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Abstract: 21 

Delta cities are increasingly vulnerable to flood risks due to the uncertainties 22 

surrounding climate change and socioeconomic development. Decision-makers face 23 

significant challenges in determining whether and how to invest in flood defense. 24 

Adaptation solutions should consider not only to robustness but also to adaptiveness in 25 

case the future unfolds other than as expected. To support decision-making and meet 26 
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long-term multi-objective targets, we propose a synthesized framework that integrates 27 

robustness analysis, adaptiveness analysis, and pathway generation. This framework 28 

was applied to evaluate alternative solutions for managing pluvial flood risk in central 29 

Shanghai. The results demonstrate that relying on a single-objective decision-making 30 

approach (focused only on robustness) can lead to biased  outcomes. By examining the 31 

effectiveness period and flexibility of candidate solutions, we assessed their potential 32 

to meet long-term flood control targets. The analysis reveals that a combined option—33 

incorporating increased green areas, an improved drainage system, and a deep tunnel 34 

with a 30% runoff absorption capacity (D+G+Tun30)—emerged as one of the most 35 

robust and adaptive pathways, based on multi-objective trade-off analysis. This study 36 

highlights the importance of considering effectiveness period  within predefined control 37 

targets and retaining flexibility to avoid path-dependency and minimize long-term 38 

regrets. The proposed framework is broadly applicable and can  guide adaptive 39 

responses to future flood risks in other delta cities. 40 

Keywords: decision making under deep uncertainty; flood risk reduction; multi-41 

objective trade-off; robust adaptive pathway; Shanghai 42 

1 Introduction 43 

Flood risk is increasing in low-lying delta cities due to rapid urbanization and 44 

climate change (Yang et al., 2023), hindering the capacity of urban development. Delta 45 

cities such as Shanghai (Yin et al., 2020), Ho Chi Minh City (Scussolini et al., 2017), 46 

and London (Dottori et al., 2023) are facing the combined challenges from extreme 47 

rainstorms, sea level rise and urbanization-induced land subsidence with regard to 48 
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flooding risk reduction (Ward et al., 2017). It is anticipated that as a result of changing 49 

climate patterns, the frequency and severity of extreme flood events will increase in 50 

urban areas, thereby increasing the flood risk, particularly in rapidly developing delta 51 

cities (Sun et al., 2021).  52 

Delta cities are urged to examine potential climate adaptation options (Han and 53 

Mozumder, 2021;) and test their cost-effectiveness in designed socio-economic and 54 

climate scenarios to address rising flood risks (Lin et al., 2020).  Dottori et al. (2023) 55 

proposed strategies for European cities to deal with increasing river flood risk. However, 56 

these strategies or options will remain effective within a fixed timeframe under the 57 

uncertainties of climate change, land use change or political change is questionable; in 58 

addition, how these strategies can be up-scaled to meet the future needs is rarely 59 

discussed. This is a pressing concern for decision makers in long-term planning. In the 60 

field of decision making under deep uncertainty (DMDU), various approaches have 61 

emerged. Robust Decision Making (RDM) is effective at identifying strategies course 62 

of actions that perform well across a wide range of future scenarios through 63 

vulnerability analysis and stress-testing, but it lacks explicit guidance on how to 64 

sequence actions over time (Lempert et al., 2013; Workman et al., 2021). Dynamic 65 

Adaptive Policy Pathway (DAPP) by contrast, excels at planning flexible adaptation 66 

pathways to avoid lock-in, but is relatively weaker in quantitatively evaluating 67 

robustness across uncertainties (Haasnoot et al., 2013; Dias et al., 2020).  68 

These DMDU approaches have been continuously improved and optimized, the 69 

boundaries between methods have become increasingly blurred, and fusion thinking is 70 
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progressively adopted (Haasnoot et al., 2020). As pointed out by Lempert et al. (2003), 71 

RDM provides systematic procedures that emphasize the iterative analysis process of 72 

scenario exploration, which can help decision-makers discover situations where options 73 

may fail, and understand the trade-off among all the adaptation options (Lempert et al., 74 

2013). Kasprzyk et al. (2013) proposed the Multi-Objective Robust Decision Making 75 

(MORDM) approach by the combination concept of both multi-objective evolutionary 76 

optimizations and RDM (Bartholomew and Kwakkel, 2020; Yang et al., 2021). 77 

Kwakkel et al. (2019) pointed out that the RDM approach usually pays less attention to 78 

the dynamic planning of pathways on long-term scales of climate change. On the other 79 

hand, DAPP, which consist of the strengths of both Adaptive Policymaking (Walker et 80 

al., 2001) and Adaptation pathway (Haasnoot et al., 2012; Ranger et al., 2010), focuses 81 

on generating alternative dynamic pathway to achieve flexibility and avoid lock-in 82 

effects while it lacks quantitative robustness evaluation metrics (e.g., regret-based 83 

criteria or satisficing thresholds)  as well as a thorough vulnerability analysis to quantify 84 

potential failures (Haasnoot et al., 2013).  85 

Both the RDM and DAPP approaches are arguably most widely applied, and the 86 

concept of integrating two approaches has been proposed (Kwakkel et al., 2016) and 87 

practiced in cases (Tariq et al., 2017). However, as Ramm et al. (2018a) illustrated, 88 

integration of RDM and DAPP has not been thoroughly implemented. Future 89 

opportunities for a combined RDM–DAPP approach include engaging stakeholders to 90 

define clear adaptation objectives, establish suitable metrics, and determine risk 91 

tolerance as  these factors significantly influence the outcomes of alternative pathways 92 
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(Ramm et al., 2018b). Robustness emphasizes the ability of a strategy to perform in an 93 

effective way in many plausible futures.  How to define robustness and assess whether 94 

options are insensitive to deep uncertainty to ensure certain performance across 95 

multiple plausible futures have sparked extensive discussions, especially when meeting 96 

multi-objective targets (Herman et al., 2015; McPhail et al., 2018).  97 

The selection of indicators for robustness depends on the priorities and preferences 98 

by policymakers and it will substantially affect the outcomes of decisions (Giuliani and 99 

Castelletti, 2016). For example, the decision-makers who endorse risk aversion may 100 

under-estimate adaptation options’ performance. To overcome the single objective 101 

problem framing, Quinn et al. (2017) optimized operations of the four largest reservoirs 102 

under several different multi-objective problem framings in Hanoi city (Vietnam), and 103 

highlighted the importance of formulating and evaluating alternative stakeholder 104 

objectives.  105 

However, an open question remains: to what extent can a traditional robustness 106 

evaluation (especially under risk-averse assumptions) suffice for rational decision-107 

making, versus using a multi-objective trade-off analysis to gain a more comprehensive 108 

view? For example, while one might assume the cost of a climate adaptation option is 109 

normally proportional to its benefit (risk reduction), in practice, options with high 110 

performance often entail higher costs and potentially longer construction periods 111 

(Dottori et al., 2023). Focusing on a single-objective (whether maximizing risk 112 

reduction or cost-benefit efficiency alone) provided limited information for long-term 113 

planning, and can lead to lock-in or path dependency issues due to overinvestment or 114 
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maladaptation over time. 115 

Adaptiveness refers to the ability of a strategy to adjust to changing conditions 116 

(Haasnoot et al., 2013; Malekpour et al., 2020). Rather than being in opposition, 117 

adaptiveness and robustness are complementary: incorporating flexibility can meeting 118 

long-term sufficiency criteria enhance long-term robustness  by avoiding 119 

overinvestment and lock-in. For example, committing immediately to an extremely 120 

high-level (and high-cost) flood defense could lead to path-dependency if future 121 

conditions turn out less severe than expected, whereas a strategy that can be 122 

incrementally upgraded retains both flexibility and robust performance over time.  123 

Despite its importance, the quantification of ‘adaptiveness’ (e.g., in terms of flexibility) 124 

remains challenging (Kind et al., 2018). Adaptation tipping point analysis provided 125 

insight into when an options will no longer meet a specified performance target  126 

(Haasnoot et al., 2013), and Patient Rule Induction Method (PRIM) offers a quantitative 127 

way to identify these tipping points  (Ramm et al., 2018a; 2018b). Kirshen et al. (2015) 128 

noted that the preferred urban flood control strategy may change once additional criteria 129 

like no-regret and flexibility are considered at critical thresholds. Rather than choosing 130 

an ‘optimal’ here-and-now solution that could become suboptimal later, a “wait-and-131 

see” approach (delaying or staging investments) can preserve flexibility. In the ROA 132 

paradigm, flexibility is explicitly valued since it allows decision-makers to defer 133 

committing to large, costly, and irreversible measures while implementing smaller steps  134 

until more information is available (Erfani et al., 2018). In this paper, we define 135 

‘robustness’ as the ability of a strategycourse of action to maintain acceptable 136 
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performance across a wide range of plausible futures, and ‘adaptiveness’ as the ability 137 

to adjust or augment the strategy over time in response to how the future unfolds. 138 

Therefore, in our framework we incorporate both the timing of adaptations (the tipping 139 

point, termed the ‘effectiveness period’ in this paper) and the flexibility to adjust, as 140 

key characteristics of adaptiveness that support better long-term planning.  141 

In this study, we aim to propose a decision-making synthesized framework that 142 

integrates both robustness and adaptiveness to formulate a robust adaptive pathway for 143 

long-term climate adaptation planning under deep uncertainties. This framework is 144 

intended to guide decision-makers in prioritizing and sequencing adaptation options – 145 

a pressing challenge in urban climate action planning. We demonstrate the framework 146 

by applying it to a delta city (Shanghai) to evaluate a range of flood adaptation 147 

alternatives under plausible mid-21st-century scenarios (combining extreme rainfall 148 

and deteriorating drainage capacity by the 2070s).. 149 

The remainder of this article is organized as follows: Section 2 presents the 150 

proposed comprehensive framework and methodology. Section 3 introduces the 151 

background of the case study area and the preprocessing procedures. Section 4 presents 152 

the results, where a multi-objective trade-off is applied to evaluate the potential 153 

pathways for generating a robust adaptive pathway. This analysis combines metrics 154 

such as the average risk reduction rate (ARRR), benefit-cost ratio (BCR), effectiveness 155 

period, and flexibility of all options. Section 5 discusses the key findings related to 156 

pluvial flood risk management in coastal cities, the implications of multi-objective 157 

trade-off considering both robustness and adaptiveness, how the synthesized framework 158 
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can inform long-term adaptive policy formulation, and provides recommendations for 159 

future work. Finally, Section 6 concludes with a summary. 160 

2 Methodology 161 

2.1 Framework development 162 

Having outlined the challenges of pluvial flood risks under deep uncertainties, we 163 

now present a robust adaptive pathway framework for long-term planning. We built this 164 

framework by extending the taxonomy of DMDU approaches proposed by Kwakkel et 165 

al. (2019), which categorizes five dimensions of decision frameworks, and 166 

incorporating recent advancements in  robustness and adaptation methods. Figure 1 167 

provides an overview of our framework’s eight sequential steps. We summarize these 168 

steps below, then detail each component of the methodology: 169 

 170 

Figure1 Integrated framework of robust adaptive pathways for long-term flood control 171 
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1) Research framing. Define the long-term flood management objectives and a 172 

dynamic policy structure. Unlike a static, short-term plan, the proposed policy structure 173 

is dynamic and adaptive, providing a continuous pathway toward achieving long-term 174 

flood control goals while retaining flexibility to adjust as future conditions evolve. In 175 

our framework, introducing “adaptive” measures alongside traditional approaches 176 

enhances overall robustness by reducing the risk of over-investment or lock-in. 177 

2) Scenario generation. Develop a set of plausible future scenarios capturing key 178 

uncertainties (meteorological, hydrological, socio-economic, etc.). The ranges for 179 

uncertain factors can be derived from expert judgments, policy targets, or climate 180 

projections (Lempert et al., 2013). We employed a Latin Hypercube Sampling approach 181 

(Workman et al., 2021) to efficiently generate diverse futures. In our case study, for 182 

instance, futures were defined by varying extreme rainfall intensities and drainage 183 

capacity degradation by 2050, based on climate model outputs and local planning 184 

assumptions..  185 

3) Alternative generation. Identify and develop a portfolio of adaptation options. 186 

In our study, we used stakeholder workshops and policy document analysis to formulate 187 

viable flood control measures (both structural and non-structural). The current flood 188 

management strategy (status quo) serves as a baseline option, and a range of new 189 

adaptation alternatives (e.g., green infrastructure, drainage upgrades, tunnels, and their 190 

combinations) were assembled for evaluation. 191 

4) Model simulation. Evaluate each option (and combinations of options) under 192 

all futures using an appropriate flood simulation model. The framework can 193 
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accommodate models of varying complexity: for instance, high-fidelity 1D/2D 194 

hydrodynamic models (e.g., SOBEK, MIKE 1D2D; Wang et al., 2018) could be used 195 

for detailed analysis at the cost of more computation, whereas simpler conceptual 196 

models allow faster simulation of many scenarios. In our case study, we employed a 197 

simplified hydrological model based on the SCS-CN method to simulate runoff and 198 

flooding, which kept computational demands manageable given the thousands of 199 

plausible futures simulations, although the framework could integrate more complex 200 

models if needed.   201 

5) Robustness analysis. Assess each option’s performance across all futures using 202 

robustness criteriametrics, which used to be depicted as f(a,wj) meaning the 203 

performance of option a under scenario wj. In this study, we assume all scenarios are 204 

equally likely (an application of Laplace’s principle of insufficient reason) and compute 205 

performance indicators for each option under each scenario. Key indicators include the 206 

average risk reduction rate (ARRR), percentage reduction in expected damages 207 

compared to baseline, averaged over scenarios, and the benefit cost ratio (BCR), ratio 208 

of total avoided damage to total cost. Using these, we evaluate how “robust” each option 209 

is, for instance, how well it performs on average and whether it consistently meets 210 

acceptable thresholds across scenarios. .  211 

6) Adaptiveness analysis.  Determine how long each option remains effective and 212 

how easily it can be adjusted. For each single or combined alternatives, we identify its 213 

effectiveness period – the duration or range of conditions over which it meets the flood 214 

risk target – by finding the point at which its performance falls below the acceptable 215 
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threshold. We used the PRIM algorithm to analyze scenario results and pinpoint these 216 

tipping points; in doing so, we optimized PRIM’s coverage (the proportion of scenarios 217 

captured by a tipping point condition) and density (the success rate within those 218 

scenarios) to balance generality and precision to balance generality and precision. We 219 

refer to the conditions triggering failure as signposts, which are observable indicators 220 

that an adaptation or policy change will soon be needed. Furthermore, we quantify each 221 

option’s and combination’s flexibility in our framework by the number of measures it 222 

contains. In other words, a multi-component strategy planned with, say, three measures 223 

have a higher planned flexibility score than a single-measure strategy, since it inherently 224 

includes more future actions. This flexibility metric reflects only the strategy’s planned 225 

adaptability, not an absolute limit, – even a one-measure strategy could be expanded 226 

later. 227 

7) Multi-objective trade-off. Evaluate each alternative across multiple metrics to 228 

understand trade-offs. We consider both robustness metrics (e.g., risk reduction, benefit 229 

cost ratio, regret-based measures) and adaptiveness metrics (effectiveness period and 230 

flexibility) for every strategy. For comparison, all metric values are normalized and, in 231 

our analysis, treated with equal importance. This allows us to compute an overall 232 

performance score for each alternative. Options that achieve a good balance across all 233 

criteria are deemed the most promising candidates for robust and adaptive planning. We 234 

did not run a computational multi-objective optimizer which would be typical if there 235 

were hundreds of options. Instead, we effectively enumerated and evaluated a small set 236 

of candidate solutions manually or with simple search, given the case study’s scope. 237 
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8) Robust adaptive pathway. Formulate and select robust adaptive pathways. 238 

Using the information on each option’s effectiveness period and flexibility, we identify 239 

sequences of actions that extend flood protection over time. We generate an adaptation 240 

roadmap by considering how the system could transition under transient scenarios. 241 

From the set of possible pathways, we then select a robust adaptive pathway that best 242 

satisfies the flood control objectives in the long term based on the multi-objective 243 

analysis from step 7. Along this pathway, we define key signposts – measurable 244 

indicators (e.g., a threshold of rainfall intensity or drainage failure rate) that signal when 245 

it’s time to shift to the next course of action. Monitoring these signposts will support 246 

future decision-making and adjustments to the plan. 247 

2.2 Methods of robust adaptive pathway procedures  248 

Robustness analysis 249 

Deciding on a robustness criterion is essentially a meta-decision problem (Herman 250 

et al., 2015). In our context, robustness of a strategy refers to its satisfactory 251 

performance across a range of uncertain future states.. Various metrics can be used to 252 

evaluate course of actions’ performance under uncertainty and identify those that are 253 

sufficient against a given criterion  quantify robustness under uncertainty including 254 

Maximax, Maximin, Mean-variance, Starr’s domain criterion, Laplace’s principle of 255 

insufficient reason, etc. (Molina-Perez et al., 2019). Each metric embodies a different 256 

risk preference, so the choice of metric can influence which option appears most 257 

favorable  (Giuliani and Castelletti, 2016). In this study, we adopted  neutral risk 258 

aversion of Laplace’s principle of insufficient reason as one robustness measure: in the 259 

https://www.rand.org/pubs/authors/m/molina-perez_edmundo.html


13 

 

absence of known scenario probabilities, we assign equal weight to all scenarios and 260 

identify solutions that perform best on average.. It is important to note that while metrics 261 

like Laplace's principle provide a useful initial screening for sufficient strategies, they 262 

can be prone to corner solutions and may not fully capture multi-attribute challenges 263 

under deep uncertainty. The subsequent adaptive pathways analysis (DAPP) is therefore 264 

essential to complement this initial screening and build a resilient long-term strategy. 265 

The performance of option or combination a is depicted as Equation (1).  266 

𝛼∗ = 𝑎𝑟𝑔 max
𝑎∈𝐴

(
1

𝑁
∑ 𝑓(𝛼, 𝑤𝑗)

𝑁

𝑗=1

) （1） 

    where a∗ denotes the optimal option or combination, A is the set of all options or 267 

combinations (listed in table 2), N is the total number of futures. And f(a,wj) is the 268 

performance of option or combination a under future wj, which represents the expected 269 

flood risk associated with adaptation option or combination a under future wj , as 270 

generated from the flood-damage simulation model. This risk value forms the basis for 271 

evaluating robustness through indicators such as the ARRR. 272 

In many robust decision-making frameworks, criteria related to satisficing and 273 

regret are used as performance measures (Herman et al., 2015). Regret is broadly the 274 

opportunity loss incurred by not choosing the optimal action in a given scenario – 275 

essentially, how much worse a strategy performs compared to the best possible outcome 276 

in that scenario. Satisfaction can be viewed as a measure of how well a strategy meets 277 

a predefined target (combining effectiveness and efficiency). In our evaluation, we 278 

compute these metrics relative to a baseline scenario or option.  Equation (2) illustrates 279 
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how we calculate regret-based performance for the alternatives. 280 

𝑃𝑖  =
1
𝑁

∑
|𝑓(𝑎, 𝑤𝑗) − 𝑓(𝑎0, 𝑤𝑗)|

𝑓(𝑎0, 𝑤𝑗)

𝑁

𝑗=1

 （2） 

Where 𝑃𝑖  is the performance value of average risk reduction rate (ARRR) of 281 

alternative options or combinations in all plausible futures N, 𝑓(𝑎, 𝑤𝑗) represents the 282 

performance value of pluvial flood risk of option a in future 𝑤𝑗, and 𝑓(𝑎0, 𝑤𝑗) is the 283 

performance value of pluvial flood risk of the baseline option 𝑎0 in future 𝑤𝑗. 284 

Decision-makers also examine whether any given strategy has vulnerable stressful 285 

scenarios – situations in which it fails to meet minimum acceptable performance. A 286 

threshold can be set to define what constitutes intolerable performance. Metrics like the 287 

domain criterion quantify the fraction of the uncertainty space (subsets of all futures) 288 

in which a solution meets all performance requirements. Such considerations align with 289 

policy risk indicators often used in practice (e.g., minimum safety standards or 290 

environmental protection criteria) to ensure options avoid unacceptable outcomes. 291 

Based on the elicitation of local requirements, we define the 𝑃𝑖
∗ as the performance of 292 

average risk reduction rate (ARRR) which satisfies the minimum threshold of the given 293 

flood control target (𝐹0, 𝐹0=0.7 in this case), as depicted in Equation (3).  294 

𝑃𝑖
∗ =

1
𝑠

∑
|𝑓(𝑎, 𝑤𝑗) − 𝑓(𝑎0, 𝑤𝑗)|

𝑓(𝑎0, 𝑤𝑗)

𝑠

𝑗=1

≥ 𝐹0 （3） 

Where 𝑃𝑖
∗represents the performance value of ARRR of the option or combination 295 

𝑎 in subsets S of all plausible futures N that meets the given flood control target 𝐹0. 296 

PRIM is applied to identify clusters of successful cases by searching across the full set 297 

of futures N for each option or combination. Specifically, for each option or 298 
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combination a, we select the subset of future S that leads to the most successful outcome 299 

by balancing coverage and density with given flood control target 𝐹0. 300 

Internationally, the net present value of benefits (PVB) and the net present value of 301 

costs (PVC) are commonly used to represent benefits and costs, respectively (Liao et 302 

al., 2014). In this study, PVB is selected as the pluvial flood risk reduction rate (RRR) 303 

before and after the implementation of the options, rather than as the pluvial flood risk 304 

reduction value. It is important to note that the goal of this study is not to calculate the 305 

direct risk of extreme pluvial flooding in the future, as the absolute value of the risk 306 

would be too large for meaningful comparison. Therefore, the benefit-cost ratio (BCR) 307 

is presented simply as the ratio of PVB to PVC. 308 

Adaptiveness analysis 309 

PRIM is an interactive statistical clustering algorithm that generates a series of 310 

subspaces by peeling away layers of the uncertainty space, where the coverage and 311 

density of points of interest in each box are greater than in the surrounding space 312 

(Matrosov, 2013). As a visualized tool for exploratory analysis, PRIM is widely used in 313 

many works to investigate either key factors causing system failure or vulnerable 314 

stressful scenarios that might cause alternative options' failure. Parameters of coverage, 315 

density, and interpretability characterize the subspaces. These three metrics are usually 316 

correlated, with increasing density resulting in decreasing coverage and interpretability. 317 

It turns out that an analyst needs to trade-off in selecting the potential coverage, density, 318 

and interpretability to achieve the best combination. The subspaces describe the 319 

conditions beyond which coastal inundation impacts are unacceptable signifying 320 
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adaptation tipping points are reached (Ramm et al., 2018a). Key factors along with the 321 

tipping point of options are evaluated in associated timeframes which need not be exact. 322 

Identifying an indicative period at which conditions describing adaptation tipping 323 

points indicate an effectiveness period (or use-by year) (Haasnoot et al., 2013). The 324 

results of PRIM can assist decision-makers in identifying sensitive ranges of uncertain 325 

factors or combinations, and factors with little influence can be safely disregarded.  326 

Following a decision initially, flexibility in decision theory is related to the 327 

remaining choices available in the following period. The larger this set, the more 328 

flexibility the decision maker retains. This idea can be generalized to staged choices 329 

over multiple periods. For example, Erfani et al. (2018) proved that flexibility is 330 

valuable in providing decision nodes in multistage scenarios (planning periods in every 331 

5 years) for least-cost water supply intervention scheduling. One way of assessing the 332 

value of flexibility is thus by comparing a flexible investment strategy against a strategy 333 

that scores highly on a static sufficiency metric but offers fewer future optionsOne way 334 

of deriving the value of flexibility is thus by comparing costs and benefits of a flexible 335 

investment strategy with those of a less flexible, that is, a more robust strategy (Kind et 336 

al., 2018). However, flexibility is not treated as delayed option value as other ROA 337 

work calculated, instead, we consider the convertibility of options that is still in line 338 

with the idea of wait-and-see yet is more straight-forward. It is important to note that a 339 

strategy initially implemented as a single measure does not preclude future 340 

augmentation if conditions worsen. In our framework, however, such augmentations 341 

were not pre-planned in single-measure scenarios. Therefore, our ‘flexibility’ metric 342 
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should be interpreted as the degree of planned adaptability, rather than an absolute limit 343 

on a strategy’s potential to adapt. 344 

Multi-objective trade-off 345 

The cost and benefit of investment in adaption options may lead to a static 346 

decision-making perspective. Therefore, an important question was raised for robust 347 

decision-making of how to avoid failure scenarios regarding factors including risk 348 

reduction rates over time, cost of option, and economic benefit ratio. On this basis, 349 

making robust decisions needs to include other factors beyond cost and benefit, such as 350 

effectiveness period and flexibility, for a comprehensive evaluation in the long-term 351 

(Erfani et al. 2018)  352 

The optimization of options’ combinations can be identified via the trade-off 353 

process by Equation (4).  354 

max
𝑙∈𝐿

𝐹(𝑙) = [𝑦1(𝑙), 𝑦2(𝑙), 𝑦3(𝑙), 𝑦4(𝑙)] （4） 

Where l ∈ L is a candidate adaptation pathway from the set of feasible pathways 355 

L; y1(l): Flexibility — number of successful alternatives reachable from pathway l; y2(l): 356 

Effectiveness period — duration before performance drops below threshold; y3(l): 357 

Benefit-Cost Ratio (BCR) — economic efficiency of pathway l; y4(l): Average Risk 358 

Reduction Rate (ARRR) — robustness of flood risk performance. 359 

Robust adaptive pathway 360 

Adaption tipping points (effectiveness periods) are central to adaptation pathways, 361 

the conditions under which an action no longer meets the specified objectives. The 362 
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timing of the adaptation points for a given action, its effectiveness period, is scenario 363 

dependent. The DAPP, manually drawn based on model results or expert judgment, 364 

presents an overview of relevant pathways (Haasnoot et al., 2020). In this study, we 365 

first examined the effectiveness period of alternative options by PRIM analysis to 366 

identify acceptably robust adaptation pathway for future flood control. We then 367 

identified the combination of candidate pathways in consideration of both effectiveness 368 

period and flexibility, ensuring the adaptive solutions in incremental stages allow for 369 

maintaining flood control levels before committing to larger schemes. Roadmap of 370 

candidate’s pathways are generated during this procedure. Lastly, the preferred robust 371 

pathway is determined by a trade-off analysis of all the criteria. 372 

3 Case study 373 

3.1 Background 374 

Shanghai, with a domain of 6,340 km2, provides residences to 24.9 million 375 

population with a built-up area of 1237.9km2 in 2021. Shanghai has been perhaps the 376 

most important economic and financial center in China, and it now aspires to be one of 377 

the world's most important economic, financial, shipping, and trade centers (Shanghai 378 

Statistic Yearbook, 2021). Shanghai is surrounded by water on three sides: the East 379 

China Sea to the east, the Yangtze River Estuary to the north, and Hangzhou Bay to the 380 

south. In addition, the Huangpu River, a Yangtze River tributary, flows through the heart 381 

of Shanghai. The average yearly precipitation is approximately 1400mm in recent 10 382 

years, with 63% concentrated during the flooding season from May to September 383 

(Shanghai Climate Change Research Center, 2022). As a result, the most catastrophic 384 
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hazard in Shanghai has been floods produced by torrential rainfall, which annually 385 

disrupts transportation and other social activities, causes substantial economic losses, 386 

and threatens urban safety. 387 

Shanghai has the lowest elevation (with averagely 4m above m.s.l.) and large 388 

numbers of old-lane residential buildings in central city, which have fewer floors 389 

compared to other districts that is vulnerable to the extreme pluvial flood events see 390 

Figure 2). The spatial distribution of rainfall will continue to concentrate in urban areas, 391 

and the increasing likelihood of extreme precipitation (Liang and Ding, 2017), 392 

combined with the trends of relative sea-level, will cause stakeholders, includes 393 

residents, policymakers, and scientists etc., to be concerned about the rising flooding 394 

risk in delta cities of Shanghai (Du et al., 2020). 395 

 396 
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Figure 2 Case area, administrative, and solution district (blue shade) in center Shanghai, 397 

including spatial distribution of building footprints indicating the number of stories (gray shades), 398 

the base map was provided by Esri, using ArcGIS Online Services. 399 

3.2 Research Framing 400 

Based on the proposed framework, the dimensions, components, and metrics of 401 

this study are organized as shown in Table 1. To ensure urban safety, this study defines 402 

an explicit flood control objective of achieving a 70% average risk reduction rate, in 403 

alignment with the Shanghai Flood Control and Drainage Plan (2020–2035) (Shanghai 404 

Municipal Water Authority, 2020).  405 

Table 1 Dimensions of the research framework  406 

Dimension Components Metrics 

Research 

framing 

Alternative options to generate robust and adaptive 

pathway  

Definition of flood 

control objective 

Scenarios 

generation 

Increased 

rainfall 
Rain island effect Drainage decrease 

Latin hypercube 

sampling (LHS) 

Alternatives 

generation 

Drainage 

increased 

Increase of green 

area 

Deep tunnel with 

30%, 50%, or 

70% of runoff 

absorption 

Predefined by local 

flood control plan 

Model 

simulation 
Hydrology Flood risk  

Geospatial 

statistics 
Grid aggregation  

Robustness 

analysis 

Performance  

(ARRR) 

Measure Cost 

(Life cycle cost) 
Benefit 

Laplace and Domain 

criterion 

Adaptiveness 

analysis 
Signpost 

Effectiveness 

period 
Flexibility PRIM 

Multi-

objective 

Trade-off  

Robustness Adaptiveness Metric evaluation 

Robust 

adaptive 

pathway  

Candidate pathway identification, roadmap generation, 

and monitoring of signposts 
Transition scenarios 

The robustness analysis serves as the foundation of our methodology, ensuring 407 

that the proposed solutionsoptions can meet the sufficiency criteria underwithstand 408 

future uncertainties. Once robustness is assessed, we proceed to the adaptiveness 409 
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analysis, which allows us to account for flexibility in response to unforeseen challenges. 410 

We conduct a trade-off analysis in terms of robustness and adaptiveness was of 411 

particular significance to providing iterative stress tests over many plausible scenarios 412 

using robustness metrics and identifying effectiveness periods and flexibility to 413 

generate alternative pathways. Following the structure of robust decision-making 414 

pathway framework, Figure 3 illustrates the entire procedures for long-term flood 415 

control planning in the Shanghai case study. 416 
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 417 

Figure 3 Framework of robust adaptive decision-making pathway, which incorporates the 418 

robustness, adaptiveness, multi-objective trade-off, and pathway generation (blue boxes). 419 

3.3 Scenario generation 420 

Precipitation is predicted very likely to increase in the Yangtze River Basin in the 421 

21st century (Hui et al., 2018), and the frequency and intensity of extreme rainstorm 422 
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events may continue to increase (uncertain factor of the 𝛼, future rainfall assumed to 423 

increase from 7% to 18%). Shanghai's spatial rainfall patterns reveal a significant "rain 424 

island effect" between urban centers and suburbs (Liang and Ding, 2017) (uncertain 425 

factor of the 𝛽, assumed to increase from 10% to 20% in central region (Xujiahui and 426 

Pudong rain gauges), decrease from -0.076% to -0.038% (other 9 rain gauges in 427 

Shanghai)). In addition, land subsidence has been a persistent issue due to the 428 

groundwater exploitation and construction of high-rise buildings (Yang et al., 2020). 429 

By 2050, it is projected that the current river embankment and drainage systems in 430 

Shanghai will experience a 20-30% reduction in capacity due to a likely relative rise in 431 

sea level of 50 cm (compared to the year of 2010), caused by both sea level rise and 432 

land subsidence (Wang et al., 2018). The uncertain factor of the decrease of drainage 433 

capacity (γ, assumed to decrease from 0 to 50% due to the anthropogenic land 434 

subsidence and sea level rise) is designed to be the degradation effect of restraining the 435 

water from the urban drainage system flowing to the river system due to the high river 436 

water level caused by the continually rising sea level, land subsidence, and other 437 

degradation factors. 438 

This study focused on a record-breaking convective rainfall that occurred on 439 

September 13, 2013 and had an intensity record of 140.7mm within 3 hour (at 17-19h). 440 

The variation interval of each uncertainty factors was clarified, and Latin Hyper Cube 441 

Sampling (LHS) was used to construct 100 plausible futures based on the historic "913" 442 

extreme rainfall event in 2013 (Supplementary materials Text 1). 443 
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3.4 Alternative generation 444 

It is acknowledged that the current Shanghai flood control infrastructure is 445 

insufficient to protect the city from long-term inundation risk (Shanghai Municipal 446 

Water Authority, 2020). Three options, drainage improvement, increase of green area, 447 

and construction of deep tunnel, are pre-defined with stakeholders of experts and 448 

decision-makers following the Shanghai Flood Control and Drainage Plan (2020-2035). 449 

The solution district locates in the core business district (CBD) of Shanghai and is 450 

highlighted in Figure 2. We defined the existing structure of flood control measures as 451 

the baseline and evaluated alternative measures’ performance verse the baseline control 452 

level in the flood simulation model (Table S4).  453 

3.5 Model simulation 454 

Simulations of extreme pluvial flood inundation under climate change scenarios 455 

are carried out using the Shanghai Urban Inundation Model (SUIM) (Supplementary 456 

materials Text 2). It was created to couple multiple simulation processes, which consists 457 

of the SCS-CN hydrological model, statistical analysis of flooding results, risk 458 

assessment, and assessment of adaptation measures. Appropriate socioeconomic 459 

indicators were selected to characterize the exposure of the elements at risk and the 460 

vulnerability curve to evaluate the flood risk in all plausible scenarios (Supplementary 461 

materials Text 3). We then coupled the hydrological module and risk assessment module 462 

to assess the future risk (Supplementary materials Text 3). Three climate adaptation 463 

options are quantitatively characterized in the risk assessment system. The benefit-cost 464 

ratio (BCR) of all options is calculated according to the performances of the risk 465 
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reduction rate over the life cycle cost (Supplementary materials Text 4).  466 

4 Results 467 

4.1 Robustness analysis 468 

This section presents the performance evaluation results, including average risk 469 

reduction rate (ARRR) and Benefit-cost ratio (BCR), to reflect the robustness of 470 

potential climate adaptation options (Supplementary materials Text 4). BCR was 471 

defined as the average risk reduction rate (ARRR) per unit cost (Equation S4 in 472 

Supplementary materials Text 4) based on the robustness metrics of Laplace’s Principal 473 

of Insufficient Reason. Specifically, the benefit is the reduction in expected flood losses 474 

compared to the no-action scenario (Equation 3), while the cost refers to the total 475 

implementation cost of each adaptation option (Equation S5 in Supplementary 476 

materials Text 4). We adopt Laplace’s principle of insufficient reason, assuming all 477 

scenarios are equally likely when calculating average outcomes across scenarios. Given 478 

that drainage capacity reduction (γ) is the main factor affecting the solutions’ 479 

performance, thus the study selects γ as the only explanatory indicator to explore the 480 

failure scenario of options based on the PRIM method.  481 

As depicted in Table 2, the ARRR is calculated (Equation 2) to analyze the 482 

effectiveness of (the combination of) options. The average yearly cost of single options, 483 

which includes increasing drainage capacity (Dr), expanding green areas (GA), and 484 

constructing a deep tunnel with 30% runoff absorption (Tun30), is at a comparative 485 

level, ranging from 39 to 41 million USD per year. Their performance is relatively 486 
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unsatisfactory (the ARRR is less than 0.39.) However, the ARRR for the combined 487 

option (D+G), drainage improvement and public green area, is higher (0.62) than the 488 

sum of two single options (0.51), indicating that the composite option will be more 489 

effective of reducing flood risk. Furthermore, it demonstrates that the combined options 490 

(i.e., D+G and D+G+T30) are satisfactory in terms of ARRR performance but not 491 

economically attractive due to their relatively higher costs. It is noted that if an option 492 

defers a major investment (like the Tun30) to later years, in reality its present value cost 493 

would be lower with discounting, potentially making the strategy more economically 494 

attractive than our simple BCR suggests. 495 

 496 

Figure 4 Yearly cost and total cost of alternative options  497 

While two single-option involving deep tunnel (namely Tun50, Tun70) seem very 498 

attractive in terms of both ARRR and BCR.   499 

Table 2 The ratio of the benefit-cost of each adaptation options 500 

Option 

ARRR (without 

control target, %) 

Cost (million 

USD / year) 

Benefit-cost 

ratio (%) 

Dr 0.25 39 0.09 
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GA 0.26 37 0.10 

Tun30 0.39 41 0.14 

D+G 0.62 76 0.12 

Tun50 0.74 68 0.16 

D+G+Tun30 0.85 117 0.10 

Tun70 0.87 95 0.13 

4.2 Adaptiveness analysis  501 

Scenario discovery validates the decrease of drainage capacity is the most critical 502 

uncertainty in defining the risk reduction rate of performance objective. The failure 503 

scenarios are identified when the flood control target F0=0.7 is not met. We further 504 

interpret failure scenarios by selecting subspace of each alternative options under flood 505 

control target using PRIM algorithm to optimize the combined value of coverage and 506 

density. Table 3 summarizes these metrics, where coverage and density are derived from 507 

PRIM-identified failure boxes, and ARRR is calculated as the average performance 508 

within those clusters. The valid period is defined by the point (characterized by γ) when 509 

a single option or combination no longer meets the performance target.  510 

According to the results in Table 3, it was found that within the 70% risk reduction 511 

control target (Equation 3), the single options of Dr and GA performed less favorably 512 

(relatively smaller ARRR) and can quickly fail to meet the risk reduction target (with 513 

no larger than 0.1 of γ). Tun30 and D+R are very comparative since they preform very 514 

closely (similar results on ARRR and γ) but still not attractive. While Tun50 seems very 515 

attractive in terms of ARRR (0.89), however, it does not possess higher effectiveness 516 

period (γ) than both D+G+Tun30 and Tun 70. Surprisingly, both D+G+Tun30 and 517 
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Tun70 can function well in an effective way for a longer time. So far, D+G+Tun30 and 518 

Tun70 have proven to be highly competitive in terms of cost-effectiveness and 519 

effectiveness period over time. 520 

Table 3 ARRR and coverage and density of success scenarios in each option combinations 521 

under 70% risk reduction control standard 522 

Option 

ARRR (with 

control target, %) Coverage Density 

Decreased drainage 

capacity (γ) (effectiveness 

period) 

GA 0.59 1 0.22 0.04 

Dr 0.62 1 0.20 0.07 

Tun30 0.73 1 0.75 0.1 

D+G 0.74 0.9 0.82 0.11 

Tun50 0.89 0.95 0.98 0.29 

D+G+Tun30 0.86 0.99 0.98 0.48 

Tun70 0.87 1 1 0.5 

We define flexibility as the number of transitions by enumerating overall option 523 

combinations regarding adaptive transferable pathways from the original option 524 

(current flood control infrastructure) to the destination options (e.g., D+G+Tun30 and 525 

Tun70, Figure 6). For example, the D+G+Tun30 comprises three single options, 526 

allowing it to begin with any of the three and delay further action until a tipping point 527 

approaches, giving it a convertibility score of three (Table S6). Therefore, each single 528 

option has a value of one for convertibility. 529 

4.3 Multi-objective trade-off 530 

An analysis focused solely on static performance metrics (e.g., ARRR and BCR) 531 
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would rank options like Tun50 and Tun70 as the top performers. In contrast, an analysis 532 

that also incorporates adaptive characteristics (effectiveness period and flexibility) 533 

reveals the advantages of a pathway like D+G+Tun30. These differing outcomes 534 

demonstrate why moving beyond a single-metric assessment to a multi-criteria 535 

evaluation is crucial for identifying course of actions that are sufficient over the long 536 

term.The robustness-focused analysis (e.g., looking only at ARRR and BCR) would 537 

rank options like Tun50 and Tun70 as the top performers, whereas the adaptiveness-538 

focused analysis (looking at effectiveness period and flexibility) made D+G+Tun30 the 539 

most appealing. These differing outcomes demonstrate why it is crucial to evaluate 540 

multiple criteria together. Only by considering all metrics simultaneously (a true multi-541 

objective trade-off) can we identify strategies that strike an appropriate balance for 542 

long-term flood management. Multi-objectives of (the combination of) options consider 543 

all four metrics, including BCR, and performance of the risk reduction control criteria 544 

(ARRR>70%), effectiveness period (γ), and the flexibility. We solved the multi-545 

objective problem using normalized and equally weighted metrics (Equation 4). Figure 546 

5 depicts the results of BCR, ARRR in control criteria, effectiveness period, and 547 

flexibility of each option's combination. The higher the normalized rating, the greater 548 

the payoff. The outcome demonstrates that both GA and Dr perform poorly, whereas 549 

Tun30 and D+G are not robust enough compared to Tun 50, D+G+Tun30, and Tun70. 550 

It needs to be highlighted that Tun 50, D+G+Tun30, and Tun70 possess high priority. 551 

We found that the D+G+Tun30 pathway achieved a well-balanced performance across 552 

risk reduction, cost-effectiveness, and our flexibility metric (Table S7). In our initial 553 
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analysis, this made D+G+Tun30 appear as the most promising option overall. However, 554 

as discussed, this planned flexibility advantage does not necessarily mean a single-555 

component strategy cannot be adapted later. It is important to note that this conclusion 556 

is contingent on including the flexibility metric. If flexibility were defined differently 557 

or given less weight, another option – for example, the single large tunnel Tun70 – 558 

could emerge as preferable for long-term risk control.  559 

 560 

Figure 5 Multi-objective trade-off of alternative options with normalized value of robustness 561 

and adaptiveness metrics (the preference of priority is accepted from low(bottom) to 562 

high(top)). 563 

4.4 Robust adaptive pathway 564 

Pathway identification 565 

The candidate pathway was identified by enumerating the possible combinations 566 

of options. In this study, we found two potential pathways including from Tun30 to 567 
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Tun70, and from Dr or GA to D+G+Tun30. It can be observed from Figure 6 that when 568 

γ increases, the performance of options of Dr (or GA, vice versa) steadily diminishes 569 

until the risk control target are not satisfied.  570 

The drainage capacity, affected by the compound event of land subsidence, sea 571 

level rise, and storm surge, is deemed to be undermined (which is reflected by drainage 572 

capacity reduction rate γ) over time. Figure 6 illustrates the concept of an option 573 

combination's effectiveness period using Dr+GA+Tun30 as an example. ARRR to 574 

begin with Dr is 0.62, with an increase in γ, Dr fails (γ=0.07), and ARRR will decrease 575 

further if no additional options are taken. The addition of GA can increase the ARRR 576 

to 0.74 before Dr and D+G fail (γ= 0.11). The ARRR will continue to decrease if options 577 

are not strengthened. Before D+G completely fails, incorporating Tun30 can increase 578 

the ARRR to 0.86; as γ increases, D+G+Tun30 fails at γ=0.48. To ensure the adaptive 579 

robustness of the combination of options, decision-makers can increase the service 580 

coverage area and rainwater absorption capacity of the deep tunnel project in the core 581 

area prior to the total failure of D+G+ Tun30. In other words, the transition from Tun30 582 

to Tun50 and even Tun70, along with the combination of options, will be stable over 583 

the long-term time horizon. It is noted that the slight rise in performance after GA and 584 

Tun30 installation reflects a short ramp-up period in our model, during which newly 585 

implemented measures gradually reach full effectiveness, then performance begins to 586 

decline as expected under continued climate-induced stressors. 587 

The differing curvature of the performance decline is due to the interaction of 588 

measures. For the Dr-only strategy, once implemented, its risk reduction gradually 589 
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diminishes at an accelerating rate as climate stressors intensify – producing a concave-590 

down curve (initially gentle slope, steepening later). In contrast, the strategies with 591 

multiple measures (D+G and D+G+Tun30) show a more linear decline. This is because 592 

when drainage alone begins to lose effectiveness, the next measure (GA, and later 593 

Tun30) either has just been implemented or is concurrently mitigating risk, effectively 594 

offsetting some of the non-linear drop. The combined result is a more steady 595 

(approximately linear) decrease in performance over time, as the measures’ effects 596 

complement each other. We normalized time as 𝛾 = t/T (with T=50 years, the simulation 597 

period), so 𝛾 corresponds to the year 2070. 598 

 599 

Figure 6 Flexible pathway of combination options of drainage improvement (Dr), green 600 

area increment (GA), and deep tunnel with 30% absorption (Tun30), representing the risk 601 

reduction rate undermines with the reduction of drainage capacity. An example of 602 

Dr+GA+Tun30. 𝛾 is a dimensionless time, where 𝛾 =1 corresponds to Year 2070, the end of 603 
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our planning horizon 604 

Pathway generation 605 

We comprehensively evaluated the candidate pathways by considering 606 

performances, BCR, effectiveness period, and flexibility. The time frame lacks an 607 

absolute time reference but still offers a relative tracking of the rate at which relative 608 

sea levels are rising.  609 

Figure 7 depicts two robust transition pathways: D+G to D+G+Tun30 and Tun30 610 

to either Tun50 or Tun70. The two pathways D+G+Tun30 and Tun30 to Tun70, provide 611 

adaptive short and long-term pathway schemes from a flexibility standpoint. The short-612 

term options are used as transitional schemes, and new options can be added before 613 

their failure, i.e., pathway transition, to maintain the risk control objectives. In addition, 614 

the two schemes can complement each other and incorporate new options before the 615 

system's long-term robustness is compromised. Additionally, D+G+Tun30 and Tun70 616 

leave room for upgrading to the costlier and more durable D+G+Tun70 in the long run 617 

when γ exceeds 0.5 (e.g., sea level or land subsidence exceeds observing increase 618 

speed).  619 

We observed that Tun70 offered the highest robustness in terms of ARRR and the 620 

longest effectiveness period among all single options. However, its lack of initial 621 

flexibility – requiring a large up-front investment in gray infrastructure – could lead to 622 

path dependency if future conditions turn out to be mild. In contrast, strategies that start 623 

with smaller measures (like Dr or GA) and can add on bigger projects later avoid that 624 

risk of over-commitment. This underscores the classic tension in planning: a strategy 625 
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like Tun70 is robust but inflexible, whereas a phased approach is flexible but may 626 

initially be less robust. Our framework attempts to balance these aspects by evaluating 627 

both. In conclusion, A promising robust adaptive pathway should initially begin with 628 

GA and Dr, followed by a combination of D+G. Ultimately as time goes by with 629 

gradually undermined drainage capacity, it should incorporate Tun30 with the 630 

flexibility to expand to Tun70. 631 

 632 

Figure 7 Generation of robust adaptive pathways with two potential pathways from either Dr or GA 633 

to D+G+Tun30, and from Tun30 to Tun70 as the reduction of drainage capacity over time (x-axis). 634 

The options are sequenced in an upward relative higher BCR (y-axis, also see in Table 2). 635 
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5 Discussion 636 

5.1 Key findings 637 

Applying this framework to the case of the reoccurrence in the 2050s (of the 638 

extreme rainfall events on 13 September 2013) in Shanghai reveals informative findings 639 

to urban planners and other stakeholders. First, the performance of climate adaptation 640 

options (for addressing pluvial flood risk) decreases as the drainage capacity reduction 641 

rate (γ) increases (Table 3). This result is indirectly supported by events in June 2015 642 

and July 2021, which caused severe inundation in central Shanghai for days because 643 

the high water levels of rivers in the region prevented rainwater from being pumped or 644 

drained from the drainage system into the river network. This finding also suggests that 645 

drainage capacity is a key determining factor for the performance of options in other 646 

delta cities which may rely on discharge to the rivers (e.g., Guangzhou, Ho Chi Minh 647 

City, London, etc.) (Hu et al., 2019). Urban planners in those cities need to consider 648 

scenarios of high-water levels in the river with a joint of extreme storm surge under 649 

typhoon takes place in a high astronomical tide period at estuary. Such an event would 650 

significantly undermine the drainage capacity thus leading to severe flooding inside the 651 

city and bringing potential disastrous impacts (e.g. Zhou et al., 2019).  652 

Second, as the drainage capacity decreases(γ), effectiveness periods of different 653 

option  combinations varied significantly, showing a discrete distribution, which ranged 654 

from 0.04～0.5 with a corresponding ARRR ranging from 0.59～0.89 (Table 3). 655 

Moreover, the most cost-effective solution may not always offer the longest 656 

effectiveness period within an explicit flood control target (e.g. 70% risk reduction as a 657 



36 

 

target in our case study), and therefore cannot be considered satisfactory (Figure 5). The 658 

findings highlight the importance of the discussion regarding the long-term robustness 659 

of solutions which has been overseen in many flood- risk control works in delta 660 

megacities. It is also further implying that if there is no consideration of the flood risk 661 

reduction target, discussions about a robust decision plan with stakeholders is 662 

meaningless. This urges to pay great attention to be proactive by strengthening the 663 

dynamic pathway and closely monitoring the decrease of the drainage capacity ahead 664 

of the pace of relative sea level rising (Figure 6).  665 

5.2 Robustness and adaptiveness trade-off 666 

The comparison in Section 5.1 brings up a vital decision-making issue on the trade-667 

offs between the benefit and cost of alternative options. In general, options with better 668 

performance required higher costs, which was also proved in any distinctive option in 669 

Table 2 and Table S6. It is also demonstrated that the combination of alternative options 670 

such as D+G showed a better performance than the single option of Dr and GA at the 671 

same cost. However, the cost of an option is not strictly proportional to its benefit (risk 672 

reduction rate) (Figure 4). For instance, Tun 50 possesses better performance in 673 

reducing inundation risks associated with the relatively low yearly economic cost 674 

compared to D+G. Because it is difficult to measure the pros and cons of the costly 675 

solution to maintain a higher protection standard and economical solution to possess an 676 

acceptable performance (cost-effectiveness), planners typically underestimate both 677 

influences by a large margin.  678 

In recognition of this limitation, it can be realized that single-objective targets e.g., 679 
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flood control performance (ARRR), or financial control (BCR) may lead to biased 680 

decisions or maladaptation for the long-term horizon. For example, Table 2 shows that 681 

Tun50 has the highest cost-effectiveness (0.16), while the D+G+Tun30 is positioned at 682 

an average level, both of which performed well in reducing flood risk. In sharp contrast, 683 

the adaptiveness analysis shows that the D+G+Tun30 behaved significantly better 684 

during a reasonable period than Tun 50, which is a more flexible and adaptive option 685 

for long-term planning (Figure 7). Therefore, it tends to a biased decision if the decision 686 

maker only focus on economic return (BCR). Besides, it illuminates the decision maker 687 

that priorities on grey infrastructure (e.g., Tun 50) at the starting point yields good 688 

performance (74% of ARRR) but may lead to over-investment and path dependency.  689 

Moreover, there is concern that the effectiveness period could be shortened if decision-690 

makers opt for the most cost-effective solution (Tun50) instead of choosing a more 691 

expensive but very effective combination (D+G+Tun30). This example enriches the 692 

literature on “no regret” planning, which should be robust, adaptive, and financially 693 

efficient at the starting point for decision-makers, keep options open (flexible), and 694 

avoid lock-ins. To minimize regret in the near to long future, the adaptation solutions 695 

should pay great attention to both robustness and adaptiveness, which also illuminates 696 

the importance of multi-objective trade-off as mentioned in previous work (Kirshen et 697 

al., 2015; Ramm et al., 2018a). 698 

Furthermore, we directly compare the top contenders Tun70 and D+G+Tun30. 699 

Notably, Tun70 actually achieved higher values than D+G+Tun30 on several individual 700 

metrics – it provided the greatest average risk reduction and a superior cost-benefit ratio, 701 
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and it had the longest effectiveness period among single strategies. The multi-702 

component D+G+Tun30 pathway, on the other hand, had a moderate cost-benefit ratio 703 

and slightly lower risk reduction, but scored much higher on planned flexibility. This 704 

illustrates a trade-off that if one prioritizes near-term performance and economic 705 

efficiency, Tun70 is very attractive; if one prioritizes incorporating flexibility to adapt 706 

over time, D+G+Tun30 gains the edge. Our framework’s value lies in revealing this 707 

trade-off clearly. 708 

5.3 Optimization of the synthesis framework 709 

Although there is a myriad of research running flood risk simulations and assessing 710 

the BCR of solutions in Shanghai and other megacities in the coastal areas, seldom of 711 

which considers the entire process in making the applicable decision (Du et al., 2020; 712 

Sun et al., 2021; Ward et al., 2017). In filling up this niche, this study has proposed a 713 

synthesized planning-supporting framework that is capable of considering the entire 714 

cascade of procedures from the uncertainties of future urban rainfall pattern, to the 715 

sampling of future scenarios, to the hydrological modeling, and to flood risk assessment 716 

for the robustness and adaptiveness of alternative options, allowing for making robust 717 

and adaptive pathways (refer to Figure 1).  718 

Compared to other DMDU theories, the synthesized framework asks for finding 719 

proxies for solutions’ performances in reducing risk, decision-making in terms of cost 720 

and benefit, and identifying priorities and adaptive pathways from option combinations 721 

in the multi-objective fusion process. The conversations established a fast modeling-722 

interpreting-remodeling feedback mechanism between the analyst and decision maker, 723 
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which helps reduce the complexities and uncertainties encountered in ROA or other 724 

related work (e.g. Kind et al., 2018), and defining explicit objective (Raso et al., 2019). 725 

Upon that, incorporating the multi-dimensions of constraints allows for rapidly 726 

minimizing disruption factors, balancing alternative solutions' interpretability, coverage, 727 

and density, and visualizing the applicable pathway.  728 

One advantage of our decision-support tool is that it can run comprehensive 729 

evaluations for thousands of future–option combinations within a few days, using only 730 

moderate amounts of input data. This computational efficiency is largely due to our use 731 

of a simplified model (SCS-CN) and a relatively small case-study area. However, this 732 

highlights a trade-off: using a more detailed 1D–2D model or expanding to a larger 733 

region would substantially increase computational time and data requirements. In other 734 

words, the ‘moderate’ resource demand we experienced may not hold in cases that 735 

require high-resolution modeling. This limitation suggests that careful model selection 736 

(or the use of techniques like emulators and parallel computing) is important when 737 

applying the framework to bigger or more complex systems. 738 

 Another limitation is our risk assessment scope: we considered direct flood losses 739 

(inundation damage) but did not model disruptions to transportation or other urban 740 

functions, nor wider cascading effects across sectors. Similarly, our cost-benefit 741 

analysis focused mainly on direct financial costs;, indeed we did not fully quantify co-742 

benefits like ecosystem services or social benefits of adaptation options, which means 743 

our economic evaluation was somewhat narrow. Additionally, our cost estimates didn’t 744 

did not account for certain practical factors such as human resource efforts (e.g., time 745 
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and coordination required for implementation) or land availability constraints (for 746 

instance, the feasibility of allocating sufficient space for new green infrastructure in 747 

Shanghai). These simplifications should be kept in mind when interpreting the results. 748 

Future work could explore dynamic adaptation difference of “on-the-fly” upgrades 749 

versus planned pathways to provide a more direct assessment of flexibility in the real-750 

world sense.  751 

In addition, further work needs to discuss the determination the weights of multi-752 

objectives when conducting trade-off analysis. The balance between robustness and 753 

adaptiveness may vary depending on whether the priority is for immediate, high-impact 754 

actions or long-term sustainability. The weight assigned to each factor should reflect 755 

the specific goals. Besides, scenario discovery was implemented to find the 756 

combination option rather than an optimization algorithm to search for the best optimal 757 

combinations in many alternative options. We demonstrated a case study with a 758 

manageable set of options so that solving the optimization problem was outside the 759 

scope. Future work may apply evolutionary optimization algorithms to solve complex 760 

problems of multi-objective targets if there were hundreds of possible interventions or 761 

sequences. 762 

6 Conclusion 763 

This work provides a novel decision-making framework for flood mitigation in 764 

coastal megacities by synthesizing and building upon established DMDU methods 765 

(such as RDM and DAPP).  Rather than introducing a new theory, our contribution lies 766 

in the innovative combination and application of these methods to address the joint 767 
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challenges of robustness and adaptiveness in flood risk management.  We demonstrated 768 

this framework in a case study, evaluating flood management strategies across multiple 769 

criteria – including performance, cost-effectiveness, effectiveness period, and 770 

flexibility – under many plausible futures. The results showed that traditional evaluation 771 

using only short-term effectiveness or cost-efficiency can be insufficient for long-term 772 

planning. Integrating the additional metrics of effectiveness period and flexibility 773 

provides more nuanced insights, helping to develop adaptive pathways that remain 774 

effective as conditions change..   Our case study also illustrated the trade-offs between 775 

robustness and adaptiveness. For instance, a high-robustness single option (Tun70) 776 

performed very well in meeting flood control targets and had a strong BCR, but it lacked 777 

flexibility to adjust if future conditions turned out less severe than anticipated. On the 778 

other hand, a multi-component strategy (D+G+Tun30) achieved a high overall score 779 

when both robustness and adaptiveness were considered, due to its balance of risk 780 

reduction and planned flexibility. This comparison highlights that the “optimal” 781 

strategy option can change depending on which criteria decision-makers prioritize. In 782 

practice, our robust adaptive pathways approach allows stakeholders to see how 783 

emphasizing or de-emphasizing flexibility (or other metrics) would lead to different 784 

preferred strategies, thus supporting more informed decision-making. 785 

Overall, this work provides a novel framework to inform Shanghai’s long-term 786 

flood adaptation planning under climate change. Beyond this case, the approach 787 

contributes a theoretical foundation and practical insights for other coastal megacities 788 

facing similar challenges, helping decision-makers integrate robustness and 789 
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adaptiveness into their climate adaptation strategies to better cope with deep uncertainty 790 

in extreme flood risks..  791 
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