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Dear editor and reviewers,

Thank you very much for giving us the opportunity to review the manuscript and make
valuable comments on our research, the comments and suggestions made on our manuscript by the
two reviewers were encouraging and helpful. We have addressed all these major points and other
issues carefully and revised the manuscript accordingly. As per the editor's suggestions, we have
removed the China map portion from Figure 2 to avoid potential controversies. This revision
retains the latitude/longitude markers that sufficiently identify our study area. Meanwhile, the
abstract has been revised to enhance its conciseness and accessibility for general readers.
Additionally, we have included an additional funding source in the Acknowledgements section.
We have provided detailed, point-by-point responses to the reviewers’ comments in the following
pages. Note that the reviewers’ comments are presented in italics, and our responses are in Times
New Roman and blue font. In addition, all the line numbers in the responses refer to the revised

manuscript. All changes made to the manuscript are marked in red font. Please do not hesitate to



contact us if you have any questions or require any additional information. Thank you for your

consideration.

Sincerely,

Ting Zhang



To the Reviewer #1’s comments, we make the following responses and changes in the manuscript:

1. Comment: Abstract

It is recommended to avoid using unexplained acronyms, as this may hinder comprehension for

the reader. Including a brief environmental and geological context of the studied basin would help

Justify the choice of the forecast horizon t + 6. This parameter is highly dependent on the

characteristics of the river considered and may be excessive or not meaningful in other fluvial

contexts. Consequently, the results cannot be generalized without appropriate caution.

Response: Thank you for your insightful comment. All acronyms have been explicitly defined

upon their first appearance in the revised manuscript, including LSTM, PHY-FTMA-LSTM and

NSE. And we have modified the abstract to make it more concise and reader-friendly.

In the revised manuscript, Page 1, Line 8-18:

Deep learning models show promise for flood forecasting but often lack interpretability and

physical realism. To bridge this gap, we enhance traditional Long Short-Term Memory (LSTM)

networks by integrating: (1) a feature-time attention mechanism that emphasizes critical input

features and historical moments by learning dynamic weights, and (2) physics-guided constraints

that enforce fundamental hydrological principles by considering the monotonic relationships

between inputs and outputs. Tested in China's Luan River Basin for 1-6 hour flood predictions, the

proposed physics-guided feature-time-based multi-head attention mechanism LSTM

(PHY-FTMA-LSTM) outperforms standard LSTM and attention-only variants. It achieves

exceptional accuracy with Nash-Sutcliffe efficiency (NSE) values of 0.988 at t+1 and maintains

strong performance at 0.908 at t+6, offering valuable insights for enhancing interpretability and



physical consistency in deep learning approaches.

The selection of the forecast period was determined through a comprehensive evaluation of

multiple factors, including basin-specific geological and environmental characteristics (added in

Section 3.1 Line 288-297). Statistical analysis indicated that the flood concentration time in the

study basin typically ranges between 6-12 hours. Meanwhile, we referred to the 6-hour forecasting

horizon following Wang et al. (2023), whose methodology demonstrated successful water-level

forecasting in the Han River Basin (covering>30,000 km?). Furthermore, extending the prediction

horizon was constrained by the inherent black-box nature of deep learning models, which

exhibited significant performance degradation over longer periods.

Manuscript Reference:

Wang, Y., Huang, Y., Xiao, M., Zhou, S., Xiong, B., Jin, Z., 2023. Medium-long-term prediction

of water level based on an improved spatio-temporal attention mechanism for long short-term

memory networks. J. Hydrol. 618(129163) .

In the revised manuscript, Page 12, Line 288-297:

Based on geological conditions and geomorphological features, the area can be divided into two

dominant landform types: plateau and mountainous terrain. The plateau dominates the northern

part of the basin, with elevations ranging from 1400 to 1600 meters and a gentle channel gradient

averaging approximately 0.5%o. The remaining area comprises mountainous terrain, exhibiting

complex topography shaped by prolonged denudation and erosion. This zone features steep

mountains, densely distributed hills, and interspersed basins, with slope angles varying between

20° and 40°. In certain areas, rivers demonstrate intense downward cutting action, resulting in



significantly steeper channel gradients — typically 2-6%o, while some medium and small

tributaries exceed 20%o. Notably, flood wave propagation velocities reach 2.0-3.5 m/s due to these

topographic conditions.

2. Comment: Study area and data

It is unclear why the experiment was conducted in this particular watershed. What are its

characteristics? Why is it relevant? How does it differ from others? Will the results obtained be

valid only for this site, or are they generalizable? This should be clarified.

Response: Thank you for your insightful comment. The Luan River Basin is a large watershed

(44880 km?) spanning Hebei, Inner Mongolia, and Liaoning provinces, holding critical

geopolitical and economic significance. It serves as a vital ecological conservation zone and water

source for the Beijing-Tianjin-Hebei region. However, as a seasonal river, it alternates between

rapid flood peaks during rainy seasons and frequent dry-season flow interruptions. Channel

encroachment and increased agricultural/industrial water withdrawals have exacerbated

downstream flow breaks, diminishing flood conveyance capacity and heightening disaster risks.

Its complexity and representativeness establish it as a paradigm for flood forecasting research in

similar basins.

Our modeling methods are universally applicable, while the parameter configurations exhibit

distinctiveness that necessitates calibration based on local catchment characteristics for

implementation in alternative basins.

3. Comment: Lines 297-306: The data sampling frequency is not specified, even though it is a



fundamental parameter.

Response: Thank you for your insightful comment. The sampling frequency in our study complies

with China's National Hydrological Data Compilation Standards, which require dynamic rather

than fixed-interval sampling. For flood hydrographs, additional 2-3 measurements are taken

before the rising limb and after recession stabilization to facilitate baseflow separation, with

critical points captured during rising/falling limb transitions and peak periods (minimum 3-5

measurements around peak discharge). Precipitation monitoring also adopts intensified logging

frequency during heavy rainfall events to ensure data accuracy under extreme conditions. This

adaptive sampling protocol ensures comprehensive hydrological process documentation while

meeting technical requirements for flood forecasting analysis. So the data were processed as 1h

time step according to Line 321-326.

4. Comment: Figure 2: it is recommended to change the colors, as the triangles and the star are

not clearly visible.

Response: Thank you for your insightful comment.We have made the hydrological and rainfall

stations clearer in the revised manuscript by changing the colors and sizes.

In the revised manuscript, Page 13, Fig.2 :
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Fig.2. Geographical location of the study area and hydrological and rainfall stations.

5. Comment: The dataset split into training and validation sets appears to be the main critical

issue of the study. What rule was followed? Currently, the most accepted strategy is to divide the

dataset into three parts (training, validation, and test), using the validation set during batch steps.

Why wasn't this approach followed? Is it due to the limited number of available cases? An

explanation is required.

What happens if the events that compose the three subsets are changed? Does the predictive

performance of the models vary? Using techniques like cross-validation or bootstrapping would

allow for the analysis of error distributions. How stable is a model trained multiple times on the

same initial dataset? Answering these questions would strengthen the scientific approach of the

paper, moving it beyond a simple application. The results presented seem fragile as they might

depend on the initial, arbitrary assignment of events to the training, validation, and test phases.

Response: Thank you for highlighting datasets concerns. Our data partitioning strategy was



rigorously based on two primary considerations: First, with only 30 historical floods, and most of

them had been short-lived, resulting in a limited sample size, dividing the three datasets would

leave < 6 events to test, which was insufficient to capture spatiotemporal heterogeneity. We will

also add more floods in the future if they become available. Second, this approach followed

established precedents by researchers including Lv et al., Read et al., Xie et al., and Jiang et al.,

who used dual dataset partitioning and not only for flood forecasting.

As can be seen from Table 1, our dataset partitioning had taken into consideration key flood

characteristics including temporal occurrence, peak discharge, and flood duration. This intentional

design ensured that both datasets comprehensively covered a wide spectrum of flood features,

thereby enabling thorough training and rigorous testing of the model. Furthermore, we had

experimented with exchanging some floods within the training and validation sets. While

preserving the diversity profiles of flood characteristics in both datasets, the model prediction

performance changed little .

Importantly, we implemented a sliding window mechanism with a 12-timestep window

length and 1-timestep stride for sample construction. This configuration ensured:

(a) Continuous temporal coverage by advancing the window progressively at each

computational step.

(b) Maximized data utilization through 92% overlap between consecutive windows.

(c) Effective capture of hydrological process evolution patterns characteristic of flood events.

While cross-validation wasn't explicitly used, sliding windows inherently achieved dynamic

CV (used by Gao et al., Kao et al. And Ding et al. for flood forecasting). Each timestep

participated in multiple windows, akin to data recycling in CV.



Manuscript Reference:

Lv, N,, Liang, X., Chen, C., Zhou, Y., Li, J., Wei, H., Wang, H., 2020. A long Short-Term memory

cyclic model with mutual information for hydrology forecasting: A Case study in the xixian basin.

Adv. Water Resour.

Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., Karpatne, A., Hansen, G.

J. A., Hanson, P. C., Watkins, W., Steinbach, M., Kumar, V., 2019. Process-Guided Deep Learning

Predictions of Lake Water Temperature. Water Resour. Res. 55(11), 9173-9190.

Xie, K., Liu, P., Zhang, J., Han, D., Wang, G., Shen, C., 2021. Physics-guided deep learning for

rainfall-runoff modeling by considering extreme events and monotonic relationships. J. Hydrol.

603, 127043.

Jiang, S., Zheng, Y., Solomatine, D., 2020. Improving Al System Awareness of Geoscience

Knowledge: Symbiotic Integration of Physical Approaches and Deep Learning. Geophys. Res.

Lett. 47(e2020GL08822913).

Gao et al., 2020. Short-term runoff prediction with GRU and LSTM networks without requiring

time step optimization during sample generation. J. Hydrol., 589 (2020), Article 125188.

Kao et al., 2020. Exploring a long short-term memory based encoder-decoder framework for

multi-step-ahead flood forecasting.J. Hydrol., 583 (2020), Article 124631.

Ding, Y., Zhu, Y., Feng, J., Zhang, P., Cheng, Z., 2020. Interpretable spatio-temporal attention

LSTM model for flood forecasting. Neurocomputing. 403, 348-359.

6. Comment: Are 30 events sufficient to train deep learning models? The size of the original

dataset and the derived datasets is not clear. I suggest conducting a distributional analysis of the



events. If the analysis focuses on a limited number of cases, they should be hydrologically

analyzed and shown to be statistically representative of the hydrology of the basin under study.

Response: Thank you for highlighting datasets concerns. The hydrological records for the Luan

River Basin are inherently limited, with available data spanning discontinuous periods (1964-1989,

1991, and 2006-2017), amounting to 39 years of flood records. When selecting specific floods, we

had checked the rainfall runoff data of each flood in order to ensure the reliability and

representativeness of the hydrological data, and finally selected 30 floods under the premise of

guaranteeing the inclusion of three types of flood magnitudes, namely large, medium and small,

and covering the single-peak and multi-peak flooding processes. In addition, the sliding window

mechanism (12-timestep window, stride=1) generated 4025 temporally correlated training samples

from the 30 events, effectively. We believe that the number of flood events and samples could

basically reflect the watershed situation and support the model training.

7. Comment: Line 323: Indicate the version of the TensorFlow library used.

Response: Thank you for your insightful comment. We used TensorFlow 2.9.1, which we have

added in the revised manuscript.

In the revised manuscript, Page 15, Line 337:

...... are constructed using the Keras library in TensorFlow 2.9.1.

8. Comment: Line 327: Provide a citation for the activation functions employed.

Response: Thank you for your insightful comment. We have added reference to the activation

functions used while providing the formal definition of Rectified Linear Unit (ReLU).



In the revised manuscript, Page 15, Line 340:

All four models use the Rectified Linear Unit (ReLU) activation function (Nair & Hinton, 2010).

Manuscript Reference:

Nair, V., Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann machines vinod

nair. Omnipress.

9. Comment: Line 330: it is unclear how overfitting is being mitigated by early stopping. It must

be demonstrated that the models are not affected by overfitting. Furthermore, splitting the dataset

into three sets is a fundamental first step to prevent both overfitting and underfitting.

Response: Thank you for your insightful comment. We employed early stopping to monitor

changes in the loss function (Mean Squared Error, MSE) and terminated process if the loss

showed no improvement for 20 consecutive epochs. We have also added this to the revised

manuscript.

Additionally, although not mentioned in the article, during each run we visualized the loss curve to

observe its trend, thereby assessing model convergence and potential overfitting. Overfitting

typically manifests as strong performance on the training set but poor generalization on the

validation set. However, as demonstrated by the metrics we provided, the model exhibited good

generalization capability on the validation set. Regarding the dataset, as previously explained, the

limited number of flood events constrained the dataset splitting.

In the revised manuscript, Page 15, Line 345-347:

To avoid overfitting, all models employ early stopping based on the mean squared error (MSE)

loss function, with a maximum iteration limit of 200 epochs. The training process automatically



terminates if no improvement in loss is observed for 20 consecutive epochs.

10. Comment: Results

Tables 3 and 4: It is advisable to replace the tables (which can be included as supplementary

material to ensure transparency of the raw data) with plots showing the metrics as a function of

lead time for each model. This would help reveal potential trends and the presence or absence of

overfitting. Additionally, the reported results may lack statistical validity and could be

coincidental. It is necessary to repeat the training procedures, as mentioned above, to assess the

robustness of the outcomes.

What if the error metrics were computed only for data exceeding a certain threshold (statistical or

physical)? Focusing on peak flood events, would the metrics change? Would more patterns

emerge?

Response: Thank you for your insightful comment. We have replaced the tables with plots

showing the metrics as a function of lead time for each model (Fig.4 and Fig.5) and added the

tables to the supplementary material (Table S1 and S2). As detailed in Line 357-359, all four

models were repeated for five runs at each lead time to assess stability. It is confirmed that there

was little difference in performance between runs, and the best performing implementation was

selected for final analysis to ensure that it would be ready for use in the event of a flood forecast.

In addition, we initially employed boxplots of peak discharge relative errors but peer reviewers

noted both the absence of significant inter-model differences and insufficient representation of

process dynamics, such as rising/falling limb error. Thus, we transitioned to observed vs. predicted

scatterplots (Fig.6), which could reveal full-process error patterns, identify extreme-event outliers



(e.g., 19740723 flood), and visualize model-specific strengths.

In the revised manuscript, Page 18, Line 415-416:

the evaluation metrics of the forecasting performance of the four models in the training and

validation periods are shown in Figure 4 and Figure 5. Detailed metrics data can be found in the

supplementary material (Table S1 and S2).

In the revised manuscript, Page 20-21, Line 452-467:
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Fig.4. Performance of the four models for flood forecasting at different lead times for training (a)

NSE, (b) KGE, (c) R2, (d) RMSE and (¢) MAE.
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Fig.5. Performance of the four models for flood forecasting at different lead times for validation (a)

NSE, (b) KGE, (c) R2, (d) RMSE and (e) MAE.

11. Comment: Figure 4: The axis labels are not legible.

Response: Thank you for your insightful comment.We have revised the font size to ensure that the

labeling in Figure 6 (formerly Figure 4) are clear and appropriately sized.

In the revised manuscript, Page 22-23, Line 487-500:
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Fig.6. Scatter plots of observed and predicted discharges in the training and validation periods, in

which yellow represents the training period and blue represents the validation period.

12. Comment: This observation applies to all time horizons, but is particularly evident for t + 5
and t + 6: for observed discharges above approximately 300 m¥s, an anomalous behavior
appears in the scatterplot points, forming a curve. In my experience, these points likely

correspond to a specific event that the model fails to simulate correctly, tending to underestimate



the flows. Suppose this hypothesis is confirmed by the authors. In that case, it should be discussed,

as it would reveal an interesting phenomenon: the model is unable to overestimate flow in advance

and instead tends to underestimate it as lead time increases.

These models seem to suffer from a common limitation: the inability to anticipate runoff before the

onset of precipitation. This limitation may be understandable given the lack of meteorological

forecast input to the model. Nonetheless, this observation opens up interesting research avenues

that the authors are encouraged to explore in the discussion and conclusions.

Finally, if the hypothesis that those outlier points belong to a single event holds true, the most

significant errors in predicting large events should be analyzed in detail. All these aspects could

serve as input for a revision of the discussion and conclusions, enhancing the scientific impact of

the paper, which in its current form lacks significant novelty.

Response: Thank you for your insightful analysis of the systematic flow underestimation at high

discharges (>300 m?/s). We confirm and deeply appreciate your hypothesis. The outliers indeed

cluster within the 19740723 flood event (validation set peak). Our analysis have been added to the

revised manuscript.

Furthermore, we acknowledge this constraint in our current modeling framework - the absence of

meteorological forecast inputs restricts runoff anticipation capability prior to precipitation events.

In both the Discussion and Conclusion sections, we have added content highlighting the issues of

current research lacking weather forecasting inputs and structural constraints in models.

All of the constructive critiques have profoundly shaped our research trajectory, and we thank you

for elevating the practical relevance of this work.



Discussion section

In the revised manuscript, Page 30, Line 636-643:

Notably, across all forecast periods — particularly at t+5 and t+6 — scatterplot points (Fig.6.)

exhibit deviant behavior forming curve patterns for discharge values exceeding approximately

300m?¥/s. The analysis reveals that the outliers primarily cluster during the 19740723 flood event,

mainly attributable to training dataset limitations. This extreme event featured both an

exceptionally prolonged duration and high peak discharge — characteristics absent from the

training data. Consequently, the model demonstrates insufficient capacity to simulate such

threshold-exceeding events, yielding suboptimal performance. However, as this represents an

extreme scenario, model accuracy is expected to improve with expanded data accumulation.

In the revised manuscript, Page 31, Line 648-662:

While our framework currently caps at 6-hour predictions, extending this horizon requires

confronting two fundamental constraints: (1) Input deficiency: The absence of real-time

meteorological forecasts prevents runoff anticipation prior to precipitation; (2) Structural

saturation: Memory decay in recurrent units limits long-range dependency capture. To address

current limitations, future research will pursue a dual-track improvement strategy: Near-term

efforts will focus on implementing error correction techniques, specifically K-nearest neighbors

(KNN) and backpropagation (BP) algorithms, coupled with advanced data assimilation methods

such as Ensemble Kalman and Particle filters to enhance real-time forecasting accuracy. While

more fundamental enhancements will involve the strategic integration of numerical weather

prediction inputs — specifically the European Centre for Medium-Range Weather Forecasts

(ECMWF) and China Meteorological Administration Global Forecast System (CMA-GES)



datasets — to enable pre-rainfall runoff anticipation and systematically extend predictive lead

times beyond the current 6-hour threshold. Thereby addressing both immediate performance gaps

and long-term capability requirements in flood forecasting.

Conclusions section

In the revised manuscript, Page 32, Line 689-698:

While our current framework demonstrates strong performance within 6-hour predictions, we

recognize two key constraints for extending this horizon: the input deficiency due to missing

real-time meteorological forecasts and the structural saturation caused by memory decay in

recurrent units.To address these limitations, future research will provide improvements through

error correction techniques and data assimilation, as well as fundamental enhancements through

the integration of ECMWF/CMA-GFS numerical weather prediction inputs to enable pre-rainfall

runoff prediction and extend the forecast period beyond 6 hours. Additionally, we suggest

exploring other interpretation techniques to deepen understanding of the model's decision-making,

while expanding the physical-DL integration through more detailed basin subsurface information

and novel combination methods.



To the Reviewer #2’s comments, we make the following responses and changes in the manuscript:

1. Comments: Clarification on training data size: The manuscript states that only 20 flooding

events are used for training, with each event lasting less than 10 days. Could the authors specify

the total number of training samples (e.g., input-output pairs or sequences) generated from these

events? This information is important for evaluating the robustness and generalizability of the

model.

Response: Thank you for raising this important clarification. The training samples were generated

through a sliding window approach with a 12-timestep window length and 1-timestep stride for

sample construction. This resulted in 2859 unique training samples (input-output sequence pairs).

Data size have been added to the revised manuscript.

In the revised manuscript, Page 16, Line 376-377:

The samples are constructed through a sliding window, resulting in the generation of 2859 training

samples and 1166 validation samples.

2. Comments: Physics-based loss in PHY-FTMA-LSTM (Line 224-251): Further clarification is

needed regarding the implementation of the physics-based loss. Specifically, how are the

perturbations Se, Osand &t introduced during training? Are fixed values pre-specified and

added to the input variables? If so, what are the chosen values, and how are they justified?

Explicit details on this setup would greatly improve the reproducibility and interpretability of the

method.

Response: Thank you for this critical technical inquiry. We didn’t introduce fixed perturbation



values. As specified in Line 213-220 of our implementation, while keeping other input variables

unchanged, we employed the random.uniform function (a random number generator producing

values from a uniform distribution within specified bounds) to apply random minor increments

within the range [0, 0.1) to the temporal sequences of precipitation, evaporation, and initial

watershed soil moisture. This process generated new perturbed temporal sequences for these

variables, which were then combined with the unchanged variables' sequences to form modified

input datasets.

The difference between the runoff simulation values derived from these perturbed inputs and those

from the original inputs was calculated and subsequently transformed into specific loss values via

the ReLU function (ensuring non-negative loss). These computed loss values were then

incorporated into the overall loss function for model optimization.

We've made minor changes to this section.

In the revised manuscript, Page 8, Line 213-220:

Under the assumption that all other input variables remain unchanged, a new time series of rainfall,

evapotranspiration, and initial soil moisture is generated respectively by applying random minor

increments within the range [0, 0.1) using the random.uniform function. These new time

series are then combined with the unchanged time series to form new input data. The difference

between the predicted values corresponding to the new data and the predicted values

corresponding to the original input data is calculated. This difference is then converted into a

specific loss value using the ReLU function and added to the loss function.

3. Comments.: Terminology clarification (Line 120): The term "dot product” is typically reserved



for operations between vectors, whereas matrix operations such as the one described are more

commonly referred to as element-wise multiplication or Hadamard product. Based on the

following context, it appears that the authors intended to apply an element-wise product rather

than a dot product. I recommend revising the terminology to avoid confusion and ensure

mathematical accuracy.

Response: We sincerely appreciate this precise technical correction. You are absolutely correct that

the operation described in Line 118 constitutes an element-wise multiplication (Hadamard product)

rather than a dot product. We have revised this terminology throughout the manuscript to ensure

mathematical accuracy.

In the revised manuscript, Page 5, Line 118:

By taking the element-wise product of these two matrices, the model generates the

feature-time-based attention matrix.

4. Comments.: Undefined abbreviations (Line 181): The abbreviations FA and TA are introduced

without prior definition. For clarity, all abbreviations should be clearly defined at first mention to

ensure readability for a broad academic audience.

Response: We sincerely appreciate this careful observation. You are absolutely correct that the

abbreviations "FA" and "TA" are inadvertently undefined at first mention in Line 181-182. We

have implemented the revisions to ensure clarity.

In the revised manuscript, Page 7, Line 181-182:

where FA represents feature-based attention weight matrix, TA represents time-based attention

weight matrix.



5. Comments: Figure 1 clarity: Figure 1, particularly subplot (b), is difficult to interpret. The label

"head m" appears to encompass multiple attention mechanisms, including feature attention, time

attention, and feature-time attention —not solely multi-head attention as the label may imply. 1

suggest renaming the label in subplot (b) to more accurately reflect its composite structure and

enhance reader comprehension.

Response: We appreciate this feedback. To enhance clarity, we have revised the label for subplot

(b) to: Per-head Feature-Time Attention. This represents the formation of feature-based attention

and time-based attention matrices from inputs followed by element-wise product.

In the revised manuscript, Page 9, Line 222:
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Fig. 1. (a) The PHY-FTMA-LSTM model architecture. (b) Feature-time-based attention matrix
generation process for each attention head. (c) Feature-time-based multi-head attention workflow.

(d) The internals of LSTM cells.

6. Comments: Labeling in Figure 5: In Figure 5, it would be more intuitive to label the x-axis
using calendar dates (e.g., MM-DD-HH) rather than elapsed time in hours. Using time in hours

may be easily confused with forecast lead times, potentially causing misinterpretation. [



recommend updating the x-axis to calendar dates to improve clarity and reader understanding.

Response: Thank you for this constructive suggestion. We agree that using calendar dates on the

x-axis of Figure 7 (formerly Figure 5) would enhance temporal clarity and avoid potential

confusion with forecast lead times. We have updated x-axis labels to MM-DD-HH format.

In the revised manuscript, Page 25-26, Line 540-556:
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Fig.7. Comparison of observed and predicted values of the 19740723 flood event by the four

models.(The x-axis displays dates in MM-DD-HH format, representing month, day, and hour

respectively)
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Fig.8. Comparison of observed and predicted values of the 19790813 flood event by the four

models.



