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Abstract: 21 

Delta cities are increasingly vulnerable to flood risks due to the uncertainties 22 

surrounding climate change and socioeconomic development. Decision-makers face 23 

significant challenges in determining whether and how to invest in flood defense. 24 

Adaptation solutions should consider not only robustness but also adaptiveness in case 25 

the future unfolds other than as expected. To support decision-making and meet long-26 
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term multi-objective targets, we propose a synthesized framework that integrates 27 

robustness analysis, adaptiveness analysis, and pathway generation. This framework 28 

was applied to evaluate alternative solutions for managing pluvial flood risk in central 29 

Shanghai. The results demonstrate that relying on a single-objective decision-making 30 

approach (focused only on robustness) can lead to biased outcomes. By examining the 31 

effectiveness period and flexibility of candidate solutions, we assessed their potential 32 

to meet long-term flood control targets. The analysis reveals that a combined option—33 

incorporating increased green areas, an improved drainage system, and a deep tunnel 34 

with a 30% runoff absorption capacity (D+G+Tun30)—emerged as one of the most 35 

robust and adaptive pathways, based on multi-objective trade-off analysis. This study 36 

highlights the importance of considering effectiveness period within predefined control 37 

targets and retaining flexibility to avoid path-dependency and minimize long-term 38 

regrets. The proposed framework is broadly applicable and can guide adaptive 39 

responses to future flood risks in other delta cities. 40 

Keywords: decision making under deep uncertainty; flood risk reduction; multi-41 

objective trade-off; robust adaptive pathway; Shanghai 42 

1 Introduction 43 

Flood risk is increasing in low-lying delta cities due to rapid urbanization and 44 

climate change (Yang et al., 2023), hindering the capacity of urban development. Delta 45 

cities such as Shanghai (Yin et al., 2020), Ho Chi Minh City (Scussolini et al., 2017), 46 

and London (Dottori et al., 2023) are facing the combined challenges from extreme 47 

rainstorms, sea level rise and urbanization-induced land subsidence with regard to 48 
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flooding risk reduction (Ward et al., 2017). It is anticipated that as a result of changing 49 

climate patterns, the frequency and severity of extreme flood events will increase in 50 

urban areas, thereby increasing the flood risk, particularly in rapidly developing delta 51 

cities (Sun et al., 2021).  52 

Delta cities are urged to examine potential climate adaptation options (Han and 53 

Mozumder, 2021;) and test their cost-effectiveness in designed socio-economic and 54 

climate scenarios to address rising flood risks (Lin et al., 2020).  Dottori et al. (2023) 55 

proposed strategies for European cities to deal with increasing river flood risk. However, 56 

these strategies or options will remain effective within a fixed timeframe under the 57 

uncertainties of climate change, land use change or political change is questionable; in 58 

addition, how these strategies can be up-scaled to meet the future needs is rarely 59 

discussed. This is a pressing concern for decision makers in long-term planning. In the 60 

field of decision making under deep uncertainty (DMDU), various approaches have 61 

emerged. Robust Decision Making (RDM) is effective at identifying course of actions 62 

that perform well across a wide range of future scenarios through stress-testing, but it 63 

lacks explicit guidance on how to sequence actions over time (Lempert et al., 2013; 64 

Workman et al., 2021). Dynamic Adaptive Policy Pathway (DAPP) by contrast, excels 65 

at planning flexible adaptation pathways to avoid lock-in, but is relatively weaker in 66 

quantitatively evaluating robustness across uncertainties (Haasnoot et al., 2013; Dias et 67 

al., 2020).  68 

These DMDU approaches have been continuously improved and optimized, the 69 

boundaries between methods have become increasingly blurred, and fusion thinking is 70 
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progressively adopted (Haasnoot et al., 2020). As pointed out by Lempert et al. (2003), 71 

RDM provides systematic procedures that emphasize the iterative analysis process of 72 

scenario exploration, which can help decision-makers discover situations where options 73 

may fail, and understand the trade-off among all the adaptation options (Lempert et al., 74 

2013). Kasprzyk et al. (2013) proposed the Multi-Objective Robust Decision Making 75 

(MORDM) approach by the combination concept of both multi-objective evolutionary 76 

optimizations and RDM (Bartholomew and Kwakkel, 2020; Yang et al., 2021). 77 

Kwakkel et al. (2019) pointed out that the RDM approach usually pays less attention to 78 

the dynamic planning of pathways on long-term scales of climate change. On the other 79 

hand, DAPP, which consist of the strengths of both Adaptive Policymaking (Walker et 80 

al., 2001) and Adaptation pathway (Haasnoot et al., 2012; Ranger et al., 2010), focuses 81 

on generating alternative dynamic pathway to achieve flexibility and avoid lock-in 82 

effects while it lacks quantitative robustness evaluation metrics (e.g., regret-based 83 

criteria or satisficing thresholds)  as well as a thorough vulnerability analysis to quantify 84 

potential failures (Haasnoot et al., 2013).  85 

Both the RDM and DAPP approaches are arguably most widely applied, and the 86 

concept of integrating two approaches has been proposed (Kwakkel et al., 2016) and 87 

practiced in cases (Tariq et al., 2017). However, as Ramm et al. (2018a) illustrated, 88 

integration of RDM and DAPP has not been thoroughly implemented. Future 89 

opportunities for a combined RDM–DAPP approach include engaging stakeholders to 90 

define clear adaptation objectives, establish suitable metrics, and determine risk 91 

tolerance as these factors significantly influence the outcomes of alternative pathways 92 
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(Ramm et al., 2018b). Robustness emphasizes the ability of a strategy to perform in an 93 

effective way in many plausible futures.  How to define robustness and assess whether 94 

options are insensitive to deep uncertainty to ensure certain performance across 95 

multiple plausible futures have sparked extensive discussions, especially when meeting 96 

multi-objective targets (Herman et al., 2015; McPhail et al., 2018).  97 

The selection of indicators for robustness depends on the priorities and preferences 98 

by policymakers and it will substantially affect the outcomes of decisions (Giuliani and 99 

Castelletti, 2016). For example, the decision-makers who endorse risk aversion may 100 

under-estimate adaptation options’ performance. To overcome the single objective 101 

problem framing, Quinn et al. (2017) optimized operations of the four largest reservoirs 102 

under several different multi-objective problem framings in Hanoi city (Vietnam), and 103 

highlighted the importance of formulating and evaluating alternative stakeholder 104 

objectives.  105 

However, an open question remains: to what extent can a traditional robustness 106 

evaluation (especially under risk-averse assumptions) suffice for rational decision-107 

making, versus using a multi-objective trade-off analysis to gain a more comprehensive 108 

view? For example, while one might assume the cost of a climate adaptation option is 109 

normally proportional to its benefit (risk reduction), in practice, options with high 110 

performance often entail higher costs and potentially longer construction periods 111 

(Dottori et al., 2023). Focusing on a single-objective (whether maximizing risk 112 

reduction or cost-benefit efficiency alone) provided limited information for long-term 113 

planning, and can lead to lock-in or path dependency issues due to overinvestment or 114 
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maladaptation over time. 115 

Adaptiveness refers to the ability of a strategy to adjust to changing conditions 116 

(Haasnoot et al., 2013; Malekpour et al., 2020). Rather than being in opposition, 117 

adaptiveness and robustness are complementary: incorporating flexibility can meeting 118 

long-term sufficiency criteria  by avoiding overinvestment and lock-in. For example, 119 

committing immediately to an extremely high-level (and high-cost) flood defense could 120 

lead to path-dependency if future conditions turn out less severe than expected, whereas 121 

a strategy that can be incrementally upgraded retains both flexibility and robust 122 

performance over time.  Despite its importance, the quantification of ‘adaptiveness’ 123 

(e.g., in terms of flexibility) remains challenging (Kind et al., 2018). Adaptation tipping 124 

point analysis provided insight into when options will no longer meet a specified 125 

performance target (Haasnoot et al., 2013), and Patient Rule Induction Method (PRIM) 126 

offers a quantitative way to identify these tipping points (Ramm et al., 2018a; 2018b). 127 

Kirshen et al. (2015) noted that the preferred urban flood control strategy may change 128 

once additional criteria like no-regret and flexibility are considered at critical thresholds. 129 

Rather than choosing an ‘optimal’ here-and-now solution that could become suboptimal 130 

later, a “wait-and-see” approach (delaying or staging investments) can preserve 131 

flexibility. In the ROA paradigm, flexibility is explicitly valued since it allows decision-132 

makers to defer committing to large, costly, and irreversible measures while 133 

implementing smaller steps until more information is available (Erfani et al., 2018). In 134 

this paper, we define ‘robustness’ as the ability of course of action to maintain 135 

acceptable performance across a wide range of plausible futures, and ‘adaptiveness’ as 136 
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the ability to adjust or augment the strategy over time in response to how the future 137 

unfolds. Therefore, in our framework we incorporate both the timing of adaptations (the 138 

tipping point, termed the ‘effectiveness period’ in this paper) and the flexibility to adjust, 139 

as key characteristics of adaptiveness that support better long-term planning.  140 

In this study, we aim to propose a decision-making synthesized framework that 141 

integrates both robustness and adaptiveness to formulate a robust adaptive pathway for 142 

long-term climate adaptation planning under deep uncertainties. This framework is 143 

intended to guide decision-makers in prioritizing and sequencing adaptation options – 144 

a pressing challenge in urban climate action planning. We demonstrate the framework 145 

by applying it to a delta city (Shanghai) to evaluate a range of flood adaptation 146 

alternatives under plausible mid-21st-century scenarios (combining extreme rainfall 147 

and deteriorating drainage capacity by the 2070s). 148 

The remainder of this article is organized as follows: Section 2 presents the 149 

proposed comprehensive framework and methodology. Section 3 introduces the 150 

background of the case study area and the preprocessing procedures. Section 4 presents 151 

the results, where a multi-objective trade-off is applied to evaluate the potential 152 

pathways for generating a robust adaptive pathway. This analysis combines metrics 153 

such as the average risk reduction rate (ARRR), benefit-cost ratio (BCR), effectiveness 154 

period, and flexibility of all options. Section 5 discusses the key findings related to 155 

pluvial flood risk management in coastal cities, the implications of multi-objective 156 

trade-off considering both robustness and adaptiveness, how the synthesized framework 157 

can inform long-term adaptive policy formulation, and provides recommendations for 158 
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future work. Finally, Section 6 concludes with a summary. 159 

2 Methodology 160 

2.1 Framework development 161 

Having outlined the challenges of pluvial flood risks under deep uncertainties, we 162 

now present a robust adaptive pathway framework for long-term planning. We built this 163 

framework by extending the taxonomy of DMDU approaches proposed by Kwakkel et 164 

al. (2019), which categorizes five dimensions of decision frameworks, and 165 

incorporating recent advancements in robustness and adaptation methods. Figure 1 166 

provides an overview of our framework’s eight sequential steps. We summarize these 167 

steps below, then detail each component of the methodology: 168 

 169 

Figure1 Integrated framework of robust adaptive pathways for long-term flood control 170 

1) Research framing. Define the long-term flood management objectives and a 171 

dynamic policy structure. Unlike a static, short-term plan, the proposed policy structure 172 
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is dynamic and adaptive, providing a continuous pathway toward achieving long-term 173 

flood control goals while retaining flexibility to adjust as future conditions evolve. In 174 

our framework, introducing “adaptive” measures alongside traditional approaches 175 

enhances overall robustness by reducing the risk of over-investment or lock-in. 176 

2) Scenario generation. Develop a set of plausible future scenarios capturing key 177 

uncertainties (meteorological, hydrological, socio-economic, etc.). The ranges for 178 

uncertain factors can be derived from expert judgments, policy targets, or climate 179 

projections (Lempert et al., 2013). We employed a Latin Hypercube Sampling approach 180 

(Workman et al., 2021) to efficiently generate diverse futures. In our case study, for 181 

instance, futures were defined by varying extreme rainfall intensities and drainage 182 

capacity degradation by 2050, based on climate model outputs and local planning 183 

assumptions. 184 

3) Alternative generation. Identify and develop a portfolio of adaptation options. 185 

In our study, we used stakeholder workshops and policy document analysis to formulate 186 

viable flood control measures (both structural and non-structural). The current flood 187 

management strategy (status quo) serves as a baseline option, and a range of new 188 

adaptation alternatives (e.g., green infrastructure, drainage upgrades, tunnels, and their 189 

combinations) were assembled for evaluation. 190 

4) Model simulation. Evaluate each option (and combinations of options) under 191 

all futures using an appropriate flood simulation model. The framework can 192 

accommodate models of varying complexity: for instance, high-fidelity 1D/2D 193 

hydrodynamic models (e.g., SOBEK, MIKE 1D2D; Wang et al., 2018) could be used 194 
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for detailed analysis at the cost of more computation, whereas simpler conceptual 195 

models allow faster simulation of many scenarios. In our case study, we employed a 196 

simplified hydrological model based on the SCS-CN method to simulate runoff and 197 

flooding, which kept computational demands manageable given the thousands of 198 

plausible futures simulations, although the framework could integrate more complex 199 

models if needed.   200 

5) Robustness analysis. Assess each option’s performance across all futures using 201 

robustness metrics, which used to be depicted as f(a,wj) meaning the performance of 202 

option a under scenario wj. In this study, we assume all scenarios are equally likely (an 203 

application of Laplace’s principle of insufficient reason) and compute performance 204 

indicators for each option under each scenario. Key indicators include the average risk 205 

reduction rate (ARRR), percentage reduction in expected damages compared to 206 

baseline, averaged over scenarios, and the benefit cost ratio (BCR), ratio of total 207 

avoided damage to total cost. Using these, we evaluate how “robust” each option is, for 208 

instance, how well it performs on average and whether it consistently meets acceptable 209 

thresholds across scenarios.   210 

6) Adaptiveness analysis.  Determine how long each option remains effective and 211 

how easily it can be adjusted. For each single or combined alternatives, we identify its 212 

effectiveness period – the duration or range of conditions over which it meets the flood 213 

risk target – by finding the point at which its performance falls below the acceptable 214 

threshold. We used the PRIM algorithm to analyze scenario results and pinpoint these 215 

tipping points; in doing so, we optimized PRIM’s coverage (the proportion of scenarios 216 



11 

 

captured by a tipping point condition) and density (the success rate within those 217 

scenarios) to balance generality and precision to balance generality and precision. We 218 

refer to the conditions triggering failure as signposts, which are observable indicators 219 

that an adaptation or policy change will soon be needed. Furthermore, we quantify each 220 

option’s and combination’s flexibility in our framework by the number of measures it 221 

contains. In other words, a multi-component strategy planned with, say, three measures 222 

have a higher planned flexibility score than a single-measure strategy, since it inherently 223 

includes more future actions. This flexibility metric reflects only the strategy’s planned 224 

adaptability, not an absolute limit, even a one-measure strategy could be expanded later. 225 

7) Multi-objective trade-off. Evaluate each alternative across multiple metrics to 226 

understand trade-offs. We consider both robustness metrics (e.g., risk reduction, benefit 227 

cost ratio, regret-based measures) and adaptiveness metrics (effectiveness period and 228 

flexibility) for every strategy. For comparison, all metric values are normalized and, in 229 

our analysis, treated with equal importance. This allows us to compute an overall 230 

performance score for each alternative. Options that achieve a good balance across all 231 

criteria are deemed the most promising candidates for robust and adaptive planning. We 232 

did not run a computational multi-objective optimizer which would be typical if there 233 

were hundreds of options. Instead, we effectively enumerated and evaluated a small set 234 

of candidate solutions manually or with simple search, given the case study’s scope. 235 

8) Robust adaptive pathway. Formulate and select robust adaptive pathways. 236 

Using the information on each option’s effectiveness period and flexibility, we identify 237 

sequences of actions that extend flood protection over time. We generate an adaptation 238 
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roadmap by considering how the system could transition under transient scenarios. 239 

From the set of possible pathways, we then select a robust adaptive pathway that best 240 

satisfies the flood control objectives in the long term based on the multi-objective 241 

analysis from step 7. Along this pathway, we define key signposts – measurable 242 

indicators (e.g., a threshold of rainfall intensity or drainage failure rate) that signal when 243 

it’s time to shift to the next course of action. Monitoring these signposts will support 244 

future decision-making and adjustments to the plan. 245 

2.2 Methods of robust adaptive pathway procedures  246 

Robustness analysis 247 

Deciding on a robustness criterion is essentially a meta-decision problem (Herman 248 

et al., 2015). In our context, robustness of a strategy refers to its satisfactory 249 

performance across a range of uncertain future states. Various metrics can be used to 250 

evaluate course of actions’ performance under uncertainty and identify those that are 251 

sufficient against a given criterion including Maximax, Maximin, Mean-variance, 252 

Starr’s domain criterion, Laplace’s principle of insufficient reason, etc. (Molina-Perez 253 

et al., 2019). Each metric embodies a different risk preference, so the choice of metric 254 

can influence which option appears most favorable (Giuliani and Castelletti, 2016). In 255 

this study, we adopted neutral risk aversion of Laplace’s principle of insufficient reason 256 

as one robustness measure: in the absence of known scenario probabilities, we assign 257 

equal weight to all scenarios and identify solutions that perform best on average. It is 258 

important to note that while metrics like Laplace's principle provide a useful initial 259 

screening for sufficient strategies, they can be prone to corner solutions and may not 260 

https://www.rand.org/pubs/authors/m/molina-perez_edmundo.html
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fully capture multi-attribute challenges under deep uncertainty. The subsequent 261 

adaptive pathways analysis (DAPP) is therefore essential to complement this initial 262 

screening and build a resilient long-term strategy. The performance of option or 263 

combination a is depicted as Equation (1). 264 

𝛼∗ = 𝑎𝑟𝑔 max
𝑎∈𝐴

(
1

𝑁
∑ 𝑓(𝛼, 𝑤𝑗)

𝑁

𝑗=1

) （1） 

    where a∗ denotes the optimal option or combination, A is the set of all options or 265 

combinations (listed in table 2), N is the total number of futures. And f(a,wj) is the 266 

performance of option or combination a under future wj, which represents the expected 267 

flood risk associated with adaptation option or combination a under future wj , as 268 

generated from the flood-damage simulation model. This risk value forms the basis for 269 

evaluating robustness through indicators such as the ARRR. 270 

In many robust decision-making frameworks, criteria related to satisficing and 271 

regret are used as performance measures (Herman et al., 2015). Regret is broadly the 272 

opportunity loss incurred by not choosing the optimal action in a given scenario – 273 

essentially, how much worse a strategy performs compared to the best possible outcome 274 

in that scenario. Satisfaction can be viewed as a measure of how well a strategy meets 275 

a predefined target (combining effectiveness and efficiency). In our evaluation, we 276 

compute these metrics relative to a baseline scenario or option.  Equation (2) illustrates 277 

how we calculate regret-based performance for the alternatives. 278 

𝑃𝑖  =
1
𝑁

∑
|𝑓(𝑎, 𝑤𝑗) − 𝑓(𝑎0, 𝑤𝑗)|

𝑓(𝑎0, 𝑤𝑗)

𝑁

𝑗=1

 （2） 
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Where 𝑃𝑖  is the performance value of average risk reduction rate (ARRR) of 279 

alternative options or combinations in all plausible futures N, 𝑓(𝑎, 𝑤𝑗) represents the 280 

performance value of pluvial flood risk of option a in future 𝑤𝑗, and 𝑓(𝑎0, 𝑤𝑗) is the 281 

performance value of pluvial flood risk of the baseline option 𝑎0 in future 𝑤𝑗. 282 

Decision-makers also examine whether any given strategy has stressful scenarios 283 

– situations in which it fails to meet minimum acceptable performance. A threshold can 284 

be set to define what constitutes intolerable performance. Metrics like the domain 285 

criterion quantify the fraction of the uncertainty space (subsets of all futures) in which 286 

a solution meets all performance requirements. Such considerations align with policy 287 

risk indicators often used in practice (e.g., minimum safety standards or environmental 288 

protection criteria) to ensure options avoid unacceptable outcomes. Based on the 289 

elicitation of local requirements, we define the 𝑃𝑖
∗ as the performance of average risk 290 

reduction rate (ARRR) which satisfies the minimum threshold of the given flood control 291 

target (𝐹0, 𝐹0=0.7 in this case), as depicted in Equation (3).  292 

𝑃𝑖
∗ =

1
𝑠

∑
|𝑓(𝑎, 𝑤𝑗) − 𝑓(𝑎0, 𝑤𝑗)|

𝑓(𝑎0, 𝑤𝑗)

𝑠

𝑗=1

≥ 𝐹0 （3） 

Where 𝑃𝑖
∗represents the performance value of ARRR of the option or combination 293 

𝑎 in subsets S of all plausible futures N that meets the given flood control target 𝐹0. 294 

PRIM is applied to identify clusters of successful cases by searching across the full set 295 

of futures N for each option or combination. Specifically, for each option or 296 

combination a, we select the subset of future S that leads to the most successful outcome 297 

by balancing coverage and density with given flood control target 𝐹0. 298 
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Internationally, the net present value of benefits (PVB) and the net present value of 299 

costs (PVC) are commonly used to represent benefits and costs, respectively (Liao et 300 

al., 2014). In this study, PVB is selected as the pluvial flood risk reduction rate (RRR) 301 

before and after the implementation of the options, rather than as the pluvial flood risk 302 

reduction value. It is important to note that the goal of this study is not to calculate the 303 

direct risk of extreme pluvial flooding in the future, as the absolute value of the risk 304 

would be too large for meaningful comparison. Therefore, the benefit-cost ratio (BCR) 305 

is presented simply as the ratio of PVB to PVC. 306 

Adaptiveness analysis 307 

PRIM is an interactive statistical clustering algorithm that generates a series of 308 

subspaces by peeling away layers of the uncertainty space, where the coverage and 309 

density of points of interest in each box are greater than in the surrounding space 310 

(Matrosov, 2013). As a visualized tool for exploratory analysis, PRIM is widely used in 311 

many works to investigate either key factors causing system failure or stressful 312 

scenarios that might cause alternative options' failure. Parameters of coverage, density, 313 

and interpretability characterize the subspaces. These three metrics are usually 314 

correlated, with increasing density resulting in decreasing coverage and interpretability. 315 

It turns out that an analyst needs to trade-off in selecting the potential coverage, density, 316 

and interpretability to achieve the best combination. The subspaces describe the 317 

conditions beyond which coastal inundation impacts are unacceptable signifying 318 

adaptation tipping points are reached (Ramm et al., 2018a). Key factors along with the 319 

tipping point of options are evaluated in associated timeframes which need not be exact. 320 
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Identifying an indicative period at which conditions describing adaptation tipping 321 

points indicate an effectiveness period (or use-by year) (Haasnoot et al., 2013). The 322 

results of PRIM can assist decision-makers in identifying sensitive ranges of uncertain 323 

factors or combinations, and factors with little influence can be safely disregarded.  324 

Following a decision initially, flexibility in decision theory is related to the 325 

remaining choices available in the following period. The larger this set, the more 326 

flexibility the decision maker retains. This idea can be generalized to staged choices 327 

over multiple periods. For example, Erfani et al. (2018) proved that flexibility is 328 

valuable in providing decision nodes in multistage scenarios (planning periods in every 329 

5 years) for least-cost water supply intervention scheduling. One way of assessing the 330 

value of flexibility is thus by comparing a flexible investment strategy against a strategy 331 

that scores highly on a static sufficiency metric but offers fewer future options (Kind et 332 

al., 2018). However, flexibility is not treated as delayed option value as other ROA 333 

work calculated, instead, we consider the convertibility of options that is still in line 334 

with the idea of wait-and-see yet is more straight-forward. It is important to note that a 335 

strategy initially implemented as a single measure does not preclude future 336 

augmentation if conditions worsen. In our framework, however, such augmentations 337 

were not pre-planned in single-measure scenarios. Therefore, our ‘flexibility’ metric 338 

should be interpreted as the degree of planned adaptability, rather than an absolute limit 339 

on a strategy’s potential to adapt. 340 

Multi-objective trade-off 341 

The cost and benefit of investment in adaption options may lead to a static 342 
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decision-making perspective. Therefore, an important question was raised for robust 343 

decision-making of how to avoid failure scenarios regarding factors including risk 344 

reduction rates over time, cost of option, and economic benefit ratio. On this basis, 345 

making robust decisions needs to include other factors beyond cost and benefit, such as 346 

effectiveness period and flexibility, for a comprehensive evaluation in the long-term 347 

(Erfani et al. 2018)  348 

The optimization of options’ combinations can be identified via the trade-off 349 

process by Equation (4).  350 

max
𝑙∈𝐿

𝐹(𝑙) = [𝑦1
(𝑙), 𝑦2

(𝑙), 𝑦3
(𝑙), 𝑦4

(𝑙)] （4） 

Where l ∈ L is a candidate adaptation pathway from the set of feasible pathways 351 

L; y1(l): Flexibility — number of successful alternatives reachable from pathway l; y2(l): 352 

Effectiveness period — duration before performance drops below threshold; y3(l): 353 

Benefit-Cost Ratio (BCR) — economic efficiency of pathway l; y4(l): Average Risk 354 

Reduction Rate (ARRR) — robustness of flood risk performance. 355 

Robust adaptive pathway 356 

Adaption tipping points (effectiveness periods) are central to adaptation pathways, 357 

the conditions under which an action no longer meets the specified objectives. The 358 

timing of the adaptation points for a given action, its effectiveness period, is scenario 359 

dependent. The DAPP, manually drawn based on model results or expert judgment, 360 

presents an overview of relevant pathways (Haasnoot et al., 2020). In this study, we 361 

first examined the effectiveness period of alternative options by PRIM analysis to 362 

identify acceptably robust adaptation pathway for future flood control. We then 363 
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identified the combination of candidate pathways in consideration of both effectiveness 364 

period and flexibility, ensuring the adaptive solutions in incremental stages allow for 365 

maintaining flood control levels before committing to larger schemes. Roadmap of 366 

candidate’s pathways are generated during this procedure. Lastly, the preferred robust 367 

pathway is determined by a trade-off analysis of all the criteria. 368 

3 Case study 369 

3.1 Background 370 

Shanghai, with a domain of 6,340 km2, provides residences to 24.9 million 371 

population with a built-up area of 1237.9km2 in 2021. Shanghai has been perhaps the 372 

most important economic and financial center in China, and it now aspires to be one of 373 

the world's most important economic, financial, shipping, and trade centers (Shanghai 374 

Statistic Yearbook, 2021). Shanghai is surrounded by water on three sides: the East 375 

China Sea to the east, the Yangtze River Estuary to the north, and Hangzhou Bay to the 376 

south. In addition, the Huangpu River, a Yangtze River tributary, flows through the heart 377 

of Shanghai. The average yearly precipitation is approximately 1400mm in recent 10 378 

years, with 63% concentrated during the flooding season from May to September 379 

(Shanghai Climate Change Research Center, 2022). As a result, the most catastrophic 380 

hazard in Shanghai has been floods produced by torrential rainfall, which annually 381 

disrupts transportation and other social activities, causes substantial economic losses, 382 

and threatens urban safety. 383 

Shanghai has the lowest elevation (with averagely 4m above m.s.l.) and large 384 

numbers of old-lane residential buildings in central city, which have fewer floors 385 
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compared to other districts that is vulnerable to the extreme pluvial flood events see 386 

Figure 2). The spatial distribution of rainfall will continue to concentrate in urban areas, 387 

and the increasing likelihood of extreme precipitation (Liang and Ding, 2017), 388 

combined with the trends of relative sea-level, will cause stakeholders, includes 389 

residents, policymakers, and scientists etc., to be concerned about the rising flooding 390 

risk in delta cities of Shanghai (Du et al., 2020). 391 

 392 

Figure 2 Case area, administrative, and solution district (blue shade) in center Shanghai, 393 

including spatial distribution of building footprints indicating the number of stories (gray shades), 394 

the base map was provided by Esri, using ArcGIS Online Services. 395 
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3.2 Research Framing 396 

Based on the proposed framework, the dimensions, components, and metrics of 397 

this study are organized as shown in Table 1. To ensure urban safety, this study defines 398 

an explicit flood control objective of achieving a 70% average risk reduction rate, in 399 

alignment with the Shanghai Flood Control and Drainage Plan (2020–2035) (Shanghai 400 

Municipal Water Authority, 2020).  401 

Table 1 Dimensions of the research framework  402 

Dimension Components Metrics 

Research 

framing 

Alternative options to generate robust and adaptive 

pathway  

Definition of flood 

control objective 

Scenarios 

generation 

Increased 

rainfall 
Rain island effect Drainage decrease 

Latin hypercube 

sampling (LHS) 

Alternatives 

generation 

Drainage 

increased 

Increase of green 

area 

Deep tunnel with 

30%, 50%, or 

70% of runoff 

absorption 

Predefined by local 

flood control plan 

Model 

simulation 
Hydrology Flood risk  

Geospatial 

statistics 
Grid aggregation  

Robustness 

analysis 

Performance  

(ARRR) 

Measure Cost 

(Life cycle cost) 
Benefit 

Laplace and Domain 

criterion 

Adaptiveness 

analysis 
Signpost 

Effectiveness 

period 
Flexibility PRIM 

Multi-

objective 

Trade-off  

Robustness Adaptiveness Metric evaluation 

Robust 

adaptive 

pathway  

Candidate pathway identification, roadmap generation, 

and monitoring of signposts 
Transition scenarios 

The robustness analysis serves as the foundation of our methodology, ensuring 403 

that the proposed options can meet the sufficiency criteria under future uncertainties. 404 

Once robustness is assessed, we proceed to the adaptiveness analysis, which allows us 405 

to account for flexibility in response to unforeseen challenges. We conduct a trade-off 406 

analysis in terms of robustness and adaptiveness was of particular significance to 407 

providing iterative stress tests over many plausible scenarios using robustness metrics 408 
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and identifying effectiveness periods and flexibility to generate alternative pathways. 409 

Following the structure of robust decision-making pathway framework, Figure 3 410 

illustrates the entire procedures for long-term flood control planning in the Shanghai 411 

case study. 412 

 413 

Figure 3 Framework of robust adaptive decision-making pathway, which incorporates the 414 
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robustness, adaptiveness, multi-objective trade-off, and pathway generation (blue boxes). 415 

3.3 Scenario generation 416 

Precipitation is predicted very likely to increase in the Yangtze River Basin in the 417 

21st century (Hui et al., 2018), and the frequency and intensity of extreme rainstorm 418 

events may continue to increase (uncertain factor of the 𝛼, future rainfall assumed to 419 

increase from 7% to 18%). Shanghai's spatial rainfall patterns reveal a significant "rain 420 

island effect" between urban centers and suburbs (Liang and Ding, 2017) (uncertain 421 

factor of the 𝛽, assumed to increase from 10% to 20% in central region (Xujiahui and 422 

Pudong rain gauges), decrease from -0.076% to -0.038% (other 9 rain gauges in 423 

Shanghai)). In addition, land subsidence has been a persistent issue due to the 424 

groundwater exploitation and construction of high-rise buildings (Yang et al., 2020). 425 

By 2050, it is projected that the current river embankment and drainage systems in 426 

Shanghai will experience a 20-30% reduction in capacity due to a likely relative rise in 427 

sea level of 50 cm (compared to the year of 2010), caused by both sea level rise and 428 

land subsidence (Wang et al., 2018). The uncertain factor of the decrease of drainage 429 

capacity (γ, assumed to decrease from 0 to 50% due to the anthropogenic land 430 

subsidence and sea level rise) is designed to be the degradation effect of restraining the 431 

water from the urban drainage system flowing to the river system due to the high river 432 

water level caused by the continually rising sea level, land subsidence, and other 433 

degradation factors. 434 

This study focused on a record-breaking convective rainfall that occurred on 435 

September 13, 2013 and had an intensity record of 140.7mm within 3 hour (at 17-19h). 436 
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The variation interval of each uncertainty factors was clarified, and Latin Hyper Cube 437 

Sampling (LHS) was used to construct 100 plausible futures based on the historic "913" 438 

extreme rainfall event in 2013 (Supplementary materials Text 1). 439 

3.4 Alternative generation 440 

It is acknowledged that the current Shanghai flood control infrastructure is 441 

insufficient to protect the city from long-term inundation risk (Shanghai Municipal 442 

Water Authority, 2020). Three options, drainage improvement, increase of green area, 443 

and construction of deep tunnel, are pre-defined with stakeholders of experts and 444 

decision-makers following the Shanghai Flood Control and Drainage Plan (2020-2035). 445 

The solution district locates in the core business district (CBD) of Shanghai and is 446 

highlighted in Figure 2. We defined the existing structure of flood control measures as 447 

the baseline and evaluated alternative measures’ performance verse the baseline control 448 

level in the flood simulation model (Table S4).  449 

3.5 Model simulation 450 

Simulations of extreme pluvial flood inundation under climate change scenarios 451 

are carried out using the Shanghai Urban Inundation Model (SUIM) (Supplementary 452 

materials Text 2). It was created to couple multiple simulation processes, which consists 453 

of the SCS-CN hydrological model, statistical analysis of flooding results, risk 454 

assessment, and assessment of adaptation measures. Appropriate socioeconomic 455 

indicators were selected to characterize the exposure of the elements at risk and the 456 

vulnerability curve to evaluate the flood risk in all plausible scenarios (Supplementary 457 
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materials Text 3). We then coupled the hydrological module and risk assessment module 458 

to assess the future risk (Supplementary materials Text 3). Three climate adaptation 459 

options are quantitatively characterized in the risk assessment system. The benefit-cost 460 

ratio (BCR) of all options is calculated according to the performances of the risk 461 

reduction rate over the life cycle cost (Supplementary materials Text 4).  462 

4 Results 463 

4.1 Robustness analysis 464 

This section presents the performance evaluation results, including average risk 465 

reduction rate (ARRR) and Benefit-cost ratio (BCR), to reflect the robustness of 466 

potential climate adaptation options (Supplementary materials Text 4). BCR was 467 

defined as the average risk reduction rate (ARRR) per unit cost (Equation S4 in 468 

Supplementary materials Text 4) based on the robustness metrics of Laplace’s Principal 469 

of Insufficient Reason. Specifically, the benefit is the reduction in expected flood losses 470 

compared to the no-action scenario (Equation 3), while the cost refers to the total 471 

implementation cost of each adaptation option (Equation S5 in Supplementary 472 

materials Text 4). We adopt Laplace’s principle of insufficient reason, assuming all 473 

scenarios are equally likely when calculating average outcomes across scenarios. Given 474 

that drainage capacity reduction (γ) is the main factor affecting the solutions’ 475 

performance, thus the study selects γ as the only explanatory indicator to explore the 476 

failure scenario of options based on the PRIM method.  477 

As depicted in Table 2, the ARRR is calculated (Equation 2) to analyze the 478 
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effectiveness of (the combination of) options. The average yearly cost of single options, 479 

which includes increasing drainage capacity (Dr), expanding green areas (GA), and 480 

constructing a deep tunnel with 30% runoff absorption (Tun30), is at a comparative 481 

level, ranging from 39 to 41 million USD per year. Their performance is relatively 482 

unsatisfactory (the ARRR is less than 0.39.) However, the ARRR for the combined 483 

option (D+G), drainage improvement and public green area, is higher (0.62) than the 484 

sum of two single options (0.51), indicating that the composite option will be more 485 

effective of reducing flood risk. Furthermore, it demonstrates that the combined options 486 

(i.e., D+G and D+G+T30) are satisfactory in terms of ARRR performance but not 487 

economically attractive due to their relatively higher costs. It is noted that if an option 488 

defers a major investment (like the Tun30) to later years, in reality its present value cost 489 

would be lower with discounting, potentially making the strategy more economically 490 

attractive than our simple BCR suggests. 491 

 492 

Figure 4 Yearly cost and total cost of alternative options  493 

While two single-option involving deep tunnel (namely Tun50, Tun70) seem very 494 
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attractive in terms of both ARRR and BCR.   495 

Table 2 The ratio of the benefit-cost of each adaptation options 496 

Option 

ARRR (without 

control target, %) 

Cost (million 

USD / year) 

Benefit-cost 

ratio (%) 

Dr 0.25 39 0.09 

GA 0.26 37 0.10 

Tun30 0.39 41 0.14 

D+G 0.62 76 0.12 

Tun50 0.74 68 0.16 

D+G+Tun30 0.85 117 0.10 

Tun70 0.87 95 0.13 

4.2 Adaptiveness analysis  497 

Scenario discovery validates the decrease of drainage capacity is the most critical 498 

uncertainty in defining the risk reduction rate of performance objective. The failure 499 

scenarios are identified when the flood control target F0=0.7 is not met. We further 500 

interpret failure scenarios by selecting subspace of each alternative options under flood 501 

control target using PRIM algorithm to optimize the combined value of coverage and 502 

density. Table 3 summarizes these metrics, where coverage and density are derived from 503 

PRIM-identified failure boxes, and ARRR is calculated as the average performance 504 

within those clusters. The valid period is defined by the point (characterized by γ) when 505 

a single option or combination no longer meets the performance target.  506 

According to the results in Table 3, it was found that within the 70% risk reduction 507 

control target (Equation 3), the single options of Dr and GA performed less favorably 508 

(relatively smaller ARRR) and can quickly fail to meet the risk reduction target (with 509 
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no larger than 0.1 of γ). Tun30 and D+R are very comparative since they preform very 510 

closely (similar results on ARRR and γ) but still not attractive. While Tun50 seems very 511 

attractive in terms of ARRR (0.89), however, it does not possess higher effectiveness 512 

period (γ) than both D+G+Tun30 and Tun 70. Surprisingly, both D+G+Tun30 and 513 

Tun70 can function well in an effective way for a longer time. So far, D+G+Tun30 and 514 

Tun70 have proven to be highly competitive in terms of cost-effectiveness and 515 

effectiveness period over time. 516 

Table 3 ARRR and coverage and density of success scenarios in each option combinations 517 

under 70% risk reduction control standard 518 

Option 

ARRR (with 

control target, %) Coverage Density 

Decreased drainage 

capacity (γ) (effectiveness 

period) 

GA 0.59 1 0.22 0.04 

Dr 0.62 1 0.20 0.07 

Tun30 0.73 1 0.75 0.1 

D+G 0.74 0.9 0.82 0.11 

Tun50 0.89 0.95 0.98 0.29 

D+G+Tun30 0.86 0.99 0.98 0.48 

Tun70 0.87 1 1 0.5 

We define flexibility as the number of transitions by enumerating overall option 519 

combinations regarding adaptive transferable pathways from the original option 520 

(current flood control infrastructure) to the destination options (e.g., D+G+Tun30 and 521 

Tun70, Figure 6). For example, the D+G+Tun30 comprises three single options, 522 

allowing it to begin with any of the three and delay further action until a tipping point 523 
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approaches, giving it a convertibility score of three (Table S6). Therefore, each single 524 

option has a value of one for convertibility. 525 

4.3 Multi-objective trade-off 526 

An analysis focused solely on static performance metrics (e.g., ARRR and BCR) 527 

would rank options like Tun50 and Tun70 as the top performers. In contrast, an analysis 528 

that also incorporates adaptive characteristics (effectiveness period and flexibility) 529 

reveals the advantages of a pathway like D+G+Tun30. These differing outcomes 530 

demonstrate why moving beyond a single-metric assessment to a multi-criteria 531 

evaluation is crucial for identifying course of actions that are sufficient over the long 532 

term.. Only by considering all metrics simultaneously (a true multi-objective trade-off) 533 

can we identify strategies that strike an appropriate balance for long-term flood 534 

management. Multi-objectives of (the combination of) options consider all four metrics, 535 

including BCR, and performance of the risk reduction control criteria (ARRR>70%), 536 

effectiveness period (γ), and the flexibility. We solved the multi-objective problem 537 

using normalized and equally weighted metrics (Equation 4). Figure 5 depicts the 538 

results of BCR, ARRR in control criteria, effectiveness period, and flexibility of each 539 

option's combination. The higher the normalized rating, the greater the payoff. The 540 

outcome demonstrates that both GA and Dr perform poorly, whereas Tun30 and D+G 541 

are not robust enough compared to Tun 50, D+G+Tun30, and Tun70. It needs to be 542 

highlighted that Tun 50, D+G+Tun30, and Tun70 possess high priority. We found that 543 

the D+G+Tun30 pathway achieved a well-balanced performance across risk reduction, 544 

cost-effectiveness, and our flexibility metric (Table S7). In our initial analysis, this 545 
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made D+G+Tun30 appear as the most promising option overall. However, as discussed, 546 

this planned flexibility advantage does not necessarily mean a single-component 547 

strategy cannot be adapted later. It is important to note that this conclusion is contingent 548 

on including the flexibility metric. If flexibility were defined differently or given less 549 

weight, another option – for example, the single large tunnel Tun70 – could emerge as 550 

preferable for long-term risk control.  551 

 552 

Figure 5 Multi-objective trade-off of alternative options with normalized value of robustness 553 

and adaptiveness metrics (the preference of priority is accepted from low(bottom) to 554 

high(top)). 555 

4.4 Robust adaptive pathway 556 

Pathway identification 557 

The candidate pathway was identified by enumerating the possible combinations 558 

of options. In this study, we found two potential pathways including from Tun30 to 559 
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Tun70, and from Dr or GA to D+G+Tun30. It can be observed from Figure 6 that when 560 

γ increases, the performance of options of Dr (or GA, vice versa) steadily diminishes 561 

until the risk control target are not satisfied.  562 

The drainage capacity, affected by the compound event of land subsidence, sea 563 

level rise, and storm surge, is deemed to be undermined (which is reflected by drainage 564 

capacity reduction rate γ) over time. Figure 6 illustrates the concept of an option 565 

combination's effectiveness period using Dr+GA+Tun30 as an example. ARRR to 566 

begin with Dr is 0.62, with an increase in γ, Dr fails (γ=0.07), and ARRR will decrease 567 

further if no additional options are taken. The addition of GA can increase the ARRR 568 

to 0.74 before Dr and D+G fail (γ= 0.11). The ARRR will continue to decrease if options 569 

are not strengthened. Before D+G completely fails, incorporating Tun30 can increase 570 

the ARRR to 0.86; as γ increases, D+G+Tun30 fails at γ=0.48. To ensure the adaptive 571 

robustness of the combination of options, decision-makers can increase the service 572 

coverage area and rainwater absorption capacity of the deep tunnel project in the core 573 

area prior to the total failure of D+G+ Tun30. In other words, the transition from Tun30 574 

to Tun50 and even Tun70, along with the combination of options, will be stable over 575 

the long-term time horizon. It is noted that the slight rise in performance after GA and 576 

Tun30 installation reflects a short ramp-up period in our model, during which newly 577 

implemented measures gradually reach full effectiveness, then performance begins to 578 

decline as expected under continued climate-induced stressors. 579 

The differing curvature of the performance decline is due to the interaction of 580 

measures. For the Dr-only strategy, once implemented, its risk reduction gradually 581 
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diminishes at an accelerating rate as climate stressors intensify – producing a concave-582 

down curve (initially gentle slope, steepening later). In contrast, the strategies with 583 

multiple measures (D+G and D+G+Tun30) show a more linear decline. This is because 584 

when drainage alone begins to lose effectiveness, the next measure (GA, and later 585 

Tun30) either has just been implemented or is concurrently mitigating risk, effectively 586 

offsetting some of the non-linear drop. The combined result is a more steady 587 

(approximately linear) decrease in performance over time, as the measures’ effects 588 

complement each other. We normalized time as 𝛾 = t/T (with T=50 years, the simulation 589 

period), so 𝛾 corresponds to the year 2070. 590 

 591 

Figure 6 Flexible pathway of combination options of drainage improvement (Dr), green 592 

area increment (GA), and deep tunnel with 30% absorption (Tun30), representing the risk 593 

reduction rate undermines with the reduction of drainage capacity. An example of 594 

Dr+GA+Tun30. 𝛾 is a dimensionless time, where 𝛾 =1 corresponds to Year 2070, the end of 595 
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our planning horizon 596 

Pathway generation 597 

We comprehensively evaluated the candidate pathways by considering 598 

performances, BCR, effectiveness period, and flexibility. The time frame lacks an 599 

absolute time reference but still offers a relative tracking of the rate at which relative 600 

sea levels are rising.  601 

Figure 7 depicts two robust transition pathways: D+G to D+G+Tun30 and Tun30 602 

to either Tun50 or Tun70. The two pathways D+G+Tun30 and Tun30 to Tun70, provide 603 

adaptive short and long-term pathway schemes from a flexibility standpoint. The short-604 

term options are used as transitional schemes, and new options can be added before 605 

their failure, i.e., pathway transition, to maintain the risk control objectives. In addition, 606 

the two schemes can complement each other and incorporate new options before the 607 

system's long-term robustness is compromised. Additionally, D+G+Tun30 and Tun70 608 

leave room for upgrading to the costlier and more durable D+G+Tun70 in the long run 609 

when γ exceeds 0.5 (e.g., sea level or land subsidence exceeds observing increase 610 

speed).  611 

We observed that Tun70 offered the highest robustness in terms of ARRR and the 612 

longest effectiveness period among all single options. However, its lack of initial 613 

flexibility – requiring a large up-front investment in gray infrastructure – could lead to 614 

path dependency if future conditions turn out to be mild. In contrast, strategies that start 615 

with smaller measures (like Dr or GA) and can add on bigger projects later avoid that 616 

risk of over-commitment. This underscores the classic tension in planning: a strategy 617 
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like Tun70 is robust but inflexible, whereas a phased approach is flexible but may 618 

initially be less robust. Our framework attempts to balance these aspects by evaluating 619 

both. In conclusion, A promising robust adaptive pathway should initially begin with 620 

GA and Dr, followed by a combination of D+G. Ultimately as time goes by with 621 

gradually undermined drainage capacity, it should incorporate Tun30 with the 622 

flexibility to expand to Tun70. 623 

 624 

Figure 7 Generation of robust adaptive pathways with two potential pathways from either Dr or GA 625 

to D+G+Tun30, and from Tun30 to Tun70 as the reduction of drainage capacity over time (x-axis). 626 

The options are sequenced in an upward relative higher BCR (y-axis, also see in Table 2). 627 
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5 Discussion 628 

5.1 Key findings 629 

Applying this framework to the case of the reoccurrence in the 2050s (of the 630 

extreme rainfall events on 13 September 2013) in Shanghai reveals informative findings 631 

to urban planners and other stakeholders. First, the performance of climate adaptation 632 

options (for addressing pluvial flood risk) decreases as the drainage capacity reduction 633 

rate (γ) increases (Table 3). This result is indirectly supported by events in June 2015 634 

and July 2021, which caused severe inundation in central Shanghai for days because 635 

the high water levels of rivers in the region prevented rainwater from being pumped or 636 

drained from the drainage system into the river network. This finding also suggests that 637 

drainage capacity is a key determining factor for the performance of options in other 638 

delta cities which may rely on discharge to the rivers (e.g., Guangzhou, Ho Chi Minh 639 

City, London, etc.) (Hu et al., 2019). Urban planners in those cities need to consider 640 

scenarios of high-water levels in the river with a joint of extreme storm surge under 641 

typhoon takes place in a high astronomical tide period at estuary. Such an event would 642 

significantly undermine the drainage capacity thus leading to severe flooding inside the 643 

city and bringing potential disastrous impacts (e.g. Zhou et al., 2019).  644 

Second, as the drainage capacity decreases(γ), effectiveness periods of different 645 

option  combinations varied significantly, showing a discrete distribution, which ranged 646 

from 0.04～0.5 with a corresponding ARRR ranging from 0.59～0.89 (Table 3). 647 

Moreover, the most cost-effective solution may not always offer the longest 648 

effectiveness period within an explicit flood control target (e.g. 70% risk reduction as a 649 
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target in our case study), and therefore cannot be considered satisfactory (Figure 5). The 650 

findings highlight the importance of the discussion regarding the long-term robustness 651 

of solutions which has been overseen in many flood- risk control works in delta 652 

megacities. It is also further implying that if there is no consideration of the flood risk 653 

reduction target, discussions about a robust decision plan with stakeholders is 654 

meaningless. This urges to pay great attention to be proactive by strengthening the 655 

dynamic pathway and closely monitoring the decrease of the drainage capacity ahead 656 

of the pace of relative sea level rising (Figure 6).  657 

5.2 Robustness and adaptiveness trade-off 658 

The comparison in Section 5.1 brings up a vital decision-making issue on the trade-659 

offs between the benefit and cost of alternative options. In general, options with better 660 

performance required higher costs, which was also proved in any distinctive option in 661 

Table 2 and Table S6. It is also demonstrated that the combination of alternative options 662 

such as D+G showed a better performance than the single option of Dr and GA at the 663 

same cost. However, the cost of an option is not strictly proportional to its benefit (risk 664 

reduction rate) (Figure 4). For instance, Tun 50 possesses better performance in 665 

reducing inundation risks associated with the relatively low yearly economic cost 666 

compared to D+G. Because it is difficult to measure the pros and cons of the costly 667 

solution to maintain a higher protection standard and economical solution to possess an 668 

acceptable performance (cost-effectiveness), planners typically underestimate both 669 

influences by a large margin.  670 

In recognition of this limitation, it can be realized that single-objective targets e.g., 671 
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flood control performance (ARRR), or financial control (BCR) may lead to biased 672 

decisions or maladaptation for the long-term horizon. For example, Table 2 shows that 673 

Tun50 has the highest cost-effectiveness (0.16), while the D+G+Tun30 is positioned at 674 

an average level, both of which performed well in reducing flood risk. In sharp contrast, 675 

the adaptiveness analysis shows that the D+G+Tun30 behaved significantly better 676 

during a reasonable period than Tun 50, which is a more flexible and adaptive option 677 

for long-term planning (Figure 7). Therefore, it tends to a biased decision if the decision 678 

maker only focus on economic return (BCR). Besides, it illuminates the decision maker 679 

that priorities on grey infrastructure (e.g., Tun 50) at the starting point yields good 680 

performance (74% of ARRR) but may lead to over-investment and path dependency.  681 

Moreover, there is concern that the effectiveness period could be shortened if decision-682 

makers opt for the most cost-effective solution (Tun50) instead of choosing a more 683 

expensive but very effective combination (D+G+Tun30). This example enriches the 684 

literature on “no regret” planning, which should be robust, adaptive, and financially 685 

efficient at the starting point for decision-makers, keep options open (flexible), and 686 

avoid lock-ins. To minimize regret in the near to long future, the adaptation solutions 687 

should pay great attention to both robustness and adaptiveness, which also illuminates 688 

the importance of multi-objective trade-off as mentioned in previous work (Kirshen et 689 

al., 2015; Ramm et al., 2018a). 690 

Furthermore, we directly compare the top contenders Tun70 and D+G+Tun30. 691 

Notably, Tun70 actually achieved higher values than D+G+Tun30 on several individual 692 

metrics – it provided the greatest average risk reduction and a superior cost-benefit ratio, 693 
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and it had the longest effectiveness period among single strategies. The multi-694 

component D+G+Tun30 pathway, on the other hand, had a moderate cost-benefit ratio 695 

and slightly lower risk reduction, but scored much higher on planned flexibility. This 696 

illustrates a trade-off that if one prioritizes near-term performance and economic 697 

efficiency, Tun70 is very attractive; if one prioritizes incorporating flexibility to adapt 698 

over time, D+G+Tun30 gains the edge. Our framework’s value lies in revealing this 699 

trade-off clearly. 700 

5.3 Optimization of the synthesis framework 701 

Although there is a myriad of research running flood risk simulations and assessing 702 

the BCR of solutions in Shanghai and other megacities in the coastal areas, seldom of 703 

which considers the entire process in making the applicable decision (Du et al., 2020; 704 

Sun et al., 2021; Ward et al., 2017). In filling up this niche, this study has proposed a 705 

synthesized planning-supporting framework that is capable of considering the entire 706 

cascade of procedures from the uncertainties of future urban rainfall pattern, to the 707 

sampling of future scenarios, to the hydrological modeling, and to flood risk assessment 708 

for the robustness and adaptiveness of alternative options, allowing for making robust 709 

and adaptive pathways (Figure 1).  710 

Compared to other DMDU theories, the synthesized framework asks for finding 711 

proxies for solutions’ performances in reducing risk, decision-making in terms of cost 712 

and benefit, and identifying priorities and adaptive pathways from option combinations 713 

in the multi-objective fusion process. The conversations established a fast modeling-714 

interpreting-remodeling feedback mechanism between the analyst and decision maker, 715 
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which helps reduce the complexities and uncertainties encountered in ROA or other 716 

related work (e.g. Kind et al., 2018), and defining explicit objective (Raso et al., 2019). 717 

Upon that, incorporating the multi-dimensions of constraints allows for rapidly 718 

minimizing disruption factors, balancing alternative solutions' interpretability, coverage, 719 

and density, and visualizing the applicable pathway.  720 

One advantage of our decision-support tool is that it can run comprehensive 721 

evaluations for thousands of future–option combinations within a few days, using only 722 

moderate amounts of input data. This computational efficiency is largely due to our use 723 

of a simplified model (SCS-CN) and a relatively small case-study area. However, this 724 

highlights a trade-off: using a more detailed 1D–2D model or expanding to a larger 725 

region would substantially increase computational time and data requirements. In other 726 

words, the ‘moderate’ resource demand we experienced may not hold in cases that 727 

require high-resolution modeling. This limitation suggests that careful model selection 728 

(or the use of techniques like emulators and parallel computing) is important when 729 

applying the framework to bigger or more complex systems. 730 

 Another limitation is our risk assessment scope: we considered direct flood losses 731 

(inundation damage) but did not model disruptions to transportation or other urban 732 

functions, nor wider cascading effects across sectors. Similarly, our cost-benefit 733 

analysis focused mainly on direct financial costs, indeed we did not fully quantify co-734 

benefits like ecosystem services or social benefits of adaptation options, which means 735 

our economic evaluation was somewhat narrow. Additionally, our cost estimates did not 736 

account for certain practical factors such as human resource efforts (e.g., time and 737 



39 

 

coordination required for implementation) or land availability constraints (for instance, 738 

the feasibility of allocating sufficient space for new green infrastructure in Shanghai). 739 

These simplifications should be kept in mind when interpreting the results. Future work 740 

could explore dynamic adaptation difference of “on-the-fly” upgrades versus planned 741 

pathways to provide a more direct assessment of flexibility in the real-world sense.  742 

In addition, further work needs to discuss the determination the weights of multi-743 

objectives when conducting trade-off analysis. The balance between robustness and 744 

adaptiveness may vary depending on whether the priority is for immediate, high-impact 745 

actions or long-term sustainability. The weight assigned to each factor should reflect 746 

the specific goals. Besides, scenario discovery was implemented to find the 747 

combination option rather than an optimization algorithm to search for the best optimal 748 

combinations in many alternative options. We demonstrated a case study with a 749 

manageable set of options so that solving the optimization problem was outside the 750 

scope. Future work may apply evolutionary optimization algorithms to solve complex 751 

problems of multi-objective targets if there were hundreds of possible interventions or 752 

sequences. 753 

6 Conclusion 754 

This work provides a novel decision-making framework for flood mitigation in 755 

coastal megacities by synthesizing and building upon established DMDU methods.  756 

Rather than introducing a new theory, our contribution lies in the innovative 757 

combination and application of these methods to address the joint challenges of 758 

robustness and adaptiveness in flood risk management.  We demonstrated this 759 
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framework in a case study, evaluating flood management strategies across multiple 760 

criteria – including performance, cost-effectiveness, effectiveness period, and 761 

flexibility – under many plausible futures. The results showed that traditional evaluation 762 

using only short-term effectiveness or cost-efficiency can be insufficient for long-term 763 

planning. Integrating the additional metrics of effectiveness period and flexibility 764 

provides more nuanced insights, helping to develop adaptive pathways that remain 765 

effective as conditions change. Our case study also illustrated the trade-offs between 766 

robustness and adaptiveness. For instance, a high-robustness single option (Tun70) 767 

performed very well in meeting flood control targets and had a strong BCR, but it lacked 768 

flexibility to adjust if future conditions turned out less severe than anticipated. On the 769 

other hand, a multi-component strategy (D+G+Tun30) achieved a high overall score 770 

when both robustness and adaptiveness were considered, due to its balance of risk 771 

reduction and planned flexibility. This comparison highlights that the “optimal” option 772 

can change depending on which criteria decision-makers prioritize. In practice, our 773 

robust adaptive pathways approach allows stakeholders to see how emphasizing or de-774 

emphasizing flexibility (or other metrics) would lead to different preferred strategies, 775 

thus supporting more informed decision-making. 776 

Overall, this work provides a novel framework to inform Shanghai’s long-term 777 

flood adaptation planning under climate change. Beyond this case, the approach 778 

contributes a theoretical foundation and practical insights for other coastal megacities 779 

facing similar challenges, helping decision-makers integrate robustness and 780 

adaptiveness into their climate adaptation strategies to better cope with deep uncertainty 781 
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in extreme flood risks.  782 
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