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Abstract: Pre-seismic turbidity and salinity anomalies in groundwater were documented at HS04 and 17 

HS14 monitoring wells along the East Anatolian Fault Zone (EAFZ) following the 2023 Mw 7.8 and Mw 18 

7.6 Turkey earthquakes. By synthesizing hydrogeochemical datasets (2013-20253) with post-seismic 19 

responses, we unravel fault-segmented groundwater evolution: (1) Northern Na-Cl and Na-HCO3 type 20 

waters result from mixing of mantle-derived magmatic fluids (0-7% contribution) with shallow 21 

groundwater, governed by volcanic rocks-carbonate dissolution; (2) Central-southern Ca-HCO3 and Ca-22 

Na-HCO3 systems reflect shallow circulation with localized inputs from evaporites (Increased SO4
2- 23 

concentration caused by dissolution of anhydrite), ophiolites (Mg2+ anomalies), and seawater. 24 

PHREEQC simulation shows that the dissolve-precipitation equilibrium of anhydrite is sensitive to the 25 

variation of water-rock reaction intensity in the Central-southern segments of EAFZ. Coseismic 26 

permeability changes disrupt the solubility equilibria of anhydrite, driving hydrochemical anomalies. We 27 

propose that seismic stress redistribution induces fracture network reorganization, thereby disrupting 28 

anhydrite solubility equilibria. Given its tectonic sensitivity and widespread occurrence, anhydrite 29 

dissolution dynamics emerge as a potential tracer for hydrogeochemical monitoring in active fault zones. 30 
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Key point: 45 

1. EAFZ geothermal fluid is obviously modified by earthquake, including: energy and materials. 46 

2. EAFZ geothermal fluid is heavily diluted by the infiltration of a large amount of shallow cold 47 
water. 48 

3. Shallow sedimentary minerals (e.g., gypsum) could be used as precursory anomaly indicators of 49 
earthquakes .50 
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Abstract: 51 

Obvious macroscopic anomalies of geothermal fluids were observed before and after the Mw 52 
7.8 earthquake in Turkey. In order to find out the relationship between geothermal fluid anomalies 53 
and earthquakes, we performed a systematic hydrogeochemistry and isotopic analysis of the 54 
geothermal fluids in the East Anatolian Fault Zone (EAFZ). The results show that these 55 
geothermal fluids were reconstructed (including: energy and materials) by earthquakes. Based on 56 
chlorine – enthalpy model, the temperature of the deep geothermal fluid has been increasing to 57 
382 oC on the strength of the energy released by the seismic activity. However, the information of 58 
the deep geothermal fluid was eventually covered due to the infiltration of a large amount of 59 
shallow cold water after the earthquake. The abnormal concentrations of Ca2+ 60 
(54.04~501.58mg/L), Mg2+ (6.58~116.20mg/L), SO42– (6.37~287.74mg/L), Sr (34.78~3244.8μg/L), 61 
and Ba (1.89~196.48μg/L) in geothermal water shown that the geothermal water has undergone 62 
complex water-rock interaction processes such as gypsum, calcite, dolomite, anorthite and 63 
serpentinization. Specially, significant gypsum dissolution was observed at HS05, HS09 and HS14 64 
before and after the earthquake, suggesting that the earthquake broke the balance of water-rock 65 
reaction and promoted the dissolution of gypsum. Combined with geological background and 66 
previous studies, we propose that shallow sedimentary minerals, such as gypsum, have the 67 
potential to be used as earthquake warning indicators. However, shallow minerals are controlled 68 
by many external factors (e.g., temperature, pressure, climatic conditions, seasonal changes etc.), 69 
which greatly weakens their practical value in earthquake early warning. 70 

Key words: Geothermal fluid; Water-rock interaction; Earthquake forecasting; PHREEQC; 71 
Gypsum; East Anatolian Fault Zone.72 
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1 Introduction 73 

Active fault zones perturb subsurface hydrogeochemical equilibrium through dynamic rock-water 74 

interactions, generating diagnostic anomalies in groundwater chemistry that may serve as potential 75 

seismic precursors (Franchini et al., 2021; Ingebritsen and Manga, 2014; King et al., 2006; Luo et al., 76 

2023; Poitrasson et al., 1999; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wang et al., 2021). 77 

However, the diagnostic reliability of such hydrochemical signatures faces challenges. Climatic factors 78 

(e.g., precipitation variability and temperature fluctuations) can mask tectonic signals by altering water-79 

rock reaction kinetics (Okan et al., 2018), while regional heterogeneity in lithology, fracture density, and 80 

hydrological circulation depth introduces substantial spatial variability in groundwater (Luo et al., 2023). 81 

This study investigates the hydrogeochemical characteristics of the seismically active East Anatolian 82 

Fault Zone (EAFZ) in eastern Turkey through a comprehensive 13-year observational dataset (2013–83 

20253). By systematically analyzing groundwater circulation patterns and water-rock interaction 84 

processes along the fault system, we integrate post-seismic hydrochemical monitoring following the 85 

February 2023 Mw 7.8 and 7.6 earthquake sequence to delineate the relationship between 86 

hydrogeochemical anomalies and fault activity. Our findings aim to establish the relationship between 87 

groundwater anomalies and fault zone activities, thereby advancing methodologies for groundwater-88 

based seismic monitoring in active fault zone systems. 89 

The EAFZ, a ~500 km NE-SW trending left-lateral strike-slip system accommodating ~11 mm/yr of 90 

Anatolian-Arabian plate motion with reverse thrust components (Pousse‐Beltran et al., 2020), has 91 

generated destructive seismic events throughout recorded history (Hubert-Ferrari et al., 2020; Simão et 92 

al., 2016; Sparacino et al., 2022; Tan et al., 2008). The 2023 twin earthquakes exemplify its capacity for 93 

massive stress release (Kwiatek et al., 2023; Ma et al., 2024; Wang et al., 2023b), producing coseismic 94 

surface ruptures exceeding 280 km with maximum slip of 7.2±0.72 m (Liang et al., 2024). Notably, 95 

marked hydrochemical anomalies (e.g., white water, turbidity and intermittent groundwater gushing) 96 

were detected at monitoring wells HS04 and HS14 both before and after the earthquake (Video 1 and 2), 97 

indicating fault-controlled fluid responses to seismic stress perturbations. 98 

Previous studies have identified three primary fluid sources within the EAFZ system: 1) mantle-derived 99 

magmatic fluids (Aydin et al., 2020; Italiano et al., 2013; Karaoğlu et al., 2019), 2) deeply circulated 100 

metamorphic waters (Yuce et al., 2014), and 3) Mediterranean seawater intrusion at its southern terminus 101 
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(Yuce et al., 2014). These studies provide sufficient data support for accurate understanding of EAFZ 102 

groundwater circulation. In this contribution, the EAFZ groundwater observation data over the past 13 103 

years are compared with the groundwater chemical composition after the double earthquakes in 2023 to 104 

tracing the origin of geothermal fluid, restore the water-rock interaction process, and evaluate the 105 

influence of seismic activity on the geothermal fluid circulation process. This work provides new 106 

constraints on tectonic controls of deep fluid migration in active fault zone systems while advancing the 107 

application of hydrogeochemical monitoring in seismic hazard assessment. 108 

 109 
Fig. 1. a: A brief Map of the eastern Mediterranean region from NASADEM 110 
(https://doi.org/10.5069/G93T9FD9). b: Geological map of EAFZ, modified from (van Hinsbergen et al., 111 
2024). EF: Ecemiş Fault, SF: Sürgü Fault, MOF: Malatya-Ovacık Fault, GF: Göksün Fault, YGF: Yeşilgöz-112 
Göksün Fault. 113 
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On February 6, 2023, southeastern Turkey were struck by a series of devastating earthquakes. The 114 
two main earthquakes were Mw 7.8 and Mw 7.6, followed by multiple aftershocks (Including one 115 
of Mw 6.7 and several earthquakes of greater than Mw 4) (Kwiatek et al., 2023; Ni et al., 2023). 116 
The main areas affected by these earthquakes include the provinces of Qahraman, Marash and 117 
Hatay. According to official statistics, more than 60,000 people have been killed and millions 118 
displaced in southern Turkey and northern Syria (Ma et al., 2024; Över et al., 2023; Wang et al., 119 
2023b). 120 

The double earthquakes in February 2023 occurred along the East Anatolian Fault Zone 121 
(EAFZ), one of the more seismically active seismic zones in the world (Whitney et al., 2023). There 122 
have been many ruinous earthquakes in history (Hubert-Ferrari et al., 2020; Simão et al., 2016; 123 
Sparacino et al., 2022; Tan et al., 2008). Research shows that, at present, East Anatolian fault zone 124 
has a left-lateral strike-slip rate of ~11 mm/yr (Pousse‐Beltran et al., 2020). Meanwhile, it is 125 
accompanied by a certain thrust process, which causes huge stresses at the plate margin. The 126 
massive stress release is the main cause of the February 2023 earthquakes (Kwiatek et al., 2023; 127 
Ma et al., 2024; Wang et al., 2023b). Before and after earthquakes, obvious macroscopic anomalies 128 
were observed in many hot springs (HS04 and HS14) (Fig. S1), which indicates the fact that the 129 
geothermal fluid circulation has been disturbed by seismic activity. 130 

As the important medium of seismic monitoring research, geothermal fluids are widely used 131 
in the world e.g., (Franchini et al., 2021; King et al., 2006; Luo et al., 2023; Poitrasson et al., 1999; 132 
Skelton et al., 2014; Tsunogai and Wakita, 1995; Wang et al., 2021). Many important theoretical 133 
achievements have been made in the direction of earthquake monitoring and early warning. For 134 
example: Changes in groundwater chemistry before two consecutive earthquakes in Iceland 135 
(Skelton et al., 2014), Precursory Chemical Changes in Ground Water: Kobe Earthquake, Japan 136 
(Tsunogai and Wakita, 1995), etc. However, there is a serious problem that the geothermal fluid 137 
anomaly index is not universal. In other words, it is difficult to promote and apply in the world 138 
(Luo et al., 2023). The fundamental reason is the complexity of geothermal fluid cycle. Exactly, the 139 
two earthquakes in February 2023 in Turkey provides an opportunity to explore the relationship 140 
between geothermal fluids and earthquakes. Therefore, the geothermal fluids in the EAFZ are 141 
systematically studied in this contribution to tracing the origin of geothermal fluid, restore the 142 
water-rock interaction process, and evaluate the influence of seismic activity on the geothermal 143 
fluid circulation process. This study would help to deepen the understanding of the influence of 144 
earthquakes on geothermal fluid, and provide data reference for earthquake monitoring and early 145 
warning research. 146 

2 Geologic background 147 

Located at the intersection of Eurasia, Africa and Arabia, Turkey has a complex tectonic 148 

backgroundLocated at the intersection of Eurasia, Africa and Arabia, Turkey is a complex tectonic 149 

collage (Lanari et al., 2023; Simão et al., 2016). Here, the collision between the Arabian and Eurasian 150 
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plates was an important tectonic process that began in the early Miocene (~ 23 Ma) and continues to the 151 

this day (van Hinsbergen et al., 2024). This collision caused plateau uplift, volcanic eruptions, 152 

sedimentary basin formation, and large-scale strike-slip faults in eastern Turkey, including the EAFZ 153 

(Fig. 1) (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020; Whitney et al., 2023; Yönlü et 154 

al., 2017; Zhou et al., 2024). 155 

 156 

Figure 1. a: A brief Map of the eastern Mediterranean region from Google earth. b: Geological map of 157 

EAFZ, modified from (van Hinsbergen et al., 2024). EF: Ecemiş Fault, SF: Sürgü Fault, MOF: 158 

Malatya-Ovacık Fault, GF: Göksün Fault, YGF: Yeşilgöz-Göksün Fault. 159 

The formation of the EAFZ is related to the northward subduction of a strong and thin lithospheric wedge 160 

under the Arabian Plate (Nalbant et al., 2002; Sparacino et al., 2022). This subduction process led to the 161 

formation of a stress concentration zone that eventually developed into a strike-slip fault that penetrated 162 

the entire lithosphere, i.e. the EAFZ (Nalbant et al., 2002). In addition, because the African plate and the 163 
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Arabian plate are still moving northward, this fault zone is also accompanied by a certain thrust process, 164 

which causes huge stresses at the plate margin (Ma et al., 2024; Över et al., 2023; Özkan et al., 2023; 165 

Pousse‐Beltran et al., 2020; Wang et al., 2023b; Whitney et al., 2023). 166 

The stratigraphic composition of the East Anatolian fault zone is complex, including Non-167 

metamorphosed Tauride nappes and Metamorphosed Tauride nappes crystallization base, Cretaceous 168 

ophiolites and Cretaceous-Paleogene plutons. It is overlaid by clastic deposits, lacustrine deposits (such 169 

as: Ancient Amik Lake) and volcanic cover of Upper Eocene-Oligocene to Plio-Quaternay. Faults are 170 

widely developed in study area, including East Anatolian Fault, Ecemiş Fault, Sürgü Fault, Malatya-171 

Ovacık Fault, Göksün Fault, Yeşilgöz-Göksün Fault etc. (van Hinsbergen et al., 2024). These faults has 172 

been active for a long time and has a history of devastating earthquakes, including two in February 2023 173 

(Mw 7.8 and Mw 7.6) (Fig. 1) (Carena et al., 2023; Kwiatek et al., 2023; Ma et al., 2024; Maden and Özt174 

ürk, 2015; Över et al., 2023; Özkan et al., 2023; Pousse‐Beltran et al., 2020; Tan et al., 2008; Wang et 175 

al., 2023b). 176 

The climate of the EAFZ is mainly a temperate continental climate with cold winters and hot and dry 177 

summers. The average annual rainfall is between 200 mm and 600 mm, and is mainly winter rain. Due 178 

to its inland location and low rainfall, the flow of the river is relatively small. The groundwater system 179 

is relatively complex, and geothermal resources are mainly distributed near the fault zone and its 180 

controlled areas, including low or moderate temperature geothermal systems, which have great potential 181 

for development and utilization (Aydin et al., 2020; Güleç and Hilton, 2016; Inguaggiato et al., 2016; 182 

Karaoğlu et al., 2019). 183 

3 Sampling and analytical methods 184 

16 samples of groundwaterwater were collected in EAFZ, including hot springs, geothermal wells and 185 

river water. HS01-HS04 was collected from west to east along SF. HS07-HS16 was collected from north 186 

to south along EAFZ (Fig. 1). Detailed sample collection and testing methods can be found at Luo et al. 187 

(2023). In short, the water sample was taken with a 50 mL clean polyethylene bottle and the temperature 188 

and pH of the water were measured and recorded. Two samples wereare collected at each sampling site, 189 

one is was added with ultrapure HNO3 to analyse the cation content, and the other is was used to analyse 190 



9 
 

the anion content and isotopic composition. All samples need to be pre-treated with a 0.45 μm filter 191 

membrane to remove impurities before samplingbefore being tested.  192 

The Hydrogen and oxygen isotopes were determined by a Picarro L2140-I Liquid water and vapor 193 

isotope analyzer (relative to Vienna Standard Mean Ocean Water (V - SMOW)). Precisions on the 194 

measured δ18O and δD value was ±0.2% (2SD) and ±1% (2SD) respectively (Zeng et al., 2025). The 195 

cation (Li+, Na+, K+, Ca2+and Mg2+) and anion (F−, Cl−, NO3− and SO4
2−) were analysed by Dionex ICS-196 

900 ion chromatograph (Thermo Fisher Scientific Inc.) at the Earthquake Forecasting Key Laboratory of 197 

China Earthquake Administration, with the reproducibility within ±2% and detection limits 0.01 mg/L 198 

(Chen et al., 2015). HCO3
– and CO3

2– was determined by acid-base titration with a ZDJ-100 199 

potentiometric titrator (reproducibility within ±2%). SiO2 were analysed by inductively coupled plasma 200 

emission spectrometer Optima-5300 DV (PerkinElmer Inc.) (Li et al. 2021). Trace elements were 201 

analysed by Element XR ICP-MS at the Test Center of the Research Institute of Uranium Geology. 202 

Multielement standard solutions (IV-ICPMS 71A, IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC 203 

VENTURES) used for quality control. The analytical error margin of major cations and trace elements 204 

were less than 10%. Strontium isotope ratios (87Sr/86Sr) were determined through triple quadrupole ICP-205 

MS (Agilent 8900 ICP-QQQ) with a precision of ±0.001 (Liu et al., 2020).MAT 253 was used to 206 

analyses δD and δ18O (relative to Vienna Standard Mean Ocean Water (V - SMOW)). 207 

The cation and anion were analysed by Dionex ICS-900 ion chromatograph (Thermo 208 

Fisher Scientific Inc.). HCO3– and CO32– was determined by acid-base titration with a 209 

ZDJ-100 potentiometric titrator. SiO2 were analysed by inductively coupled plasma 210 

emission spectrometer Optima-5300 DV (PerkinElmer Inc.). Trace elements were 211 

analysed by Element XR ICP-MS. Multielement standard solutions (IV-ICPMS 71A, 212 

IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC VENTURES) used for quality 213 

control (the analytical error margin of major cations and trace elements were less than 214 

10%).  215 

4 Results 216 

Physical, chemical and isotopic compositions of groundwatersgeothermal water are listed in Table 1. 217 

The pH of the water samples varied from 7.03 to 11.72, and all the samples showed weakly alkaline 218 
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characteristics except HS15 (pH=11.72). The effluent temperature of water sample is low 219 

(8.1~32.032°C), and the highest temperature is HS15 well sample (32.0°C). HS08 is a river sample with 220 

the lowest temperature (8.1°C). SiO2 varies from 0.38 mg/L to 84.64mg/L, and the closer to the epicenter, 221 

the higher the SiO2 content.. HCO3
– (165.72~1854.30 mg/L) is the main anion. The concentration of 222 

SO4
2– range from 1.21 mg/L to 316.61 mg/L, and the concentration of SO4

2– in some samples is relatively 223 

high (e.g. HS01 (287.74 mg/L), HS03 (103.56 mg/L), HS04 (229.75 mg/L), HS14 (316.61 mg/L))The 224 

concentration of SO4
2– range from 1.21 mg/L to 316.61 mg/L, and the concentration of SO4

2– in some 225 

samples is obviously increased (e.g. HS01, HS03, HS04, HS14). The concentration of Na+ (0.42~88.93 226 

mg/L), Cl– (0.97~75.92 mg/L) and B (3.62~1047.25 μg/L) varied synergisticallychanged synergistically. 227 

The Na+, Cl– and B content of HS14, HS15 and HS16 increased significantly. Ca2+ (14.16~501.58 mg/L) 228 

is the main cation, followed by Mg2+ (0.38~116.2 mg/L). The types of geothermal water include Na-Cl-229 

HCO3, Ca-HCO3, Ca-HCO3-SO4 and Mg-HCO3 (Fig. 2). The δ18O and δD of samples varied from –11.30‰ 230 

to –6.55‰ and –65.43‰ to –34.43‰ respectively, which is near to the global meteoric water line 231 

(GMWL) (Craig, 1961) (Fig. 3), suggesting their meteoric water origin. The 87Sr/86Sr varied from 0.7053 232 

to 0.7135, showing the characteristics of multi-source region mixing. 233 

 234 

Fig. 2. Piper plot of sampled groundwaters in EAFZ. The groundwaters are Na-Cl-HCO3, Ca-HCO3, Ca-235 
HCO3-SO4 and Mg-HCO3 types. Literature data source (see Table S1 for details): (Aydin et al., 2020; Baba 236 
et al., 2019; Karaoğlu et al., 2019; Okan et al., 2018; Pasvanoglu, 2020; YASİN and YÜCE, 2023; Yuce et al., 237 
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2014) 238 

 239 

The composition of trace elements in geothermal fluids are shown in Table 2. The contents of Sr 240 

(30.13~3244.88 μg/L) and Ba (1.89~196.48 μg/L) in the samples varied widely. Moreover, Sr and SO4
2– 241 

had obvious positive correlation. Box plot analysis showed that the Fluid-Mobile Element (FME) 242 

concentrations of B (3.62–1047.25 μg/L), Li (0.33–89.93 μg/L) and Rb (0.14–28.91 μg/L) in some 243 

samples were greater than the median (Fig. S1).Statistical analysis shows that the concentration of fluid 244 

activity elements, such as B (3.62~1047.25 μg/L), Li (0.33~89.93 μg/L) and Rb (0.14~28.91 μg/L), are 245 

at historic highs versus (Fig. S2). Enrichment coefficients (EF) normalized by Ti is used for geothermal 246 

fluids and rocks. The result shows that Whether compared with schist, basalt or Andesite of EAFZ, trace 247 

elements in geothermal fluids are all in a state of enrichment, and some elements can even be enriched 248 

100000 times (Fig. S3). 249 

 250 

Fig. 3. δD and δ18O (‰V-SMOW) values for groundwaters collected from EAFZ. The GMWL represents 251 
the global meteoric water line (Craig, 1961). The LMWL represents the Local meteoric water line (Aydin et 252 
al., 2020). The magmatic fluid distribution (δD = −20 ± 10‰, δ18O = 10 ± 2‰) from (Giggenbach, 1992). 253 
Literature data source is consistent with Fig. 2. 254 

 255 
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 256 

Figure 2. Piper plot of sampled geothermal waters in EAFZ. The geothermal waters 257 

are Na-Cl-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Mg-HCO3 types. 258 

 259 

Figure 3. δD and δ18O (‰V-SMOW) values for geothermal waters collected from 260 

EAFZ. The GMWL represents the global meteoric water line (Craig, 1961). 261 

According to this study and literature data (Aydin et al., 2020; Yuce et al., 2014), 262 

Local Meteoric Water Line (LMWL) is δD = 8.48 δ18O+17.87 (R2=0.95, n=110). 263 
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5 Discussion 270 

5.1 The origin of groundwater in different segments of EAFZ 271 

Previous studies have documented abundant geothermal resources within the EAFZ, which is 272 

characterized by low or moderate temperature geothermal systems (Aydin et al., 2020; Baba et al., 2019). 273 

Both aqueous and gaseous geochemical signatures indicate mixing between deep-sourced mantle/crustal 274 

fluids and shallow groundwater reservoirs (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014). 275 

Yuce et al. (2014) proposed that geothermal fluids at the southwest end of the EAFZ are triggered by 276 

deep-rooted regional faults, with localized seawater intrusion. Analogously, there are deep components 277 

involved in the geothermal fluid circulation in the middle to east section of EAFZ. However, the source 278 

of deep components are thought to be controlled by magmatic activity rather than from deep-rooted 279 

regional faults (Aydin et al., 2020; Italiano et al., 2013; Karaoğlu et al., 2019). At the intersection of the 280 

EAFZ and the North Anatolian Fault Zones (NAFZ), which is also known as the Karliova triple junction, 281 

there is extensive volcanic activity that may have provided energy and components for the geothermal 282 

fluid cycle eastern segment of the EAFZ (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020). 283 

Furthermore, Italiano et al. (2013) suggested these volcanic activities may even contribute to geothermal 284 

fluids in the middle segment of the EAFZ. These findings collectively suggest multiple tectonic controls 285 

(volcanism, fault activity, and seawater intrusion) on EAFZ's geothermal systems. 286 

The February 2023 earthquake sequence (Mw 7.8 and 7.6) ruptured the central EAFZ segment. A critical 287 

question arises: Are the observed pre-seismic groundwater anomalies seismogenically linked to this 288 

seismic event? To address this, we conducted comparative analyses of post-seismic hydrochemical data 289 

against a decadal-scale (13-year) pre-seismic groundwater dataset, as detailed below: 290 

5.1.1 Hydrogen and oxygen isotope characteristics of groundwaters 291 

Hydrogen and oxygen isotopes serve as robust geochemical tracers for elucidating the origin of 292 

geothermal fluids groundwater. As illustrated in Fig. 3, the δD and δ18O compositions of groundwater in 293 

the EAFZ align closely with the GMWL (Craig, 1961), indicating predominant atmospheric precipitation 294 

recharge. Notably, groundwater in the southern EAFZ proximal to the Mediterranean Sea exhibits 295 

progressively heavier isotopic signatures toward the coast, consistent with recharge sourced from 296 

evaporated Mediterranean seawater. In contrast, northern groundwater displays distinct δ18O enrichment 297 
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deviating from local meteoric trends, indicative of mixing with deep-sourced magmatic fluids—a 298 

interpretation corroborated by widespread Quaternary volcanic activity in the northern sector (Fig. 3) 299 

(Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020). Conversely, central and southern 300 

groundwater samples exhibit isotopic signatures decoupled from magmatic inputs, reflecting the absence 301 

of active deep-seated magma reservoirs in these segments. 302 

5.1.2 Major ion characteristics of groundwaters 303 

The groundwater chemistry exhibits distinct spatial heterogeneity across the EAFZ segments. Northern 304 

groundwaters are significantly enriched in Na+, K+, and Cl− (Na-Cl and Na-HCO3 type), whereas central 305 

and southern segments display Ca-Mg-HCO3 type waters, with localized Ca-SO₄ and Na-Cl anomalies 306 

(Fig. 2). These hydrochemical disparities likely reflect fundamentally distinct recharge sources and 307 

circulation pathways. 308 

As discussed earlier, magmatic fluid contributions are evident in northern groundwaters. Chloride serves 309 

as a key tracer for magmatic input (Luo et al., 2023; Pan et al., 2021). In the eastern EAFZ, Cl− 310 

concentrations span 0.4–2500 mg/L, markedly higher than central/southern values. Given the segment's 311 

inland setting, seawater intrusion is negligible, suggesting Cl− enrichment primarily originates from 312 

magmatic fluids. Notably, Na+/Cl− molar ratios deviate from theoretical mixing trends, with Na+ excesses 313 

implicating additional sodium sources (e.g., albite dissolution), to be detailed in Section 5.2. This 314 

interpretation aligns with petrological and geophysical evidence of active magmatism in the eastern 315 

EAFZ (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020; Maden and Öztürk, 2015; Oyan, 316 

2018). Integrated H-O isotopic, major ion, and volcanic activity data collectively support a mixing model 317 

between meteoric water and magmatic fluids in the northern EAFZ. 318 

In contrast, central and southern groundwaters exhibit lower Na+ and Cl− concentrations, with sporadic 319 

anomalies attributable to evaporite dissolution or limited seawater influence (Table 1). The Ca-Mg-HCO3 320 

dominance, coupled with isotopic signatures, reflects shallow circulation systems (<5 km depth) devoid 321 

of significant deep tectonic/magmatic inputs (Table S2). Ca2+ likely derives from calcite, dolomite, or 322 

plagioclase weathering, while Mg2+ sources include dolomite and serpentinite. Pre-seismic turbidity at 323 

HS14 (Video 1) may indicate earthquake-induced disruption of water-rock equilibria. 324 

However, the geothermal gases in the centre and south segment of EAFZ exhibit mantle-like δ13CCO₂ 325 

(−5.6‰ to −0.2‰) and elevated 3He/4He ratios (Rc/Ra = 0.44–4.41), contrasting with the absence of 326 
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deep fluid signatures in groundwater (Italiano et al., 2013). Actually, this decoupling results from 327 

fundamentally distinct migration mechanisms. Groundwater circulation operates as a shallow crustal 328 

system dominated by meteoric recharge, structurally confined by fault architecture. Conversely, 329 

geothermal gases predominantly represent deep-seated fluids, with their high mobility and low density 330 

enabling efficient ascent through fractures. This explains why mantle/crustal signals are preserved in 331 

gases but attenuated in aqueous phases. 332 

To further constrain groundwater source area, we have calculated the thermal reservoir temperature of 333 

EAFZ groundwater, and the results are shown in Table S2. Due to the low water-rock interaction degree 334 

and diversity of rock types in this area, cations in water are difficult to reach water-rock equilibrium (Fig. 335 

4). Hence, most of the cationic thermometer estimates are too large or too small, which can only be used 336 

as a reference for thermal reservoirs. Fortunately, SiO2 thermometers are relatively suitable for estimating 337 

the reservoir temperature. As can be seen from Table S2, the reservoir temperatures range from 19.81oC 338 

to 128.09 oC (Quartz, no steam loss), which belongs to the low or moderate temperature geothermal 339 

systems. Using the circulation depth calculation formula, the maximum circulation depth is estimated to 340 

be 4.4km (HS04) (Table S2). 341 

 342 

Fig. 4. Na-K-Mg ternary diagram of groundwaters in EAFZ. Literature data source is consistent with Fig. 2. 343 
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5.1.3 87Sr/86Sr characteristics of groundwaters 344 

Radiogenic strontium isotopes (87Sr/86Sr) serve as robust tracers of groundwater provenance. The 345 

measured 87Sr/86Sr ratios (0.7053–0.713) across EAFZ groundwaters reflect multi-source mixing 346 

processes. Central-southern groundwaters integrate signatures from: Shallow aquifers: Inheriting Sr from 347 

local lithologies (ophiolites) (Oyan, 2018); Modern seawater: 87Sr/86Sr = 0.7092–0.7096 (Mediterranean 348 

seawater) (Banner, 2004; Bernat et al., 1972); River inputs: Enriched ratios (>0.710) from silicate 349 

weathering. Binary mixing models using 87Sr/86Sr vs. Ca/Sr ratios (Fig. 5) quantify source contributions: 350 

Carbonate weathering dominates, consistent with Ca-HCO3 hydrochemical type; Ophiolite contributions 351 

<10% (except Mg2+-rich samples near ultramafic outcrops); Evaporite dissolution contributes 0–20% 352 

(≤50% in localized high-SO4
2− zones). Sr isotope framework corroborates earlier findings of shallow-353 

dominated circulation in central-southern EAFZ. 354 

 355 

Fig. 5. 87Sr/86Sr vs. Ca/Sr of groundwaters in the EAFZ. The mixing-boundary lines are built with the 356 
following end members: Mediterranean Sea water Ca = 411ppm, Sr = 8.30ppm 87Sr/86Sr = 0.7092 (Banner, 357 
2004; Bernat et al., 1972); Cretaceous Kızıldağ ophiolite CaO = 9.7%, Sr = 1088.10ppm 87Sr/86Sr = 0.7032 358 
(Oyan, 2018); Shallow groundwater (HS08) Ca = 55.34ppm, Sr = 0.06ppm 87Sr/86Sr = 0.7150 (Affected by 359 
silicate weathering); Evaporite CaO = 29.5%, Sr = 149ppm 87Sr/86Sr = 0.7085 (Güngör Yeşilova and Baran, 360 
2023).  361 
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 362 

Fig. 6. Characteristics of chemical components of groundwaters in the EAFZ, during water-rock 363 
interaction. The dashed line is the numerical simulation result of PHREEQC. a: Ca2+ vs SO42–, b: Na+ vs 364 
Cl–, c: Na+ vs HCO3–+Cl– and d: Na+ vs HCO3–. The simulation calculations are detailed in Supporting 365 
Information Part 1. Literature data source is consistent with Fig. 2. 366 

5.2 The groundwater circulation in different segments of EAFZ 367 

5.2.1 Water-rocks interaction 368 

Pre-seismic whitish discoloration and turbidity anomalies observed at HS04 and HS14 groundwater 369 

monitoring stations likely reflect seismically induced perturbations to water-rock equilibrium (Video 1 370 

and 2). To validate this hypothesis, we conducted numerical simulations of water-rock interaction 371 

processes across distinct segments of EAFZ, aiming to reconstruct their hydrochemical evolution. 372 

Fig. 6 indicates pronounced disparities in groundwater chemistry between northern and central-southern 373 

segments. As discussed, elevated Na+ and Cl− concentrations in northern groundwaters suggest magmatic 374 

fluid contributions. During ascent, these deep-sourced Na-Cl rich fluids mix with shallow groundwater 375 

while reacting with surrounding rocks. To quantify magmatic mixing ratios and reaction pathways, we 376 

first characterized dominant lithologies in the northern EAFZ—basalt, basaltic andesite, and sedimentary 377 
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cover (clastics and carbonates). CIPW norm calculations were employed to estimate mineral abundances, 378 

followed by PHREEQC-based reactive transport modeling (Parkhurst and Appelo, 2013) (see 379 

Supplementary File 1 for parameters).  Simulation results (Fig. 6) demonstrate that linear correlations 380 

between Na+ and (HCO3
−+ Cl−) arise from magmatic NaCl fluid-carbonate interactions, with magmatic 381 

contributions accounting for 0–7% of total mixing. 382 

In contrast, central−southern groundwaters lack magmatic signatures but exhibit Ca2+−SO4
2− covariation 383 

indicative of anhydrite dissolution (Fig. 6). Central segment waters reflect mixed carbonate- anhydrite 384 

controls (30% anhydrite contribution), while southern systems are dominated by anhydrite-derived 385 

solutes (100%), sourced from extensive evaporite deposits of the paleo−Amik Lake. Silica−enthalpy 386 

mixing models estimate reservoir temperatures of 234°C (HS04) and 155°C (HS04) (Fig. 7a), under 387 

which anhydrite saturation indices confirm its dissolution dominance (Fig. 7b). Notably, HS14—located 388 

20 km from the paleo−Amik Basin—displayed prominent pre-seismic turbidity anomalies, likely 389 

triggered by earthquake-driven disruption of anhydrite equilibrium. Coseismic changes in temperature, 390 

pressure, fracture density, and circulation depth may have enhanced evaporite dissolution, increasing 391 

groundwater salinity. 392 

 393 

Fig. 7. a: Silica-enthalpy model of groundwaters in EAFZ. b: Temperature versus variation of anhydrite 394 
saturation indices of groudwaters in EAFZ. The enthalpies and reservoir temperatures of sample HS04 and 395 
HS14 are 981 J/g, 234 oC and 648 J/g, 156 oC respectively. The blue diamond is sample HS08, which is river 396 
water. At reservoir temperature, the anhydrite in HS04 and HS14 samples is saturated, indicating that 397 
anhydrite dissolution occurs during the water-rock reaction. 398 

5.2.2 Contribution of mantle degassing to EAFZ groundwater circulation 399 

Geochemical studies of EAFZ geothermal gases indicate significant mantle degassing (Fig. 8), where 400 

sulfur volatiles (e.g., SO2 and H2S) ascend through fault conduits and oxidize upon mixing with shallow 401 
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groundwater, ultimately mobilizing as SO4
2− in thermal fluids. Consequently, mantle-derived sulfur 402 

contributions to groundwater sulfate inventories cannot be disregarded. Lacking O2 was detected in 403 

EAFZ geothermal gases suggested that the dissolved oxygen may have been consumed (Italiano et al., 404 

2013; Yuce et al., 2014). However, it is important to note that H2S, H2, and CH4 can all react with oxygen. 405 

Thermodynamic calculations indicate that CH4 is more favorable than H2S in oxidation reactions (ΔG° 406 

CH4 = -818.1 kJ/mol, ΔG° H2S = -494.2 kJ/mol, at 298 K and 1atm). In actual geothermal systems, 407 

however, the depletion of H2S is more commonly observed than the depletion of CH4. We propose the 408 

following possible explanations: 1) Oxidation of H2S: While thermodynamic calculations predict CH4 409 

oxidation first, a small amount of H2S might still be oxidized simultaneously with CH4. Due to the much 410 

lower concentration of H2S in geothermal systems compared to CH4, H2S is consumed more quickly, 411 

leaving CH4 with a higher residual concentration. 2) Exogenous CH4 Supply: In addition to mantle-412 

derived CH4, other sources of CH4, such as biogenic CH4 and thermogenic CH4 (e.g., serpentinization), 413 

may contribute to the geothermal system. These external sources could increase the concentration of CH4 414 

in the geothermal fluids. 415 

 416 

Fig. 8. Helium isotope ratios (R/Ra, Ra = air 3He/4He = 1.39 × 10-6) versus 4He/20Ne ratios for EAFZ gas 417 
samples. The mixing-boundary lines are built with the following end members: Air R/Ra = 1 and 4He/20Ne = 418 
0.318; mantle R/Ra = 8 and 4He/20Ne = 1000; continental crust R/Ra = 0.02 and 4He/20Ne = 1000 (Sano and 419 
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Wakita, 1985). Literature data source from (D'Alessandro et al., 2018; Inguaggiato et al., 2016; Italiano et al., 420 
2013; YASİN and YÜCE, 2023; Yuce et al., 2014; Yuce and Taskiran, 2013). 421 

However, previous studies have shown that the geothermal gas in the southern segment of EAFZ has 422 

more crustal source components than northern segment (Fig. 8). Furthermore, isotopic evidence confirms 423 

substantial biogenic and serpentinization-derived CH4 inputs (Italiano et al., 2013; Yan et al., 2024), 424 

whereas H2S remains below detection thresholds. This implies that while H2S may transiently influence 425 

redox cycling, its low abundance limits long-term impacts. Instead, post-seismic SO4
2− surges likely 426 

originate from shallow evaporite dissolution (anhydrite) or low-temperature metamorphic anhydrite 427 

hydration—processes amplified by coseismic fracture propagation and fluid remobilization. 5.1 The 428 

origin of geothermal fluids 429 

Hydrogen and oxygen isotopes are effective geochemical indexes for tracing the origin 430 

of geothermal fluids. It can be seen from Fig. 3 that the hydrogen and oxygen isotopes 431 

of the sample have obvious positive correlation. Combined with the geothermal fluid 432 

data of EAFZ in the literatures, the correlation between the hydrogen and oxygen 433 

isotopes is δD = 8.48 δ18O+17.87 (R2=0.95, n=110), which is consistent with the global 434 

meteoric water line (GMWL) (Craig, 1961) (Fig.3), suggesting that these geothermal 435 

fluids are controlled by meteoric water. “Oxygen drift” is not obvious, indicating that 436 

the degree of water-rock interaction in the geothermal fluid cycle is limited and/or the 437 

oxygen isotope composition of the fluid and rock is indiscriminately (However, given 438 

the complex and diverse lithology of EAFZ, the latter is highly unlikely) (Fig. 1). The 439 

highest value of δD (–6.55‰) and δ18O (–34.43‰) at the southwest end of EAFZ, 440 

which is close to the Mediterranean Sea, indicating that it originates from the recharge 441 

of the evaporation of the Mediterranean Sea (Fig.3). Due to the influence of the 442 

continent and altitude, the farther away from the coastline, the lighter the hydrogen and 443 

oxygen isotopic composition.  444 
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Geothermal fields are generally distributed along the EAFZ, which is characterized by 445 

low or moderate temperature geothermal systems (Aydin et al., 2020; Baba et al., 2019). 446 

Previous studies pointed out that both water and gas characteristics indicate that 447 

geothermal fluids is a mixture of shallow and deep components either of mantle and 448 

crustal origin (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014). Yuce et al. 449 

(2014) argue that geothermal fluids at the southwest end of the EAFZ are triggered by 450 

deep-rooted regional faults. Analogously, there are deep components involved in the 451 

geothermal fluid circulation in the middle to east section of EAFZ. However, the source 452 

of deep components are thought to be controlled by magmatic activity rather than from 453 

deep-rooted regional faults (Aydin et al., 2020; Italiano et al., 2013; Karaoğlu et al., 454 

2019). At the intersection of the EAFZ and the North Anatolian Fault Zones (NAFZ), 455 

which is also known as the Karliova triple junction, there is extensive volcanic activity 456 

that may have provided energy and components for the geothermal fluid cycle eastern 457 

segment of the EAFZ (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020). 458 

Furthermore, Italiano et al. (2013) suggested these volcanic activities may even 459 

contribute to geothermal fluids in the middle segment of the EAFZ.  460 

Na+ and Cl– are often used as a reference when judging whether there is magma mixing 461 

in geothermal fluids (Luo et al., 2023; Pan et al., 2021). In the eastern section of EAFZ, 462 

the concentration of Na+ (1.3~2600mg/L) and Cl– (0.4~2500 mg/L) varies widely 463 

(Aydin et al., 2020). In the case of excluding the mixing of halite and seawater (Luo et 464 

al., 2023; Wei et al., 2021), it is possible that there is contaminated by magmatic fluid. 465 

Petrological and geophysical observations also support magmatic activity in the eastern 466 
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section of EAFZ (Bilim et al., 2018; Karaoğlu et al., 2018; Karaoğlu et al., 2020; Maden 467 

and Öztürk, 2015). Furthermore, Italiano et al. (2013) suggested that δ13CCO2 (–5.6‰~ 468 

–0.2‰) and He (Rac (values corrected for the atmospheric contamination) = 0.44~4.41) 469 

revealed a fluid of mantle-derived in the middle segment of the EAFZ. However, the 470 

Na+ (0.42~88.93 mg/L) and Cl– (0.97~75.92 mg/L) of the samples in this study were 471 

both low. HS16, the sample with the highest concentration, was collected at the 472 

southwest of EAFZ, which was obviously contaminated by Mediterranean Sea water 473 

and had no signal of deep fluid or magma source. This is not consistent with the 474 

previous study. Furthermore, the gas and water cycles appear to be decoupled in the 475 

EAFZ. We suggest that the reason for the inconsistency may be controlled by two 476 

factors: 1) After the earthquake, dislocation movement occurred in the fault zone, 477 

resulting in a large amount of surface water and shallow groundwater infiltration, which 478 

diluted the geothermal fluid; 2) The origin and evolution of geothermal water and 479 

geothermal gas are different. The cycle of geothermal water is essentially a cycle in the 480 

upper crust dominated by precipitation and controlled by fault zones. Nevertheless, 481 

geothermal gas is dominated by deep fluid, with a little or no air pollution. In addition, 482 

the strong fluidity and low density of gas make it easier to removal than water, which 483 

makes deep geothermal fluids may not be able to rise along the fault to the shallow 484 

crust or surface like geothermal gas. Although there is an obvious signal of deep crust 485 

or mantle in geothermal gas, the signal of deep crust or mantle is lacking in geothermal 486 

water. Therefore, we argue that the gas and water cycles may be decoupled in the EAFZ, 487 

with the gas more responsive to deep information than the water. 488 
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Since the deep information is lacking in geothermal water, it can still be used to trace 489 

shallow geothermal fluid cycles. Geothermal reservoir temperature estimation is one of 490 

the important indicators to understand the geothermal water cycle. We have calculated 491 

the thermal reservoir temperature of EAFZ geothermal water, and the results are shown 492 

in Table S1. Due to the low water-rock interaction degree and diversity of rock types 493 

in this area, cations in water are difficult to reach water-rock equilibrium (Fig. 4). Hence, 494 

most of the cationic thermometer estimates are too large or too small, which can only 495 

be used as a reference for thermal reservoirs. Fortunately, SiO2 thermometers are 496 

relatively suitable for estimating the reservoir temperature. As can be seen from Table 497 

S1, the reservoir temperatures range from 19.81oC to 128.09 oC (Quartz, no steam loss), 498 

which belongs to the low or moderate temperature geothermal systems. Using the 499 

circulation depth calculation formula, the maximum circulation depth is estimated to 500 

be 4.4km (HS04) (Table S1). It is very close to the epicenter of the 2023 Mw 7.6 501 

earthquake (Fig. 1).  502 

 503 

Figure 4. Na-K-Mg ternary diagram of geothermal waters in EAFZ. 504 
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As mentioned above, deep geothermal fluid may be diluted by shallow cold water. The 505 

silicon-enthalpy model is an effective tool to evaluate and eliminate the effects of the 506 

cold water mixing (Fournier, 1977). It can be seen from the Fig. 5a that HS04, which 507 

is closest to the epicenter, has the highest reservoir temperature (234 oC) indicating that 508 

the earthquake did break the balance of water-rock interaction in the EAFZ and released 509 

more deep materials and energy. Furthermore, we applied the Cl− - enthalpy model to 510 

constrain the potential deep geothermal fluid. Fig. 5b suggests that the temperature of 511 

the deep geothermal fluid is 382 oC. Such high temperatures are further evidence of the 512 

effect of seismic activity on geothermal fluid circulation. 513 

Therefore, after analysing the data of this study, we suggest that the double earthquakes 514 

in February 2023 (Mw 7.8 and Mw 7.6) modified geothermal fluid in the EAFZ, 515 

including: materials and energy. The maximum heat storage temperature and maximum 516 

circulation depth of geothermal water are 128 oC and 4.4km respectively. The 517 

temperature of the deep geothermal fluid is 382 oC. Although the deep fluid modified 518 

the geothermal fluid, the geothermal fluid was diluted due to the infiltration of a large 519 

amount of shallow cold water after the earthquake, and the information of the deep fluid 520 

was eventually occulted. 521 
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 522 

Figure 5. a: Silica-enthalpy model of geothermal waters in LXF zone. b: Enthalpy and 523 

Cl– concentration diagram for identifying the deep hot water in EAFZ. The enthalpies 524 

and reservoir temperatures of sample HS04 and HS12 are 981 J/g, 234 oC and 781 525 

kJ/kg, 187 oC respectively. Steam point with enthalpy value of 2779.4 J/g and 526 

chloride concentration of 0 mg/L (Kretzschmar and Wagner, 2019). The blue 527 

diamond is sample HS08, which is river water. HS04 is the closest sampling point to 528 

the epicenter, and the temperature of its deep fluid is as high as 382 oC. 529 

5.2 Water-rocks interaction 530 

As shown in Fig. 3 and 4, the water-rock interaction of the geothermal water is weakly. 531 

Nevertheless, we still find chemical composition anomalies in a few samples. 532 

Geothermal water samples collected at SF (Sürgü Fault) have higher EC 533 

(286.5~2683μs/cm) and ion concentrations, such as Ca2+ (54.04~501.58mg/L), Mg2+ 534 

(6.58~116.20mg/L), and SO42– (6.37~287.74mg/L) (Table 1). We arranged the samples 535 

collected by EAFZ in the order from northeast to southwest, and the results are shown 536 

in Fig. 6. All samples show weak alkalinity (pH=8.11~8.50) except HS15 (pH=11.72). 537 

Natural waters with high pH (~ 10 or above) are not usual (Hem, 1985). We suspect 538 
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that there are two processes that may cause pH to increase: 1) Serpentinization of 539 

olivine in ultramafic terranes (Huang; et al., 2023), 2) Secondary mineral precipitation, 540 

such as: calcite or magnesite (Aydin et al., 2020; Cipolli et al., 2004). Compared with 541 

other samples, the ion concentration of HS15 is significantly reduced, which may 542 

indicate the precipitation of potential secondary minerals (e.g., calcite). Therefore, we 543 

suggest that process 2 May be the dominant factor leading to the increase of pH. 544 

The Na+ and Cl– contents of the samples remained stable and only showed significant 545 

positive anomalies near the southwestern end of the Mediterranean Sea, which was 546 

caused by seawater pollution (HS14, HS15 and HS16) (Fig. 6d). The low content and 547 

spatial stability of Na+ (0.84~7.66mg/L) and Cl– (0.897~7.67mg/L) and the co-variation 548 

of hydrogen and oxygen isotopes (Fig. 6c, d), indicating that exogenous Na+ and Cl− 549 

are not involved in the geothermal water cycle in EAFZ observably (e.g., mantle or 550 

magma). In combination with the discussion in section 5.1, we suggest that the low Na+, 551 

Cl− content is the result of dilution by a large amount of shallow cold water. 552 
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 553 

Figure 6. Spatial distribution characteristics of geothermal water in EAFZ after the 554 

February 2023 double earthquakes in Turkey. Horizontal coordinate: Starting with the 555 

first sample (HS07) at the northeast end, it is distributed in the southwest direction 556 

along the EAFZ. From northeast to southwest, they are HS07, 08, 05, 06, 10, 09, 557 

11~16. The number indicates the distance from the HS07 sample. The higher the 558 

abscissa, the closer it is to the Mediterranean. Average Ca2+ (55.23 mg/L) and SO42– 559 

(8.31 mg/L) concentrations before earthquake in the EAFZ from Baba et al. (2019). 560 

EAFZ geothermal waters are controlled by shallow circulation. Therefore, the shallow 561 

sedimentary cover may be the main factor in the geochemical composition of the 562 

modified geothermal waters. We observed positive abnormalities of SO42– 563 

(2.76~316.61mg/L), Ca2+ (14.16~151.43mg/L), Sr (34.78~3244.8μg/L), and Ba 564 

(1.89~196.48μg/L) in at least three locations synergistically (HS05, HS09, HS14) (Fig. 565 
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6). Apparently, it is due to the dissolution of gypsum. The extensive distribution of 566 

evaporative rock layers in EAFZ provides geological evidence for this hypothesis 567 

(Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014). In particular, HS14 is 568 

located near Ancient Amik Lake, and there were macroscopic anomalies such as white 569 

water and turbidity before the earthquake, which further verified that the anomalies 570 

originated from the dissolution of gypsum (Fig. S1). Furthermore, the Mg2+ 571 

concentrations of our samples varied from 0.38mg/L to 116.2mg/L, and such a large 572 

change may imply the dissolution of Mg-containing minerals, which will be discussed 573 

in detail later. 574 

In order to accurately evaluate the cycle process of EAFZ geothermal water, PHREEQC 575 

software was used to conduct quantitative simulation of the water-rock interaction 576 

process (The simulation calculation process is detailed in Supporting Information) 577 

(Parkhurst and Appelo, 2013). The results are shown in Fig. 7. HS05, HS09 and HS14 578 

are consistent with the simulated dissolution curves of 100% gypsum, which confirms 579 

our conjecture about the dissolution of gypsum (Fig. 7a). Incidentally, the dissolution 580 

curves of celestite (SrSO4) and barite (BaSO4) have also been simulated. HS05 and 581 

HS09 may also be affected by the dissolution of barite, while HS14 may also be affected 582 

by the dissolution of celestite (Fig. 7b). HS01, HS03, and HS04 have excessive Ca2+ 583 

concentrations, indicating that other minerals besides gypsum are involved in the water-584 

rock interaction process and provide Ca (Fig. 7a). After investigating the types of rocks 585 

in the study area, we found that in addition to gypsum, other Ca-bearing minerals, such 586 

as calcite (CaCO3), dolomite (CaMg(CO3)2), and Anorthite (CaAl2Si2O8), may be 587 
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involved in the water-rock interaction process. When the ratio of calcite: dolomite : 588 

Anorthite = 1:1:1, the simulated results of Ca2+ and HCO3– are consistent with the 589 

observed values, indicating that the three minerals participate in the water-rock 590 

interaction in equal proportion (Fig. 7c). Furthermore, HS03 and HS04 have higher ion 591 

concentrations than HS01, possibly because HS03 and HS04 are closer to the epicentre 592 

of 2023 Mw 7.6 earthquake (Fig. 1).  593 

 594 

Figure 7. Characteristics of chemical components of geothermal waters in the EAFZ, 595 

during water-rock interaction. The diamond is the measured value of geothermal 596 

waters. The dashed line is the numerical simulation result of PHREEQC. a: Ca2+ vs 597 

SO42–, b: Sr2+ and Ba2+ vs SO42–, c: Ca2+ vs HCO3– and d: Mg2+ vs HCO3–. The 598 

simulation calculations are detailed in Supporting Information. 599 
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It is worth noting that the Mg2+ concentrations in the samples are generally high 600 

(0.38~116.2mg/L). It can also be seen from the simulation results that only dolomite 601 

provides Mg is not enough to explain the variation of Mg2+ concentrations in the sample 602 

(Fig. 7d). Actually, considering that the study area is located in the Alpine-Himalayan 603 

suture zone, there are a large number of ultrabasic rocks and basic rocks distributed in 604 

the region (Fig. 1), which provide the main Mg source for geothermal water (Lanari et 605 

al., 2023; Sparacino et al., 2022; van Hinsbergen et al., 2024). Serpentinization of 606 

peridotite is the main reason for controlling the variation of Mg content in geothermal 607 

water (Fig. 7d) (Aydin et al., 2020; Huang; et al., 2023). 608 

In short, through the analysis of the chemical components of geothermal water and the 609 

simulation calculation, we mainly obtained the following understandings: 1) The 610 

change of Na+ and Cl– concentration in the samples was caused by the mixing of 611 

Mediterranean Sea water; 2) Gypsum dissolution exists in geothermal fluids (HS05, 612 

HS09 and HS14); 3) Ca2+ originated from gypsum, calcite and anorthite; 4) 613 

Serpentinization is the main factor controlling Mg2+ concentrations. 614 

5.3 Geothermal fluid circulation model in the EAFZ 615 

As discussed above, EAFZ's geothermal fluid circulation model is shown in the Fig. 8. Beginning in the 616 

Late Cretaceous, as the New Tethys Ocean closed, Arabia-Eurasia collision zone have accommodated 617 

~350 km of convergence, making crust up to 45 km thick, and causing >2 km of uplift (Yönlü et al., 618 

2017). Arabian lithospheric mantle extends 50∼150 km north beneath Anatolian crust (Whitney et al., 619 

2023). Subsequently, the “roll back” and “slab break” occurred, resulting in extensive volcanic and 620 

devastating earthquakes, including those of February 6, 2023 in East Anatolian Plateau (Zhou et al., 621 

2024). The collision of the Eurasian and Arabian plates caused Anatolian microplate was extruding 622 

westwards, which lead to EAFZ at a high strike-slip rate of ~11 mm/yr (Pousse‐Beltran et al., 2020), 623 

and accompanied by counterclockwise rotation with a rotation rate of 1.053 ±0.015°/Ma (Simão et al., 624 
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2016). In this tectonic context, EAFZ remains active for a long time. Paleoseismic studies have shown 625 

that EAFZ has had many large earthquakes in its history (Carena et al., 2023; Hubert-Ferrari et al., 2020; 626 

Sparacino et al., 2022; Tan et al., 2008; Yönlü et al., 2017), with the largest magnitude reaching Mw 8.2 627 

(Carena et al., 2023). Fault that cut through the crust provide channels for material and energy to rise up 628 

from mantle, which makes EAFZ geothermal gas contain a high proportion of mantle-derived 629 

compositions (Aydin et al., 2020; Italiano et al., 2013; Yuce et al., 2014).  630 

However, the transport of geothermal gas and geothermal water appears to be decoupled. On the one 631 

hand, deep geothermal fluid stays deep under the influence of gravity and less diffusive, compare to 632 

geothermal gas. On the other hand, the geothermal fluid was diluted due to the infiltration of a large 633 

amount of shallow cold water after the double earthquakes in February 2023 (Mw 7.8 and Mw 7.6). Our 634 

interpretation can better explain the lack of deep fluid signal in the geothermal water studied in this study. 635 

Subsequently, at a depth of 4km, gas-water interaction process was experienced. Finally rose to the 636 

surface and discharged into the atmosphere. On the contrary, the circulating geothermal water has 637 

undergone complex water-rock interaction processes such as gypsum, calcite, dolomite, anorthite and 638 

serpentinization (Fig. 89). 639 

 640 

Fig. 9. The genesis model of the geothermal fluids in the EAFZ. The deep geothermal fluid was diluted due to 641 
the infiltration of a large amount of shallow cold water. In the shallow crust, gas-water interaction process 642 
and water-rock interaction processes were experienced. The gases rose to the surface and discharged into the 643 
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atmosphere. The circulating groundwater has undergone complex such as anhydrite, calcite, dolomite, 644 
anorthite and serpentinization. 645 

 646 

Figure 8. The genesis model of the geothermal fluids in the EAFZ. The deep 647 

geothermal fluid was diluted due to the infiltration of a large amount of shallow cold 648 

water. In the shallow crust, gas-water interaction process and water-rock interaction 649 

processes were experienced. The gases rose to the surface and discharged into the 650 

atmosphere. The circulating geothermal water has undergone complex such as 651 

gypsum, calcite, dolomite, anorthite and serpentinization. 652 

5.4 The relationship between geothermal fluid and earthquake forecasting 653 

Earthquake forecasting is a grand goal pursued by human beings, but also one of the most difficult goals. 654 

Various physical, chemical and biological techniques are used for earthquake forecasting (Bayrak et al., 655 

2015; Güleç et al., 2002; Kwiatek et al., 2023; Luo et al., 2024; Luo et al., 2023; Miller et al., 2004; 656 

Nalbant et al., 2002; Skelton et al., 2014; Tsunogai and Wakita, 1995; Wakita et al., 1980). As a link 657 
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between the shallow (crust) and the deep (mantle), geothermal fluids can react to various diseases just 658 

like human blood. In earlier studies, researchers found that the anomaly of chemical indicators in 659 

geothermal fluids could be used for earthquake forecasting e.g., (Güleç et al., 2002; King et al., 2006; 660 

Miller et al., 2004; Perez et al., 2008; Poitrasson et al., 1999; Tsunogai and Wakita, 1995), but due to 661 

limited technology and funding, such research requiring long-term and large-scale monitoring is difficult 662 

to carry out (Ingebritsen and Manga, 2014). With the advancement of technology, more and more 663 

automated equipment and the development of 5G communication technology make long-term automatic 664 

monitoring possible, e.g., (Barbieri et al., 2021; Boschetti et al., 2022; Franchini et al., 2021; Liang et al., 665 

2023; Luo et al., 2024; Luo et al., 2023; Skelton et al., 2014; Wang et al., 2023a). However, before 666 

geothermal fluid is really used in earthquake prediction, there is a problem that must be solved (i.e. to 667 

understand the relationship between geothermal fluid and earthquake). Its essence is to restore the origin 668 

and evolution process of geothermal fluid (Boschetti et al., 2022).  669 

For a long time, researchers have been searching for the information of the deep fluid in the fault zone, 670 

trying to link the earthquake with the deep fluid activity (Liang et al., 2023; Luo et al., 2023; Yan et al., 671 

2024). However, deep information is easily changed during upward migration, and sometimes even lacks 672 

deep information, just like the EAFZ geothermal water in this study (Fig. 6d). This seems to limit the 673 

ability of geothermal water to be used for earthquake prediction. In fact, chemical anomalies related to 674 

seismic activity can still be found in some shallow circulating geothermal water (e.g., SO4
2–) (Luo et al., 675 

2023). Moreover, the shallower water-rock interactions are more sensitive to the environment. Gypsum 676 

is widely distributed in nature, and its formation is related to evaporite. Gypsum dissolution and 677 

precipitation are often observed in geothermal water. Its solubility is greatly affected by environmental 678 

conditions (temperature, pH, pressure etc.) and is a potential indicator of earthquake prediction. After the 679 

2023 Mw 7.8 and 2023 Mw 7.6 earthquake, in the absence of deep fluid signals, we observed anhydrite 680 

dissolution at central-southern segments of EAFZ, which are likely to have been affected by seismic 681 

activity (Fig. 6). Similar SO4
2– anomalies have also been found in the eastern Tibetan Plateau (Li et al., 682 

2021; Luo et al., 2023) and southeast China (Wang et al., 2021). Therefore, we suggest that anhydrite 683 

can be used as a potential tectonic activity index. 684 

However, although anhydrite's potential as a tectonic activity proxy is significant, its shallow crustal 685 

occurrence renders it susceptible to climatic perturbations (e.g., rainfall, evaporation). As evidenced in 686 

Fig. 6, post-seismic SO4
2− and Ca2+ concentrations show no statistically significant deviations from 687 
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background levels during quiescent periods, underscoring the challenge of filtering out climatic noise. 688 

While statistical correlations tentatively position anhydrite dissolution as a fault activity indicator, 689 

advancing this paradigm requires: Long-term, high-resolution monitoring to disentangle tectonic vs. 690 

meteoric signals; Mechanistic models integrating fracture permeability dynamics with anhydrite 691 

solubility kinetics. 692 

This study's key contribution lies in establishing fault-driven permeability changes as a viable driver of 693 

anhydrite dissolution. We propose a novel conceptual framework for fault activity monitoring via 694 

groundwater systems—one that prioritizes reactive minerals in shallow water-rock interactions over 695 

traditional deep fluid signals. 696 

 After the 2023 Mw 7.8 and 2023 Mw 7.6 earthquake in EAFZ, in the absence of 697 

deep fluid signals, we observed at least three locations of gypsum dissolution, which 698 

are likely to have been affected by seismic activity (Fig. 6). Similar SO42– anomalies 699 

have also been found in the eastern Tibetan Plateau (Li et al., 2021; Luo et al., 2023) 700 

and southeast China (Wang et al., 2021). Therefore, we suggest that gypsum can be 701 

used as a potential earthquake early warning index, and the synergistic changes of SO42–, 702 

Ca2+, Sr and Ba may be used as precursor anomalies of earthquakes. 703 

Here, we want to say that although gypsum has the potential to be used for 704 

earthquake warning, it is largely affected by climate, rainfall and environmental 705 

changes because it is located in the shallow crust. We suggest that the application of 706 

gypsum and other shallow minerals should be treated with caution, and the influence 707 

of various factors on the solubility of gypsum should be fully considered. We are urging 708 

more detailed work needs to be carried out to improve the theoretical system of the 709 

relationship between geothermal fluid and earthquake. 710 

6 Conclusions 711 
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Segmented groundwater provenance: Northern groundwaters represent mixing between mantle-derived 712 

magmatic fluids (0–7%) and shallow meteoric waters, while central-southern systems are dominated by 713 

carbonate-evaporite weathering with localized seawater/halite inputs. 714 

Tectono-Climatic controls on water-rock interactions: Plagioclase-carbonate dissolution dominates 715 

northern segments, whereas anhydrite dissolution (30–100%) in central-southern segments correlates 716 

with fault permeability changes. Seismically enhanced fracture networks amplify evaporite dissolution, 717 

driving hydrochemical anomalies. 718 

Anhydrite as a tectonic activity tracer: Despite climatic noise, anhydrite dissolution kinetics exhibit 719 

stress-state sensitivity. Their ubiquity and rapid stress response position anhydrite as a potential tracer 720 

for real-time fault activity monitoring.6 Conclusion and Outlook 721 

We have conducted systematic element and isotope analysis on the hydrogeochemistry 722 

of geothermal fluid after the earthquake. The geothermal water temperature of EAFZ 723 

varies from 8.1°C to 32°C, and the pH changes from 7.03°C to 11.72°C. The types of 724 

geothermal water include Na-Cl-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Mg-HCO3. The 725 

SiO2 thermometer estimates that the heat storage temperature is 19.81°C to 128.09°C, 726 

and the maximum circulation depth is 4.4km. Combined with the geological 727 

background, measured data and numerical simulation results, we propose that the 728 

geothermal resources of EAFZ is characterized by low or moderate temperature 729 

geothermal systems. 730 

In EAFZ, the cycle process of geothermal water and geothermal gas is decoupled. 731 

Gravity and large dilution of shallow cold water may be responsible for the water-gas 732 

decoupling. The geothermal gas has obvious characteristics of volcanic sources and/or 733 

deep-rooted regional faults, while the geothermal water lacks deep fluid signal, which 734 

is mainly controlled by the shallow circulation of meteoric waters. SO42–, Ca2+, Mg2+, 735 

Sr and Ba in geothermal water are obviously affected by water-rock interactions. The 736 
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water-rock interactions include the dissolution of gypsum, calcite, dolomite, anorthite 737 

and serpentinization process. 738 

Shallow sedimentary minerals, such as gypsum, have the potential to be used as 739 

earthquake warning indicators. When earthquakes occur, the changes in the external 740 

conditions lead to changes in the solubility of gypsum, which in turn show abnormal 741 

concentrations of SO42–, Ca2+, Sr and Ba in geothermal water. However, the solubility 742 

of gypsum is controlled by many factors (e.g., temperature, pressure, climatic 743 

conditions, seasonal changes etc.), which heavily reduces the practical value of gypsum 744 

for earthquake early warning. 745 
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