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Text 1 Data and scenarios 

First, we built a comprehensive database using multi-source data, including basic 

geographic information, meteorological and hydrological data, and urban flood control 

data. The data utilized in this study comprise rainfall data, drainage capacity data, 

elevation data, socioeconomic statistics, and land use data (Table S1).  

1）Rainfall data. The hourly rainfall data of 11 meteorological stations in Shanghai, 

including Xujiahui (representing the central urban area), Minhang, Baoshan, Pudong, 

Jiading, Nanhui (now part of Pudong New Area), Jinshan, Qingpu, Songjiang, Fengxian 

and Chongming, were taken from 16:00 to 19:00 on September 13, 2013. The station 

observation data are spatially interpolated to the 30m resolution grid as the precipitation 

input data of the model. The diachronic precipitation data of 11 stations in the central 

urban area and counties of Shanghai center were collected to study the temporal variation 

trend and spatial distribution characteristics of each diachronic extreme precipitation. In 

addition, this study also collected the “110” citizen alarm records during the “913” period 

as the model simulation verification data, which includes the location of alarm points and 

the submergence depth of alarm points. 

2) Drainage Capacity Data. Due to the lack of detailed pipeline data, this study 

utilizes generalized 2013 Shanghai drainage capacity data to represent the design 

standards of each drainage unit. The central urban area within Shanghai’s outer ring road 

is divided into 284 drainage units, categorized by drainage capacity into three levels. 

Units with poor drainage capacity are typically older combined rainwater-sewage pipe 

networks in the main urban area, designed for a standard of 27 mm/h. Newer drainage 

units are generally built to meet a one-year rainstorm standard, with a capacity of 36 

mm/h. Additionally, the Expo site features a higher drainage standard of 50 mm/h (He et 

al., 2017). 

3) Elevation data. The digital elevation model (DEM) used in this study has a 30-

meter resolution and is derived from detailed observations by NASA’s Terra satellite. 

The raw DEM data were processed to fill depressions and eliminate false depressions. 

Land use data were then used to extract residential and commercial areas, and elevation 

was corrected by 15 mm for these zones. 
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4) Socioeconomic Statistics. The socioeconomic data used in this study were 

primarily sourced from the Shanghai Statistical Yearbook, published annually by the 

Shanghai Municipal Bureau of Statistics. Key entries include district and county 

population, GDP, public green area, average household properties, and average 

construction costs. 

5) Land use data. Land use data were derived from the 2015 remote sensing 

monitoring dataset of China’s land use status, released by the Institute of Geographical 

Sciences and Natural Resources Research, Chinese Academy of Sciences. For this study, 

30-meter resolution land use data for Shanghai were selected, encompassing nine 

categories and 32 land use types. These categories were reclassified into 10 land use 

types, including industrial and commercial land, new-style residential areas, and natural 

villages. 

Table S1 Data information description 

Type of data Data resolution Data description 

Rainfall 

information 

30m Hourly rainfall data from 11 weather 

stations 

Drainage capacity  284 drainage units with design standards 

of 27mm/h, 36mm/h and 50mm/h 

respectively. 

Elevation 30m Advanced Spaceborne Thermal Emission 

and Anti-Radiometer GDEM Data with 

ASTER Sensors 

Socioeconomic 

Statistics 

 District and sub-district population, 

district and county GDP, area and 

investment of public green space, average 

indoor property and average construction 

cost 

land use 30m Industrial land, commercial land, new 

housing 

Scenarios generation 

Three uncertainty factors—future rainfall (α), the urban rain island effect (β), and 

the decrease in drainage capacity (γ)—were selected to generate future extreme rainstorm 

scenarios (Table S2). The range for future rainfall (α), between 7% and 18%, was derived 

from a daily downscaled dataset of 21 GCM simulations from CMIP5, under both 
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RCP4.5 and RCP8.5 emission scenarios, for the Yangtze River Delta region. This dataset 

includes nine grid cells covering Shanghai city by 2050 (Wang et al., 2015). 

For the urban rain island effect (β), previous research (Liang and Ding, 2017) found 

that the total precipitation during heavy rainfall events increased at central urban sites 

(Pudong and Xujiahui) and nearby suburban sites (Minhang and Jiading) by rates of 

21.7–25 mm/10 years. By the 2050s, this effect is projected to result in an approximate 

margin of increase (β₁) between 10% and 20% for central urban areas (Xujiahui and 

Pudong) during heavy rainfall events, while suburban sites could experience a slight 

decrease (β₂) ranging from −0.076% to −0.038%. 

To account for uncertainties in sea-level rise, land subsidence, and other factors 

contributing to drainage system degradation, the reduction in existing drainage system 

capacity (γ) is assumed to range between 0% and 50% (Hu et al., 2019). Based on these 

ranges for the three uncertainty factors, 100 future scenarios were generated using Latin 

Hypercube Sampling (LHS).  

Table S2. Future uncertain factors and range of uncertainties in 2050 

Uncertain factors Range of uncertainties 

Future rainfall (α) (α)increase from 7% to 18% 

Urban rain island effect (β) (β)increase from 10% to 20% in central 

region (Xujiahui and Pudong rain gauges), 

decrease from -0.076% to -0.038% (other 9 

rain gauges in Shanghai) 

Decrease of drainage 

capacity (γ) 

(γ) decrease from 0 to 50% due to the 

anthropogenic land subsidence and sea level 

rise 

Text 2 Pluvial flood risk and solution performance 

The hydrological model SCS-CN (Soil Conservation Service Curve Number) is 

characterized by simple parameters and easily accessible data, making it widely 

applicable in Shanghai. To address challenges related to multi-scenario, multi-model, and 

large-scale simulation calculations, Hu et al. (2023) developed the Shanghai Urban 

Inundation Model (SUIM) based on SCS-CN. The SUIM aims to provide a rapid and 

integrated model for minimizing flood risk and offers technical support for evaluating the 

effectiveness of adaptation options in mitigating urban pluvial flood risks. 

The SUIM integrates sub-modules for rainfall simulation, hydrology, spatial 

statistics, risk assessment, and option evaluation to enable comprehensive risk assessment 
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and adaptation option evaluation. These coupled sub-modules optimize the simulation 

process and enhance computational efficiency. The model utilizes a PostgreSQL database, 

supporting GIS spatial data storage and analysis, including operations such as feature 

clipping, layer extraction, coordinate transformation, and spatial interpolation. With its 

regular grid structure, the model ensures fast calculations, logical simplicity, and 

automated processing capabilities. 

The integrated SUIM model is suitable for various applications, including historical 

event backtracking, inundation forecasting and early warning, future scenario evaluation, 

and hydraulic engineering pre-planning. The overall architecture and process flow are 

illustrated in Figure S1. 
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Figure S1 Structure of Shanghai urban inundation model 

In order to compare and quantitatively evaluate the performance of adaptation 

options, this study constructs different adaptation options and their combinations, 

simulates the differences in the depth of waterlogging and the affected population before 

and after the implementation of the adaptation options, and evaluates and quantifies the 

performance under different climate scenarios in the future. In addition to the baseline 

scenario, the future 100 scenarios for each adaptation option and its combination are 

simulated (Figure S2). The specific parameters of the simulation setting up and the 

performance results are seen as Table S3, S4. 

 

Figure S2. Comparison of damage/loss (thousand RMB/900m2 grid): Sc-53 (left), Sc-3 (middle), Sc-

11 (right) 

Table S3 Simulation setting-up to the performance of adaptation options 

Experiment Option Experimental program Performance Abbreviation 

0 baseline Model effect verification /  

1 baseline City Defense Capability Simulation /  

2 
Drainage 

Increase drainage capacity to 1/5-

year 
low Dr 

3 Green area Increase surface water permeability low GA 

4 deep tunnel 1 absorb 30% of rainfall middle Tun30 

5 deep tunnel 2 absorb 50% of rainfall middle Tun50 

6 deep tunnel 3 absorb 70% of rainfall high Tun70 

7 Combination 1 Green area + Drainage middle D+G 

8 Combination 2 Green area + Deep tunnel 1 middle G+Tun30 

9 Combination 3 Green area + Deep tunnel 2 high G+Tun50 

10 Combination 4 Green area + Deep tunnel 3 overflow G+Tun70 

11 Combination 5 Drainage + Deep tunnel 1 middle D+Tun30 
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12 Combination 6 Drainage + Deep tunnel 2 high D+Tun50 

13 Combination 7 Drainage + Deep tunnel 3 overflow D+Tun70 

14 
Combination 8 

Green area + Drainage + Deep 

tunnel 1 
high D+G+Tun30 

15 
Combination 9 

Green area + Drainage + Deep 

tunnel 2 
overflow D+G+Tun50 

16 
Combination 10 

Green area + Drainage + Deep 

tunnel 3 
overflow D+G+Tun70 

 … … … … 

 

Table S4 Statistic information of options combinations 

 Min 25% Mid 75% Max Std Mean Range 

Dr 0.08 0.11 0.16 0.37 0.80 0.20 0.25 0.72 

GA 0.09 0.11 0.17 0.38 0.73 0.18 0.26 0.64 

Tun30 0.17 0.20 0.32 0.54 0.89 0.21 0.39 0.72 

D+G 0.18 0.37 0.70 0.89 0.94 0.27 0.62 0.76 

Tun50 0.33 0.65 0.85 0.91 0.99 0.21 0.74 0.66 

D+G+T30 0.61 0.80 0.89 0.91 0.99 0.08 0.85 0.38 

Tun70 0.79 0.81 0.89 0.91 0.99 0.05 0.87 0.2 

Text 3 Risk assessment 

The assessment of asset value encompasses commercial assets, including 

commercial and residential buildings, as well as household property. Exposure analysis is 

conducted by overlaying flood scenarios with asset values across multiple scenarios. The 

calculation formula is as follows: 

                                                 HAB assetosure =exp                                           (1) 

where Bexposure is the exposed assets; Aasset is the value of land use assets; and H is 

hazard. 

A comprehensive evaluation of asset exposure was conducted, including indoor 

property, business, and building losses, using a depth-damage curve. Based on the 

findings of previous studies (Ke, 2014), this study developed an inundation depth-

vulnerability curve tailored to the study area, as detailed in Table S5.  

Table S5 Depth-damage curve of inundation depth in Shanghai 

Category Inundation depth (m) 

 <0.5 0.5-

1.0 

1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 >3.0 

Public 3% 7% 12% 14% 18% 20% 25% 
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building 

Commercial 

Building 

5% 9% 13% 18% 22% 27% 31% 

Industrial 

building 

3% 8% 11% 15% 19% 2% 25% 

Residential 

building 

3% 65 9% 12% 16% 19% 22% 

Household 

property 

9% 19% 26% 33% 38% 46% 58% 

The damage loss of pluvial flood is calculated in SUIM by each inundation of the 

scenarios. The statistic information is then calculated at grid level.  

𝑇𝑙𝑜𝑠𝑠 = ∑ (𝑉𝑖

𝑛

𝑖=1,𝑗=1

× 𝑅𝑗)                                                        (2) 

where lossT is the total loss in the study region; 𝑉𝑖 is the i-th exposed asset value of 

the elements at risk; 𝑅𝑗 is the j-th loss rate of the elements at risk in different water depth 

intervals.  

To evaluate flood control options, pluvial flood statistics are quantified through re-

simulations under the baseline scenario in SUIM. For example, the effectiveness of 

drainage capacity enhancements is assessed by calculating the loss reduction rate 

compared to baseline options under future scenarios. 

𝑅𝑅𝑅 =  
𝑇𝑙𝑜𝑠𝑠

′ − 𝑇𝑙𝑜𝑠𝑠

𝑇𝑙𝑜𝑠𝑠
× 100%                                              (3) 

where 𝑇𝑙𝑜𝑠𝑠
′  is the flood damage after implementing a flood control option; 

accordingly, Performance calculates the reduction rate of loss against its baseline 

scenario. 

Text 4 Benefit-cost analysis 

Benefit and cost are indispensable considerations when making investment decisions. 

Generally, the cost of a option is proportional to its benefit in terms of flood risk 

reduction. Engineered solutions with superior performance often incur higher costs and 

require longer construction periods. This study evaluates the economic viability of 

various adaptation options by calculating their benefit-cost ratios. 

For cost assessment, the life cycle cost analysis (LCCA) method is employed. This 

method considers the initial construction cost of options, the average annual operation 
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and maintenance costs, the residual value of the facility at the end of its service period, 

and its effective lifespan. The costs of options determined using LCCA are detailed in 

Table S6 of the Supplementary Material. Internationally, the net present value of benefits 

(PVB) and costs (PVC) are used to represent benefits and expenses, respectively (Liao et 

al., 2014). The formula for calculating cost-benefit ratios is as follows:  

                                                        
PVC

PVB

C

B
=                                                   (3) 

Given that the objective of this study is not to calculate the direct risk of extreme 

waterlogging in the future, and the absolute value of the risk is too large to allow for 

meaningful comparisons, the net present value of the benefit (PVB) is selected as the 

inundation risk reduction rate (RRR) before and after the implementation of the options, 

rather than the waterlogging risk reduction value. The life cycle cost analysis formula is 

as follows: 

                                     tT

T

t ttYY SVfrMOfrICPVC −+=  −0
                            (4) 

The costing of options includes initial cost (IC), annual maintenance and operations 

(MO) and residual value (SV); frt is the present value factor for the discount rate r in a 

particular year t; the present value factor for the discount rate r at the end of n years in the 

design life of frT. The life cycle is designed to be 20-50 years. and the investment horizon 

is T years. Taking into account the economic growth rate, the study assumes a discount 

rate of 5% in Shanghai (Ke, 2015). 

We used life cycle cost analysis estimates the cost of adaptation options, includes the 

drainage (Dr), public green area (GA), the 30% absorption capacity of the deep tunnel 

(Tun30), the 50% absorption capacity of the deep tunnel (Tun50), and the 70% 

absorption capacity of the deep tunnel (Tun70). Table S6 presents that the LCCA the 

order from low to high is Dr < Tun30 < GA < Tun50 < Tun70; among them, Dr has the 

lowest drainage enhancement, while Tun70 has the highest total cost of 70% absorption 

capacity of underground deep tunnels.  

From the perspective of annual average cost (AAC), the order of cost from low to 

high is GA <Dr < Tun30 <Tun50<Tun70. The average annual cost of low impact 

solutions for “public green area” is the lowest, and the average annual cost of “grey” 
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options is high. On the basis of the above five basic options, two additional options, (D + 

G) “drainage enhancement + public green area increase” and (D + G + Tun30) “drainage 

enhancement + public green area increase + 30% absorption capacity of deep tunnels” are 

added, and calculate the average annual cost and total cost respectively. 

The results in Table S6 show that the average annual cost (39-41 million USD/ year) 

of drainage enhancement (Dr), public green area increase (GA) and 30% absorption 

capacity of underground deep tunnel (Tun30) is close to the total cost (1918-2570 million 

USD). However, the average disaster loss reduction rate is low, less than 0.39, and the 

performance is unsatisfactory in the face of extreme flooding scenarios. In terms of risk 

reduction rate, the risk reduction rate (0.62) of the combined option of drainage 

enhancement and public green area (D+G) is greater than the risk reduction rate of a 

single option (0.51), indicating that the benefit of the combined options are better than 

that of the single option. Although the average annual cost and total cost of the deep 

tunnel with 50% absorption capacity (Tun50) and 70% absorption capacity (Tun70) are 

relatively high, second only to drainage enhancement + public green area (D+ G) and 

drainage enhancement + public green area + 30% absorption capacity of deep tunnel 

(D+G+Tun30), the average disaster loss reduction rate is also relatively high. 

Table S6 Life cycle cost estimates for five adaptation options 

Option 

Unit cost 

(million/km, 

million/km2) 

Unit 

(km,km2

) 

Mainten

ance 

costs 

Life 

span 

Total cost 

（million) 

Residual 

value 

（million) 

Average 

annual cost 

（million) 

Dr 14 118 2% 50 1,918 52 39 

GA 86 30 2% 70 2,570 36 37 

Tun30 43 22 5% 50 2,010 29 41 

Tun50 43 37 5% 50 3,350 49 68 

Tun70 43 52 5% 50 4,690 68 95 

*Note: Considering that public green space generally does not have a useful life period, the period is 

set to 70 years. The cost of Dr and GA is referred to Xie et al., 2017 

Text 5 Metrics value of multi-objective trade-off analysis 

All the metrics’ value of the options and their combinations are normalized from 0 to 

1, and then equally weighted to sum score as seen in Table S7. The results shows that 

Tun50 achieves the best cost-benefit ratio, and Tun 70 has the highest ARRR and valid 
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period. In comparison, D+G+Tun30 has the highest flexibility and sum of metrics (3.05), 

showing the best performance among all options.  

Table S7 Metrics’ value of all options for multi-objective trade-off analysis 

Option GA Dr Tun30 D+G Tun50 D+G+Tun30 Tun70 

ARRR 0 0.10 0.47 0.50 1.00 0.90 0.93 

Cost-benefit 0.12 0.00 0.70 0.38 1.00 0.19 0.61 

Flexibility 0 0 0 0.67 0.33 1.00 0.33 

Valid period 0.08 0.14 0.20 0.22 0.58 0.96 1.00 

Sum score 0.22 0.26 1.38 1.77 2.91 3.05 2.87 
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