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Abstract: 21 

Delta cities are increasingly vulnerable to flood risks due to the uncertainties 22 

surrounding climate change and socioeconomic development. Decision-makers face 23 

significant challenges in determining whether to invest. Adaptation solutions should 24 

consider not only to robustness but also to adaptiveness in case the future unfolds other 25 

than as expected. To support decision-making and meet long-term multi-objective 26 
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targets, we propose a synthesized framework that integrates robustness analysis, 27 

adaptiveness analysis, and pathway generation. This framework was applied to evaluate 28 

alternative solutions for managing pluvial flood risk in central Shanghai. The results 29 

demonstrate that relying on a single-objective decision-making approach (focused only 30 

on robustness) can lead to biased  outcomes. By examining the effectiveness period and 31 

flexibility of candidate solutions, we assessed their potential to meet long-term flood 32 

control targets. The analysis reveals that a combined option—incorporating increased 33 

green areas, an improved drainage system, and a deep tunnel with a 30% runoff 34 

absorption capacity (D+G+Tun30)—emerged as one of the most robust and adaptive 35 

pathways, based on multi-objective trade-off analysis. This study highlights the 36 

importance of considering effectiveness period  within predefined control targets and 37 

retaining flexibility to avoid path-dependency and minimize long-term regrets. The 38 

proposed framework is broadly applicable and can  guide adaptive responses to future 39 

flood risks in other delta cities. 40 

Keywords: decision making under deep uncertainty; flood risk reduction; multi-41 

objective trade-off; robust adaptive pathway; Shanghai 42 

1 Introduction 43 

Flood risk is increasing in low-lying delta cities due to rapid urbanization and 44 

climate change (Yang et al., 2023), hindering the capacity of urban development. Delta 45 

cities such as Shanghai (Yin et al., 2020), Ho Chi Minh City (Scussolini et al., 2017), 46 

and London (Dottori et al., 2023) are facing the combined challenges from extreme 47 

rainstorms, sea level rise and urbanization-induced land subsidence with regard to 48 
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flooding risk reduction (Ward et al., 2017). It is anticipated that as a result of changing 49 

climate patterns, the frequency and severity of extreme flood events will increase in 50 

urban areas, thereby increasing the flood risk, particularly in rapidly developing delta 51 

cities (Sun et al., 2021).  52 

Delta cities are urged to examine potential climate adaptation options (Han and 53 

Mozumder, 2021;) and test their cost-effectiveness in designed socio-economic and 54 

climate scenarios to address rising flood risks (Lin et al., 2020).  Dottori et al. (2023) 55 

proposed strategies for European cities to deal with increasing river flood risk. However, 56 

these strategies or options will remain effective within a fixed timeframe under the 57 

uncertainties of climate change, land use change or political change is questionable; in 58 

addition, how these strategies can be up-scaled to meet the future needs is rarely 59 

discussed. This is a pressing concern for decision makers in long-term planning. In the 60 

field of decision making under deep uncertainty (DMDU), various approaches have 61 

emerged. Robust Decision Making (RDM) is effective at identifying strategies that 62 

perform well across a wide range of future scenarios through vulnerability analysis and 63 

stress-testing, but it lacks explicit guidance on how to sequence actions over time 64 

(Lempert et al., 2013; Workman et al., 2021). Dynamic Adaptive Policy Pathway 65 

(DAPP) by contrast, excels at planning flexible adaptation pathways to avoid lock-in, 66 

but is relatively weaker in quantitatively evaluating robustness across uncertainties 67 

(Haasnoot et al., 2013; Dias et al., 2020).  68 

These DMDU approaches have been continuously improved and optimized, the 69 

boundaries between methods have become increasingly blurred, and fusion thinking is 70 
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progressively adopted (Haasnoot et al., 2020). As pointed out by Lempert et al. (2003), 71 

RDM provides systematic procedures that emphasize the iterative analysis process of 72 

scenario exploration, which can help decision-makers discover situations where options 73 

may fail, and understand the trade-off among all the adaptation options (Lempert et al., 74 

2013). Kasprzyk et al. (2013) proposed the Multi-Objective Robust Decision Making 75 

(MORDM) approach by the combination concept of both multi-objective evolutionary 76 

optimizations and RDM (Bartholomew and Kwakkel, 2020; Yang et al., 2021). 77 

Kwakkel et al. (2019) pointed out that the RDM approach usually pays less attention to 78 

the dynamic planning of pathways on long-term scales of climate change. On the other 79 

hand, DAPP, which consist of the strengths of both Adaptive Policymaking (Walker et 80 

al., 2001) and Adaptation pathway (Haasnoot et al., 2012; Ranger et al., 2010), focuses 81 

on generating alternative dynamic pathway to achieve flexibility and avoid lock-in 82 

effects while it lacks quantitative robustness evaluation metrics (e.g., regret-based 83 

criteria or satisficing thresholds)  as well as a thorough vulnerability analysis to quantify 84 

potential failures (Haasnoot et al., 2013).  85 

Both the RDM and DAPP approaches are arguably most widely applied, and the 86 

concept of integrating two approaches has been proposed (Kwakkel et al., 2016) and 87 

practiced in cases (Tariq et al., 2017). However, as Ramm et al. (2018a) illustrated, 88 

integration of RDM and DAPP has not been thoroughly implemented. Future 89 

opportunities for a combined RDM–DAPP approach include engaging stakeholders to 90 

define clear adaptation objectives, establish suitable metrics, and determine risk 91 

tolerance as  these factors significantly influence the outcomes of alternative pathways 92 
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(Ramm et al., 2018b). Robustness emphasizes the ability of a strategy to perform in an 93 

effective way in many plausible futures.  How to define robustness and assess whether 94 

options are insensitive to deep uncertainty to ensure certain performance across 95 

multiple plausible futures have sparked extensive discussions, especially when meeting 96 

multi-objective targets (Herman et al., 2015; McPhail et al., 2018).  97 

The selection of indicators for robustness depends on the priorities and preferences 98 

by policymakers and it will substantially affect the outcomes of decisions (Giuliani and 99 

Castelletti, 2016). For example, the decision-makers who endorse risk aversion may 100 

under-estimate adaptation options’ performance. To overcome the single objective 101 

problem framing, Quinn et al. (2017) optimized operations of the four largest reservoirs 102 

under several different multi-objective problem framings in Hanoi city (Vietnam), and 103 

highlighted the importance of formulating and evaluating alternative stakeholder 104 

objectives.  105 

However, an open question remains: to what extent can a traditional robustness 106 

evaluation (especially under risk-averse assumptions) suffice for rational decision-107 

making, versus using a multi-objective trade-off analysis to gain a more comprehensive 108 

view? For example, while one might assume the cost of a climate adaptation option is 109 

normally proportional to its benefit (risk reduction), in practice, options with high 110 

performance often entail higher costs and potentially longer construction periods 111 

(Dottori et al., 2023). Focusing on a single-objective (whether maximizing risk 112 

reduction or cost-benefit efficiency alone) provided limited information for long-term 113 

planning, and can lead to lock-in or path dependency issues due to overinvestment or 114 
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maladaptation over time. 115 

Adaptiveness refers to the ability of a strategy to adjust to changing conditions 116 

(Haasnoot et al., 2013; Malekpour et al., 2020). Rather than being in opposition, 117 

adaptiveness and robustness are complementary: incorporating flexibility can enhance 118 

long-term robustness by avoiding overinvestment and lock-in. For example, 119 

committing immediately to an extremely high-level (and high-cost) flood defense could 120 

lead to path-dependency if future conditions turn out less severe than expected, whereas 121 

a strategy that can be incrementally upgraded retains both flexibility and robust 122 

performance over time.  Despite its importance, the quantification of ‘adaptiveness’ 123 

(e.g., in terms of flexibility) remains challenging (Kind et al., 2018). Adaptation tipping 124 

point analysis provided insight into when an options will no longer meet a specified 125 

performance target  (Haasnoot et al., 2013), and Patient Rule Induction Method (PRIM) 126 

offers a quantitative way to identify these tipping points  (Ramm et al., 2018a; 2018b). 127 

Kirshen et al. (2015) noted that the preferred urban flood control strategy may change 128 

once additional criteria like no-regret and flexibility are considered at critical thresholds. 129 

Rather than choosing an ‘optimal’ here-and-now solution that could become suboptimal 130 

later, a “wait-and-see” approach (delaying or staging investments) can preserve 131 

flexibility. In the ROA paradigm, flexibility is explicitly valued since it allows decision-132 

makers to defer committing to large, costly, and irreversible measures while 133 

implementing smaller steps  until more information is available (Erfani et al., 2018). In 134 

this paper, we define ‘robustness’ as the ability of a strategy to maintain acceptable 135 

performance across a wide range of plausible futures, and ‘adaptiveness’ as the ability 136 
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to adjust or augment the strategy over time in response to how the future unfolds. 137 

Therefore, in our framework we incorporate both the timing of adaptations (the tipping 138 

point, termed the ‘effectiveness period’ in this paper) and the flexibility to adjust, as 139 

key characteristics of adaptiveness that support better long-term planning.  140 

In this study, we aim to propose a decision-making synthesized framework that 141 

integrates both robustness and adaptiveness to formulate a robust adaptive pathway for 142 

long-term climate adaptation planning under deep uncertainties. This framework is 143 

intended to guide decision-makers in prioritizing and sequencing adaptation options – 144 

a pressing challenge in urban climate action planning. We demonstrate the framework 145 

by applying it to a delta city (Shanghai) to evaluate a range of flood adaptation 146 

alternatives under plausible mid-21st-century scenarios (combining extreme rainfall 147 

and deteriorating drainage capacity by the 2070s).. 148 

The remainder of this article is organized as follows: Section 2 presents the 149 

proposed comprehensive framework and methodology. Section 3 introduces the 150 

background of the case study area and the preprocessing procedures. Section 4 presents 151 

the results, where a multi-objective trade-off is applied to evaluate the potential 152 

pathways for generating a robust adaptive pathway. This analysis combines metrics 153 

such as the average risk reduction rate (ARRR), benefit-cost ratio (BCR), effectiveness 154 

period, and flexibility of all options. Section 5 discusses the key findings related to 155 

pluvial flood risk management in coastal cities, the implications of multi-objective 156 

trade-off considering both robustness and adaptiveness, how the synthesized framework 157 

can inform long-term adaptive policy formulation, and provides recommendations for 158 
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future work. Finally, Section 6 concludes with a summary. 159 

2 Methodology 160 

2.1 Framework development 161 

Having outlined the challenges of pluvial flood risks under deep uncertainties, we 162 

now present a robust adaptive pathway framework for long-term planning. We built this 163 

framework by extending the taxonomy of DMDU approaches proposed by Kwakkel et 164 

al. (2019), which categorizes five dimensions of decision frameworks, and 165 

incorporating recent advancements in  robustness and adaptation methods. Figure 1 166 

provides an overview of our framework’s eight sequential steps. We summarize these 167 

steps below, then detail each component of the methodology: 168 

 169 

Figure1 Integrated framework of robust adaptive pathways for long-term flood control 170 

1) Research framing. Define the long-term flood management objectives and a 171 

dynamic policy structure. Unlike a static, short-term plan, the proposed policy structure 172 
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is dynamic and adaptive, providing a continuous pathway toward achieving long-term 173 

flood control goals while retaining flexibility to adjust as future conditions evolve. In 174 

our framework, introducing “adaptive” measures alongside traditional approaches 175 

enhances overall robustness by reducing the risk of over-investment or lock-in. 176 

2) Scenario generation. Develop a set of plausible future scenarios capturing key 177 

uncertainties (meteorological, hydrological, socio-economic, etc.). The ranges for 178 

uncertain factors can be derived from expert judgments, policy targets, or climate 179 

projections (Lempert et al., 2013). We employed a Latin Hypercube Sampling approach 180 

(Workman et al., 2021) to efficiently generate diverse futures. In our case study, for 181 

instance, futures were defined by varying extreme rainfall intensities and drainage 182 

capacity degradation by 2050, based on climate model outputs and local planning 183 

assumptions..  184 

3) Alternative generation. Identify and develop a portfolio of adaptation options. 185 

In our study, we used stakeholder workshops and policy document analysis to formulate 186 

viable flood control measures (both structural and non-structural). The current flood 187 

management strategy (status quo) serves as a baseline option, and a range of new 188 

adaptation alternatives (e.g., green infrastructure, drainage upgrades, tunnels, and their 189 

combinations) were assembled for evaluation. 190 

4) Model simulation. Evaluate each option (and combinations of options) under 191 

all futures using an appropriate flood simulation model. The framework can 192 

accommodate models of varying complexity: for instance, high-fidelity 1D/2D 193 

hydrodynamic models (e.g., SOBEK, MIKE 1D2D; Wang et al., 2018) could be used 194 
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for detailed analysis at the cost of more computation, whereas simpler conceptual 195 

models allow faster simulation of many scenarios. In our case study, we employed a 196 

simplified hydrological model based on the SCS-CN method to simulate runoff and 197 

flooding, which kept computational demands manageable given the thousands of 198 

plausible futures simulations, although the framework could integrate more complex 199 

models if needed.   200 

5) Robustness analysis. Assess each option’s performance across all futures using 201 

robustness criteria, which used to be depicted as f(a,wj) meaning the performance of 202 

option a under scenario wj. In this study, we assume all scenarios are equally likely (an 203 

application of Laplace’s principle of insufficient reason) and compute performance 204 

indicators for each option under each scenario. Key indicators include the average risk 205 

reduction rate (ARRR), percentage reduction in expected damages compared to 206 

baseline, averaged over scenarios, and the benefit cost ratio (BCR), ratio of total 207 

avoided damage to total cost. Using these, we evaluate how “robust” each option is, for 208 

instance, how well it performs on average and whether it consistently meets acceptable 209 

thresholds across scenarios. .  210 

6) Adaptiveness analysis.  Determine how long each option remains effective and 211 

how easily it can be adjusted. For each single or combined alternatives, we identify its 212 

effectiveness period – the duration or range of conditions over which it meets the flood 213 

risk target – by finding the point at which its performance falls below the acceptable 214 

threshold. We used the PRIM algorithm to analyze scenario results and pinpoint these 215 

tipping points; in doing so, we optimized PRIM’s coverage (the proportion of scenarios 216 
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captured by a tipping point condition) and density (the success rate within those 217 

scenarios) to balance generality and precision to balance generality and precision. We 218 

refer to the conditions triggering failure as signposts, which are observable indicators 219 

that an adaptation or policy change will soon be needed. Furthermore, we quantify each 220 

option’s and combination’s flexibility in our framework by the number of measures it 221 

contains. In other words, a multi-component strategy planned with, say, three measures 222 

have a higher planned flexibility score than a single-measure strategy, since it inherently 223 

includes more future actions. This flexibility metric reflects only the strategy’s planned 224 

adaptability, not an absolute limit – even a one-measure strategy could be expanded 225 

later. 226 

7) Multi-objective trade-off. Evaluate each alternative across multiple metrics to 227 

understand trade-offs. We consider both robustness metrics (e.g., risk reduction, benefit 228 

cost ratio, regret-based measures) and adaptiveness metrics (effectiveness period and 229 

flexibility) for every strategy. For comparison, all metric values are normalized and, in 230 

our analysis, treated with equal importance. This allows us to compute an overall 231 

performance score for each alternative. Options that achieve a good balance across all 232 

criteria are deemed the most promising candidates for robust and adaptive planning. We 233 

did not run a computational multi-objective optimizer which would be typical if there 234 

were hundreds of options. Instead, we effectively enumerated and evaluated a small set 235 

of candidate solutions manually or with simple search, given the case study’s scope. 236 

8) Robust adaptive pathway. Formulate and select robust adaptive pathways. 237 

Using the information on each option’s effectiveness period and flexibility, we identify 238 
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sequences of actions that extend flood protection over time. We generate an adaptation 239 

roadmap by considering how the system could transition under transient scenarios. 240 

From the set of possible pathways, we then select a robust adaptive pathway that best 241 

satisfies the flood control objectives in the long term based on the multi-objective 242 

analysis from step 7. Along this pathway, we define key signposts – measurable 243 

indicators (e.g., a threshold of rainfall intensity or drainage failure rate) that signal when 244 

it’s time to shift to the next action. Monitoring these signposts will support future 245 

decision-making and adjustments to the plan. 246 

2.2 Methods of robust adaptive pathway procedures  247 

Robustness analysis 248 

Deciding on a robustness criterion is essentially a meta-decision problem (Herman 249 

et al., 2015). In our context, robustness of a strategy refers to its satisfactory 250 

performance across a range of uncertain future states.. Various metrics can be used to 251 

quantify robustness under uncertainty including Maximax, Maximin, Mean-variance, 252 

Starr’s domain criterion, Laplace’s principle of insufficient reason, etc. Each metric 253 

embodies a different risk preference, so the choice of metric can influence which option 254 

appears most favorable  (Giuliani and Castelletti, 2016). In this study, we adopted  255 

neutral risk aversion of Laplace’s principle of insufficient reason as one robustness 256 

measure: in the absence of known scenario probabilities, we assign equal weight to all 257 

scenarios and identify solutions that perform best on average.. The performance of 258 

option or combination a is depicted as Equation (1).  259 
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                                                      (1) 260 

where a∗ denotes the optimal option or combination, A is the set of all options or combinations 261 

(listed in table 2), N is the total number of futures. And f(a,wj) is the performance of option or 262 

combination a under future wj, which represents the expected flood risk associated with adaptation 263 

option or combination a under future wj , as generated from the flood-damage simulation model. 264 

This risk value forms the basis for evaluating robustness through indicators such as the ARRR. 265 

In many robust decision-making frameworks, criteria related to satisficing and 266 

regret are used as performance measures (Herman et al., 2015). Regret is broadly the 267 

opportunity loss incurred by not choosing the optimal action in a given scenario – 268 

essentially, how much worse a strategy performs compared to the best possible outcome 269 

in that scenario. Satisfaction can be viewed as a measure of how well a strategy meets 270 

a predefined target (combining effectiveness and efficiency). In our evaluation, we 271 

compute these metrics relative to a baseline scenario or option.  Equation (2) illustrates 272 

how we calculate regret-based performance for the alternatives. 273 

  𝑃𝑖  =
1

𝑁
∑

|𝑓(𝑎,𝑤𝑗)−𝑓(𝑎0,𝑤𝑗)|

𝑓(𝑎0,𝑤𝑗)

𝑁
𝑗=1  274 

                                                                  (2) 275 

Where 𝑃𝑖  is the performance value of average risk reduction rate (ARRR) of 276 

alternative options or combinations in all plausible futures N, 𝑓(𝑎, 𝑤𝑗) represents the 277 

performance value of pluvial flood risk of option a in future 𝑤𝑗, and 𝑓(𝑎0, 𝑤𝑗) is the 278 

performance value of pluvial flood risk of the baseline option 𝑎0 in future 𝑤𝑗. 279 

Decision-makers also examine whether any given strategy has vulnerable 280 

scenarios – situations in which it fails to meet minimum acceptable performance. A 281 

threshold can be set to define what constitutes intolerable performance. Metrics like the 282 

domain criterion quantify the fraction of the uncertainty space (subsets of all futures) 283 
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in which a solution meets all performance requirements. Such considerations align with 284 

policy risk indicators often used in practice (e.g., minimum safety standards or 285 

environmental protection criteria) to ensure options avoid unacceptable outcomes. 286 

Based on the elicitation of local requirements, we define the 𝑃𝑖
∗ as the performance of 287 

average risk reduction rate(ARRR) which satisfies the minimum threshold of the given 288 

flood control target (𝐹0, 𝐹0=0.7 in this case), as depicted in Equation (3).  289 

                              𝑃𝑖
∗ =

1

𝑠
∑

|𝑓(𝑎,𝑤𝑗)−𝑓(𝑎0,𝑤𝑗)|

𝑓(𝑎0,𝑤𝑗)

𝑠
𝑗=1 ≥ 𝐹0                                          (3) 290 

Where 𝑃𝑖
∗represents the performance value of ARRR of the option or combination 291 

𝑎 in subsets s of all plausible futures N that meets the given flood control target 𝐹0. 292 

PRIM is applied to identify clusters of successful cases by searching across the full set 293 

of futures N for each option or combination. Specifically, for each option or 294 

combination a, we select the subset of future s that leads to the most successful outcome 295 

by balancing coverage and density with given flood control target. 296 

Internationally, the net present value of benefits (PVB) and the net present value of 297 

costs (PVC) are commonly used to represent benefits and costs, respectively (Liao et 298 

al., 2014). In this study, PVB is selected as the pluvial flood risk reduction rate (RRR) 299 

before and after the implementation of the options, rather than as the pluvial flood risk 300 

reduction value. It is important to note that the goal of this study is not to calculate the 301 

direct risk of extreme pluvial flooding in the future, as the absolute value of the risk 302 

would be too large for meaningful comparison. Therefore, the benefit-cost ratio (BCR) 303 

is presented simply as the ratio of PVB to PVC. 304 
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Adaptiveness analysis 305 

PRIM is an interactive statistical clustering algorithm that generates a series of 306 

subspaces by peeling away layers of the uncertainty space, where the coverage and 307 

density of points of interest in each box are greater than in the surrounding space 308 

(Matrosov, 2013). As a visualized tool for exploratory analysis, PRIM is widely used in 309 

many works to investigate either key factors causing system failure or vulnerable 310 

scenarios that might cause alternative options' failure. Parameters of coverage, density, 311 

and interpretability characterize the subspaces. These three metrics are usually 312 

correlated, with increasing density resulting in decreasing coverage and interpretability. 313 

It turns out that an analyst needs to trade-off in selecting the potential coverage, density, 314 

and interpretability to achieve the best combination. The subspaces describe the 315 

conditions beyond which coastal inundation impacts are unacceptable signifying 316 

adaptation tipping points are reached (Ramm et al., 2018a). Key factors along with the 317 

tipping point of options are evaluated in associated timeframes which need not be exact. 318 

Identifying an indicative period at which conditions describing adaptation tipping 319 

points indicate a effectiveness period (or use-by year) (Haasnoot et al., 2013). The 320 

results of PRIM can assist decision-makers in identifying sensitive ranges of uncertain 321 

factors or combinations, and factors with little influence can be safely disregarded.  322 

Following a decision initially, flexibility in decision theory is related to the 323 

remaining choices available in the following period. The larger this set, the more 324 

flexibility the decision maker retains. This idea can be generalized to staged choices 325 

over multiple periods. For example, Erfani et al. (2018) proved that flexibility is 326 
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valuable in providing decision nodes in multistage scenarios (planning periods in every 327 

5 years) for least-cost water supply intervention scheduling. One way of deriving the 328 

value of flexibility is thus by comparing costs and benefits of a flexible investment 329 

strategy with those of a less flexible, that is, a more robust strategy (Kind et al., 2018). 330 

However, flexibility is not treated as delayed option value as other ROA work 331 

calculated, instead, we consider the convertibility of options that is still in line with the 332 

idea of wait-and-see yet is more straight-forward. It is important to note that a strategy 333 

initially implemented as a single measure does not preclude future augmentation if 334 

conditions worsen. In our framework, however, such augmentations were not pre-335 

planned in single-measure scenarios. Therefore, our ‘flexibility’ metric should be 336 

interpreted as the degree of planned adaptability, rather than an absolute limit on a 337 

strategy’s potential to adapt. 338 

Multi-objective trade-off 339 

The cost and benefit of investment in adaption options may lead to a static 340 

decision-making perspective. Therefore, an important question was raised for robust 341 

decision-making of how to avoid failure scenarios regarding factors including risk 342 

reduction rates over time, cost of option, and economic benefit ratio. On this basis, 343 

making robust decisions needs to include other factors beyond cost and benefit, such as 344 

effectiveness period and flexibility, for a comprehensive evaluation in the long-term 345 

(Erfani et al. 2018)  346 

The optimization of options’ combinations can be identified via the trade-off 347 

process by Equation (4).  348 
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     (4) 349 

Where l ∈ L is a candidate adaptation pathway from the set of feasible pathways 350 

L; y1(l): Flexibility — number of successful alternatives reachable from pathway l; 351 

y2(l): Effectiveness period — duration before performance drops below threshold; y3(l): 352 

Benefit-Cost Ratio (BCR) — economic efficiency of pathway l; y4(l): Average Risk 353 

Reduction Rate (ARRR) — robustness of flood risk performance. 354 

Robust adaptive pathway 355 

Adaption tipping points (effectiveness periods) are central to adaptation pathways, 356 

the conditions under which an action no longer meets the specified objectives. The 357 

timing of the adaptation points for a given action, its effectiveness period, is scenario 358 

dependent. The DAPP, manually drawn based on model results or expert judgment, 359 

presents an overview of relevant pathways (Haasnoot et al., 2020). In this study, we 360 

first examined the effectiveness period of alternative options by PRIM analysis to 361 

identify acceptably robust adaptation pathway for future flood control. We then 362 

identified the combination of candidate pathways in consideration of both effectiveness 363 

period and flexibility, ensuring the adaptive solutions in incremental stages allow for 364 

maintaining flood control levels before committing to larger schemes. Roadmap of 365 

candidate’s pathways are generated during this procedure. Lastly, the preferred robust 366 

pathway is determined by a trade-off analysis of all the criteria. 367 
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3 Case study 368 

3.1 Background 369 

Shanghai, with a domain of 6,340 km2, provides residences to 24.9 million 370 

population with a built-up area of 1237.9km2 in 2021. Shanghai has been perhaps the 371 

most important economic and financial center in China, and it now aspires to be one of 372 

the world's most important economic, financial, shipping, and trade centers (Shanghai 373 

Statistic Yearbook, 2021). Shanghai is surrounded by water on three sides: the East 374 

China Sea to the east, the Yangtze River Estuary to the north, and Hangzhou Bay to the 375 

south. In addition, the Huangpu River, a Yangtze River tributary, flows through the heart 376 

of Shanghai. The average yearly precipitation is approximately 1400mm in recent 10 377 

years, with 63% concentrated during the flooding season from May to September 378 

(Shanghai Climate Change Research Center, 2022). As a result, the most catastrophic 379 

hazard in Shanghai has been floods produced by torrential rainfall, which annually 380 

disrupts transportation and other social activities, causes substantial economic losses, 381 

and threatens urban safety. 382 

Shanghai has the lowest elevation (with averagely 4m above m.s.l.) and large 383 

numbers of old-lane residential buildings in central city, which have fewer floors 384 

compared to other districts that is vulnerable to the extreme pluvial flood events see 385 

Figure 2). The spatial distribution of rainfall will continue to concentrate in urban areas, 386 

and the increasing likelihood of extreme precipitation (Liang and Ding, 2017), 387 

combined with the trends of relative sea-level, will cause stakeholders, includes 388 
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residents, policymakers, and scientists etc., to be concerned about the rising flooding 389 

risk in delta cities of Shanghai (Du et al., 2020). 390 

 391 

Figure 2 Case area, administrative, and solution district (blue shade) in center Shanghai, 392 

including spatial distribution of building footprints indicating the number of stories (gray shades), 393 

the base map was provided by Esri, using ArcGIS Online Services. 394 

3.2 Research Framing 395 

Based on the proposed framework, the dimensions, components, and metrics of 396 

this study are organized as shown in Table 1. To ensure urban safety, this study defines 397 

an explicit flood control objective of achieving a 70% average risk reduction rate, in 398 

alignment with the Shanghai Flood Control and Drainage Plan (2020–2035) (Shanghai 399 

Municipal Water Authority, 2020).  400 
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Table 1 Dimensions of the research framework  401 

Dimension Components Metrics 

Research 

framing 

Alternative options to generate robust and adaptive 

pathway  

Definition of flood 

control objective 

Scenarios 

generation 

Increased 

rainfall 
Rain island effect Drainage decrease 

Latin hypercube 

sampling (LHS) 

Alternatives 

generation 

Drainage 

increased 

Increase of green 

area 

Deep tunnel with 

30%, 50%, or 

70% of runoff 

absorption 

Predefined by local 

flood control plan 

Model 

simulation 
Hydrology Flood risk  

Geospatial 

statistics 
Grid aggregation  

Robustness 

analysis 

Performance  

(ARRR) 

Measure Cost 

(Life cycle cost) 
Benefit 

Laplace and Domain 

criterion 

Adaptiveness 

analysis 
Signpost 

Effectiveness 

period 
Flexibility PRIM 

Multi-

objective 

Trade-off  

Robustness Adaptiveness Metric evaluation 

Robust 

adaptive 

pathway  

Candidate pathway identification, roadmap generation, 

and monitoring of signposts 
Transition scenarios 

The robustness analysis serves as the foundation of our methodology, ensuring 402 

that the proposed solutions can withstand future uncertainties. Once robustness is 403 

assessed, we proceed to the adaptiveness analysis, which allows us to account for 404 

flexibility in response to unforeseen challenges. We conduct a trade-off analysis in 405 

terms of robustness and adaptiveness was of particular significance to providing 406 

iterative stress tests over many plausible scenarios using robustness metrics and 407 

identifying effectiveness periods and flexibility to generate alternative pathways. 408 

Following the structure of robust decision-making pathway framework, Figure 3 409 

illustrates the entire procedures for long-term flood control planning in the Shanghai 410 

case study. 411 
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 412 

Figure 3 Framework of robust adaptive decision-making pathway, which incorporates the 413 

robustness, adaptiveness, multi-objective trade-off, and pathway generation (blue boxes). 414 

3.3 Scenario generation 415 

Precipitation is predicted very likely to increase in the Yangtze River Basin in the 416 

21st century (Hui et al., 2018), and the frequency and intensity of extreme rainstorm 417 
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events may continue to increase (uncertain factor of the 𝛼, future rainfall assumed to 418 

increase from 7% to 18%). Shanghai's spatial rainfall patterns reveal a significant "rain 419 

island effect" between urban centers and suburbs (Liang and Ding, 2017) (uncertain 420 

factor of the 𝛽, assumed to increase from 10% to 20% in central region (Xujiahui and 421 

Pudong rain gauges), decrease from -0.076% to -0.038% (other 9 rain gauges in 422 

Shanghai)). In addition, land subsidence has been a persistent issue due to the 423 

groundwater exploitation and construction of high-rise buildings (Yang et al., 2020). 424 

By 2050, it is projected that the current river embankment and drainage systems in 425 

Shanghai will experience a 20-30% reduction in capacity due to a likely relative rise in 426 

sea level of 50 cm (compared to the year of 2010), caused by both sea level rise and 427 

land subsidence (Wang et al., 2018). The uncertain factor of the decrease of drainage 428 

capacity (γ, assumed to decrease from 0 to 50% due to the anthropogenic land 429 

subsidence and sea level rise) is designed to be the degradation effect of restraining the 430 

water from the urban drainage system flowing to the river system due to the high river 431 

water level caused by the continually rising sea level, land subsidence, and other 432 

degradation factors. 433 

This study focused on a record-breaking convective rainfall that occurred on 434 

September 13, 2013 and had an intensity record of 140.7mm within 3 hour (at 17-19h). 435 

The variation interval of each uncertainty factors was clarified, and Latin Hyper Cube 436 

Sampling (LHS) was used to construct 100 plausible futures based on the historic "913" 437 

extreme rainfall event in 2013 (Supplementary materials Text 1). 438 
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3.4 Alternative generation 439 

It is acknowledged that the current Shanghai flood control infrastructure is 440 

insufficient to protect the city from long-term inundation risk (Shanghai Municipal 441 

Water Authority, 2020). Three options, drainage improvement, increase of green area, 442 

and construction of deep tunnel, are pre-defined with stakeholders of experts and 443 

decision-makers following the Shanghai Flood Control and Drainage Plan (2020-2035). 444 

The solution district locates in the core business district (CBD) of Shanghai and is 445 

highlighted in Figure 2. We defined the existing structure of flood control measures as 446 

the baseline and evaluated alternative measures’ performance verse the baseline control 447 

level in the flood simulation model (Table S4).  448 

3.5 Model simulation 449 

Simulations of extreme pluvial flood inundation under climate change scenarios 450 

are carried out using the Shanghai Urban Inundation Model (SUIM) (Supplementary 451 

materials Text 2). It was created to couple multiple simulation processes, which consists 452 

of the SCS-CN hydrological model, statistical analysis of flooding results, risk 453 

assessment, and assessment of adaptation measures. Appropriate socioeconomic 454 

indicators were selected to characterize the exposure of the elements at risk and the 455 

vulnerability curve to evaluate the flood risk in all plausible scenarios (Supplementary 456 

materials Text 3). We then coupled the hydrological module and risk assessment module 457 

to assess the future risk (Supplementary materials Text 3). Three climate adaptation 458 

options are quantitatively characterized in the risk assessment system. The benefit-cost 459 

ratio (BCR) of all options is calculated according to the performances of the risk 460 
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reduction rate over the life cycle cost (Supplementary materials Text 4).  461 

4 Results 462 

4.1 Robustness analysis 463 

This section presents the performance evaluation results, including average risk 464 

reduction rate (ARRR) and Benefit-cost ratio (BCR), to reflect the robustness of 465 

potential climate adaptation options (Supplementary materials Text 4). BCR was 466 

defined as the average risk reduction rate (ARRR) per unit cost (Equation S4 in 467 

Supplementary materials Text 4) based on the robustness metrics of Laplace’s Principal 468 

of Insufficient Reason. Specifically, the benefit is the reduction in expected flood losses 469 

compared to the no-action scenario (Equation 3), while the cost refers to the total 470 

implementation cost of each adaptation option (Equation S5 in Supplementary 471 

materials Text 4). We adopt Laplace’s principle of insufficient reason, assuming all 472 

scenarios are equally likely when calculating average outcomes across scenarios. Given 473 

that drainage capacity reduction (γ) is the main factor affecting the solutions’ 474 

performance, thus the study selects γ as the only explanatory indicator to explore the 475 

failure scenario of options based on the PRIM method.  476 

As depicted in Table 2, the ARRR is calculated (Equation 2) to analyze the 477 

effectiveness of (the combination of) options. The average yearly cost of single options, 478 

which includes increasing drainage capacity (Dr), expanding green areas (GA), and 479 

constructing a deep tunnel with 30% runoff absorption (Tun30), is at a comparative 480 

level, ranging from 39 to 41 million USD per year. Their performance is relatively 481 
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unsatisfactory (the ARRR is less than 0.39.) However, the ARRR for the combined 482 

option (D+G), drainage improvement and public green area, is higher (0.62) than the 483 

sum of two single options (0.51), indicating that the composite option will be more 484 

effective of reducing flood risk. Furthermore, it demonstrates that the combined options 485 

(i.e., D+G and D+G+T30) are satisfactory in terms of ARRR performance but not 486 

economically attractive due to their relatively higher costs. It is noted that if an option 487 

defers a major investment (like the Tun30) to later years, in reality its present value cost 488 

would be lower with discounting, potentially making the strategy more economically 489 

attractive than our simple BCR suggests. 490 

 491 

Figure 4 Yearly cost and total cost of alternative options  492 

While two single-option involving  deep tunnel (namely Tun50, Tun70) seem very 493 

attractive in terms of  both ARRR and BCR.   494 

Table 2 The ratio of the benefit-cost of each adaptation options 495 

Option 

ARRR (without 

control target, %) 

Cost (million 

USD / year) 

Benefit-cost 

ratio (%) 

Dr 0.25 39 0.09 
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GA 0.26 37 0.10 

Tun30 0.39 41 0.14 

D+G 0.62 76 0.12 

Tun50 0.74 68 0.16 

D+G+Tun30 0.85 117 0.10 

Tun70 0.87 95 0.13 

4.2 Adaptiveness analysis  496 

Scenario discovery validates the decrease of drainage capacity is the most critical 497 

uncertainty in defining the risk reduction rate of performance objective. The failure 498 

scenarios  are identified when the flood control target F0=0.7 is not met. We further 499 

interpret failure scenarios by selecting subspace of each alternative options under flood 500 

control target using PRIM algorithm to optimize the combined value of coverage and 501 

density. Table 3 summarizes these metrics, where coverage and density are derived from 502 

PRIM-identified failure boxes, and ARRR is calculated as the average performance 503 

within those clusters. The valid period is defined by the point (characterized by γ) when 504 

a single option or combination no longer meets the performance target.  505 

According to the results in Table 3, it was found that within the 70% risk reduction 506 

control target (Equation 3), the single options of Dr and GA performed less favorably 507 

(relatively smaller ARRR) and can quickly fail to meet the risk reduction target (with 508 

no larger than 0.1 of γ). Tun30 and D+R are very comparative since they preform very 509 

closely (similar results on ARRR and γ) but still not attractive. While Tun50 seems very 510 

attractive in terms of ARRR (0.89), however, it does not possess higher effectiveness 511 

period (γ) than both D+G+Tun30 and Tun 70. Surprisingly, both D+G+Tun30 and 512 
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Tun70 can function well in an effective way for a longer time. So far, D+G+Tun30 and 513 

Tun70 have proven to be highly competitive in terms of cost-effectiveness and 514 

effectiveness period over time. 515 

Table 3 ARRR and coverage and density of success scenarios in each option combinations 516 

under 70% risk reduction control standard 517 

Option 

ARRR (with 

control target, %) Coverage Density 

Decreased drainage 

capacity (γ) (effectiveness 

period) 

GA 0.59 1 0.22 0.04 

Dr 0.62 1 0.20 0.07 

Tun30 0.73 1 0.75 0.1 

D+G 0.74 0.9 0.82 0.11 

Tun50 0.89 0.95 0.98 0.29 

D+G+Tun30 0.86 0.99 0.98 0.48 

Tun70 0.87 1 1 0.5 

We define flexibility as the number of transitions by enumerating overall option 518 

combinations regarding adaptive transferable pathways from the original option 519 

(current flood control infrastructure) to the destination options (e.g., D+G+Tun30 and 520 

Tun70, Figure 6). For example, the D+G+Tun30 comprises three single options, 521 

allowing it to begin with any of the three and delay further action until a tipping point 522 

approaches, giving it a convertibility score of three (Table S6). Therefore, each single 523 

option has a value of one for convertibility. 524 

4.3 Multi-objective trade-off 525 

The robustness-focused analysis (e.g., looking only at ARRR and BCR) would 526 
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rank options like Tun50 and Tun70 as the top performers, whereas the adaptiveness-527 

focused analysis (looking at effectiveness period and flexibility) made D+G+Tun30 the 528 

most appealing. These differing outcomes demonstrate why it is crucial to evaluate 529 

multiple criteria together. Only by considering all metrics simultaneously (a true multi-530 

objective trade-off) can we identify strategies that strike an appropriate balance for 531 

long-term flood management. Multi-objectives of (the combination of) options consider 532 

all four metrics, including BCR, and performance of the risk reduction control criteria 533 

(ARRR>70%), effectiveness period (γ), and the flexibility. We solved the multi-534 

objective problem using normalized and equally weighted metrics (Equation 4). Figure 535 

5 depicts the results of BCR, ARRR in control criteria, effectiveness period, and 536 

flexibility of each option's combination. The higher the normalized rating, the greater 537 

the payoff. The outcome demonstrates that both GA and Dr perform poorly, whereas 538 

Tun30 and D+G are not robust enough compared to Tun 50, D+G+Tun30, and Tun70. 539 

It needs to be highlighted that Tun 50, D+G+Tun30, and Tun70 possess high priority. 540 

We found that the D+G+Tun30 pathway achieved a well-balanced performance across 541 

risk reduction, cost-effectiveness, and our flexibility metric (Table S7). In our initial 542 

analysis, this made D+G+Tun30 appear as the most promising option overall. However, 543 

as discussed, this planned flexibility advantage does not necessarily mean a single-544 

component strategy cannot be adapted later. It is important to note that this conclusion 545 

is contingent on including the flexibility metric. If flexibility were defined differently 546 

or given less weight, another option – for example, the single large tunnel Tun70 – 547 

could emerge as preferable for long-term risk control.  548 
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 549 

Figure 5 Multi-objective trade-off of alternative options with normalized value of robustness 550 

metrics (the preference of priority is accepted from low(bottom) to high(top)). 551 

4.4 Robust adaptive pathway 552 

Pathway identification 553 

The candidate pathway was identified by enumerating the possible combinations 554 

of options. In this study, we found two potential pathways including from Tun30 to 555 

Tun70, and from Dr or GA to D+G+Tun30. It can be observed from Figure 6 that when 556 

γ increases, the performance of options of Dr (or GA, vice versa) steadily diminishes 557 

until the risk control target are not satisfied.  558 

The drainage capacity, affected by the compound event of land subsidence, sea 559 

level rise, and storm surge, is deemed to be undermined (which is reflected by drainage 560 

capacity reduction rate γ) over time. Figure 6 illustrates the concept of an option 561 

combination's effectiveness period using Dr+GA+Tun30 as an example. ARRR to 562 



30 

 

begin with Dr is 0.62, with an increase in γ, Dr fails (γ=0.07), and ARRR will decrease 563 

further if no additional options are taken. The addition of GA can increase the ARRR 564 

to 0.74 before Dr and D+G fail (γ= 0.11). The ARRR will continue to decrease if options 565 

are not strengthened. Before D+G completely fails, incorporating Tun30 can increase 566 

the ARRR to 0.86; as γ increases, D+G+Tun30 fails at γ=0.48. To ensure the adaptive 567 

robustness of the combination of options, decision-makers can increase the service 568 

coverage area and rainwater absorption capacity of the deep tunnel project in the core 569 

area prior to the total failure of D+G+ Tun30. In other words, the transition from Tun30 570 

to Tun50 and even Tun70, along with the combination of options, will be stable over 571 

the long-term time horizon. It is noted that the slight rise in performance after GA and 572 

Tun30 installation reflects a short ramp-up period in our model, during which newly 573 

implemented measures gradually reach full effectiveness, then performance begins to 574 

decline as expected under continued climate-induced stressors. 575 

The differing curvature of the performance decline is due to the interaction of 576 

measures. For the Dr-only strategy, once implemented, its risk reduction gradually 577 

diminishes at an accelerating rate as climate stressors intensify – producing a concave-578 

down curve (initially gentle slope, steepening later). In contrast, the strategies with 579 

multiple measures (D+G and D+G+Tun30) show a more linear decline. This is because 580 

when drainage alone begins to lose effectiveness, the next measure (GA, and later 581 

Tun30) either has just been implemented or is concurrently mitigating risk, effectively 582 

offsetting some of the non-linear drop. The combined result is a more steady 583 

(approximately linear) decrease in performance over time, as the measures’ effects 584 
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complement each other. We normalized time as 𝛾  = t/T (with T=50 years, the simulation 585 

period), so 𝛾 corresponds to the year 2070. 586 

 587 

Figure 6 Flexible pathway of combination options of drainage improvement (Dr), green 588 

area increment (GA), and deep tunnel with 30% absorption (Tun30), representing the risk 589 

reduction rate undermines with the reduction of drainage capacity. An example of 590 

Dr+GA+Tun30. 𝛾 is a dimensionless time, where 𝛾 =1 corresponds to Year 2070, the end of 591 

our planning horizon 592 

Pathway generation 593 

We comprehensively evaluated the candidate pathways by considering 594 

performances, BCR, effectiveness period, and flexibility. The time frame lacks an 595 

absolute time reference but still offers a relative tracking of the rate at which relative 596 

sea levels are rising.  597 

Figure 7 depicts two robust transition pathways: D+G to D+G+Tun30 and Tun30 598 
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to either Tun50 or Tun70. The two pathways D+G+Tun30 and Tun30 to Tun70, provide 599 

adaptive short and long-term pathway schemes from a flexibility standpoint. The short-600 

term options are used as transitional schemes, and new options can be added before 601 

their failure, i.e., pathway transition, to maintain the risk control objectives. In addition, 602 

the two schemes can complement each other and incorporate new options before the 603 

system's long-term robustness is compromised. Additionally, D+G+Tun30 and Tun70 604 

leave room for upgrading to the costlier and more durable D+G+Tun70 in the long run 605 

when γ exceeds 0.5 (e.g., sea level or land subsidence exceeds observing increase 606 

speed).  607 

We observed that Tun70 offered the highest robustness in terms of ARRR and the 608 

longest effectiveness period among all single options.; However, its lack of initial 609 

flexibility – requiring a large up-front investment in gray infrastructure – could lead to 610 

path dependency if future conditions turn out to be mild. In contrast, strategies that start 611 

with smaller measures (like Dr or GA) and can add on bigger projects later avoid that 612 

risk of over-commitment. This underscores the classic tension in planning: a strategy 613 

like Tun70 is robust but inflexible, whereas a phased approach is flexible but may 614 

initially be less robust. Our framework attempts to balance these aspects by evaluating 615 

both. In conclusion, A promising robust adaptive pathway should initially begin with 616 

GA and Dr, followed by a combination of D+G. Ultimately as time goes by with 617 

gradually undermined drainage capacity, it should incorporate Tun30 with the 618 

flexibility to expand to Tun70. 619 
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 620 

Figure 7 Generation of robust adaptive pathways with two potential pathways from either Dr or GA 621 

to D+G+Tun30, and from Tun30 to Tun70 as the reduction of drainage capacity over time (x-axis). 622 

The options are sequenced in an upward relative higher BCR (y-axis, also see in Table 2). 623 

5 Discussion 624 

5.1 Key findings 625 

Applying this framework to the case of the reoccurrence in the 2050s (of the 626 

extreme rainfall events on 13 September 2013) in Shanghai reveals informative findings 627 

to urban planners and other stakeholders. First, the performance of climate adaptation 628 

options (for addressing pluvial flood risk) decreases as the drainage capacity reduction 629 

rate (γ) increases (Table 3). This result is indirectly supported by events in June 2015 630 

and July 2021, which caused severe inundation in central Shanghai for days because 631 
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the high water levels of rivers in the region prevented rainwater from being pumped or 632 

drained from the drainage system into the river network. This finding also suggests that 633 

drainage capacity is a key determining factor for the performance of options in other 634 

delta cities which may rely on discharge to the rivers (e.g., Guangzhou, Ho Chi Minh 635 

City, London, etc.) (Hu et al., 2019). Urban planners in those cities need to consider 636 

scenarios of high-water levels in the river with a joint of extreme storm surge under 637 

typhoon takes place in a high astronomical tide period at estuary. Such an event would 638 

significantly undermine the drainage capacity thus leading to severe flooding inside the 639 

city and bringing potential disastrous impacts (e.g. Zhou et al., 2019).  640 

Second, as the drainage capacity decreases(γ), effectiveness periods of different 641 

option  combinations varied significantly, showing a discrete distribution, which ranged 642 

from 0.04～0.5 with a corresponding ARRR ranging from 0.59～0.89 (Table 3). 643 

Moreover, the most cost-effective solution may not always offer the longest 644 

effectiveness period within an explicit flood control target (e.g. 70% risk reduction as a 645 

target in our case study), and therefore cannot be considered satisfactory (Figure 5). The 646 

findings highlight the importance of the discussion regarding the long-term robustness 647 

of solutions which has been overseen in many flood- risk control works in delta 648 

megacities. It is also further implying that if there is no consideration of the flood risk 649 

reduction target, discussions about a robust decision plan with stakeholders is 650 

meaningless. This urges to pay great attention to be proactive by strengthening the 651 

dynamic pathway and closely monitoring the decrease of the drainage capacity ahead 652 

of the pace of relative sea level rising (Figure 6).  653 
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5.2 Robustness and adaptiveness trade-off 654 

The comparison in Section 5.1 brings up a vital decision-making issue on the trade-655 

offs between the benefit and cost of alternative options. In general, options with better 656 

performance required higher costs, which was also proved in any distinctive option in 657 

Table 2 and Table S6. It is also demonstrated that the combination of alternative options 658 

such as D+G showed a better performance than the single option of Dr and GA at the 659 

same cost. However, the cost of an option is not strictly proportional to its benefit (risk 660 

reduction rate) (Figure 4). For instance, Tun 50 possesses better performance in 661 

reducing inundation risks associated with the relatively low yearly economic cost 662 

compared to D+G. Because it is difficult to measure the pros and cons of the costly 663 

solution to maintain a higher protection standard and economical solution to possess an 664 

acceptable performance (cost-effectiveness), planners typically underestimate both 665 

influences by a large margin.  666 

In recognition of this limitation, it can be realized that single-objective targets e.g., 667 

flood control performance (ARRR), or financial control (BCR) may lead to biased 668 

decisions or maladaptation for the long-term horizon. For example, Table 2 shows that 669 

Tun50 has the highest cost-effectiveness (0.16), while the D+G+Tun30 is positioned at 670 

an average level, both of which performed well in reducing flood risk. In sharp contrast, 671 

the adaptiveness analysis shows that the D+G+Tun30 behaved significantly better 672 

during a reasonable period than Tun 50, which is a more flexible and adaptive option 673 

for long-term planning (Figure 7). Therefore, it tends to a biased decision if the decision 674 

maker only focus on economic return (BCR). Besides, it illuminates the decision maker 675 
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that priorities on grey infrastructure (e.g., Tun 50) at the starting point yields good 676 

performance (74% of ARRR) but may lead to over-investment and path dependency.  677 

Moreover, there is concern that the effectiveness period could be shortened if decision-678 

makers opt for the most cost-effective solution (Tun50) instead of choosing a more 679 

expensive but very effective combination (D+G+Tun30). This example enriches the 680 

literature on “no regret” planning, which should be robust, adaptive, and financially 681 

efficient at the starting point for decision-makers, keep options open (flexible), and 682 

avoid lock-ins. To minimize regret in the near to long future, the adaptation solutions 683 

should pay great attention to both robustness and adaptiveness, which also illuminates 684 

the importance of multi-objective trade-off as mentioned in previous work (Kirshen et 685 

al., 2015; Ramm et al., 2018a). 686 

Furthermore, we directly compare the top contenders Tun70 and D+G+Tun30. 687 

Notably, Tun70 actually achieved higher values than D+G+Tun30 on several individual 688 

metrics – it provided the greatest average risk reduction and a superior cost-benefit ratio, 689 

and it had the longest effectiveness period among single strategies. The multi-690 

component D+G+Tun30 pathway, on the other hand, had a moderate cost-benefit ratio 691 

and slightly lower risk reduction, but scored much higher on planned flexibility. This 692 

illustrates a trade-off: if one prioritizes near-term performance and economic efficiency, 693 

Tun70 is very attractive; if one prioritizes incorporating flexibility to adapt over time, 694 

D+G+Tun30 gains the edge. Our framework’s value lies in revealing this trade-off 695 

clearly. 696 
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5.3 Optimization of the synthesis framework 697 

Although there is a myriad of research running flood risk simulations and assessing 698 

the BCR of solutions in Shanghai and other megacities in the coastal areas, seldom of 699 

which considers the entire process in making the applicable decision (Du et al., 2020; 700 

Sun et al., 2021; Ward et al., 2017). In filling up this niche, this study has proposed a 701 

synthesized planning-supporting framework that is capable of considering the entire 702 

cascade of procedures from the uncertainties of future urban rainfall pattern, to the 703 

sampling of future scenarios, to the hydrological modeling, and to flood risk assessment 704 

for the robustness and adaptiveness of alternative options, allowing for making robust 705 

and adaptive pathways (refer to Figure 1).  706 

Compared to other DMDU theories, the synthesized framework asks for finding 707 

proxies for solutions’ performances in reducing risk, decision-making in terms of cost 708 

and benefit, and identifying priorities and adaptive pathways from option combinations 709 

in the multi-objective fusion process. The conversations established a fast modeling-710 

interpreting-remodeling feedback mechanism between the analyst and decision maker, 711 

which helps reduce the complexities and uncertainties encountered in ROA or other 712 

related work (e.g. Kind et al., 2018), and defining explicit objective (Raso et al., 2019). 713 

Upon that, incorporating the multi-dimensions of constraints allows for rapidly 714 

minimizing disruption factors, balancing alternative solutions' interpretability, coverage, 715 

and density, and visualizing the applicable pathway.  716 

One advantage of our decision-support tool is that it can run comprehensive 717 

evaluations for thousands of future–option combinations within a few days, using only 718 
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moderate amounts of input data. This computational efficiency is largely due to our use 719 

of a simplified model (SCS-CN) and a relatively small case-study area. However, this 720 

highlights a trade-off: using a more detailed 1D–2D model or expanding to a larger 721 

region would substantially increase computational time and data requirements. In other 722 

words, the ‘moderate’ resource demand we experienced may not hold in cases that 723 

require high-resolution modeling. This limitation suggests that careful model selection 724 

(or the use of techniques like emulators and parallel computing) is important when 725 

applying the framework to bigger or more complex systems. 726 

 Another limitation is our risk assessment scope: we considered direct flood losses 727 

(inundation damage) but did not model disruptions to transportation or other urban 728 

functions, nor wider cascading effects across sectors. Similarly, our cost-benefit 729 

analysis focused mainly on direct financial costs; we did not fully quantify co-benefits 730 

like ecosystem services or social benefits of adaptation options, which means our 731 

economic evaluation was somewhat narrow. Additionally, our cost estimates didn’t 732 

account for certain practical factors such as human resource efforts (e.g., time and 733 

coordination required for implementation) or land availability constraints (for instance, 734 

the feasibility of allocating sufficient space for new green infrastructure in Shanghai). 735 

These simplifications should be kept in mind when interpreting the results. Future work 736 

could explore dynamic adaptation difference of “on-the-fly” upgrades versus planned 737 

pathways to provide a more direct assessment of flexibility in the real-world sense.  738 

In addition, further work needs to discuss the determination the weights of multi-739 

objectives when conducting trade-off analysis. The balance between robustness and 740 
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adaptiveness may vary depending on whether the priority is for immediate, high-impact 741 

actions or long-term sustainability. The weight assigned to each factor should reflect 742 

the specific goals. Besides, scenario discovery was implemented to find the 743 

combination option rather than an optimization algorithm to search for the best optimal 744 

combinations in many alternative options. We demonstrated a case study with a 745 

manageable set of options so that solving the optimization problem was outside the 746 

scope. Future work may apply evolutionary optimization algorithms to solve complex 747 

problems of multi-objective targets if there were hundreds of possible interventions or 748 

sequences. 749 

6 Conclusion 750 

This work provides a novel decision-making framework for flood mitigation in 751 

coastal megacities by synthesizing and building upon established DMDU methods 752 

(such as RDM and DAPP).  Rather than introducing a new theory, our contribution lies 753 

in the innovative combination and application of these methods to address the joint 754 

challenges of robustness and adaptiveness in flood risk management.  We demonstrated 755 

this framework in a case study, evaluating flood management strategies across multiple 756 

criteria – including performance, cost-effectiveness, effectiveness period, and 757 

flexibility – under many plausible futures. The results showed that traditional evaluation 758 

using only short-term effectiveness or cost-efficiency can be insufficient for long-term 759 

planning. Integrating the additional metrics of effectiveness period and flexibility 760 

provides more nuanced insights, helping to develop adaptive pathways that remain 761 

effective as conditions change..   Our case study also illustrated the trade-offs between 762 
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robustness and adaptiveness. For instance, a high-robustness single option (Tun70) 763 

performed very well in meeting flood control targets and had a strong BCR, but it lacked 764 

flexibility to adjust if future conditions turned out less severe than anticipated. On the 765 

other hand, a multi-component strategy (D+G+Tun30) achieved a high overall score 766 

when both robustness and adaptiveness were considered, due to its balance of risk 767 

reduction and planned flexibility. This comparison highlights that the “optimal” 768 

strategy can change depending on which criteria decision-makers prioritize. In practice, 769 

our robust adaptive pathways approach allows stakeholders to see how emphasizing or 770 

de-emphasizing flexibility (or other metrics) would lead to different preferred strategies, 771 

thus supporting more informed decision-making. 772 

Overall, this work provides a novel framework to inform Shanghai’s long-term 773 

flood adaptation planning under climate change. Beyond this case, the approach 774 

contributes a theoretical foundation and practical insights for other coastal megacities 775 

facing similar challenges, helping decision-makers integrate robustness and 776 

adaptiveness into their climate adaptation strategies to better cope with deep uncertainty 777 

in extreme flood risks..  778 
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