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ABSTRACT 7 

Deep learning models have been proven to be effective in flood forecasting by leveraging the 8 

rich time-series information in the data. However, their limited interpretability and lack of physical 9 

mechanisms remain significant challenges. To address these limitations, this study introduces a 10 

novel model called PHY-FTMA-LSTM, which combines the feature-time-based multi-head 11 

attention mechanism with physical constraints. The PHY-FTMA-LSTM model takes four essential 12 

features of runoff, rainfall, evapotranspiration, and initial soil moisture as inputs to forecast floods 13 

in the Luan River Basin with a lead time of 1-6 h. It emphasizes the significance of relevant factors 14 

in the input features and historical moments through the feature-time attention module. Furthermore, 15 

the model enhances physical consistency by considering the monotonic relationship between the 16 

input variables and the output results. The results demonstrate that the PHY-FTMA-LSTM in most 17 

cases outperforms the original LSTM, the feature-time-based attention LSTM (FTA-LSTM), and 18 

the feature-time-based multi-head attention LSTM (FTMA-LSTM). For a lead time of t+1, the 19 

model achieves an NSE of 0.988, with KGE and R2 of 0.984 and 0.988. The NSE, KGE, and R2 also 20 

reach 0.908, 0.905, and 0.911 for a lead time of t+6. The proposed PHY-FTMA-LSTM model 21 

achieves excellent prediction accuracy, offering valuable insights for enhancing interpretability and 22 

physical consistency in deep learning approaches. 23 

Keywords：Deep learning；Flood forecasting；Physical constraints；Attention mechanism 24 

1. Introduction 25 

Floods are one of the most common and destructive natural hazards, posing a great threat to 26 

human life, infrastructure, and socio-economic conditions (Kellens et al., 2013; Mourato et al., 27 

2021). Building reliable and accurate flood forecasting models is the foundation for sustainable 28 

https://doi.org/10.5194/hess-2024-393
Preprint. Discussion started: 10 March 2025
c© Author(s) 2025. CC BY 4.0 License.



2 
 

flood risk management with a focus on prevention and protection, and is one of the most challenging 29 

tasks in hydrological forecasting (Birkholz et al., 2014; Zhang et al., 2016). 30 

Traditional hydrological models simulate hydrological processes such as rainfall runoff with a 31 

clear physical meaning, but their construction often demands rich hydro-meteorological data and 32 

subsurface information. Additionally, the large number of parameters involved poses challenges in 33 

determining their values, limiting their practical applicability (Chen et al., 2011). In contrast, data-34 

driven machine learning (ML) models, which do not rely on explicit consideration of the physical 35 

mechanisms governing hydrological processes and only analyze the statistical relationships between 36 

inputs and outputs, have been widely used in hydrology in recent years (Lima et al., 2016; Yang et 37 

al., 2020; Yu et al., 2006; Zhu et al., 2005). Among them, deep learning (DL) models with multiple 38 

hidden layers have demonstrated significant advantages, including convolutional neural networks 39 

(CNNs), recurrent neural networks (RNNs), and their variants such as long short-term memory 40 

neural networks (LSTMs), and gated recurrent units (GRUs). LSTM, a type of RNN, is specifically 41 

designed for learning long-term dependencies, and its architectural enhancements effectively 42 

address issues such as gradient disappearance and explosion that are inherent to traditional RNNs. 43 

Consequently, LSTM has emerged as a highly favored model in flood forecasting (Cui et al., 2021a; 44 

Kao et al., 2020; Luppichini et al., 2022; Lv et al., 2020). 45 

The DL models, with their powerful characterization capabilities, excel in fitting observations 46 

and have high prediction accuracy for hydrological problems such as flood forecasting, but they still 47 

have limitations. First, the interpretability of DL models is poor (Nearing et al., 2021). The inherent 48 

black-box nature of DL models makes it difficult to understand the significance of model parameters 49 

and the decision-making process. The attention mechanism is an approach to enhance the 50 

interpretability of DL models (Vaswani et al., 2017). Attention allows for the interpretation of 51 

feature importance by selectively emphasizing critical information from a multitude of input 52 

variables through attention weights. Moreover, attention weights can be visualized to gain insights 53 

into the underlying reasoning behind the model’s predictions. The attention mechanism has been 54 

successfully applied in various domains. Song et al. (2017) proposed an end-to-end spatio-temporal 55 

attention model for recognizing human actions from skeleton data, selectively attending to 56 

distinguishable joints within each frame of the input, and assigning different levels of attention to 57 
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the output of different frames. Zhang et al. (2021) constructed an anomaly structure by incorporating 58 

spatial attention and channel attention modules, which facilitated the creation of feature spaces 59 

characterized by high compactness within the same class and separation between different classes, 60 

resulting in the accurate classification of floral images. As for hydrological forecasting, Wang et al. 61 

(2023) introduced an improved spatio-temporal attention mechanism model (STA-LSTM) for 62 

predicting river water levels. By visualizing attention weights, they discovered that the hydrological 63 

station closer to the outlet had greater influence, while the temporal weights decreased with 64 

increasing historical moments. However, it should be noted that the discussed model (STA-LSTM) 65 

considers only a single historical water level as input, neglecting the potential influence of other 66 

relevant input features on the final prediction. This limitation underscores the need for further 67 

research and development to explore the incorporation of multiple input features in attention 68 

mechanisms for more comprehensive and accurate models. 69 

Second, the DL models lack physical mechanisms. DL models primarily focus on establishing 70 

a mapping relationship between inputs and outputs, overlooking the underlying physical 71 

connections between them (Jiang et al., 2020). Consequently, the prediction results obtained from 72 

DL models may be physically inconsistent or unreliable due to extrapolation or observation bias 73 

(Reichstein et al., 2019). To address this limitation, researchers have proposed incorporating 74 

physical constraints into the loss function, which serves as the optimization objective of DL models. 75 

By adding physical theory as a priori knowledge, the models can be constrained to generate outputs 76 

that are consistent with the underlying physical principles, thereby enhancing their physical 77 

consistency. Several studies have explored this approach in different contexts. Read et al. (2019) 78 

chose the law of energy conservation as a physical constraint in temperature simulation to build a 79 

lake water temperature prediction model that conforms to physical theory. Wang et al. (2020) 80 

proposed a theory-guided neural network (TgNN) framework for groundwater flow that 81 

incorporates control equations, boundary conditions, initial conditions, and expert knowledge as 82 

additional terms in the loss function to guide the training process. Xie et al. (2021) considered 83 

extreme storm events, long-duration rainless events, and rainfall-runoff monotonic relationships in 84 

the rainfall-runoff process at a daily scale and constrained LSTM with these three physical 85 

mechanisms to improve the physical interpretability. 86 
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Moreover, the current inputs for the DL models in flood forecasting are mainly historical runoff, 87 

rainfall, and evapotranspiration (Leedal et al., 2013; Rahimzad et al., 2021; Wan et al., 2019), but 88 

the initial soil moisture is also a crucial parameter, particularly for arid watersheds (Grillakis et al., 89 

2016). The initial soil moisture directly affects the soil infiltration capacity, water input and output 90 

from the soil, and ultimately, the flooding process. Therefore, the paper also explores the effect of 91 

initial soil moisture on flood forecasting through the attention weight visualization matrix. 92 

Based on the above research, this paper proposes a combined feature-time multi-head attention 93 

mechanism and physical constraints model for flood forecasting, named PHY-FTMA-LSTM. The 94 

main contributions of this work are outlined as follows: (1) The initial soil moisture in the watershed 95 

is introduced as an input, alongside historical runoff, rainfall, and evapotranspiration, these four 96 

input features are considered to investigate their influence on the flooding process. (2) The dual 97 

attention module of features and time and multiple attention heads are used. The resulting attention 98 

weight matrix is visualized to enhance the interpretability of the model, providing insights into the 99 

importance of different features and time dynamics. (3) The physical constraints of flood forecasting 100 

are combined with the DL models at hourly scales to enhance the physical consistency of the model. 101 

By optimizing the loss function, the model incorporates the monotonic relationship between rainfall, 102 

evapotranspiration, initial soil moisture, and runoff during the flooding process. This integration 103 

ensures that the output aligns with physical laws.  104 

The novelty of this study is that, for the first time, the attention mechanism and physical 105 

constraints are simultaneously incorporated into the DL model based on the hourly scale, and the 106 

important parameter of soil moisture content is added as input to forecast flood with a lead time of 107 

1~6h in Luan River Basin in China as an example, which improves the prediction performance of 108 

flood forecasting models while enhancing interpretability and physical law consistency. The 109 

proposed PHY-FTMA-LSTM can effectively leverage key input information and produce prediction 110 

results that conform to the monotonicity constraints on the water balance. 111 

2. Methods 112 

To increase the interpretability and physical consistency of DL models in flood forecasting, 113 

this paper establishes a PHY-FTMA-LSTM model that combines the feature-time-based multi-head 114 

attention mechanism with physical constraints (Fig. 1(a)). The attention mechanism consists of a 115 
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dual module: feature-based attention and time-based attention. In the feature-based attention module, 116 

the model generates a feature-based attention matrix that assigns different weights to the input 117 

features based on their importance. Similarly, the time-based attention module generates a time-118 

based attention matrix that assigns different weights to historical moments. By taking the dot product 119 

of these two matrices, the model generates the feature-time-based attention matrix (Fig. 1(b)). To 120 

enhance the modeling capability, the multi-head attention mechanism is utilized. Multiple attention 121 

heads are computed in parallel, and their outputs are averaged to balance the influence of each 122 

subhead. The attention weight matrix is then multiplied with the input matrix, resulting in the output 123 

of the feature-time-based multi-head attention layer (Fig. 1 (c)). In addition, the physical constraints 124 

of the hydrological cycle process are added to the loss function to make the output conform to the 125 

physical laws. And the model is compared with the original LSTM, the feature-time-based attention 126 

LSTM (FTA-LSTM), and the feature-time-based multi-head attention LSTM (FTMA-LSTM). 127 

2.1. Long short-term memory neural network（LSTM） 128 

The LSTM model aims to alleviate the weaknesses of ordinary RNNs in handling long-time 129 

dynamics (Zhao et al., 2017). Different from the circular structure of the RNN hidden layer, the 130 

hidden layer of the LSTM introduces the memory cell, which consists of an input gate, forget gate, 131 

and output gate to selectively remember and forget the input data, and its structure is shown in Fig. 132 

1(d). The inputs at time t include the input information xt at t, the hidden layer state ht-1, and the cell 133 

state ct-1 at t-1. First, the forget gate determines the extent to which cell state ct-1 is discarded. Next, 134 

the input gate decides how much of the current external information xt to retain and generates the 135 

candidate cell state ct. Then, ct is updated based on the results of the forget and input gate. Finally, 136 

the output gate decides which state features of ct are output and generates the hidden layer state 137 

variable ht (Duan et al., 1992). The above process can be expressed as follows： 138 

 ( )1,t f t t ff W h x b −=  +                           (1) 139 

 ( )1,t i t t ii W h x b −=  +                           (2) 140 

 ( )1tanh ,t c t t cc W h x b−=  +                          (3) 141 

1t t t t tc c f c i− +=                             (4) 142 
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 ( )1,t o t t oo W h x b −=  +                          (5) 143 

tanh( )t th c=                               (6) 144 

where Wf, Wi, Wc, Wo are the weight vectors of the three gates and the gating unit, respectively. 145 

Similarly, bf, bi, bc, bo are the bias vectors. σ is the Sigmoid activation function. tanh is the hyperbolic 146 

tangent activation function. ⊙ denotes the vector element product. 147 

2.2. Attention mechanism 148 

The attention mechanism is inspired by the concept of human visual selective attention, which 149 

helps neural networks focus on important information while disregarding irrelevant details, thereby 150 

establishing connections between inputs and outputs (Brauwers & Frasincar, 2023; Niu et al., 2021). 151 

By incorporating the attention mechanism, the model can allocate varying degrees of attention to 152 

different historical moments or feature vectors within the input sequence. This enables the model to 153 

automatically identify and prioritize the most relevant input information, leading to more accurate 154 

modeling of flood causes and trends. Ultimately, this improves the accuracy of flood prediction 155 

results and enhances the interpretability of the model. 156 

In this study, a soft attention module is introduced before the original LSTM’s input. This 157 

module calculates attention weight matrices separately for input features and historical moments 158 

and then combines them to produce a feature-time attention weight matrix.  159 

The feature-based attention module can focus on the effects of different features on predicted 160 

floods and improve the model’s attention to important features. In this paper, the input features are 161 

runoff, rainfall, evapotranspiration, and initial soil moisture. Let the input be a two-dimensional 162 

matrix k nX R  , where k and n denote the number of input features and the number of historical 163 

moments, respectively, then the input matrix at time t can be regarded as n k-dimensional vectors164 

1 2 1[ , ,..., ]t t t T

t k kX x x x = . The input features at each time step are normalized using the softmax function 165 

(Eq. (7) and Eq. (8)). The attention weight matrix based on the input features is obtained by 166 

synthesizing the feature weights of all historical moments. 167 

1

( )

t
i

t
i

x
t t

i i k x

i

e
softmax x

e


−

−

=

= =


                        (7) 168 
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1 2 1
, ,...,

T
t t t

t k k
   


 =                               (8) 169 

where
t

i is the weight of the ith feature, and
1

1
k t

ii


=
= . 170 

The time-based attention module allows simulating the relationship between different time 171 

steps, focusing on the more important historical moments. The input matrix of features can be 172 

viewed as
1 2

1[ , ,..., ]t n t n t

k k k nkX x x x− − − −

= , and the same softmax function (Eq. (9)) is used to generate 173 

the time-based attention weights (Eq. (10)), and the time weights of all features are synthesized to 174 

be the attention weight matrix based on historical moments. 175 

1

( )

i
k

i
k

x
i i

k k n x

i

e
softmax x

e


−

−

=

= =


                        (9) 176 

1 2 1
, ,...,k n n

   


 =                              (10) 177 

where
i

k is the weight of the ith time step, and
1

1
k i

i k=
= . Finally, the above two weight matrices 178 

are multiplied element by element to obtain the attention weight matrix that focuses on both the 179 

input features and historical moments (Eq. (11)). 180 

1 1
1 1 1 1

1 1

t n t n t t

T

t n t n t t
k k k k k n

FTA FA TA

   

   

− − − −

− − − −



 
 

= =  
 

 

              (11) 181 

To enhance model expressiveness and interpretability, this study also employs a multi-head 182 

attention mechanism. This mechanism involves passing input sequences through m independent 183 

attention heads in parallel. Each head can be seen as a distinct representation space, enabling the 184 

model to concurrently focus on different parts of the input. As a result, the model becomes more 185 

capable of capturing the intricate relationships between inputs and gaining a deeper understanding 186 

of the input data. 187 

The multi-head attention mechanism computes m sets of attention coefficients based on the 188 

number of heads, adds the output tensor of the attention heads using the Add function, and then 189 

balances the effects of different sub-heads by averaging operations. Finally, the average output 190 

tensor is multiplied by the input to get the final output, which makes the attention head weights more 191 

discriminative and better captures the relationship between sequences. The feature-time-based 192 
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multi-head attention weight matrix is as follows: 193 

1 1
1 1 1 11 1

1 1

1 1

1

M Mt n t n t t

m m

M Mt n t n t t
k k k km m k n

FTMA
M

   

   

− − − −

= =

− − − −

= =

 
 
 =
 
 


  

 

 

              (12) 194 

where M represents the number of attention heads. 195 

2.3. Physical constraints 196 

The LSTM is a black-box model that ignores complex physical processes, making it difficult 197 

to maintain consistency with the basic principles of flood forecasting (Yokoo et al., 2022). To 198 

overcome this limitation, the physical constraints can be combined with the DL models to enhance 199 

the physical consistency by modifying the model loss function and transforming the prior 200 

knowledge of flood forecasting into the penalty term of the loss function. A soft penalty is often 201 

utilized to enforce constraints on the model’s behavior (Karniadakis et al., 2021), ensuring 202 

adherence to physical principles such as conservation and monotonicity. 203 

In the DL models for flood forecasting, the occurrence of flooding due to heavy rainfall is 204 

influenced by various factors, including rainfall intensity, evapotranspiration, infiltration, and 205 

storage dynamics. When considering the input features of rainfall, evapotranspiration, and initial 206 

soil moisture, it is important to maintain a monotonic relationship between each feature and the 207 

resulting runoff. However, the traditional DL models disregard the physical relationships between 208 

inputs and outputs. This lack of consistency with the physical principles of water balance equations 209 

undermines the overall reliability of the model. Therefore, this study incorporates inequality 210 

constraints to enforce the desired monotonic relationships between rainfall, evapotranspiration, 211 

initial soil moisture, and runoff. Under the assumption that all other input variables remain 212 

unchanged, a new time series of rainfall, evapotranspiration, and initial soil moisture is generated 213 

respectively by applying a small random increase using the random.uniform function. These new 214 

time series are then combined with the unchanged time series to form new input data. The difference 215 

between the predicted values corresponding to the new data and the predicted values corresponding 216 

to the original input data is calculated. This difference is then converted into a specific loss value 217 

using the ReLU function and added to the loss function. 218 

 219 
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 220 

Fig. 1. (a) The PHY-FTMA-LSTM model architecture. (b) Feature-time-based attention matrix 221 
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generation process for each attention head. (c) Feature-time-based multi-head attention workflow. 222 

(d) The internals of LSTM cells. 223 

For rainfall, the runoff should increase if there is a slight increase in rainfall at the current time 224 

step, provided that other variables are constant, and the monotonic relationship and losses for 225 

rainfall-runoff are expressed as follows: 226 

   ( ) , ( ), 0f p t p t f p t t+  −                        (13) 227 

     
2

1

1
ReLU ( ), ( ) , 0

pN

p i
p

Loss f p t t f p t p t
N =

= − +           (14) 228 

where ∆p is the small increase in rainfall, Lossp is the error in the monotonic relationship of rainfall 229 

runoff, Np is the sample length of the perturbed rainfall, and ReLU is the response function. 230 

For evapotranspiration, the runoff should decrease if there is a slight increase in 231 

evapotranspiration at the current time step, provided that other variables are constant, and the 232 

monotonic relationship and losses for evapotranspiration runoff are expressed as follows: 233 

   ( ) , ( ), 0f e t e t f e t t+  −                         (15) 234 

     
2

1

1
ReLU ( ), ( ) , 0

eN

e i
e

Loss f e t t f e t e t
N =

= − +             (16) 235 

where ∆e is the small increase in evapotranspiration, Losse is the error in the monotonic relationship 236 

of evapotranspiration runoff, Ne is the sample length of the perturbed evapotranspiration. 237 

For soil moisture, the runoff should increase if the initial soil moisture of the watershed 238 

increases slightly for each flood event, provided that other variables are constant, and the monotonic 239 

relationship and losses between initial soil moisture and runoff are expressed as follows: 240 

   ( ) , ( ), 0f s t s t f s t t+  −                        (17) 241 

     
2

1

1
ReLU ( ), ( ) , 0

sN

s i
s

Loss f s t t f s t s t
N =

= − +             (18) 242 

where ∆s is the small increase in initial soil moisture, Losss is the error in the monotonic relationship 243 

of initial soil moisture runoff, Ns is the sample length of the perturbed initial soil moisture. 244 

Based on the above physical constraints of flood forecasting, the loss function of the traditional 245 

LSTM model is improved with the following equation: 246 

data data p p e e s sLoss Loss Loss Loss Loss   = + + +               (19) 247 
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where Loss is the loss function of the LSTM guided by the physical constraints of flood forecasting; 248 

Lossdata is the mean square error of the observed and predicted values of the LSTM; λdata、λp、λe、249 

λs are the weighting coefficients of different losses, respectively. To treat the three physical 250 

constraints equally, the weighting coefficients of the four losses are set to {0.7, 0.1, 0.1, 0.1}. 251 

2.4. Evaluation metrics 252 

To evaluate the accuracy of different models for flood forecasting, the Nash-Sutcliffe efficiency 253 

(NSE), Kling–Gupta efficiency (KGE), the coefficient of determination (R2), root mean square error 254 

(RMSE), and mean absolute error (MAE) are selected for evaluation. The specific equations are as 255 

follows: 256 

( )

( )

2

1

2

1

NSE 1

n

t t

i

n

t t

i

Q Q

Q Q



=

=

−

= −

−




                           (20) 257 

( ) ( ) ( )
2 2 2

KGE 1 1 1 1R  = − − + − + −                    (21) 258 

( )( )

( ) ( )

2

12

22

1 1

R

n

t t t t

i

n n

t t t t

i i

Q Q Q Q

Q Q Q Q

 

=

 

= =

 
− − 

 
=

− −



 
                      (22) 259 

( )
2

1RMSE

n

t t

i

Q Q

n



=

−

=


                          (23) 260 

1

1
MAE

n

t t

i

Q Q
n



=

= −                             (24) 261 

where Qt is the observed value; Qt′ is the predicted value; Qt is the observed mean value; Qt′ is 262 

the mean value of the predicted series; α between the standard deviation of the predicted value and 263 

that of the observed value; β is the ratio between the mean of the predicted value and that of the 264 

observed value; n is the total number of samples. The NSE is commonly used to evaluate 265 

hydrological prediction models, KGE considers the contribution of mean, variance and correlation 266 

on model performance, R2 is often used to evaluate the linear correlation between the forecast 267 

process and the observed process. The values of NSE, KGE and R2 range from 0 to 1. The closer the 268 

result is to 1, the more accurate the forecast result is and the higher the model credibility is. RMSE 269 

and MAE are used to reflect the degree of deviation between the predicted and observed values, the 270 
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smaller the value the smaller the deviation. 271 

3. Study area and data 272 

3.1. Study area 273 

In this study, the watershed controlled by the Sandaohezi station in the Luan River Basin was 274 

selected as the study area. The Luan River originates from the northern foot of Bayangurtu Mountain 275 

in Hebei Province, with a total length of 888 km, and flows through Inner Mongolia, Hebei, and 276 

Liaoning provinces before injecting into the Bohai Sea at Laoting County, Hebei Province. The 277 

station is in the middle reaches of the mainstream of the Luan River, controlling a watershed area 278 

of 17100 km2, accounting for about 40% of the total area of the Luan River basin. Geographically, 279 

it is located between 115.5°E to 117.7°E longitude and 40.7°N to 42.7°N latitude. The elevation of 280 

the study area ranges from 370 to 2300 m, with a high northwest to low southeast topography. Except 281 

for the upstream origin of the dam plateau, the rest of the area is dominated by mountainous terrain. 282 

The northwest of the basin is located in the temperate continental climate zone, precipitation is 283 

scarce and concentrated in summer; the southeast is located in the temperate monsoon climate zone, 284 

with cold, dry winters and hot, rainy summers. The average annual temperature of the basin ranges 285 

from 5 to 12°C, and the average annual runoff is about 480 million m3. The average annual rainfall 286 

is about 500mm, and the spatial and temporal distribution of rainfall within the year is uneven, 287 

mainly concentrated from May to September, and the precipitation decreases from south to north. 288 

Floods in the basin are mostly formed by heavy rainfall, which is short-lived and strong, making the 289 

flooding process steep up and steep down, often causing disasters in the downstream areas. 290 

Consequently, accurate flood forecasting is of utmost importance for effective flood control and 291 

water resources management in the Luann River basin. The location of the study area and the 292 

stations are shown in Fig. 2. 293 
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 294 
Fig.2. Geographical location of the study area and hydrological and rainfall stations. 295 

3.2. Data 296 

The rainfall and runoff data were obtained from the Hydrological Yearbook of the Haihe River 297 

Basin, including rainfall data from 15 rainfall stations, such as Sandaohezi, Zhangbaiwan, and 298 

Baorono, and runoff data from Sandaohezi hydrological station. The period covers 39 years from 299 

1964 to 1989, 1991, and 2006 to 2017. There is a gap in the data for 1990 and 1992 to 2005 due to 300 

incomplete data collection. 301 

The evapotranspiration and soil moisture data were obtained from the Global Land Surface 302 

Data Assimilation System (GLDAS) using the GLDAS-Noah model product 0.25°×0.25° spatial 303 

resolution, 3h temporal resolution dataset, and the evapotranspiration data were averaged backward 304 

3h, and the soil moisture data were instantaneous values. Among them, GLDAS-2.0 provides data 305 

from 1964 to 2014, and GLDAS-2.1 provides data from 2015. 306 

In this study, 30 flood events during the 39 years were selected (Table 1), and the collected 307 

observed runoff data were linearly interpolated to 1h step data, the observed rainfall data were 308 

averaged to 1h step data, and the Tyson polygon method was used to derive the areal rainfall. For 309 

evapotranspiration and soil moisture, the average values were calculated for each grid in the 310 

watershed at each period, where the soil moisture was taken as the initial soil moisture before the 311 

onset of rainfall for each flood event. Twenty flood events were used for model training, ten flood 312 
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events were used for model validation.  313 

Since different input features have different magnitudes, maximum-minimum normalization 314 

was used to process the input data into the range [0,1], see Eq. (25). 315 

−
=

−

i min
norm

max min

x x
x

x x
                             (25) 316 

where xnorm is the normalized data, xi is the original data, and xmin and xmax are respectively the 317 

minimum and maximum values of the original data. 318 

Table 1 Flood events used in the study. 319 

Dataset Flood number Peak discharge (m3/s) Year Duration (month/day/hour) 

Training 

1 314.2 1964 08/01/04-08/09/12 

2 218 1964 08/13/02-08/16/00 

3 313 1965 07/17/20-07/21/12 

4 204 1966 07/27/16-07/31/20 

5 260 1968 07/27/12-07/30/22 

6 154 1969 08/20/12-08/27/12 

7 296 1971 07/17/15-07/29/08 

8 153 1972 07/19/08-07/24/08 

9 742 1973 08/12/04-08/26/08 

10 213 1975 08/11/00-08/16/08 

11 218 1978 08/25/12-09/03/08 

12 246 1982 07/22/12-07/29/16 

13 313 1983 08/04/00-08/11/20 

14 400 1985 08/24/05-08/31/04 

15 210 1986 08/08/04-08/13/08 

16 87.5 1987 08/19/12-08/23/04 

17 465 1991 06/10/04-06/18/00 

18 70.1 2008 08/10/00-08/16/00 

19 149 2010 07/30/17-08/04/20 

20 80.4 2015 07/27/16-07/31/16 

Validation 

21 241 1965 08/26/21-08/30/20 

22 260 1967 06/27/12-06/29/22 

23 164 1970 07/14/12-07/16/04 

24 506.7 1974 07/23/12-08/06/08 

25 313 1979 08/13/04-08/21/08 

26 132 1985 08/11/16-08/14/04 

27 212 1989 06/03/22-06/07/04 

28 205 2011 08/14/10-08/20/04 
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29 95.9 2013 07/21/08-07/25/16 

30 84.2 2013 08/13/09-08/21/00 

3.3. Model construction 320 

This study is based on Python 3.9, and the Numpy, Pandas, and Scikit-Learn packages in 321 

Python are used for data processing, and the LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-322 

LSTM models are constructed using the Keras library in TensorFlow. 323 

The model inputs are runoff, rainfall, evapotranspiration, and initial soil moisture for a 324 

specified time step, and the outputs are the discharge from 1 to 6h of the lead time. All four models 325 

use the ReLU activation function, which avoids gradient vanishing and is more effective compared 326 

to the tanh and sigmoid functions. The Adam optimizer is used and the LSTM layer is a single layer, 327 

with the number of attention heads set to 3 for the FTMA-LSTM and PHY-FTMA-LSTM. The mean 328 

square error is the loss function of the four models, and for PHY-FTMA-LSTM it incorporates 329 

physical constraints, as shown in Eq. (19). To avoid overfitting, all models use the early stopping 330 

and set the maximum number of epochs to 200. 331 

To construct the base models, the common values of the DL model parameters are used as the 332 

initial values. The base models have an observed input time step of 12 hours, a learning rate of 0.001, 333 

batch size of 64, and hidden units set to 128. After evaluating the performance of the base models, 334 

parameter optimization is performed separately for each of the four models, considering that the 335 

optimal parameter combinations may differ among the models. The goal is to study the effects of 336 

the input time step and three hyperparameters (learning rate, batch size, and hidden units) on the 337 

model performance. The ranges used for parameter optimization are as follows: input time step of 338 

3 to 24 hours, learning rate of 0.00001 to 0.01, batch size of 16 to 256, and hidden units of 32 to 339 

512. A single parameter is varied while the other parameters are taken as their initial values. 340 

Considering the stochastic nature of the DL model running process, each of the four models is 341 

repeated five times for each lead time, and the results with the best prediction performance are 342 

selected for analysis. 343 

4. Results 344 

4.1. Model optimization 345 

The LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-LSTM base models are established 346 
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individually, and their average NSE values during the 1-6 hour lead time, measure to evaluate flood 347 

prediction accuracy, are found to be 0.925, 0.930, 0.936, and 0.950, respectively. These results 348 

indicate that all four base models can effectively predict flooding events. In order to determine the 349 

optimal parameter combination for each model and how individual parameter variations affect the 350 

model performance, the following parameters are investigated while keeping the other three 351 

parameters constant: input time step, learning rate, batch size, and hidden units. 352 

Regarding the input time step of observations, experiments are conducted by varying the time 353 

step within a certain range. The result depicted in Figure 3(a) shows that the average NSE value for 354 

all four models is highest at a time step of 12 hours and decreases with increasing time step. The 355 

worst performance is observed at a time step of 24 hours. This observation suggests that longer input 356 

sequences introduce more noise, and the inclusion of extraneous information adversely affects the 357 

final prediction. Therefore, a 12-hour input time step is identified as the optimal choice for flood 358 

forecasting in all four models and is adopted for subsequent experiments. 359 

For the learning rate, tests are performed using a learning rate ranging from 0.00001 to 0.01. 360 

The finding, presented in Figure 3(b), indicates that the performance of the four models is 361 

comparable at learning rates of 0.01 and 0.001. However, when the learning rate is set to 0.0001 and 362 

0.00001, the models exhibit slow convergence and degrade performance rapidly. Considering the 363 

possibility of failure to converge at a very high learning rate, a combined analysis suggests a learning 364 

rate of 0.001 as the optimal choice for all four models in the subsequent studies. 365 

The batch size optimization ranges from 16 to 256. The result depicted in Figure 3(c) 366 

demonstrates varying performances of the four models with different batch sizes. The LSTM model 367 

achieves the highest average NSE of 0.932 at a batch size of 128. Similarly, the FTA-LSTM model 368 

attained its highest average NSE of 0.932 at a batch size of 32. On the other hand, the FTMA-LSTM 369 

and PHY-FTMA-LSTM models reach their highest average NSE values at a batch size of 64, with 370 

0.936 and 0.950, respectively. Consequently, the optimal batch size for flood forecasting is 371 

determined as 128, 32, 64, and 64 for the LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-372 

LSTM models, respectively. These batch sizes are employed for subsequent studies. 373 

Regarding the hidden units, tests are conducted with the count varying from 32 to 512. Figure 374 

3(d) illustrates the distinct performances of the four models concerning different hidden units. The 375 
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LSTM model achieves the highest average NSE of 0.925 with 64 hidden units. The FTA-LSTM and 376 

FTMA-LSTM models attain their highest average NSE values of 0.935 and 0.939 with 256 hidden 377 

units, respectively. In contrast, the PHY-FTMA-LSTM model reaches the highest average NSE of 378 

0.950 at 128. Accordingly, the optimal hidden units for flood prediction are identified as 64, 256, 379 

256, and 128 for the LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-LSTM models, 380 

respectively.  381 

Considering the above parameter optimization process, the model parameters used in the 382 

subsequent study are as follows (Table 2). Notably, the PHY-FTMA-LSTM model consistently 383 

outperforms the other three models across various parameter values, exhibiting the smallest 384 

variation in NSE. These findings indicate that the PHY-FTMA-LSTM model proposed in this paper 385 

offers the best and most stable performance. 386 

Table 2 Parameters of models. 387 

Models Input time step Learning rate Batch size Hidden units 

LSTM 12 0.001 128 64 

FTA-LSTM 12 0.001 32 256 

FTMA-LSTM 12 0.001 64 256 

PHY-FTMA-LSTM 12 0.001 64 128 

 388 

 389 
(a)                                         (b) 390 
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 391 
(c)                                          (d) 392 

Fig.3. The NSE values for 6 lead times with different (a) input time steps of observations, (b) 393 

learning rate, (c) batch size, and (d) hidden units. 394 

4.2. Model performance evaluation 395 

The LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-LSTM models are constructed using 396 

the optimal parameters mentioned above, the evaluation metrics of the forecasting performance of 397 

the four models in the training and validation stages are shown in Table 3 and Table 4. All the metrics 398 

of the four models almost outperform the validation period in the training period. And with the 399 

increase of the lead time, the gap between the performance of the models in the training period and 400 

the testing period gradually increases. It can be seen that the three models based on the attention 401 

mechanism outperform the original LSTM model in all lead times. It indicates that the dual attention 402 

module of time and feature proposed in this paper effectively focuses on the more significant 403 

historical moments and feature variables, improving the performance of the LSTM model. Among 404 

the attention-based models, the FTMA-LSTM model, which utilizes a multi-headed attention 405 

mechanism, achieves better performance than the FTA-LSTM model with a single attention head in 406 

most cases. This demonstrates that the parallel computation of the multi-head attention mechanism 407 

enables the model to emphasize more important information in the input compared to the single-408 

head attention mechanism. Furthermore, the PHY-FTMA-LSTM model, which incorporates 409 

physical constraints, outperforms the other three models across almost all metrics. Specifically, at 410 

the lead time t+1, compared to the original LSTM model, the PHY-FTMA-LSTM model shows an 411 

improvement in NSE, KGE, and R2, increasing from 0.977 to 0.988, from 0.953 to 0.984 and from 412 

0.979 to 0.988, respectively. Additionally, the RMSE and MAE decrease by 27.4% and 49.6%, 413 
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respectively. At the lead time t+6, NSE increases from 0.865 to 0.908, KGE from 0.851 to 0.905, 414 

R2 from 0.886 to 0.911, and RMSE and MAE decrease by 21.1% and 15.1%, respectively. These 415 

results mean that incorporating physical constraints enables the DL model to understand the 416 

monotonic relationship presented in the flooding process, improving forecast accuracy by enhancing 417 

the model’s physical consistency. 418 

As the lead time increases, the performance of all four models declines, suggesting that their 419 

robustness and generalization gradually deteriorate. However, the extent of the decline in the four 420 

model metrics varies. In terms of NSE, when transitioning from a 1-hour to a 6-hour lead time, the 421 

PHY-FTMA-LSTM model exhibits the smallest decline of 0.065 during the training period, while 422 

the LSTM, FTA-LSTM, and FTMA-LSTM models experience decreases of 0.072, 0.079, and 0.073 423 

respectively. During the validation period, the NSE value decreases by 0.080 for the PHY-FTMA-424 

LSTM model and by 0.112, 0.109, and 0.104 for the LSTM, FTA-LSTM and FTMA-LSTM models, 425 

respectively. Maintaining high accuracy in longer lead times is crucial in practical applications. 426 

Extended lead times necessitate more comprehensive information for accurate predictions, 427 

presenting challenges for the models. Nonetheless, the PHY-FTMA-LSTM model exhibits minimal 428 

degradation, indicating its superior ability to adapt to longer lead times and maintain high precision. 429 

This superiority may be attributed to the unique characteristics and structure of the PHY-FTMA-430 

LSTM model. It likely encompasses considerations of physical factors and key input features, 431 

enabling a better capture of flood complexity and variability. This advantage positions the model 432 

favorably in scenarios requiring predictions further into the future.  433 

 434 

Table 3 Performance of the four models for flood forecasting at different lead times for training. 435 

Lead times/h Models NSE KGE R2 RMSE MAE 

t+1 

LSTM 0.977  0.964  0.980  16.14  7.14  

FTA-LSTM 0.986  0.972  0.987  12.32  5.19  

FTMA-LSTM 0.990  0.977  0.990  10.62  4.76  

PHY-FTMA-LSTM 0.992  0.984  0.992  9.65  4.03  

t+2 

LSTM 0.959  0.944  0.963  21.52  11.29  

FTA-LSTM 0.966  0.983  0.967  20.93  7.85  

FTMA-LSTM 0.969  0.960  0.972  18.54  8.80  

PHY-FTMA-LSTM 0.976  0.949  0.977  16.56  9.10  
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Lead times/h Models NSE KGE R2 RMSE MAE 

t+3 

LSTM 0.943  0.945  0.948  25.09  13.91  

FTA-LSTM 0.949  0.943  0.952  22.05  11.02  

FTMA-LSTM 0.954  0.963  0.955  21.14  10.79  

PHY-FTMA-LSTM 0.958  0.955  0.963  20.01  11.45  

t+4 

LSTM 0.933  0.915  0.942  27.59  15.83  

FTA-LSTM 0.945  0.956  0.948  23.06  14.57  

FTMA-LSTM 0.948  0.953  0.949  22.12  13.75  

PHY-FTMA-LSTM 0.950  0.948  0.955  23.63  14.27  

t+5 

LSTM 0.929  0.917  0.929  29.16 18.91 

FTA-LSTM 0.930  0.942  0.931  27.99 16.37 

FTMA-LSTM 0.934  0.925  0.937  26.08 16.18 

PHY-FTMA-LSTM 0.937  0.931  0.937  25.58 15.19 

t+6 

LSTM 0.905  0.900  0.917  33.29 19.78 

FTA-LSTM 0.907  0.913  0.913  33.63 17.86 

FTMA-LSTM 0.917  0.926  0.919  30.59  15.83  

PHY-FTMA-LSTM 0.927  0.949  0.929  28.05 16.04 

Figure 4 displays the scatter plots for the LSTM, FTA-LSTM, FTMA-LSTM, and PHY-436 

FTMA-LSTM models during the training and validation periods. When the foresight period is 1 437 

hour, all models demonstrate predictions that closely track the ideal 1:1 line. The PHY-FTMA-438 

LSTM model outperforms the others, exhibiting the narrowest scatter distribution. However, as the 439 

lead time increases, the scatter plots of the four models show varying degrees of deterioration, 440 

becoming more uneven and scattered. The high discharge prediction error increases in the training 441 

period, and the validation period reveals numerous underestimated discharges. Among them, the 442 

PHY-FTMA-LSTM model performs the best (with the narrowest scatter distribution), followed by 443 

the FTA-LSTM and FTMA-LSTM models. The LSTM model performs the worst. Notably, during 444 

the validation period, for longer foresight periods, the high flow scatter of all models deviates further 445 

from the ideal 1:1 line. One possible explanation is the scarcity of high flow instances in the training 446 

data. As the lead time increases, the models struggle to capture the necessary information, leading 447 

to underestimation and poorer predictions. For a foresight period of 6 hours, the scatter plots of the 448 

LSTM, FTA-LSTM, and FTMA-LSTM models both in the training and validation periods exhibit 449 

discrete distributions. In contrast, the PHY-FTMA-LSTM model's scatter plot shows the narrowest 450 

band and is closest to the ideal 1:1 line. Consequently, the PHY-FTMA-LSTM model achieves the 451 
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highest prediction accuracy, effectively reducing prediction errors for longer lead times. The FTA-452 

LSTM and FTMA-LSTM models follow while the LSTM model performs the worst in terms of 453 

prediction accuracy. 454 

Table 4 Performance of the four models for flood forecasting at different lead times for validation. 455 

Lead times/h Models NSE KGE R2 RMSE MAE 

t+1 

LSTM 0.977  0.953  0.979  15.84  8.45  

FTA-LSTM 0.985  0.969  0.985  12.65  6.28  

FTMA-LSTM 0.987  0.975  0.988  11.83  5.04  

PHY-FTMA-LSTM 0.988  0.984  0.988  11.50  4.26  

t+2 

LSTM 0.956  0.939  0.961  21.83  11.94  

FTA-LSTM 0.961  0.974  0.961  19.07  10.22  

FTMA-LSTM 0.967  0.950  0.970  18.83  9.52  

PHY-FTMA-LSTM 0.968  0.954  0.970  18.56  9.45  

t+3 

LSTM 0.934  0.928  0.938  27.09  14.93  

FTA-LSTM 0.942  0.927  0.943  25.07  13.49  

FTMA-LSTM 0.948  0.947  0.951  23.66  12.56  

PHY-FTMA-LSTM 0.952  0.945  0.955  21.57  12.74  

t+4 

LSTM 0.918  0.914  0.929  28.15  16.43  

FTA-LSTM 0.928  0.938  0.933  28.17  14.20  

FTMA-LSTM 0.931  0.946  0.933  28.44  16.24  

PHY-FTMA-LSTM 0.939  0.938  0.944  26.13  14.59  

t+5 

LSTM 0.898  0.890  0.900  36.43  22.83  

FTA-LSTM 0.905  0.911  0.910  32.54  19.36  

FTMA-LSTM 0.915  0.915  0.920  30.43  20.52  

PHY-FTMA-LSTM 0.918  0.930  0.919  30.33  16.65  

t+6 

LSTM 0.865  0.851  0.886  40.61  23.77  

FTA-LSTM 0.876  0.894  0.886  37.38  20.57  

FTMA-LSTM 0.883  0.889  0.896  36.52  20.65  

PHY-FTMA-LSTM 0.908  0.905  0.911  32.02  20.18  

 456 

 457 
(a) t+1 458 
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 459 

(b) t+2 460 

 461 
(c) t+3 462 

 463 
(d) t+4 464 

 465 
(e) t+5 466 

 467 
(f) t+6 468 

Fig.4. Scatter plots of observed and predicted discharges in the training and validation stages, in 469 

which yellow represents the training stage and blue represents the validation stage. 470 

4.3. Typical flood event forecast results 471 

Floods in the basin are mainly two types, single-peak and double-peak, so two typical flood 472 

events were selected to analyze the specific flood process: a double-peak flood event (19740723) 473 

with a peak discharge of 507 m3/s and 290 m3/s, and a single-peak flood event (19790813) with a 474 
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peak discharge of 313 m3/s. Fig. 5 and Fig. 6 illustrate the flood processes of the two events predicted 475 

by the four models. It can be observed that as the lead time increases, the prediction hydrographs 476 

from all four models gradually deviate from the observed values and the three evaluation metrics 477 

decrease. Notably, the LSTM model exhibits the greatest decline in prediction performance, 478 

followed by the FTA-LSTM and FTMA-LSTM models. In contrast, the PHY-FTMA-LSTM model 479 

demonstrates relatively better performance across the evaluated flood events. 480 

Based on the analysis of prediction hydrographs, the four models exhibit better performance in 481 

predicting the double-peak flood event compared to the single-peak flood event. Additionally, the 482 

models demonstrate higher accuracy in predicting the rising stage of floods in contrast to the falling 483 

stage. Specifically, the prediction errors increase as the duration of the flood increases, and there is 484 

a time lag in predicting the occurrence of the second flood peak. When it comes to the single-peak 485 

flood event, the predictions by the four models display greater fluctuations, and the time lag problem 486 

is more pronounced, along with an overestimation of the peak discharge. 487 

Regarding the 19740723 flood event, the LSTM model generally underestimates the discharge 488 

values, and the discrepancy with the observed hydrograph gradually increases as the lead time 489 

increases. Although the FTA-LSTM and FTMA-LSTM models also underestimate the discharge, 490 

their errors are reduced, indicating improved performance compared to the LSTM model. In contrast, 491 

the PHY-FTMA-LSTM model predicts the flood hydrograph more accurately. However, when the 492 

foresight period is 6 h, the PHY-FTMA-LSTM model experiences significant prediction errors due 493 

to anomalous fluctuations. 494 

For the 19790813 flood event, the LSTM model demonstrates a noticeable deviation from the 495 

predicted hydrograph with increasing lead times. The FTA-LSTM and FTMA-LSTM models 496 

exhibit better performance, as their predicted hydrographs are closer to the observed ones. However, 497 

there is some overestimation of the peak discharge in these models. Additionally, all three models 498 

suffer from a more severe time lag issue in longer foresight periods. In contrast, the PHY-FTMA-499 

LSTM model shows smaller volume errors and is closer to the observed hydrograph. Nevertheless, 500 

this model exhibits a more pronounced overestimation of the peak discharge. 501 

In conclusion, the LSTM model exhibits poor prediction performance for longer lead times. 502 

On the other hand, the FTA-LSTM, FTMA-LSTM, and PHY-FTMA-LSTM models show improved 503 
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performance with longer lead times and higher forecasting accuracy. Among these models, the PHY-504 

FTMA-LSTM model stands out by producing better predictions for both single-peak and multi-peak 505 

flood events, but it may encounter challenges with predicting anomalous fluctuations at longer lead 506 

times. Additionally, the PHY-FTMA-LSTM model mitigates the issue of time lag to some extent by 507 

considering the physical monotonicity relationship. 508 

 509 
(a) t+1                                       (b) t+2 510 

 511 
(c) t+3                                     (d) t+4 512 

 513 

https://doi.org/10.5194/hess-2024-393
Preprint. Discussion started: 10 March 2025
c© Author(s) 2025. CC BY 4.0 License.



25 
 

(e) t+5                                    (f) t+6 514 

Fig.5. Comparison of observed and predicted values of the 19740723 flood event by the four 515 

models. 516 

 517 
(a) t+1                                    (b) t+2 518 

 519 
(c) t+3                                    (d) t+4 520 

 521 
(e) t+5                                    (f) t+6 522 

Fig.6. Comparison of observed and predicted values of the 19790813 flood event by the four 523 

https://doi.org/10.5194/hess-2024-393
Preprint. Discussion started: 10 March 2025
c© Author(s) 2025. CC BY 4.0 License.



26 
 

models. 524 

4.4. Visual attention analysis 525 

To investigate the changes in features and time attention of PHY-FTMA-LSTM with different 526 

lead times, the attention weights of PHY-FTMA-LSTM are visualized in Fig. 7. The figure consists 527 

of six subplots representing lead times ranging from t+1 to t+6.  528 

From Fig. 7, it can be observed that the distribution pattern of the weights remains relatively 529 

similar across different forecasting periods. The temporal attention weights decrease as the historical 530 

moment increases. Among the feature-based weights, runoff has the highest proportion, followed 531 

by rainfall, and finally the initial soil moisture and evapotranspiration. These results align with 532 

hydrological principles, where runoff is considered the most direct manifestation of the flooding 533 

process and holds the highest importance. Rainfall, as the main driver of flood formation, 534 

significantly influences flooding. In contrast, the effects of initial soil moisture and 535 

evapotranspiration in the basin are more indirect and therefore receive lower weights. In the case of 536 

the Luan River basin, which is relatively arid, the initial soil moisture of the basin is typically not 537 

saturated. During a rainfall-induced flood, there is a possibility of transitioning from infiltration-538 

excess runoff to saturation-excess runoff. Hence, special attention should be given to the role of the 539 

initial soil moisture, which carries slightly greater relative importance than evapotranspiration. 540 

As the forecasting horizon extends, the feature-time-based weights of the model become more 541 

concentrated, with the time-based weights gradually moving forward. Consequently, the model 542 

places more emphasis on the values that are closer to the current moment. Additionally, the feature-543 

based attention module exhibits a gradual increase in attention to rainfall while decreasing attention 544 

to evapotranspiration and the initial soil moisture. Notably, runoff retains its status as the most 545 

influential factor. 546 
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 547 
(a) t+1                     (b) t+2                      (c) t+3 548 

 549 
(d) t+4                     (e) t+5                     (f) t+6 550 

Fig.7. The visualization of feature-time-based attention weights of the PHY-FTMA-LSTM. The 551 

X-coordinate variables F1 to F4 represent the input features of runoff, rainfall, evapotranspiration, 552 

and initial soil moisture of the watershed, respectively. The Y-coordinate variables represent the 553 

input history moments. 554 

5. Discussion 555 

The input time step of observations, learning rate, batch size, and hidden units are significant 556 

parameters that influence the performance of the model, and the optimal parameters may vary for 557 
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different structural models (Xiang et al., 2020; Cao et al., 2022). In this study, four models, namely 558 

LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-LSTM, have been constructed. To ensure that 559 

each model achieves its optimal prediction performance and to investigate the impact of different 560 

parameter variations on model performance, the same parameter values are utilized to build the four 561 

base models individually. After confirming that the base models meet the accuracy requirements for 562 

flood forecasting, the optimal parameter combination for each model is determined. This is done by 563 

selecting the parameter value associated with the highest NSE obtained through single parameter 564 

tuning. The single parameters are changed while keeping the initial values of the other three 565 

parameters constant. This approach ensures that the subsequent analysis reflects the best 566 

performance achievable by each model's specific structure. Moreover, it enables a more explicit 567 

evaluation of the performance changes resulting from the addition of attention mechanisms and 568 

physical constraints to the model. 569 

In terms of model performance evaluation metrics, the PHY-FTMA-LSTM model 570 

demonstrates the best overall performance. However, a closer examination reveals that its KGE 571 

score may not necessarily be optimal. This could be attributed to the comprehensiveness of the KGE 572 

metric, which considers factors such as correlation, mean consistency, and variance consistency of 573 

the flow. Fluctuations in the KGE score may arise from various uncertainties related to data quality, 574 

model structure, and flood forecasting. 575 

With an increase in the forecast period, the performance of the model, particularly the LSTM 576 

model, shows a significant decrease, consistent with the findings reported by Xu et al. (2021). They 577 

provided NSE, RMSE, and Bias indices for the LSTM model in forecast periods of 1~12 hours, 578 

demonstrating that the LSTM model meets prediction requirements for short forecast periods. 579 

However, as the forecast period extends, the accuracy diminishes, leading to underestimation of 580 

flood peaks and significant fluctuations. Similar conclusions were drawn in the studies conducted 581 

(Cui et al., 2021; Ding et al., 2020). The longer the foresight period, the lower the correlation 582 

between input and output variables. The models face increased difficulty due to the lack of future 583 

information and the challenges associated with flood forecasting. 584 

The addition of an attention mechanism effectively enhances the accuracy of flood forecasting 585 

in the original LSTM model. As the lead time increases, the temporal weights gradually shift 586 
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forward, causing the model to pay greater attention to values closer to the current moment. This 587 

finding aligns with the conclusions of studies on temporal attention conducted by Ding et al. (2020) 588 

and Wang et al. (2023). However, there is a difference between their studies and the current one, as 589 

they incorporated a spatial attention module to focus on the relevance of spatial locations, while this 590 

study introduces a feature attention module to highlight the importance of different input features in 591 

flood forecasting. 592 

Incorporating physical constraints into the model enhances the understanding of the monotonic 593 

relationships between variables in the flooding process and improves the physical consistency of 594 

the model. This study considers the monotonic relationships between precipitation, evaporation, 595 

initial soil moisture content, and runoff in the watershed. In a study by Xie et al. (2021), three 596 

physical conditions related to the rainfall-runoff forecasting process were encoded into the loss 597 

function at the daily scale. Experimental results on 531 watersheds in the CAMELS dataset showed 598 

that the model achieved an improvement from 0.52 to 0.61 in the NSE mean compared to the LSTM 599 

model. In this study, flood forecasting is performed at a finer time scale, specifically at the hourly 600 

scale, and additional monotonic relationship constraints between evapotranspiration, initial soil 601 

water content, and runoff are incorporated. 602 

Flood forecasting is challenged by various complex factors such as meteorological conditions 603 

and rainfall patterns, and the uncertainty of these factors increases over time (Cheng et al., 2021; 604 

Hu et al., 2019). Consequently, the model is prone to significant prediction errors. When the forecast 605 

period extends to 6 hours, each model exhibits a significant deviation from the observed hydrograph 606 

and more anomalous fluctuations. In this study, the maximum prediction period of the model is set 607 

at 6 hours, and the effects of longer prediction periods need further investigation. In future research, 608 

we propose exploring additional methods to address these limitations and enhance the performance 609 

of our model. One potential avenue is the incorporation of error correction methods such as K 610 

nearest neighbor (KNN) and backpropagation (BP) algorithms. Additionally, data assimilation 611 

techniques, such as ensemble Kalman filter and particle filter methods, can be used to assimilate the 612 

latest observed data and improve real-time forecasting accuracy. These approaches have the 613 

potential to extend the forecasting period of flood prediction. 614 
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6. Conclusions 615 

This research introduces a DL model called PHY-FTMA-LSTM, which combines feature-time-616 

based multi-head attention mechanisms with physical constraints. The primary aim is to explore 617 

how incorporating interpretability and physical constraints into DL models affects flood forecasting 618 

accuracy. The evaluation of the flood forecasting results from 1 to 6 h during the foresight period in 619 

the Luan River basin yields the following conclusions: 620 

(1) The attention mechanism that considers both features and time effectively enhances the 621 

model’s prediction performance, surpassing that of the original LSTM model. The FTMA-LSTM 622 

model, equipped with an increased number of attention heads, further improves accuracy by 623 

considering more information through parallel computation. Taking the integration of physical 624 

constraints into account, the PHY-FTMA-LSTM model achieves the best performance, exhibiting 625 

stable results. For a lead time of t+1, the NSE, KGE, R2, RMSE, and MAE reaches 0.988, 0.984, 626 

0.988, 11.50, and 4.26, respectively. Additionally, NSE, KGE, and R2 also could reach 0.908, 0.905, 627 

and 0.911 for a lead time of t+6. 628 

(2) The incorporation of a feature-time-based multi-head attention mechanism improves 629 

interpretability by directing attention to the most valuable features and historical moments within 630 

the inputs. The weight matrix visualization reveals that runoff emerges as the most influential feature 631 

in flood forecasting, followed by rainfall, and finally initial soil moisture and evapotranspiration. 632 

Furthermore, the weight distribution becomes more concentrated with increasing lead time. 633 

(3) The model combines physical constraints by considering the monotonic relationships 634 

between rainfall, evapotranspiration, initial soil moisture, and runoff at an hourly scale. This 635 

augmentation significantly improves the model’s predictive capacity for flood processes, including 636 

flood peaks, while reducing the lag time.  637 

In this study, we have successfully incorporated both the attention mechanism and physical 638 

mechanism into a DL model to improve the accuracy of flood prediction while ensuring 639 

interpretability and physical consistency. In future research, we recognize that there is room for 640 

further enhancing the interpretability of our model. We suggest exploring alternative interpretation 641 

techniques to gain deeper insights into the model’s decision-making process. Furthermore, the 642 

combination of physical mechanisms and DL models can be expanded by incorporating more 643 
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detailed basin subsurface information and exploring different integration methods that consider both 644 

physical mechanisms and DL models. 645 

Code and data availability 646 

The rainfall and flood data and model codes used in this study could be available online 647 

(https://github.com/zran1/PHY_FTMA_LSTM.git). The evapotranspiration and initial soil moisture 648 

data are extracted from GLDAS Noah Land Surface Model (Beaudoing et al., 2019; D. Beaudoing 649 

et al., 2020), which is freely available at https://disc.gsfc.nasa.gov/datasets. 650 
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