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Abstract:

Delta cities are increasingly vulnerable to flood risks due to the uncertainties
surrounding climate change and socioeconomic development. Decision-makers face
significant challenges in determining whether to invest. Adaptation solutions should
consider not only to robustness but also to adaptiveness in case the future unfolds other

than as expected. To support decision-making and meet long-term multi-objective
1
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targets, we propose a synthesized framework that integrates robustness analysis,
adaptiveness analysis, and pathway generation. This framework was applied to evaluate
alternative solutions for managing pluvial flood risk in central Shanghai. The results
demonstrate that relying on a single-objective decision-making approach (focused only
on robustness) can lead to biased outcomes. By examining the effectiveness period and
flexibility of candidate solutions, we assessed their potential to meet long-term flood
control targets. The analysis reveals that a combined option—incorporating increased
green areas, an improved drainage system, and a deep tunnel with a 30% runoff
absorption capacity (D+G+Tun30)—emerged as one of the most robust and adaptive
pathways, based on multi-objective trade-off analysis. This study highlights the
importance of considering effectiveness period within predefined control targets and
retaining flexibility to avoid path-dependency and minimize long-term regrets. The
proposed framework is broadly applicable and can guide adaptive responses to future

flood risks in other delta cities.

Keywords: decision making under deep uncertainty; flood risk reduction; multi-
objective trade-off; robust adaptive pathway; Shanghai
1 Introduction

Flood risk is increasing in low-lying delta cities due to rapid urbanization and
climate change (Yang et al., 2023), hindering the capacity of urban development. Delta
cities such as Shanghai (Yin et al., 2020), Ho Chi Minh City (Scussolini et al., 2017),
and London (Dottori et al., 2023) are facing the combined challenges from extreme

rainstorms, sea level rise and urbanization-induced land subsidence with regard to
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flooding risk reduction (Ward et al., 2017). It is anticipated that as a result of changing
climate patterns, the frequency and severity of extreme flood events will increase in
urban areas, thereby increasing the flood risk, particularly in rapidly developing delta
cities (Sun et al., 2021).

Delta cities are urged to examine potential climate adaptation options (Han and
Mozumder, 2021;) and test their cost-effectiveness in designed socio-economic and
climate scenarios to address rising flood risks (Lin et al., 2020). Dottori et al. (2023)
proposed strategies for European cities to deal with increasing river flood risk. However,
these strategies or options will remain effective within a fixed timeframe under the
uncertainties of climate change, land use change or political change is questionable; in
addition, how these strategies can be up-scaled to meet the future needs is rarely
discussed. This is a pressing concern for decision makers in long-term planning. In the
field of decision making under deep uncertainty (DMDU), various approaches have
emerged. Robust Decision Making (RDM) is effective at identifying strategies that
perform well across a wide range of future scenarios through vulnerability analysis and
stress-testing, but it lacks explicit guidance on how to sequence actions over time
(Lempert et al., 2013; Workman et al., 2021). Dynamic Adaptive Policy Pathway
(DAPP) by contrast, excels at planning flexible adaptation pathways to avoid lock-in,
but is relatively weaker in quantitatively evaluating robustness across uncertainties
(Haasnoot et al., 2013; Dias et al., 2020).

These DMDU approaches have been continuously improved and optimized, the

boundaries between methods have become increasingly blurred, and fusion thinking is
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progressively adopted (Haasnoot et al., 2020). As pointed out by Lempert et al. (2003),
RDM provides systematic procedures that emphasize the iterative analysis process of
scenario exploration, which can help decision-makers discover situations where options
may fail, and understand the trade-off among all the adaptation options (Lempert et al.,
2013). Kasprzyk et al. (2013) proposed the Multi-Objective Robust Decision Making
(MORDM) approach by the combination concept of both multi-objective evolutionary
optimizations and RDM (Bartholomew and Kwakkel, 2020; Yang et al., 2021).
Kwakkel et al. (2019) pointed out that the RDM approach usually pays less attention to
the dynamic planning of pathways on long-term scales of climate change. On the other
hand, DAPP, which consist of the strengths of both Adaptive Policymaking (Walker et
al., 2001) and Adaptation pathway (Haasnoot et al., 2012; Ranger et al., 2010), focuses
on generating alternative dynamic pathway to achieve flexibility and avoid lock-in
effects while it lacks quantitative robustness evaluation metrics (e.g., regret-based
criteria or satisficing thresholds) as well as a thorough vulnerability analysis to quantify
potential failures (Haasnoot et al., 2013).

Both the RDM and DAPP approaches are arguably most widely applied, and the
concept of integrating two approaches has been proposed (Kwakkel et al., 2016) and
practiced in cases (Tariq et al., 2017). However, as Ramm et al. (2018a) illustrated,
integration of RDM and DAPP has not been thoroughly implemented. Future
opportunities for a combined RDM—-DAPP approach include engaging stakeholders to
define clear adaptation objectives, establish suitable metrics, and determine risk

tolerance as these factors significantly influence the outcomes of alternative pathways
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(Ramm et al., 2018b). Robustness emphasizes the ability of a strategy to perform in an
effective way in many plausible futures. How to define robustness and assess whether
options are insensitive to deep uncertainty to ensure certain performance across
multiple plausible futures have sparked extensive discussions, especially when meeting
multi-objective targets (Herman et al., 2015; McPhail et al., 2018).

The selection of indicators for robustness depends on the priorities and preferences
by policymakers and it will substantially affect the outcomes of decisions (Giuliani and
Castelletti, 2016). For example, the decision-makers who endorse risk aversion may
under-estimate adaptation options’ performance. To overcome the single objective
problem framing, Quinn et al. (2017) optimized operations of the four largest reservoirs
under several different multi-objective problem framings in Hanoi city (Vietnam), and
highlighted the importance of formulating and evaluating alternative stakeholder
objectives.

However, an open question remains: to what extent can a traditional robustness
evaluation (especially under risk-averse assumptions) suffice for rational decision-
making, versus using a multi-objective trade-off analysis to gain a more comprehensive
view? For example, while one might assume the cost of a climate adaptation option is
normally proportional to its benefit (risk reduction), in practice, options with high
performance often entail higher costs and potentially longer construction periods
(Dottori et al., 2023). Focusing on a single-objective (whether maximizing risk
reduction or cost-benefit efficiency alone) provided limited information for long-term

planning, and can lead to lock-in or path dependency issues due to overinvestment or



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

maladaptation over time.

Adaptiveness refers to the ability of a strategy to adjust to changing conditions
(Haasnoot et al., 2013; Malekpour et al., 2020). Rather than being in opposition,
adaptiveness and robustness are complementary: incorporating flexibility can enhance
long-term robustness by avoiding overinvestment and lock-in. For example,
committing immediately to an extremely high-level (and high-cost) flood defense could
lead to path-dependency if future conditions turn out less severe than expected, whereas
a strategy that can be incrementally upgraded retains both flexibility and robust
performance over time. Despite its importance, the quantification of ‘adaptiveness’
(e.g., in terms of flexibility) remains challenging (Kind et al., 2018). Adaptation tipping
point analysis provided insight into when an options will no longer meet a specified
performance target (Haasnoot et al., 2013), and Patient Rule Induction Method (PRIM)
offers a quantitative way to identify these tipping points (Ramm et al., 2018a; 2018b).
Kirshen et al. (2015) noted that the preferred urban flood control strategy may change
once additional criteria like no-regret and flexibility are considered at critical thresholds.
Rather than choosing an ‘optimal” here-and-now solution that could become suboptimal
later, a “wait-and-see” approach (delaying or staging investments) can preserve
flexibility. In the ROA paradigm, flexibility is explicitly valued since it allows decision-
makers to defer committing to large, costly, and irreversible measures while
implementing smaller steps until more information is available (Erfani et al., 2018). In
this paper, we define ‘robustness’ as the ability of a strategy to maintain acceptable

performance across a wide range of plausible futures, and ‘adaptiveness’ as the ability

6
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to adjust or augment the strategy over time in response to how the future unfolds.
Therefore, in our framework we incorporate both the timing of adaptations (the tipping
point, termed the ‘effectiveness period’ in this paper) and the flexibility to adjust, as

key characteristics of adaptiveness that support better long-term planning.

In this study, we aim to propose a decision-making synthesized framework that
integrates both robustness and adaptiveness to formulate a robust adaptive pathway for
long-term climate adaptation planning under deep uncertainties. This framework is
intended to guide decision-makers in prioritizing and sequencing adaptation options —
a pressing challenge in urban climate action planning. We demonstrate the framework
by applying it to a delta city (Shanghai) to evaluate a range of flood adaptation
alternatives under plausible mid-21st-century scenarios (combining extreme rainfall
and deteriorating drainage capacity by the 2070s)..

The remainder of this article is organized as follows: Section 2 presents the
proposed comprehensive framework and methodology. Section 3 introduces the
background of the case study area and the preprocessing procedures. Section 4 presents
the results, where a multi-objective trade-off is applied to evaluate the potential
pathways for generating a robust adaptive pathway. This analysis combines metrics
such as the average risk reduction rate (ARRR), benefit-cost ratio (BCR), effectiveness
period, and flexibility of all options. Section 5 discusses the key findings related to
pluvial flood risk management in coastal cities, the implications of multi-objective
trade-off considering both robustness and adaptiveness, how the synthesized framework

can inform long-term adaptive policy formulation, and provides recommendations for
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future work. Finally, Section 6 concludes with a summary.

2 Methodology

2.1 Framework development

Having outlined the challenges of pluvial flood risks under deep uncertainties, we
now present a robust adaptive pathway framework for long-term planning. We built this
framework by extending the taxonomy of DMDU approaches proposed by Kwakkel et
al. (2019), which categorizes five dimensions of decision frameworks, and
incorporating recent advancements in robustness and adaptation methods. Figure 1
provides an overview of our framework’s eight sequential steps. We summarize these

steps below, then detail each component of the methodology:

Framework of Robust
Adaptive Pathways for
Long-term Flood Control

7.Multi-

% objective
- Trade-o

r

Figurel Integrated framework of robust adaptive pathways for long-term flood control

1) Research framing. Define the long-term flood management objectives and a

dynamic policy structure. Unlike a static, short-term plan, the proposed policy structure
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is dynamic and adaptive, providing a continuous pathway toward achieving long-term
flood control goals while retaining flexibility to adjust as future conditions evolve. In
our framework, introducing “adaptive” measures alongside traditional approaches

enhances overall robustness by reducing the risk of over-investment or lock-in.

2) Scenario generation. Develop a set of plausible future scenarios capturing key
uncertainties (meteorological, hydrological, socio-economic, etc.). The ranges for
uncertain factors can be derived from expert judgments, policy targets, or climate
projections (Lempert et al., 2013). We employed a Latin Hypercube Sampling approach
(Workman et al., 2021) to efficiently generate diverse futures. In our case study, for
instance, futures were defined by varying extreme rainfall intensities and drainage
capacity degradation by 2050, based on climate model outputs and local planning

assumptions..

3) Alternative generation. Identify and develop a portfolio of adaptation options.
In our study, we used stakeholder workshops and policy document analysis to formulate
viable flood control measures (both structural and non-structural). The current flood
management strategy (status quo) serves as a baseline option, and a range of new
adaptation alternatives (e.g., green infrastructure, drainage upgrades, tunnels, and their

combinations) were assembled for evaluation.

4) Model simulation. Evaluate each option (and combinations of options) under
all futures using an appropriate flood simulation model. The framework can
accommodate models of varying complexity: for instance, high-fidelity 1D/2D

hydrodynamic models (e.g., SOBEK, MIKE 1D2D; Wang et al., 2018) could be used
9
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for detailed analysis at the cost of more computation, whereas simpler conceptual
models allow faster simulation of many scenarios. In our case study, we employed a
simplified hydrological model based on the SCS-CN method to simulate runoff and
flooding, which kept computational demands manageable given the thousands of
plausible futures simulations, although the framework could integrate more complex

models if needed.

5) Robustness analysis. Assess each option’s performance across all futures using
robustness criteria, which used to be depicted as f{a,w;) meaning the performance of
option a under scenario wj. In this study, we assume all scenarios are equally likely (an
application of Laplace’s principle of insufficient reason) and compute performance
indicators for each option under each scenario. Key indicators include the average risk
reduction rate (ARRR), percentage reduction in expected damages compared to
baseline, averaged over scenarios, and the benefit cost ratio (BCR), ratio of total
avoided damage to total cost. Using these, we evaluate how “robust” each option is, for
instance, how well it performs on average and whether it consistently meets acceptable

thresholds across scenarios. .

6) Adaptiveness analysis. Determine how long each option remains effective and
how easily it can be adjusted. For each single or combined alternatives, we identify its
effectiveness period — the duration or range of conditions over which it meets the flood
risk target — by finding the point at which its performance falls below the acceptable
threshold. We used the PRIM algorithm to analyze scenario results and pinpoint these

tipping points; in doing so, we optimized PRIM’s coverage (the proportion of scenarios

10
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captured by a tipping point condition) and density (the success rate within those
scenarios) to balance generality and precision to balance generality and precision. We
refer to the conditions triggering failure as signposts, which are observable indicators
that an adaptation or policy change will soon be needed. Furthermore, we quantify each
option’s and combination’s flexibility in our framework by the number of measures it
contains. In other words, a multi-component strategy planned with, say, three measures
have a higher planned flexibility score than a single-measure strategy, since it inherently
includes more future actions. This flexibility metric reflects only the strategy’s planned
adaptability, not an absolute limit — even a one-measure strategy could be expanded

later.

7) Multi-objective trade-off. Evaluate each alternative across multiple metrics to
understand trade-offs. We consider both robustness metrics (e.g., risk reduction, benefit
cost ratio, regret-based measures) and adaptiveness metrics (effectiveness period and
flexibility) for every strategy. For comparison, all metric values are normalized and, in
our analysis, treated with equal importance. This allows us to compute an overall
performance score for each alternative. Options that achieve a good balance across all
criteria are deemed the most promising candidates for robust and adaptive planning. We
did not run a computational multi-objective optimizer which would be typical if there
were hundreds of options. Instead, we effectively enumerated and evaluated a small set

of candidate solutions manually or with simple search, given the case study’s scope.

8) Robust adaptive pathway. Formulate and select robust adaptive pathways.

Using the information on each option’s effectiveness period and flexibility, we identify

11
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sequences of actions that extend flood protection over time. We generate an adaptation
roadmap by considering how the system could transition under transient scenarios.
From the set of possible pathways, we then select a robust adaptive pathway that best
satisfies the flood control objectives in the long term based on the multi-objective
analysis from step 7. Along this pathway, we define key signposts — measurable
indicators (e.g., a threshold of rainfall intensity or drainage failure rate) that signal when
it’s time to shift to the next action. Monitoring these signposts will support future

decision-making and adjustments to the plan.

2.2 Methods of robust adaptive pathway procedures

Robustness analysis

Deciding on a robustness criterion is essentially a meta-decision problem (Herman
et al., 2015). In our context, robustness of a strategy refers to its satisfactory
performance across a range of uncertain future states.. Various metrics can be used to
quantify robustness under uncertainty including Maximax, Maximin, Mean-variance,
Starr’s domain criterion, Laplace’s principle of insufficient reason, etc. Each metric
embodies a different risk preference, so the choice of metric can influence which option
appears most favorable (Giuliani and Castelletti, 2016). In this study, we adopted
neutral risk aversion of Laplace’s principle of insufficient reason as one robustness
measure: in the absence of known scenario probabilities, we assign equal weight to all
scenarios and identify solutions that perform best on average.. The performance of

option or combination a is depicted as Equation (1).
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a” = arg max (ﬁ jz;f(a,wj))

acA
(1)

where a* denotes the optimal option or combination, 4 is the set of all options or combinations

(listed in table 2), N is the total number of futures. And f{a,w;) is the performance of option or

combination a under future w;, which represents the expected flood risk associated with adaptation

option or combination a under future w; , as generated from the flood-damage simulation model.

This risk value forms the basis for evaluating robustness through indicators such as the ARRR.

In many robust decision-making frameworks, criteria related to satisficing and
regret are used as performance measures (Herman et al., 2015). Regret is broadly the
opportunity loss incurred by not choosing the optimal action in a given scenario —
essentially, how much worse a strategy performs compared to the best possible outcome
in that scenario. Satisfaction can be viewed as a measure of how well a strategy meets
a predefined target (combining effectiveness and efficiency). In our evaluation, we
compute these metrics relative to a baseline scenario or option. Equation (2) illustrates

how we calculate regret-based performance for the alternatives.

_ 1N |f(aw))—f(aow))|
b = NZj:l f(aowj)

2)
Where P; is the performance value of average risk reduction rate (ARRR) of
alternative options or combinations in all plausible futures N, f (a, wj) represents the
performance value of pluvial flood risk of option a in future w;, and f (ao, Wj) is the

performance value of pluvial flood risk of the baseline option a, in future w;.

Decision-makers also examine whether any given strategy has vulnerable
scenarios — situations in which it fails to meet minimum acceptable performance. A
threshold can be set to define what constitutes intolerable performance. Metrics like the

domain criterion quantify the fraction of the uncertainty space (subsets of all futures)

13
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in which a solution meets all performance requirements. Such considerations align with
policy risk indicators often used in practice (e.g., minimum safety standards or
environmental protection criteria) to ensure options avoid unacceptable outcomes.
Based on the elicitation of local requirements, we define the P;" as the performance of
average risk reduction rate(ARRR) which satisfies the minimum threshold of the given

flood control target (F,, Fy=0.7 in this case), as depicted in Equation (3).

« 1 |F(aw))=f(aow;)]
P =23 Faowy) = Fo 3)

Where P; “represents the performance value of ARRR of the option or combination
a in subsets s of all plausible futures N that meets the given flood control target F,.
PRIM is applied to identify clusters of successful cases by searching across the full set
of futures N for each option or combination. Specifically, for each option or
combination a, we select the subset of future s that leads to the most successful outcome

by balancing coverage and density with given flood control target.

Internationally, the net present value of benefits (PVB) and the net present value of
costs (PVC) are commonly used to represent benefits and costs, respectively (Liao et
al., 2014). In this study, PVB is selected as the pluvial flood risk reduction rate (RRR)
before and after the implementation of the options, rather than as the pluvial flood risk
reduction value. It is important to note that the goal of this study is not to calculate the
direct risk of extreme pluvial flooding in the future, as the absolute value of the risk
would be too large for meaningful comparison. Therefore, the benefit-cost ratio (BCR)

is presented simply as the ratio of PVB to PVC.
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Adaptiveness analysis

PRIM is an interactive statistical clustering algorithm that generates a series of
subspaces by peeling away layers of the uncertainty space, where the coverage and
density of points of interest in each box are greater than in the surrounding space
(Matrosov, 2013). As a visualized tool for exploratory analysis, PRIM is widely used in
many works to investigate either key factors causing system failure or vulnerable
scenarios that might cause alternative options' failure. Parameters of coverage, density,
and interpretability characterize the subspaces. These three metrics are usually
correlated, with increasing density resulting in decreasing coverage and interpretability.
It turns out that an analyst needs to trade-off in selecting the potential coverage, density,
and interpretability to achieve the best combination. The subspaces describe the
conditions beyond which coastal inundation impacts are unacceptable signifying
adaptation tipping points are reached (Ramm et al., 2018a). Key factors along with the
tipping point of options are evaluated in associated timeframes which need not be exact.
Identifying an indicative period at which conditions describing adaptation tipping
points indicate a effectiveness period (or use-by year) (Haasnoot et al., 2013). The
results of PRIM can assist decision-makers in identifying sensitive ranges of uncertain
factors or combinations, and factors with little influence can be safely disregarded.

Following a decision initially, flexibility in decision theory is related to the
remaining choices available in the following period. The larger this set, the more
flexibility the decision maker retains. This idea can be generalized to staged choices

over multiple periods. For example, Erfani et al. (2018) proved that flexibility is

15
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valuable in providing decision nodes in multistage scenarios (planning periods in every
5 years) for least-cost water supply intervention scheduling. One way of deriving the
value of flexibility is thus by comparing costs and benefits of a flexible investment
strategy with those of a less flexible, that is, a more robust strategy (Kind et al., 2018).
However, flexibility is not treated as delayed option value as other ROA work
calculated, instead, we consider the convertibility of options that is still in line with the
idea of wait-and-see yet is more straight-forward. It is important to note that a strategy
initially implemented as a single measure does not preclude future augmentation if
conditions worsen. In our framework, however, such augmentations were not pre-
planned in single-measure scenarios. Therefore, our ‘flexibility’ metric should be
interpreted as the degree of planned adaptability, rather than an absolute limit on a

strategy’s potential to adapt.

Multi-objective trade-off

The cost and benefit of investment in adaption options may lead to a static
decision-making perspective. Therefore, an important question was raised for robust
decision-making of how to avoid failure scenarios regarding factors including risk
reduction rates over time, cost of option, and economic benefit ratio. On this basis,
making robust decisions needs to include other factors beyond cost and benefit, such as
effectiveness period and flexibility, for a comprehensive evaluation in the long-term
(Erfani et al. 2018)

The optimization of options’ combinations can be identified via the trade-off

process by Equation (4).
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“
Where 1 € L is a candidate adaptation pathway from the set of feasible pathways
L; yI(!): Flexibility — number of successful alternatives reachable from pathway I;
v2(l): Effectiveness period — duration before performance drops below threshold; y3(1):
Benefit-Cost Ratio (BCR) — economic efficiency of pathway 1; y4(l): Average Risk

Reduction Rate (ARRR) — robustness of flood risk performance.
Robust adaptive pathway

Adaption tipping points (effectiveness periods) are central to adaptation pathways,
the conditions under which an action no longer meets the specified objectives. The
timing of the adaptation points for a given action, its effectiveness period, is scenario
dependent. The DAPP, manually drawn based on model results or expert judgment,
presents an overview of relevant pathways (Haasnoot et al., 2020). In this study, we
first examined the effectiveness period of alternative options by PRIM analysis to
identify acceptably robust adaptation pathway for future flood control. We then
identified the combination of candidate pathways in consideration of both effectiveness
period and flexibility, ensuring the adaptive solutions in incremental stages allow for
maintaining flood control levels before committing to larger schemes. Roadmap of
candidate’s pathways are generated during this procedure. Lastly, the preferred robust

pathway is determined by a trade-off analysis of all the criteria.
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3 Case study

3.1 Background

Shanghai, with a domain of 6,340 km?, provides residences to 24.9 million
population with a built-up area of 1237.9km? in 2021. Shanghai has been perhaps the
most important economic and financial center in China, and it now aspires to be one of
the world's most important economic, financial, shipping, and trade centers (Shanghai
Statistic Yearbook, 2021). Shanghai is surrounded by water on three sides: the East
China Sea to the east, the Yangtze River Estuary to the north, and Hangzhou Bay to the
south. In addition, the Huangpu River, a Yangtze River tributary, flows through the heart
of Shanghai. The average yearly precipitation is approximately 1400mm in recent 10
years, with 63% concentrated during the flooding season from May to September
(Shanghai Climate Change Research Center, 2022). As a result, the most catastrophic
hazard in Shanghai has been floods produced by torrential rainfall, which annually
disrupts transportation and other social activities, causes substantial economic losses,

and threatens urban safety.

Shanghai has the lowest elevation (with averagely 4m above m.s.l.) and large
numbers of old-lane residential buildings in central city, which have fewer floors
compared to other districts that is vulnerable to the extreme pluvial flood events see
Figure 2). The spatial distribution of rainfall will continue to concentrate in urban areas,
and the increasing likelihood of extreme precipitation (Liang and Ding, 2017),

combined with the trends of relative sea-level, will cause stakeholders, includes



389  residents, policymakers, and scientists etc., to be concerned about the rising flooding

390  risk in delta cities of Shanghai (Du et al., 2020).
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392 Figure 2 Case area, administrative, and solution district (blue shade) in center Shanghai,
393 including spatial distribution of building footprints indicating the number of stories (gray shades),
394 the base map was provided by Esri, using ArcGIS Online Services.
395 3.2 Research Framing
396 Based on the proposed framework, the dimensions, components, and metrics of

397  this study are organized as shown in Table 1. To ensure urban safety, this study defines
398  an explicit flood control objective of achieving a 70% average risk reduction rate, in
399  alignment with the Shanghai Flood Control and Drainage Plan (2020-2035) (Shanghai

400  Municipal Water Authority, 2020).
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Table 1 Dimensions of the research framework

Dimension Components Metrics
Research Alternative options to generate robust and adaptive Definition of flood
framing pathway control objective
Scenarios Increased . . Latin hypercube
generation cainfall Rain island effect Drainage decrease sampling (LHS)

Deep tunnel with
Alternatives Drainage Increase of green 30%, 50%, or Predefined by local
generation increased area 70% of runoff flood control plan
absorption
Model . Geospatial . .
simulation Hydrology Flood risk statistics Grid aggregation
Robustness Performance Measure Cost Benefit Laplace and Domain
analysis (ARRR) (Life cycle cost) criterion
Adaptiveness ot Effectiveness Flexibility PRIM
analysis period
Multi-
objective Robustness Adaptiveness Metric evaluation
Trade-off
ROqut Candidate pathway identification, roadmap generation, . .
adaptive . . Transition scenarios
and monitoring of signposts
pathway

The robustness analysis serves as the foundation of our methodology, ensuring

that the proposed solutions can withstand future uncertainties. Once robustness is

assessed, we proceed to the adaptiveness analysis, which allows us to account for

flexibility in response to unforeseen challenges. We conduct a trade-off analysis in

terms of robustness and adaptiveness was of particular significance to providing

iterative stress tests over many plausible scenarios using robustness metrics and

identifying effectiveness periods and flexibility to generate alternative pathways.

Following the structure of robust decision-making pathway framework, Figure 3

illustrates the entire procedures for long-term flood control planning in the Shanghai

case study.
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412
413 Figure 3 Framework of robust adaptive decision-making pathway, which incorporates the
414 robustness, adaptiveness, multi-objective trade-off, and pathway generation (blue boxes).

415 3.3 Scenario generation

416 Precipitation is predicted very likely to increase in the Yangtze River Basin in the

417  2l1st century (Hui et al., 2018), and the frequency and intensity of extreme rainstorm
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events may continue to increase (uncertain factor of the a, future rainfall assumed to
increase from 7% to 18%). Shanghai's spatial rainfall patterns reveal a significant "rain
island effect" between urban centers and suburbs (Liang and Ding, 2017) (uncertain
factor of the [, assumed to increase from 10% to 20% in central region (Xujiahui and
Pudong rain gauges), decrease from -0.076% to -0.038% (other 9 rain gauges in
Shanghai)). In addition, land subsidence has been a persistent issue due to the
groundwater exploitation and construction of high-rise buildings (Yang et al., 2020).
By 2050, it is projected that the current river embankment and drainage systems in
Shanghai will experience a 20-30% reduction in capacity due to a likely relative rise in
sea level of 50 cm (compared to the year of 2010), caused by both sea level rise and
land subsidence (Wang et al., 2018). The uncertain factor of the decrease of drainage
capacity (y, assumed to decrease from 0 to 50% due to the anthropogenic land
subsidence and sea level rise) is designed to be the degradation effect of restraining the
water from the urban drainage system flowing to the river system due to the high river
water level caused by the continually rising sea level, land subsidence, and other

degradation factors.

This study focused on a record-breaking convective rainfall that occurred on
September 13, 2013 and had an intensity record of 140.7mm within 3 hour (at 17-19h).
The variation interval of each uncertainty factors was clarified, and Latin Hyper Cube
Sampling (LHS) was used to construct 100 plausible futures based on the historic "913"

extreme rainfall event in 2013 (Supplementary materials Text 1).
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3.4 Alternative generation

It is acknowledged that the current Shanghai flood control infrastructure is
insufficient to protect the city from long-term inundation risk (Shanghai Municipal
Water Authority, 2020). Three options, drainage improvement, increase of green area,
and construction of deep tunnel, are pre-defined with stakeholders of experts and
decision-makers following the Shanghai Flood Control and Drainage Plan (2020-2035).
The solution district locates in the core business district (CBD) of Shanghai and is
highlighted in Figure 2. We defined the existing structure of flood control measures as
the baseline and evaluated alternative measures’ performance verse the baseline control

level in the flood simulation model (Table S4).

3.5 Model simulation

Simulations of extreme pluvial flood inundation under climate change scenarios
are carried out using the Shanghai Urban Inundation Model (SUIM) (Supplementary
materials Text 2). It was created to couple multiple simulation processes, which consists
of the SCS-CN hydrological model, statistical analysis of flooding results, risk
assessment, and assessment of adaptation measures. Appropriate socioeconomic
indicators were selected to characterize the exposure of the elements at risk and the
vulnerability curve to evaluate the flood risk in all plausible scenarios (Supplementary
materials Text 3). We then coupled the hydrological module and risk assessment module
to assess the future risk (Supplementary materials Text 3). Three climate adaptation
options are quantitatively characterized in the risk assessment system. The benefit-cost

ratio (BCR) of all options is calculated according to the performances of the risk
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reduction rate over the life cycle cost (Supplementary materials Text 4).

4 Results

4.1 Robustness analysis

This section presents the performance evaluation results, including average risk
reduction rate (ARRR) and Benefit-cost ratio (BCR), to reflect the robustness of
potential climate adaptation options (Supplementary materials Text 4). BCR was
defined as the average risk reduction rate (ARRR) per unit cost (Equation S4 in
Supplementary materials Text 4) based on the robustness metrics of Laplace’s Principal
of Insufficient Reason. Specifically, the benefit is the reduction in expected flood losses
compared to the no-action scenario (Equation 3), while the cost refers to the total
implementation cost of each adaptation option (Equation S5 in Supplementary
materials Text 4). We adopt Laplace’s principle of insufficient reason, assuming all
scenarios are equally likely when calculating average outcomes across scenarios. Given
that drainage capacity reduction (y) is the main factor affecting the solutions’
performance, thus the study selects y as the only explanatory indicator to explore the

failure scenario of options based on the PRIM method.

As depicted in Table 2, the ARRR is calculated (Equation 2) to analyze the
effectiveness of (the combination of) options. The average yearly cost of single options,
which includes increasing drainage capacity (Dr), expanding green areas (GA), and
constructing a deep tunnel with 30% runoff absorption (Tun30), is at a comparative

level, ranging from 39 to 41 million USD per year. Their performance is relatively
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unsatisfactory (the ARRR is less than 0.39.) However, the ARRR for the combined
option (D+G), drainage improvement and public green area, is higher (0.62) than the
sum of two single options (0.51), indicating that the composite option will be more
effective of reducing flood risk. Furthermore, it demonstrates that the combined options
(i.e., D+G and D+G+T30) are satisfactory in terms of ARRR performance but not
economically attractive due to their relatively higher costs. It is noted that if an option
defers a major investment (like the Tun30) to later years, in reality its present value cost
would be lower with discounting, potentially making the strategy more economically

attractive than our simple BCR suggests.

140 7,000
120 L [ Yearly cost ——Total cost 1 6.000
2 100 | 1 5000 2
= 80 t 4 4,000
Z 60 | 4 3000 &
S 8
= . N~
= 40 4 2,000 =
3 =

et
20 4 1,000
0 0

D1 GA Tun30 D+G Tun50 D+G+Tun30  Tun70

Figure 4 Yearly cost and total cost of alternative options

While two single-option involving deep tunnel (namely Tun50, Tun70) seem very

attractive in terms of both ARRR and BCR.

Table 2 The ratio of the benefit-cost of each adaptation options

ARRR (without Cost (million Benefit-cost
Option control target, %) USD / year) ratio (%)
Dr 0.25 39 0.09
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GA 0.26 37 0.10

Tun30 0.39 41 0.14
D+G 0.62 76 0.12
Tun50 0.74 68 0.16
D+G+Tun30 0.85 117 0.10
Tun70 0.87 95 0.13

4.2 Adaptiveness analysis

Scenario discovery validates the decrease of drainage capacity is the most critical
uncertainty in defining the risk reduction rate of performance objective. The failure
scenarios are identified when the flood control target Fp=0.7 is not met. We further
interpret failure scenarios by selecting subspace of each alternative options under flood
control target using PRIM algorithm to optimize the combined value of coverage and
density. Table 3 summarizes these metrics, where coverage and density are derived from
PRIM-identified failure boxes, and ARRR is calculated as the average performance
within those clusters. The valid period is defined by the point (characterized by y) when
a single option or combination no longer meets the performance target.

According to the results in Table 3, it was found that within the 70% risk reduction
control target (Equation 3), the single options of Dr and GA performed less favorably
(relatively smaller ARRR) and can quickly fail to meet the risk reduction target (with
no larger than 0.1 of y). Tun30 and D+R are very comparative since they preform very
closely (similar results on ARRR and y) but still not attractive. While Tun50 seems very
attractive in terms of ARRR (0.89), however, it does not possess higher effectiveness

period (y) than both D+G+Tun30 and Tun 70. Surprisingly, both D+G+Tun30 and
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Tun70 can function well in an effective way for a longer time. So far, D+G+Tun30 and
Tun70 have proven to be highly competitive in terms of cost-effectiveness and

effectiveness period over time.

Table 3 ARRR and coverage and density of success scenarios in each option combinations

under 70% risk reduction control standard

Decreased drainage

ARRR (with capacity (y) (effectiveness

Option control target, %) Coverage Density period)

GA 0.59 1 0.22 0.04

Dr 0.62 1 0.20 0.07

Tun30 0.73 1 0.75 0.1

D+G 0.74 0.9 0.82 0.11

Tun50 0.89 0.95 0.98 0.29
D+G+Tun30 0.86 0.99 0.98 0.48

Tun70 0.87 1 1 0.5

We define flexibility as the number of transitions by enumerating overall option
combinations regarding adaptive transferable pathways from the original option
(current flood control infrastructure) to the destination options (e.g., D+G+Tun30 and
Tun70, Figure 6). For example, the D+G+Tun30 comprises three single options,
allowing it to begin with any of the three and delay further action until a tipping point
approaches, giving it a convertibility score of three (Table S6). Therefore, each single

option has a value of one for convertibility.

4.3 Multi-objective trade-off

The robustness-focused analysis (e.g., looking only at ARRR and BCR) would
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rank options like Tun50 and Tun70 as the top performers, whereas the adaptiveness-
focused analysis (looking at effectiveness period and flexibility) made D+G+Tun30 the
most appealing. These differing outcomes demonstrate why it is crucial to evaluate
multiple criteria together. Only by considering all metrics simultaneously (a true multi-
objective trade-off) can we identify strategies that strike an appropriate balance for
long-term flood management. Multi-objectives of (the combination of) options consider
all four metrics, including BCR, and performance of the risk reduction control criteria
(ARRR>70%), effectiveness period (y), and the flexibility. We solved the multi-
objective problem using normalized and equally weighted metrics (Equation 4). Figure
5 depicts the results of BCR, ARRR in control criteria, effectiveness period, and
flexibility of each option's combination. The higher the normalized rating, the greater
the payoff. The outcome demonstrates that both GA and Dr perform poorly, whereas
Tun30 and D+G are not robust enough compared to Tun 50, D+G+Tun30, and Tun70.
It needs to be highlighted that Tun 50, D+G+Tun30, and Tun70 possess high priority.
We found that the D+G+Tun30 pathway achieved a well-balanced performance across
risk reduction, cost-effectiveness, and our flexibility metric (Table S7). In our initial
analysis, this made D+G+Tun30 appear as the most promising option overall. However,
as discussed, this planned flexibility advantage does not necessarily mean a single-
component strategy cannot be adapted later. It is important to note that this conclusion
is contingent on including the flexibility metric. If flexibility were defined differently
or given less weight, another option — for example, the single large tunnel Tun70 —

could emerge as preferable for long-term risk control.
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Figure 5 Multi-objective trade-off of alternative options with normalized value of robustness

metrics (the preference of priority is accepted from low(bottom) to high(top)).

4.4 Robust adaptive pathway

Pathway identification

The candidate pathway was identified by enumerating the possible combinations
of options. In this study, we found two potential pathways including from Tun30 to
Tun70, and from Dr or GA to D+G+Tun30. It can be observed from Figure 6 that when
y increases, the performance of options of Dr (or GA, vice versa) steadily diminishes
until the risk control target are not satisfied.

The drainage capacity, affected by the compound event of land subsidence, sea
level rise, and storm surge, is deemed to be undermined (which is reflected by drainage
capacity reduction rate y) over time. Figure 6 illustrates the concept of an option

combination's effectiveness period using Dr+GA+Tun30 as an example. ARRR to
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begin with Dr is 0.62, with an increase in vy, Dr fails (y=0.07), and ARRR will decrease
further if no additional options are taken. The addition of GA can increase the ARRR
to 0.74 before Dr and D+G fail (y=0.11). The ARRR will continue to decrease if options
are not strengthened. Before D+G completely fails, incorporating Tun30 can increase
the ARRR to 0.86; as y increases, D+G+Tun30 fails at y=0.48. To ensure the adaptive
robustness of the combination of options, decision-makers can increase the service
coverage area and rainwater absorption capacity of the deep tunnel project in the core
area prior to the total failure of D+G+ Tun30. In other words, the transition from Tun30
to Tun50 and even Tun70, along with the combination of options, will be stable over
the long-term time horizon. It is noted that the slight rise in performance after GA and
Tun30 installation reflects a short ramp-up period in our model, during which newly
implemented measures gradually reach full effectiveness, then performance begins to
decline as expected under continued climate-induced stressors.

The differing curvature of the performance decline is due to the interaction of
measures. For the Dr-only strategy, once implemented, its risk reduction gradually
diminishes at an accelerating rate as climate stressors intensify — producing a concave-
down curve (initially gentle slope, steepening later). In contrast, the strategies with
multiple measures (D+G and D+G+Tun30) show a more linear decline. This is because
when drainage alone begins to lose effectiveness, the next measure (GA, and later
Tun30) either has just been implemented or is concurrently mitigating risk, effectively
offsetting some of the non-linear drop. The combined result is a more steady

(approximately linear) decrease in performance over time, as the measures’ effects
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complement each other. We normalized time as y = t/T (with T=50 years, the simulation

period), so y corresponds to the year 2070.

A Time horizon (Year)
2020 2035 2050 2070

| D+G+Tun30 | |

777777777777

| Tumsoco)

100%

70%

Risk reduction rate(%)

0 0.04 0.11 0.5

Reduction of drainage capacity (Y)

Figure 6 Flexible pathway of combination options of drainage improvement (Dr), green
area increment (GA), and deep tunnel with 30% absorption (Tun30), representing the risk
reduction rate undermines with the reduction of drainage capacity. An example of
Dr+GA+Tun30. y is a dimensionless time, where y =1 corresponds to Year 2070, the end of

our planning horizon
Pathway generation

We comprehensively evaluated the candidate pathways by considering
performances, BCR, effectiveness period, and flexibility. The time frame lacks an
absolute time reference but still offers a relative tracking of the rate at which relative
sea levels are rising.

Figure 7 depicts two robust transition pathways: D+G to D+G+Tun30 and Tun30
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to either Tun50 or Tun70. The two pathways D+G+Tun30 and Tun30 to Tun70, provide
adaptive short and long-term pathway schemes from a flexibility standpoint. The short-
term options are used as transitional schemes, and new options can be added before
their failure, i.e., pathway transition, to maintain the risk control objectives. In addition,
the two schemes can complement each other and incorporate new options before the
system's long-term robustness is compromised. Additionally, D+G+Tun30 and Tun70
leave room for upgrading to the costlier and more durable D+G+Tun70 in the long run
when y exceeds 0.5 (e.g., sea level or land subsidence exceeds observing increase
speed).

We observed that Tun70 offered the highest robustness in terms of ARRR and the
longest effectiveness period among all single options.; However, its lack of initial
flexibility — requiring a large up-front investment in gray infrastructure — could lead to
path dependency if future conditions turn out to be mild. In contrast, strategies that start
with smaller measures (like Dr or GA) and can add on bigger projects later avoid that
risk of over-commitment. This underscores the classic tension in planning: a strategy
like Tun70 1s robust but inflexible, whereas a phased approach is flexible but may
initially be less robust. Our framework attempts to balance these aspects by evaluating
both. In conclusion, A promising robust adaptive pathway should initially begin with
GA and Dr, followed by a combination of D+G. Ultimately as time goes by with
gradually undermined drainage capacity, it should incorporate Tun30 with the

flexibility to expand to Tun70.
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Figure 7 Generation of robust adaptive pathways with two potential pathways from either Dr or GA
to D+G+Tun30, and from Tun30 to Tun70 as the reduction of drainage capacity over time (x-axis).

The options are sequenced in an upward relative higher BCR (y-axis, also see in Table 2).

5 Discussion

5.1 Key findings
Applying this framework to the case of the reoccurrence in the 2050s (of the
extreme rainfall events on 13 September 2013) in Shanghai reveals informative findings
to urban planners and other stakeholders. First, the performance of climate adaptation
options (for addressing pluvial flood risk) decreases as the drainage capacity reduction
rate (y) increases (Table 3). This result is indirectly supported by events in June 2015

and July 2021, which caused severe inundation in central Shanghai for days because
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the high water levels of rivers in the region prevented rainwater from being pumped or
drained from the drainage system into the river network. This finding also suggests that
drainage capacity is a key determining factor for the performance of options in other
delta cities which may rely on discharge to the rivers (e.g., Guangzhou, Ho Chi Minh
City, London, etc.) (Hu et al., 2019). Urban planners in those cities need to consider
scenarios of high-water levels in the river with a joint of extreme storm surge under
typhoon takes place in a high astronomical tide period at estuary. Such an event would
significantly undermine the drainage capacity thus leading to severe flooding inside the
city and bringing potential disastrous impacts (e.g. Zhou et al., 2019).

Second, as the drainage capacity decreases(y), effectiveness periods of different
option combinations varied significantly, showing a discrete distribution, which ranged
from 0.04~0.5 with a corresponding ARRR ranging from 0.59~0.89 (Table 3).
Moreover, the most cost-effective solution may not always offer the longest
effectiveness period within an explicit flood control target (e.g. 70% risk reduction as a
target in our case study), and therefore cannot be considered satisfactory (Figure 5). The
findings highlight the importance of the discussion regarding the long-term robustness
of solutions which has been overseen in many flood- risk control works in delta
megacities. It is also further implying that if there is no consideration of the flood risk
reduction target, discussions about a robust decision plan with stakeholders is
meaningless. This urges to pay great attention to be proactive by strengthening the
dynamic pathway and closely monitoring the decrease of the drainage capacity ahead

of the pace of relative sea level rising (Figure 6).
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5.2 Robustness and adaptiveness trade-off

The comparison in Section 5.1 brings up a vital decision-making issue on the trade-
offs between the benefit and cost of alternative options. In general, options with better
performance required higher costs, which was also proved in any distinctive option in
Table 2 and Table S6. It is also demonstrated that the combination of alternative options
such as D+G showed a better performance than the single option of Dr and GA at the
same cost. However, the cost of an option is not strictly proportional to its benefit (risk
reduction rate) (Figure 4). For instance, Tun 50 possesses better performance in
reducing inundation risks associated with the relatively low yearly economic cost
compared to D+G. Because it is difficult to measure the pros and cons of the costly
solution to maintain a higher protection standard and economical solution to possess an
acceptable performance (cost-effectiveness), planners typically underestimate both
influences by a large margin.

In recognition of this limitation, it can be realized that single-objective targets e.g.,
flood control performance (ARRR), or financial control (BCR) may lead to biased
decisions or maladaptation for the long-term horizon. For example, Table 2 shows that
Tun50 has the highest cost-effectiveness (0.16), while the D+G+Tun30 is positioned at
an average level, both of which performed well in reducing flood risk. In sharp contrast,
the adaptiveness analysis shows that the D+G+Tun30 behaved significantly better
during a reasonable period than Tun 50, which is a more flexible and adaptive option
for long-term planning (Figure 7). Therefore, it tends to a biased decision if the decision

maker only focus on economic return (BCR). Besides, it illuminates the decision maker

35



676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

that priorities on grey infrastructure (e.g., Tun 50) at the starting point yields good
performance (74% of ARRR) but may lead to over-investment and path dependency.
Moreover, there is concern that the effectiveness period could be shortened if decision-
makers opt for the most cost-effective solution (Tun50) instead of choosing a more
expensive but very effective combination (D+G+Tun30). This example enriches the
literature on “no regret” planning, which should be robust, adaptive, and financially
efficient at the starting point for decision-makers, keep options open (flexible), and
avoid lock-ins. To minimize regret in the near to long future, the adaptation solutions
should pay great attention to both robustness and adaptiveness, which also illuminates
the importance of multi-objective trade-off as mentioned in previous work (Kirshen et
al., 2015; Ramm et al., 2018a).

Furthermore, we directly compare the top contenders Tun70 and D+G+Tun30.
Notably, Tun70 actually achieved higher values than D+G+Tun30 on several individual
metrics — it provided the greatest average risk reduction and a superior cost-benefit ratio,
and it had the longest effectiveness period among single strategies. The multi-
component D+G+Tun30 pathway, on the other hand, had a moderate cost-benetfit ratio
and slightly lower risk reduction, but scored much higher on planned flexibility. This
illustrates a trade-off: if one prioritizes near-term performance and economic efficiency,
Tun70 is very attractive; if one prioritizes incorporating flexibility to adapt over time,
D+G+Tun30 gains the edge. Our framework’s value lies in revealing this trade-off

clearly.
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5.3 Optimization of the synthesis framework

Although there is a myriad of research running flood risk simulations and assessing
the BCR of solutions in Shanghai and other megacities in the coastal areas, seldom of
which considers the entire process in making the applicable decision (Du et al., 2020;
Sun et al., 2021; Ward et al., 2017). In filling up this niche, this study has proposed a
synthesized planning-supporting framework that is capable of considering the entire
cascade of procedures from the uncertainties of future urban rainfall pattern, to the
sampling of future scenarios, to the hydrological modeling, and to flood risk assessment
for the robustness and adaptiveness of alternative options, allowing for making robust
and adaptive pathways (refer to Figure 1).

Compared to other DMDU theories, the synthesized framework asks for finding
proxies for solutions’ performances in reducing risk, decision-making in terms of cost
and benefit, and identifying priorities and adaptive pathways from option combinations
in the multi-objective fusion process. The conversations established a fast modeling-
interpreting-remodeling feedback mechanism between the analyst and decision maker,
which helps reduce the complexities and uncertainties encountered in ROA or other
related work (e.g. Kind et al., 2018), and defining explicit objective (Raso et al., 2019).
Upon that, incorporating the multi-dimensions of constraints allows for rapidly
minimizing disruption factors, balancing alternative solutions' interpretability, coverage,
and density, and visualizing the applicable pathway.

One advantage of our decision-support tool is that it can run comprehensive

evaluations for thousands of future—option combinations within a few days, using only
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moderate amounts of input data. This computational efficiency is largely due to our use
of a simplified model (SCS-CN) and a relatively small case-study area. However, this
highlights a trade-off: using a more detailed 1D-2D model or expanding to a larger
region would substantially increase computational time and data requirements. In other
words, the ‘moderate’ resource demand we experienced may not hold in cases that
require high-resolution modeling. This limitation suggests that careful model selection
(or the use of techniques like emulators and parallel computing) is important when
applying the framework to bigger or more complex systems.

Another limitation is our risk assessment scope: we considered direct flood losses
(inundation damage) but did not model disruptions to transportation or other urban
functions, nor wider cascading effects across sectors. Similarly, our cost-benefit
analysis focused mainly on direct financial costs; we did not fully quantify co-benefits
like ecosystem services or social benefits of adaptation options, which means our
economic evaluation was somewhat narrow. Additionally, our cost estimates didn’t
account for certain practical factors such as human resource efforts (e.g., time and
coordination required for implementation) or land availability constraints (for instance,
the feasibility of allocating sufficient space for new green infrastructure in Shanghai).
These simplifications should be kept in mind when interpreting the results. Future work
could explore dynamic adaptation difference of “on-the-fly” upgrades versus planned
pathways to provide a more direct assessment of flexibility in the real-world sense.

In addition, further work needs to discuss the determination the weights of multi-

objectives when conducting trade-off analysis. The balance between robustness and
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adaptiveness may vary depending on whether the priority is for immediate, high-impact
actions or long-term sustainability. The weight assigned to each factor should reflect
the specific goals. Besides, scenario discovery was implemented to find the
combination option rather than an optimization algorithm to search for the best optimal
combinations in many alternative options. We demonstrated a case study with a
manageable set of options so that solving the optimization problem was outside the
scope. Future work may apply evolutionary optimization algorithms to solve complex
problems of multi-objective targets if there were hundreds of possible interventions or
sequences.
6 Conclusion

This work provides a novel decision-making framework for flood mitigation in
coastal megacities by synthesizing and building upon established DMDU methods
(such as RDM and DAPP). Rather than introducing a new theory, our contribution lies
in the innovative combination and application of these methods to address the joint
challenges of robustness and adaptiveness in flood risk management. We demonstrated
this framework in a case study, evaluating flood management strategies across multiple
criteria — including performance, cost-effectiveness, effectiveness period, and
flexibility —under many plausible futures. The results showed that traditional evaluation
using only short-term effectiveness or cost-efficiency can be insufficient for long-term
planning. Integrating the additional metrics of effectiveness period and flexibility
provides more nuanced insights, helping to develop adaptive pathways that remain

effective as conditions change.. Our case study also illustrated the trade-offs between
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robustness and adaptiveness. For instance, a high-robustness single option (Tun70)
performed very well in meeting flood control targets and had a strong BCR, but it lacked
flexibility to adjust if future conditions turned out less severe than anticipated. On the
other hand, a multi-component strategy (D+G+Tun30) achieved a high overall score
when both robustness and adaptiveness were considered, due to its balance of risk
reduction and planned flexibility. This comparison highlights that the “optimal”
strategy can change depending on which criteria decision-makers prioritize. In practice,
our robust adaptive pathways approach allows stakeholders to see how emphasizing or
de-emphasizing flexibility (or other metrics) would lead to different preferred strategies,
thus supporting more informed decision-making.

Overall, this work provides a novel framework to inform Shanghai’s long-term
flood adaptation planning under climate change. Beyond this case, the approach
contributes a theoretical foundation and practical insights for other coastal megacities
facing similar challenges, helping decision-makers integrate robustness and
adaptiveness into their climate adaptation strategies to better cope with deep uncertainty

in extreme flood risks..
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