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Abstract: Pre-seismic turbidity and salinity anomalies in groundwater were documented at HS04 and

HS 14 monitoring wells along the East Anatolian Fault Zone (EAFZ) following the 2023 Mw 7.8 and Mw

7.6 Turkey earthquakes. By synthesizing hydrogeochemical datasets (2013-20253) with post-seismic

responses, we unravel fault-segmented groundwater evolution: (1) Northern Na-Cl and Na-HCO; type

waters result from mixing of mantle-derived magmatic fluids (0-7% contribution) with shallow

groundwater, governed by volcanic rocks-carbonate dissolution; (2) Central-southern Ca-HCOs; and Ca-

Na-HCOs; systems reflect shallow circulation with localized inputs from evaporites (Increased SO4*

concentration caused by dissolution of anhydrite), ophiolites (Mg?" anomalies), and seawater.

PHREEQC simulation shows that the dissolve-precipitation equilibrium of anhydrite is sensitive to the

variation of water-rock reaction intensity in the Central-southern segments of EAFZ. Coseismic

permeability changes disrupt the solubility equilibria of anhydrite, driving hydrochemical anomalies. We

propose that seismic stress redistribution induces fracture network reorganization, thereby disrupting

anhydrite solubility equilibria. Given its tectonic sensitivity and widespread occurrence, anhydrite

dissolution dynamics emerge as a potential tracer for hydrogeochemical monitoring in active fault zones.
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1 Introduction

Active fault zones perturb subsurface hydrogeochemical equilibrium through dynamic rock-water

interactions, generating diagnostic anomalies in groundwater chemistry that may serve as potential

seismic precursors (Franchini et al., 2021 Ingebritsen and Manga, 2014; King et al., 2006; Luo et al.,

2023; Poitrasson et al., 1999: Skelton et al., 2014; Tsunogai and Wakita, 1995; Wang et al., 2021).

However, the diagnostic reliability of such hydrochemical signatures faces challenges. Climatic factors

(e.g., precipitation variability and temperature fluctuations) can mask tectonic signals by altering water-

rock reaction kinetics (Okan et al., 2018)., while regional heterogeneity in lithology, fracture density, and

hydrological circulation depth introduces substantial spatial variability in groundwater (Luo et al., 2023).

This study investigates the hydrogeochemical characteristics of the seismically active East Anatolian

Fault Zone (EAFZ) in eastern Turkey through a comprehensive 13-year observational dataset (2013—

20253). By systematically analyzing groundwater circulation patterns and water-rock interaction

processes along the fault system, we integrate post-seismic hydrochemical monitoring following the

February 2023 Mw 7.8 and 7.6 earthquake sequence to delineate the relationship between

hydrogeochemical anomalies and fault activity. Our findings aim to establish the relationship between

groundwater anomalies and fault zone activities, thereby advancing methodologies for groundwater-

based seismic monitoring in active fault zone systems.

The EAFZ, a ~500 km NE-SW trending left-lateral strike-slip system accommodating ~11 mm/yr of

Anatolian-Arabian plate motion with reverse thrust components (Pousse - Beltran et al., 2020), has

generated destructive seismic events throughout recorded history (Hubert-Ferrari et al., 2020; Sim3ao et

al., 2016; Sparacino et al., 2022; Tan et al., 2008). The 2023 twin earthquakes exemplify its capacity for

massive stress release (Kwiatek et al., 2023; Ma et al., 2024; Wang et al., 2023b), producing coseismic

surface ruptures exceeding 280 km with maximum slip of 7.2+0.72 m (Liang et al., 2024). Notably,

marked hydrochemical anomalies (e.g., white water, turbidity and intermittent groundwater gushin

were detected at monitoring wells HS04 and HS14 both before and after the earthquake (Video 1 and 2),

indicating fault-controlled fluid responses to seismic stress perturbations.

Previous studies have identified three primary fluid sources within the EAFZ system: 1) mantle-derived

magmatic fluids (Aydin et al., 2020; Italiano et al., 2013; Karaoglu et al., 2019). 2) deeply circulated

metamorphic waters (Yuce et al., 2014), and 3) Mediterranean seawater intrusion at its southern terminus
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(Yuce et al., 2014). These studies provide sufficient data support for accurate understanding of EAFZ

groundwater circulation. In this contribution, the EAFZ groundwater observation data over the past 13

years are compared with the groundwater chemical composition after the double earthquakes in 2023 to

tracing the origin of geothermal fluid, restore the water-rock interaction process, and evaluate the

influence of seismic activity on the geothermal fluid circulation process. This work provides new

constraints on tectonic controls of deep fluid migration in active fault zone systems while advancing the

application of hydrogeochemical monitoring in seismic hazard assessment.
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Fig. 1. a: A brief Map of the eastern Mediterranean region from NASADEM
(https://doi.org/10.5069/G93TIFDI). b: Geological map of EAFZ, modified from (van Hinsbergen et al.,
2024). EF: Ecemis Fault, SF: Siirgii Fault, MOF: Malatya-Ovacik Fault, GF: Goksiin Fault, YGF: Yesilgoz-
Goksiin Fault.
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2 Geologic background

Located at the intersection of FEurasia, Africa and Arabia, Turkey has a complex tectonic

background

eellage (Lanari et al., 2023; Simao et al., 2016). Here, the collision between the Arabian and Eurasian



151 plates was an important tectonic process that began in the early Miocene (~ 23 Ma) and continues to the
152 this day (van Hinsbergen et al., 2024). This collision caused plateau uplift, volcanic eruptions,
153 sedimentary basin formation, and large-scale strike-slip faults in eastern Turkey, including the EAFZ
154 (Fig. 1) (Bilim et al., 2018; Karaoglu et al., 2018; Karaoglu et al., 2020; Whitney et al., 2023; Yonlii et
155 al., 2017; Zhou et al., 2024).
35CF 40°E 45°F
Black Se ¥ Caucasus &
-—-:*:‘a,&‘ " * Fast
~ % Anatolian M Anatolian
plate Plateau
YAYA\‘;AyA YAYAYA((AYAyAYAYA
38°N
R 37°N
\ ; D Arabia - Cretaceous ophiolites ggz:;me&g\;’:e
- [ ] rarce nappee " [ oiione 700" e
s Wl ]
i - Kirsehir Block yeig?megﬁlary cover Sample location

156 35°E 36°E 37°E 38°E 39°E 40°E
157
158
159
160 The formation of the EAFZ is related to the northward subduction of a strong and thin lithospheric wedge
161 under the Arabian Plate (Nalbant et al., 2002; Sparacino et al., 2022). This subduction process led to the
162 formation of a stress concentration zone that eventually developed into a strike-slip fault that penetrated
163 the entire lithosphere, i.e. the EAFZ (Nalbant et al., 2002). In addition, because the African plate and the
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Arabian plate are still moving northward, this fault zone is also accompanied by a certain thrust process,
which causes huge stresses at the plate margin (Ma et al., 2024; Over et al., 2023; Ozkan et al., 2023;
Pousse - Beltran et al., 2020; Wang et al., 2023b; Whitney et al., 2023).

The stratigraphic composition of the East Anatolian fault zone is complex, including Non-
metamorphosed Tauride nappes and Metamorphosed Tauride nappes crystallization base, Cretaceous
ophiolites and Cretaceous-Paleogene plutons. It is overlaid by clastic deposits, lacustrine deposits (such
as: Ancient Amik Lake) and volcanic cover of Upper Eocene-Oligocene to Plio-Quaternay. Faults are
widely developed in study area, including East Anatolian Fault, Ecemis Fault, Siirgii Fault, Malatya-
Ovacik Fault, Goksiin Fault, Yesilg6z-Gokstin Fault etc. (van Hinsbergen et al., 2024). These faults has
been active for a long time and has a history of devastating earthquakes, including two in February 2023
(Mw 7.8 and Mw 7.6) (Fig. 1) (Carena et al., 2023; Kwiatek et al., 2023; Ma et al., 2024; Maden and Ozt
tirk, 2015; Over et al., 2023; Ozkan et al., 2023; Pousse - Beltran et al., 2020; Tan et al., 2008; Wang et
al., 2023b).

The climate of the EAFZ is mainly a temperate continental climate with cold winters and hot and dry
summers. The average annual rainfall is between 200 mm and 600 mm, and is mainly winter rain. Due
to its inland location and low rainfall, the flow of the river is relatively small. The groundwater system
is relatively complex, and geothermal resources are mainly distributed near the fault zone and its
controlled areas, including low or moderate temperature geothermal systems, which have great potential
for development and utilization (Aydin et al., 2020; Giile¢ and Hilton, 2016; Inguaggiato et al., 2016;

Karaoglu et al., 2019).

3 Sampling and analytical methods

16 samples of groundwaterwater were collected in EAFZ, including hot springs, geothermal wells and

river water. HS01-HS04 was collected from west to east along SF. HS07-HS16 was collected from north

to south along EAFZ (Fig. 1). Detailed sample collection and testing methods can be found at Luo et al.

(2023). In short, the water sample was taken with a 50 mL clean polyethylene bottle and the temperature
and pH of the water were measured and recorded. Two samples wereare collected at each sampling site,

one is-was added with ultrapure HNOj to analyse the cation content, and the other is-was used to analyse
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the anion content and isotopic composition. All samples need to be pre-treated with a 0.45 pum filter

membrane to remove impurities before samplingbefore-beingtested.

The Hydrogen and oxygen isotopes were determined by a Picarro 1.2140-1 Liquid water and vapor

isotope analyzer (relative to Vienna Standard Mean Ocean Water (V - SMOW)). Precisions on the

measured §'%0 and 8D value was +0.2% (2SD) and +1% (2SD) respectively (Zeng et al., 2025). The

cation (Li", Na®, K*, Ca*"and Mg?") and anion (F-, Cl-, NO;- and SO4*-) were analysed by Dionex ICS-

900 ion chromatograph (Thermo Fisher Scientific Inc.) at the Earthquake Forecasting Key Laboratory of

China Earthquake Administration, with the reproducibility within £2% and detection limits 0.01 mg/L

(Chen et al., 2015). HCO;~ and CO;* was determined by acid-base titration with a ZDJ-100

potentiometric titrator (reproducibility within £2%). SiO» were analysed by inductively coupled plasma

emission spectrometer Optima-5300 DV (PerkinElmer Inc.) (Li et al. 2021). Trace elements were

analysed by Element XR ICP-MS at the Test Center of the Research Institute of Uranium Geology.

Multielement standard solutions (IV-ICPMS 71A, IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC

VENTURES) used for quality control. The analytical error margin of major cations and trace elements

were less than 10%. Strontium isotope ratios (¥’Sr/*°Sr) were determined through triple quadrupole ICP-

MS (Agilent 8900 ICP-QQQ) with a precision of £0.001 (Liu et al.. 2020).MAT 253 swasused-to

4 Results

Physical, chemical and isotopic compositions of groundwatersseethermal-water are listed in Table 1.

The pH of the water samples varied from 7.03 to 11.72, and all the samples showed weakly alkaline
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characteristics except HS15 (pH=11.72). The effluent temperature of water sample is low
(8.1~32.032°C), and the highest temperature is HS15 well sample (32.0°C). HS08 is a river sample with

the lowest temperature (8.1°C). SiO; varies from 0.38 mg/L to 84.64mg/L;-and-thecloserto-theepicenter;

the-higher-the-SiO,-eontent.- HCOs3 (165.72~1854.30 mg/L) is the main anion. The concentration of

SO4> range from 1.21 mg/L to 316.61 mg/L, and the concentration of SO4> in some samples is relatively

high (e.g. HSO01 (287.74 mg/L), HS03 (103.56 mg/L), HS04 (229.75 mg/L), HS14 (316.61 mg/L))Fhe

coneentration-of SO,> range from1-21-meg/Lto-316:61-mg/l;-and the concentration-of SO,>in-some
samples-is-obvioushy-inereased-(e-g-HSO-HSO3,- HS04,- HS14). The concentration of Na* (0.42~88.93

mg/L), Cl(0.97~75.92 mg/L) and B (3.62~1047.25 pg/L) varied synergisticallyehanged-synergistically.

The Na*, C1- and B content of HS14, HS15 and HS16 increased significantly. Ca?* (14.16~501.58 mg/L)
is the main cation, followed by Mg?" (0.38~116.2 mg/L). The types of geothermal water include Na-Cl-
HCO;, Ca-HCO3, Ca-HCO3-SO4 and Mg-HCOj (Fig. 2). The §'30 and 8D of samples varied from —11.30%o
to —6.55%0 and —65.43%o to —34.43%o respectively, which is near to the global meteoric water line

(GMWL) (Craig, 1961) (Fig. 3), suggesting their meteoric water origin. The ®’Sr/*¢Sr varied from 0.7053
g g g8 g g

to 0.7135, showing the characteristics of multi-source region mixing.

North EAFZ
Middle EAFZ
South EAFZ
This study

(middle and south EAFZ)

0.6 0.4
Ca®

Fig. 2. Piper plot of sampled groundwaters in EAFZ. The groundwaters are Na-Cl-HCQO3, Ca-HCO3, Ca-
HCO3-S04 and Mg-HCO3 types. Literature data source (see Table S1 for details): (Aydin et al., 2020; Baba
et al., 2019; Karaoglu et al., 2019; Okan et al., 2018; Pasvanoglu, 2020; YASIN and YUCE, 2023; Yuce et al.,
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2014)

The composition of trace elements in geothermal fluids are shown in Table 2. The contents of Sr
(30.13~3244.88 nug/L) and Ba (1.89~196.48 ug/L) in the samples varied widely. Moreover, Sr and SO4>~

had obvious positive correlation. Box plot analysis showed that the Fluid-Mobile Element (FME)

concentrations of B (3.62-1047.25 pg/L), Li (0.33-89.93 ng/L) and Rb (0.14-28.91 ug/L) in some

samples were greater than the median (Fig. S1).Statistical analbysisshows-that the-conecentration-of fluid

at-histerie-highs-versus(Fig—S2)- Enrichment coefficients (EF) normalized by Ti is used for geothermal

fluids and rocks. The result shows that Whether compared with schist, basalt or Andesite of EAFZ, trace
elements in geothermal fluids are all in a state of enrichment, and some elements can even be enriched

100000 times (Fig. S3).

0
Magmatic fluid
-20 |
40
£ 60
)
o
80
O North EAFZ
© Middle EAFZ
-100 - @ SouthEAFZ
. This study
//Cold water (middle and south EAFZ)
-120 // ] 1 1 1 1
-20 -15 -10 -5 0 5 10 15

§"°0(%o)

Fig. 3. 3D and 830 (%0 V-SMOW) values for groundwaters collected from EAFZ. The GMWL represents

the global meteoric water line (Craig, 1961). The LMWL represents the Local meteoric water line (Aydin et
al., 2020). The magmatic fluid distribution (6D = —20 £ 10%., 6'%0 = 10 + 2%.) from (Giggenbach, 1992).

Literature data source is consistent with Fig. 2.
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5 Discussion

5.1 The origin of groundwater in different segments of EAFZ

Previous studies have documented abundant geothermal resources within the EAFZ., which is

characterized by low or moderate temperature geothermal systems (Aydin et al., 2020; Baba et al., 2019).

Both aqueous and gaseous geochemical signatures indicate mixing between deep-sourced mantle/crustal

fluids and shallow groundwater reservoirs (Aydin et al., 2020; Italiano et al., 2013: Yuce et al., 2014).

Yuce et al. (2014) proposed that geothermal fluids at the southwest end of the EAFZ are triggered by

deep-rooted regional faults, with localized seawater intrusion. Analogously, there are deep components

involved in the geothermal fluid circulation in the middle to east section of EAFZ. However, the source

of deep components are thought to be controlled by magmatic activity rather than from deep-rooted

regional faults (Aydin et al., 2020; Italiano et al., 2013; Karaoglu et al., 2019). At the intersection of the

EAFZ and the North Anatolian Fault Zones (NAFZ), which is also known as the Karliova triple junction,

there is extensive volcanic activity that may have provided energy and components for the geothermal

fluid cycle eastern segment of the EAFZ (Bilim et al., 2018; Karaoglu et al., 2018; Karaoglu et al., 2020).

Furthermore, Italiano et al. (2013) suggested these volcanic activities may even contribute to geothermal

fluids in the middle segment of the EAFZ. These findings collectively suggest multiple tectonic controls

(volcanism, fault activity, and seawater intrusion) on EAFZ's geothermal systems.

The February 2023 earthquake sequence (Mw 7.8 and 7.6) ruptured the central EAFZ segment. A critical

question arises: Are the observed pre-seismic groundwater anomalies seismogenically linked to this

seismic event? To address this, we conducted comparative analyses of post-seismic hydrochemical data

against a decadal-scale (13-year) pre-seismic groundwater dataset, as detailed below:

5.1.1 Hydrogen and oxygen isotope characteristics of groundwaters

Hydrogen and oxygen isotopes serve as robust geochemical tracers for elucidating the origin of

geothermal fluids groundwater. As illustrated in Fig. 3, the §D and §'®0 compositions of groundwater in

the EAFZ align closely with the GMWL (Craig, 1961), indicating predominant atmospheric precipitation

recharge. Notably, groundwater in the southern EAFZ proximal to the Mediterranean Sea exhibits

progressively heavier isotopic signatures toward the coast, consistent with recharge sourced from

evaporated Mediterranean seawater. In contrast, northern groundwater displays distinct §'30 enrichment
16
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deviating from local meteoric trends, indicative of mixing with deep-sourced magmatic fluids—a

interpretation corroborated by widespread Quaternary volcanic activity in the northern sector (Fig. 3)

(Bilim et al., 2018; Karaoglu et al., 2018; Karaoglu et al., 2020). Conversely, central and southern

groundwater samples exhibit isotopic signatures decoupled from magmatic inputs, reflecting the absence

of active deep-seated magma reservoirs in these segments.

5.1.2 Major ion characteristics of groundwaters

The groundwater chemistry exhibits distinct spatial heterogeneity across the EAFZ segments. Northern

groundwaters are significantly enriched in Na*, K*, and CI- (Na-Cl and Na-HCOj type), whereas central

and southern segments display Ca-Mg-HCO; type waters, with localized Ca-SO4 and Na-Cl anomalies

(Fig. 2). These hydrochemical disparities likely reflect fundamentally distinct recharge sources and

circulation pathways.

As discussed earlier, magmatic fluid contributions are evident in northern groundwaters. Chloride serves
as a key tracer for magmatic input (Luo et al., 2023; Pan et al., 2021). In the eastern EAFZ, Cl-
concentrations span 0.4-2500 mg/L, markedly higher than central/southern values. Given the segment's

inland setting, seawater intrusion is negligible, suggesting Cl- enrichment primarily originates from

magmatic fluids. Notably, Na*/CIl- molar ratios deviate from theoretical mixing trends. with Na* excesses

implicating additional sodium sources (e.g., albite dissolution), to be detailed in Section 5.2. This

interpretation aligns with petrological and geophysical evidence of active magmatism in the eastern

EAFZ (Bilim et al., 2018: Karaoglu et al., 2018: Karaoglu et al., 2020: Maden and Oztiirk, 2015: Oyan

2018). Integrated H-O isotopic, major ion, and volcanic activity data collectively support a mixing model

between meteoric water and magmatic fluids in the northern EAFZ.

In contrast, central and southern groundwaters exhibit lower Na* and Cl- concentrations, with sporadic

anomalies attributable to evaporite dissolution or limited seawater influence (Table 1). The Ca-Mg-HCOs3

dominance, coupled with isotopic signatures, reflects shallow circulation systems (<5 km depth) devoid

of significant deep tectonic/magmatic inputs (Table S2). Ca?" likely derives from calcite, dolomite, or

plagioclase weathering, while Mg?" sources include dolomite and serpentinite. Pre-seismic turbidity at

HS14 (Video 1) may indicate earthquake-induced disruption of water-rock equilibria.

However, the geothermal gases in the centre and south segment of EAFZ exhibit mantle-like §'3Cco,

(=5.6%0 to —0.2%o0) and elevated *He/*He ratios (Rc/Ra = 0.44—4.41), contrasting with the absence of

17



327 deep fluid signatures in groundwater (Italiano et al., 2013). Actually, this decoupling results from

328 fundamentally distinct migration mechanisms. Groundwater circulation operates as a shallow crustal

329 system dominated by meteoric recharge, structurally confined by fault architecture. Conversely,

330 geothermal gases predominantly represent deep-seated fluids, with their high mobility and low density

331 enabling efficient ascent through fractures. This explains why mantle/crustal signals are preserved in

332 gases but attenuated in aqueous phases.

333 To further constrain groundwater source area, we have calculated the thermal reservoir temperature of

334 EAFZ groundwater, and the results are shown in Table S2. Due to the low water-rock interaction degree

335 and diversity of rock types in this area, cations in water are difficult to reach water-rock equilibrium (Fig.

336 4). Hence, most of the cationic thermometer estimates are too large or too small, which can only be used

337 as a reference for thermal reservoirs. Fortunately, SiO, thermometers are relatively suitable for estimating

338 the reservoir temperature. As can be seen from Table S2, the reservoir temperatures range from 19.81°C

339 to 128.09 °C (Quartz, no steam loss), which belongs to the low or moderate temperature geothermal

340 systems. Using the circulation depth calculation formula, the maximum circulation depth is estimated to

341  be 4.4km (HS04) (Table S2).

Na/1000 North EAFZ

© Middle EAFZ
@
4

South EAFZ
This study
(middle and south EAFZ)

Partially equilibrated
or mixed waters

Immature waters

K/100

80 60 40

342

343 Fig. 4. Na-K-Mg ternary diagram of groundwaters in EAFZ. Literature data source is consistent with Fig. 2.
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5.1.3 ¥7Sr/3%Sr characteristics of groundwaters

Radiogenic_strontium isotopes (¥7Sr/%°Sr) serve as robust tracers of groundwater provenance. The

measured *’Sr/%Sr ratios (0.7053—0.713) across EAFZ groundwaters reflect multi-source mixing

processes. Central-southern groundwaters integrate signatures from: Shallow aquifers: Inheriting Sr from

local lithologies (ophiolites) (Oyan, 2018); Modern seawater: *’Sr/*Sr = 0.7092—0.7096 (Mediterranean

seawater) (Banner, 2004: Bernat et al., 1972); River inputs: Enriched ratios (>0.710) from silicate

weathering. Binary mixing models using *’Sr/*°Sr vs. Ca/Sr ratios (Fig. 5) quantify source contributions:

Carbonate weathering dominates, consistent with Ca-HCO3 hydrochemical type; Ophiolite contributions

<10% (except Mg?'-rich samples near ultramafic outcrops); Evaporite dissolution contributes 0—20%

(<50% in localized high-SO4* zones). Sr isotope framework corroborates earlier findings of shallow-

dominated circulation in central-southern EAFZ.

0.716
: j - Shallow
0.714 L //* //ion" groundwater
i /‘//:// \200/0
A
0.712 1 R i
7 Jzno
N vy _—50%
Maditerranean //;/ * ’/// 7'S "\
= 0.710 seawater Y e
\OUJ e * // | s : 50% \\
= i 4 /) )/ 2% | |Evaporite
22 0.708 | ‘ Y% o
= | *// 10%
- l 4’/// / ‘ ’\ Magmatic fluid
/ ctlu
0.706 |- | l;’/"/f _ metasomatism
v/
| s |
0.704 | Cretaceous\ // _
Kizildag | This study
ophiolite L (middlle and south EAFZ)
10 100 1000 10000

Ca/Sr

Fig. 5. Sr/%Sr vs. Ca/Sr of groundwaters in the EAFZ. The mixing-boundary lines are built with the

following end members: Mediterranean Sea water Ca = 411ppm, Sr = 8.30ppm *’Sr/%Sr = 0.7092 (Banner,
2004; Bernat et al., 1972); Cretaceous Kizildag ophiolite CaO = 9.7%, Sr = 1088.10ppm %’Sr/%Sr = 0.7032
(Oyan, 2018); Shallow groundwater (HS08) Ca = 55.34ppm, Sr = 0.06ppm ¥’Sr/36Sr = 0.7150 (Affected by
silicate weathering); Evaporite CaO = 29.5%., Sr = 149ppm *¥’Sr/*Sr = 0.7085 (Giingor Yesilova and Baran,

2023).
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Fig. 6. Characteristics of chemical components of groundwaters in the EAFZ, during water-rock

interaction. The dashed line is the numerical simulation result of PHREEQC. a: Ca%" vs SO4*~, b: Na* vs

CI, ¢: Na* vs HCO3+ClI" and d: Na* vs HCOs". The simulation calculations are detailed in Supporting

Information Part 1. Literature data source is consistent with Fig. 2.

5.2 The groundwater circulation in different segments of EAFZ

5.2.1 Water-rocks interaction

Pre-seismic whitish discoloration and turbidity anomalies observed at HS04 and HS14 groundwater

monitoring stations likely reflect seismically induced perturbations to water-rock equilibrium (Video 1

and 2). To validate this hypothesis, we conducted numerical simulations of water-rock interaction

processes across distinct segments of EAFZ, aiming to reconstruct their hydrochemical evolution.

Fig. 6 indicates pronounced disparities in groundwater chemistry between northern and central-southern

segments. As discussed, elevated Na* and CI” concentrations in northern groundwaters suggest magmatic

fluid contributions. During ascent, these deep-sourced Na-Cl rich fluids mix with shallow groundwater

while reacting with surrounding rocks. To quantify magmatic mixing ratios and reaction pathways, we

first characterized dominant lithologies in the northern EAFZ—basalt, basaltic andesite, and sedimentary
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cover (clastics and carbonates). CIPW norm calculations were employed to estimate mineral abundances,

followed by PHREEQC-based reactive transport modeling (Parkhurst and Appelo, 2013) (see

Supplementary File 1 for parameters). Simulation results (Fig. 6) demonstrate that linear correlations

between Na* and (HCO;™+ CI) arise from magmatic NaCl fluid-carbonate interactions, with magmatic

contributions accounting for 0—7% of total mixing.

In contrast, central-southern groundwaters lack magmatic signatures but exhibit Ca?*-SO4>~ covariation

indicative of anhydrite dissolution (Fig. 6). Central segment waters reflect mixed carbonate- anhydrite

controls (30% anhydrite contribution), while southern systems are dominated by anhydrite-derived

solutes (100%), sourced from extensive evaporite deposits of the paleo-Amik Lake. Silica—enthalpy

mixing models estimate reservoir temperatures of 234°C (HS04) and 155°C (HS04) (Fig. 7a), under

HS14—Ilocated

which anhydrite saturation indices confirm its dissolution dominance (Fig. 7b). Notabl

20 km from the paleo-Amik Basin—displayed prominent pre-seismic turbidity anomalies, likely

triggered by earthquake-driven disruption of anhydrite equilibrium. Coseismic changes in temperature,

pressure, fracture density, and circulation depth may have enhanced evaporite dissolution, increasing

groundwater salinity.

800 2

« HS14
v HSO1
v HSO4

=
=
=

v HS03
% HS09
v 1ISI3
» HS0S
4 Bsi6

SN
=
=]

A Hs1s

Si0, (mg/L)

A HS12
—® HS10

200

Saturation index of Anhybrite

6481/g 981J/g
156C 234°C

S

-5
0 200 400 600 800 1000 1200 0 25 50 75 100 125 150 175 200
Enthalpy (J/g) T(°C)

Fig. 7. a: Silica-enthalpy model of groundwaters in EAFZ. b: Temperature versus variation of anhydrite

saturation indices of groudwaters in EAFZ. The enthalpies and reservoir temperatures of sample HS04 and

HS14 are 981 J/g, 234 °C and 648 J/g, 156 °C respectively. The blue diamond is sample HS08, which is river

water. At reservoir_temperature, the anhydrite in HS04 and HS14 samples is saturated, indicating that

anhydrite dissolution occurs during the water-rock reaction.

5.2.2 Contribution of mantle degassing to EAFZ groundwater circulation

Geochemical studies of EAFZ geothermal gases indicate significant mantle degassing (Fig. 8), where

sulfur volatiles (e.g., SO, and H»S) ascend through fault conduits and oxidize upon mixing with shallow
21
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groundwater, ultimately mobilizing as SO4*~ in thermal fluids. Consequently, mantle-derived sulfur

contributions to groundwater sulfate inventories cannot be disregarded. Lacking O, was detected in

EAFZ geothermal gases suggested that the dissolved oxygen may have been consumed (Italiano et al.

2013; Yuce etal., 2014). However. it is important to note that H»>S, H», and CH,4 can all react with oxygen.

Thermodynamic calculations indicate that CH, is more favorable than H,S in oxidation reactions (AG®

CH,4 = -818.1 kJ/mol, AG® H,S = -494.2 kJ/mol, at 298 K and latm). In actual geothermal systems,

however, the depletion of H,S is more commonly observed than the depletion of CH4. We propose the

following possible explanations: 1) Oxidation of H,S: While thermodynamic calculations predict CHy

oxidation first, a small amount of H»S might still be oxidized simultaneously with CHy4. Due to the much

lower concentration of H,S in geothermal systems compared to CHa, H>S is consumed more quickly,

leaving CH4 with a higher residual concentration. 2) Exogenous CHy4 Supply: In addition to mantle-

derived CHa, other sources of CH4, such as biogenic CHy4 and thermogenic CH4 (e.g., serpentinization),

may contribute to the geothermal system. These external sources could increase the concentration of CHy

in the geothermal fluids.

10 f
his
<
E
rZ
B1E
"©® North EAFZ S~
+ @ Middle EAFZ Badis T
@ South EAFZ rust
0.01 it oo £ —E-LEreT e e
0.1 i 10 100 1000

‘He/Ne

Fig. 8. Helium isotope ratios (R/Ra, Ra = air 3He/*He = 1.39 X 10 versus “He/*’Ne ratios for EAFZ gas

samples. The mixing-boundary lines are built with the following end members: Air R/Ra = 1 and “He/>*’Ne =

0.318; mantle R/Ra = 8 and “He/?°Ne = 1000; continental crust R/Ra = 0.02 and “He/>*’Ne = 1000 (Sano and
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D'Alessandro et al., 2018; Ingua
2013; YASIN and YUCE, 2023; Yuce et al., 2014; Yuce and Taskiran, 2013).

Wakita, 1985). Literature data source from

However, previous studies have shown that the geothermal gas in the southern segment of EAFZ has

more crustal source components than northern segment (Fig. 8). Furthermore, isotopic evidence confirms

substantial biogenic and serpentinization-derived CHy inputs (Italiano et al., 2013; Yan et al., 2024),

whereas H>S remains below detection thresholds. This implies that while H,S may transiently influence

redox cycling, its low abundance limits long-term impacts. Instead, post-seismic SO4> surges likely

originate from shallow evaporite dissolution (anhydrite) or low-temperature metamorphic anhydrite

hydration—processes amplified by coseismic fracture propagation and fluid remobilization. 34—The
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5.3 Geothermal fluid circulation model in the EAFZ

As discussed above, EAFZ's geothermal fluid circulation model is shown in the Fig. 8. Beginning in the
Late Cretaceous, as the New Tethys Ocean closed, Arabia-Eurasia collision zone have accommodated
~350 km of convergence, making crust up to 45 km thick, and causing >2 km of uplift (Yonlii et al.,
2017). Arabian lithospheric mantle extends 50~150 km north beneath Anatolian crust (Whitney et al.,
2023). Subsequently, the “roll back™ and “slab break™” occurred, resulting in extensive volcanic and
devastating earthquakes, including those of February 6, 2023 in East Anatolian Plateau (Zhou et al.,
2024). The collision of the Eurasian and Arabian plates caused Anatolian microplate was extruding
westwards, which lead to EAFZ at a high strike-slip rate of ~11 mm/yr (Pousse - Beltran et al., 2020),

and accompanied by counterclockwise rotation with a rotation rate of 1.053 +£0.015°/Ma (Simdo et al.,
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2016). In this tectonic context, EAFZ remains active for a long time. Paleoseismic studies have shown
that EAFZ has had many large earthquakes in its history (Carena et al., 2023; Hubert-Ferrari et al., 2020;
Sparacino et al., 2022; Tan et al., 2008; Yonlii et al., 2017), with the largest magnitude reaching Mw 8.2
(Carena et al., 2023). Fault that cut through the crust provide channels for material and energy to rise up
from mantle, which makes EAFZ geothermal gas contain a high proportion of mantle-derived
compositions (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014).

However, the transport of geothermal gas and geothermal water appears to be decoupled. On the one
hand, deep geothermal fluid stays deep under the influence of gravity and less diffusive, compare to
geothermal gas. On the other hand, the geothermal fluid was diluted due to the infiltration of a large
amount of shallow cold water after the double earthquakes in February 2023 (Mw 7.8 and Mw 7.6). Our
interpretation can better explain the lack of deep fluid signal in the geothermal water studied in this study.
Subsequently, at a depth of 4km, gas-water interaction process was experienced. Finally rose to the
surface and discharged into the atmosphere. On the contrary, the circulating geothermal water has
undergone complex water-rock interaction processes such as gypsum, calcite, dolomite, anorthite and

serpentinization (Fig. €9).

~* Fluid released
by earthquakes

10k

Ol: olivine Anh: anhydrite
Cal: calcite  An: anorthite
Dol: dolomite e Sample location

35.5 36.5

37.5 E

Fig. 9. The genesis model of the geothermal fluids in the EAFZ. The deep geothermal fluid was diluted due to

the infiltration of a large amount of shallow cold water. In the shallow crust, gas-water interaction process

and water-rock interaction processes were experienced. The gases rose to the surface and discharged into the
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644 atmosphere. The circulating groundwater has undergone complex such as anhvdrite, calcite, dolomite,

645 anorthite and serpentinization.
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653 5.4 The relationship between geothermal fluid and earthquake forecasting

654  Earthquake forecasting is a grand goal pursued by human beings, but also one of the most difficult goals.
655  Various physical, chemical and biological techniques are used for earthquake forecasting (Bayrak et al.,
656 2015; Giileg et al., 2002; Kwiatek et al., 2023; Luo et al., 2024; Luo et al., 2023; Miller et al., 2004,

657 Nalbant et al., 2002; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wakita et al., 1980). As a link
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between the shallow (crust) and the deep (mantle), geothermal fluids can react to various diseases just
like human blood. In earlier studies, researchers found that the anomaly of chemical indicators in
geothermal fluids could be used for earthquake forecasting e.g., (Giileg et al., 2002; King et al., 2006;
Miller et al., 2004; Perez et al., 2008; Poitrasson et al., 1999; Tsunogai and Wakita, 1995), but due to
limited technology and funding, such research requiring long-term and large-scale monitoring is difficult
to carry out (Ingebritsen and Manga, 2014). With the advancement of technology, more and more
automated equipment and the development of 5G communication technology make long-term automatic
monitoring possible, e.g., (Barbieri et al., 2021; Boschetti et al., 2022; Franchini et al., 2021; Liang et al.,
2023; Luo et al., 2024; Luo et al., 2023; Skelton et al., 2014; Wang et al., 2023a). However, before
geothermal fluid is really used in earthquake prediction, there is a problem that must be solved (i.e. to
understand the relationship between geothermal fluid and earthquake). Its essence is to restore the origin
and evolution process of geothermal fluid (Boschetti et al., 2022).

For a long time, researchers have been searching for the information of the deep fluid in the fault zone,
trying to link the earthquake with the deep fluid activity (Liang et al., 2023; Luo et al., 2023; Yan et al.,
2024). However, deep information is easily changed during upward migration, and sometimes even lacks
deep information, just like the EAFZ geothermal water in this study (Fig. 6d). This seems to limit the
ability of geothermal water to be used for earthquake prediction. In fact, chemical anomalies related to
seismic activity can still be found in some shallow circulating geothermal water (e.g., SO4>") (Luo et al.,
2023). Moreover, the shallower water-rock interactions are more sensitive to the environment. Gypsum
is widely distributed in nature, and its formation is related to evaporite. Gypsum dissolution and
precipitation are often observed in geothermal water. Its solubility is greatly affected by environmental
conditions (temperature, pH, pressure etc.) and is a potential indicator of earthquake prediction. After the

2023 Mw 7.8 and 2023 Mw 7.6 earthquake, in the absence of deep fluid signals, we observed anhydrite

dissolution at central-southern segments of EAFZ, which are likely to have been affected by seismic

activity (Fig. 6). Similar SO4>~ anomalies have also been found in the eastern Tibetan Plateau (Li et al.,

2021; Luo et al., 2023) and southeast China (Wang et al., 2021). Therefore, we suggest that anhydrite

can be used as a potential tectonic activity index.

However, although anhydrite's potential as a tectonic activity proxy is significant, its shallow crustal

occurrence renders it susceptible to climatic perturbations (e.g., rainfall, evaporation). As evidenced in

Fig. 6, post-seismic SO4>~ and Ca®" concentrations show no statistically significant deviations from
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background levels during quiescent periods, underscoring the challenge of filtering out climatic noise.

While statistical correlations tentatively position anhydrite dissolution as a fault activity indicator,

advancing this paradigm requires: Long-term, high-resolution monitoring to disentangle tectonic vs.

meteoric_signals; Mechanistic models integrating fracture permeability dynamics with anhydrite

solubility kinetics.

This study's key contribution lies in establishing fault-driven permeability changes as a viable driver of

anhydrite dissolution. We propose a novel conceptual framework for fault activity monitoring via

groundwater systems—one that prioritizes reactive minerals in shallow water-rock interactions over

traditional deep fluid signals.

6 Conclusions
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Segmented groundwater provenance: Northern groundwaters represent mixing between mantle-derived

magmatic fluids (0-7%) and shallow meteoric waters, while central-southern systems are dominated by

carbonate-evaporite weathering with localized seawater/halite inputs.

Tectono-Climatic controls on water-rock interactions: Plagioclase-carbonate dissolution dominates

northern segments, whereas anhydrite dissolution (30-100%) in central-southern segments correlates

with fault permeability changes. Seismically enhanced fracture networks amplify evaporite dissolution,

driving hydrochemical anomalies.

Anhydrite as a tectonic activity tracer: Despite climatic noise, anhydrite dissolution kinetics exhibit

stress-state sensitivity. Their ubiquity and rapid stress response position anhydrite as a potential tracer

for real-time fault activity monitoring.6-Coneclusion-and-Outleek
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