 279 

solutes (100%), sourced from extensive evaporite deposits of the paleo−Amik Lake. Silica−enthalpy 280 

mixing models estimate reservoir temperatures of 234°C (HS04) and 155°C (HS04) (Fig. 7a), under 281 

which anhydrite saturation indices confirm its dissolution dominance (Fig. 7b). Notably, HS14—located 282 

20 km from the paleo−Amik Basin—displayed prominent pre-seismic turbidity anomalies, likely 283 

triggered by earthquake-driven disruption of anhydrite equilibrium. Coseismic changes in temperature, 284 

pressure, fracture density, and circulation depth may have enhanced evaporite dissolution, increasing 285 

groundwater salinity. 286 

 287 
Fig. 7. a: Silica-enthalpy model of groundwaters in EAFZ. b: Temperature versus variation of anhydrite 288 
saturation indices of groudwaters in EAFZ. The enthalpies and reservoir temperatures of sample HS04 and 289 
HS14 are 981 J/g, 234 oC and 648 J/g, 156 oC respectively. The blue diamond is sample HS08, which is river 290 
water. At reservoir temperature, the anhydrite in HS04 and HS14 samples is saturated, indicating that 291 
anhydrite dissolution occurs during the water-rock reaction. 292 

5.2.2 Contribution of mantle degassing to EAFZ groundwater circulation 293 

Geochemical studies of EAFZ geothermal gases indicate significant mantle degassing (Fig. 8), where 294 

sulfur volatiles (e.g., SO2 and H2S) ascend through fault conduits and oxidize upon mixing with shallow 295 
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groundwater, ultimately mobilizing as SO4
2− in thermal fluids. Consequently, mantle-derived sulfur 296 

contributions to groundwater sulfate inventories cannot be disregarded. Lacking O2 was detected in 297 

EAFZ geothermal gases suggested that the dissolved oxygen may have been consumed (Italiano et al., 298 

2013; Yuce et al., 2014). However, it is important to note that H2S, H2, and CH4 can all react with oxygen. 299 

Thermodynamic calculations indicate that CH4 is more favorable than H2S in oxidation reactions (ΔG° 300 

CH4 = -818.1 kJ/mol, ΔG° H2S = -494.2 kJ/mol, at 298 K and 1atm). In actual geothermal systems, 301 

however, the depletion of H2S is more commonly observed than the depletion of CH4. We propose the 302 

following possible explanations: 1) Oxidation of H2S: While thermodynamic calculations predict CH4 303 

oxidation first, a small amount of H2S might still be oxidized simultaneously with CH4. Due to the much 304 

lower concentration of H2S in geothermal systems compared to CH4, H2S is consumed more quickly, 305 

leaving CH4 with a higher residual concentration. 2) Exogenous CH4 Supply: In addition to mantle-306 

derived CH4, other sources of CH4, such as biogenic CH4 and thermogenic CH4 (e.g., serpentinization), 307 

may contribute to the geothermal system. These external sources could increase the concentration of CH4 308 

in the geothermal fluids. 309 

 310 
Fig. 8. Helium isotope ratios (R/Ra, Ra = air 3He/4He = 1.39 × 10-6) versus 4He/20Ne ratios for EAFZ gas 311 
samples. The mixing-boundary lines are built with the following end members: Air R/Ra = 1 and 4He/20Ne = 312 
0.318; mantle R/Ra = 8 and 4He/20Ne = 1000; continental crust R/Ra = 0.02 and 4He/20Ne = 1000 (Sano and 313 
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Wakita, 1985). Literature data source from (D'Alessandro et al., 2018; Inguaggiato et al., 2016; Italiano et al., 314 
2013; YASİN and YÜCE, 2023; Yuce et al., 2014; Yuce and Taskiran, 2013). 315 

However, previous studies have shown that the geothermal gas in the southern segment of EAFZ has 316 

more crustal source components than northern segment (Fig. 8). Furthermore, isotopic evidence confirms 317 

substantial biogenic and serpentinization-derived CH4 inputs (Italiano et al., 2013; Yan et al., 2024), 318 

whereas H2S remains below detection thresholds. This implies that while H2S may transiently influence 319 

redox cycling, its low abundance limits long-term impacts. Instead, post-seismic SO4
2− surges likely 320 

originate from shallow evaporite dissolution (anhydrite) or low-temperature metamorphic anhydrite 321 

hydration—processes amplified by coseismic fracture propagation and fluid remobilization.  322 

5.3 Geothermal fluid circulation model in the EAFZ 323 

As discussed above, EAFZ's geothermal fluid circulation model is shown in the Fig. 9. Beginning in the 324 

Late Cretaceous, as the New Tethys Ocean closed, Arabia-Eurasia collision zone have accommodated 325 

~350 km of convergence, making crust up to 45 km thick, and causing >2 km of uplift (Yönlü et al., 326 

2017). Arabian lithospheric mantle extends 50∼150 km north beneath Anatolian crust (Whitney et al., 327 

2023). Subsequently, the “roll back” and “slab break” occurred, resulting in extensive volcanic and 328 

devastating earthquakes, including those of February 6, 2023 in East Anatolian Plateau (Zhou et al., 329 

2024). The collision of the Eurasian and Arabian plates caused Anatolian microplate was extruding 330 

westwards, which lead to EAFZ at a high strike-slip rate of ~11 mm/yr (Pousse‐Beltran et al., 2020), 331 

and accompanied by counterclockwise rotation with a rotation rate of 1.053 ±0.015°/Ma (Simão et al., 332 

2016). In this tectonic context, EAFZ remains active for a long time. Paleoseismic studies have shown 333 

that EAFZ has had many large earthquakes in its history (Carena et al., 2023; Hubert-Ferrari et al., 2020; 334 

Sparacino et al., 2022; Tan et al., 2008; Yönlü et al., 2017), with the largest magnitude reaching Mw 8.2 335 

(Carena et al., 2023). Fault that cut through the crust provide channels for material and energy to rise up 336 

from mantle, which makes EAFZ geothermal gas contain a high proportion of mantle-derived 337 

compositions (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014).  338 

However, the transport of geothermal gas and geothermal water appears to be decoupled. On the one 339 

hand, deep geothermal fluid stays deep under the influence of gravity and less diffusive, compare to 340 

geothermal gas. On the other hand, the geothermal fluid was diluted due to the infiltration of a large 341 

amount of shallow cold water after the double earthquakes in February 2023 (Mw 7.8 and Mw 7.6). Our 342 
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interpretation can better explain the lack of deep fluid signal in the groundwater studied in this study. 343 

Subsequently, at a depth of 4km, gas-water interaction process was experienced. Finally rose to the 344 

surface and discharged into the atmosphere. On the contrary, the circulating groundwater has undergone 345 

complex water-rock interaction processes such as anhydrite, calcite, dolomite, anorthite and 346 

serpentinization (Fig. 9). 347 

 348 
Fig. 9. The genesis model of the geothermal fluids in the EAFZ. The deep geothermal fluid was diluted due to 349 
the infiltration of a large amount of shallow cold water. In the shallow crust, gas-water interaction process 350 
and water-rock interaction processes were experienced. The gases rose to the surface and discharged into the 351 
atmosphere. The circulating groundwater has undergone complex such as anhydrite, calcite, dolomite, 352 
anorthite and serpentinization. 353 

5.4 The relationship between geothermal fluid and earthquake forecasting 354 

Earthquake forecasting is a grand goal pursued by human beings, but also one of the most difficult goals. 355 

Various physical, chemical and biological techniques are used for earthquake forecasting (Bayrak et al., 356 

2015; Güleç et al., 2002; Kwiatek et al., 2023; Luo et al., 2024; Luo et al., 2023; Miller et al., 2004; 357 

Nalbant et al., 2002; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wakita et al., 1980). As a link 358 

between the shallow (crust) and the deep (mantle), geothermal fluids can react to various diseases just 359 

like human blood. In earlier studies, researchers found that the anomaly of chemical indicators in 360 

geothermal fluids could be used for earthquake forecasting e.g., (Güleç et al., 2002; King et al., 2006; 361 
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Miller et al., 2004; Perez et al., 2008; Poitrasson et al., 1999; Tsunogai and Wakita, 1995), but due to 362 

limited technology and funding, such research requiring long-term and large-scale monitoring is difficult 363 

to carry out (Ingebritsen and Manga, 2014). With the advancement of technology, more and more 364 

automated equipment and the development of 5G communication technology make long-term automatic 365 

monitoring possible, e.g., (Barbieri et al., 2021; Boschetti et al., 2022; Franchini et al., 2021; Liang et al., 366 

2023; Luo et al., 2024; Luo et al., 2023; Skelton et al., 2014; Wang et al., 2023a). However, before 367 

geothermal fluid is really used in earthquake prediction, there is a problem that must be solved (i.e. to 368 

understand the relationship between geothermal fluid and earthquake). Its essence is to restore the origin 369 

and evolution process of geothermal fluid (Boschetti et al., 2022).  370 

For a long time, researchers have been searching for the information of the deep fluid in the fault zone, 371 

trying to link the earthquake with the deep fluid activity (Liang et al., 2023; Luo et al., 2023; Yan et al., 372 

2024). However, deep information is easily changed during upward migration, and sometimes even lacks 373 

deep information, just like the EAFZ groundwater in this study (Fig. 6). This seems to limit the ability 374 

of groundwater to be used for earthquake prediction. In fact, chemical anomalies related to seismic 375 

activity can still be found in some shallow circulating groundwater (e.g., SO4
2–) (Luo et al., 2023). 376 

Moreover, the shallower water-rock interactions are more sensitive to the environment. Anhydrite are 377 

widely distributed in nature, and its formation is related to evaporite or hydrothermal metasomatism. 378 

Dissolution and precipitation of anhydrite are often observed in groundwater. Its solubility is greatly 379 

affected by environmental conditions (temperature, pH, pressure surrounding rock condition etc.) and 380 

they are potential indicators of tectonic activity. After the 2023 Mw 7.8 and 2023 Mw 7.6 earthquake, in 381 

the absence of deep fluid signals, we observed anhydrite dissolution at central-southern segments of 382 

EAFZ, which are likely to have been affected by seismic activity (Fig. 6). Similar SO4
2– anomalies have 383 

also been found in the eastern Tibetan Plateau (Li et al., 2021; Luo et al., 2023) and southeast China 384 

(Wang et al., 2021). Therefore, we suggest that anhydrite can be used as a potential tectonic activity 385 

index. 386 

However, although anhydrite's potential as a tectonic activity proxy is significant, its shallow crustal 387 

occurrence renders it susceptible to climatic perturbations (e.g., rainfall, evaporation). As evidenced in 388 

Fig. 6, post-seismic SO4
2− and Ca2+ concentrations show no statistically significant deviations from 389 

background levels during quiescent periods, underscoring the challenge of filtering out climatic noise. 390 

While statistical correlations tentatively position anhydrite dissolution as a fault activity indicator, 391 
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advancing this paradigm requires: Long-term, high-resolution monitoring to disentangle tectonic vs. 392 

meteoric signals; Mechanistic models integrating fracture permeability dynamics with anhydrite 393 

solubility kinetics. 394 

This study's key contribution lies in establishing fault-driven permeability changes as a viable driver of 395 

anhydrite dissolution. We propose a novel conceptual framework for fault activity monitoring via 396 

groundwater systems—one that prioritizes reactive minerals in shallow water-rock interactions over 397 

traditional deep fluid signals. 398 

6 Conclusions 399 

Segmented groundwater provenance: Northern groundwaters represent mixing between mantle-derived 400 

magmatic fluids (0–7%) and shallow meteoric waters, while central-southern systems are dominated by 401 

carbonate-evaporite weathering with localized seawater/halite inputs. 402 

Tectono-Climatic controls on water-rock interactions: Plagioclase-carbonate dissolution dominates 403 

northern segments, whereas anhydrite dissolution (30–100%) in central-southern segments correlates 404 

with fault permeability changes. Seismically enhanced fracture networks amplify evaporite dissolution, 405 

driving hydrochemical anomalies. 406 

Anhydrite as a tectonic activity tracer: Despite climatic noise, anhydrite dissolution kinetics exhibit 407 

stress-state sensitivity. Their ubiquity and rapid stress response position anhydrite as a potential tracer 408 

for real-time fault activity monitoring. 409 
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