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Abstract: 21 

Delta cities are increasingly vulnerable to flood risks due to the uncertainties 22 

surrounding climate change and socioeconomic development. Decision-makers face 23 

significant challenges in determining whether to invest in high-level flood defenses for 24 

long-term planning. Adaptation solutions should be given considerable 25 

attentionconsider not only to robustness but also to adaptiveness in case if the future 26 



2 

 

unfolds not as expectationother than as expected. To support decision-making and meet 27 

long-term multi-objective targets, we propose a synthesized framework that integrates 28 

robustness analysis, adaptiveness analysis, and pathway generation. This framework 29 

was applied to evaluate alternative solutions for managing pluvial flood risk in central 30 

Shanghai. The results showdemonstrate that using arelying on a single-objective 31 

decision-making approach (focused only on robustness) tends to yield can lead to biased 32 

options outcomes. By examining the valid periodeffectiveness period and flexibility of 33 

candidate solutions, we assessed whether alternative solutions couldtheir potential to 34 

meet long-term flood control targets. The analysis reveals that a combined option—35 

incorporating increased green areas, an improved drainage system, and a deep tunnel 36 

with a 30% runoff absorption capacity (D+G+Tun30)—is emerged as one of the most 37 

robust and adaptive pathways, based on multi-objective trade-off analysis. This study 38 

highlights the importance of considering effectiveness period valid period within 39 

predefined control targets and retaining flexibility to avoid path-dependency and 40 

minimize long-term regrets. The proposed framework is broadly applicable and can be 41 

applied to other delta cities to guide adaptive responses to future flood risks in other 42 

delta cities. 43 

Keywords: decision- making under deep uncertainty; flood risk reduction; multi-44 

objective trade-off, ; robust adaptive pathway, ; Shanghai 45 

1 Introduction 46 

Flood risk is increasing in low-lying delta cities due to rapid urbanization and 47 

climate change (Yang et al., 2023), hindering the capacity of urban development. Delta 48 



3 

 

cities such as Shanghai (Yin et al., 2020), Ho Chi Minh City (Scussolini et al., 2017), 49 

and London (Dottori et al., 2023) are facing the combined challenges from extreme 50 

rainstorms, sea level rise and urbanization-induced land subsidence with regard to 51 

flooding risk reduction (Ward et al., 2017). It is anticipated that as a result of changing 52 

climate patterns, the frequency and severity of extreme flood events will increase in 53 

urban areas, thereby increasing the flood risk, particularly in increasing rapidly 54 

developing delta cities (Sun et al., 2021).  55 

Delta cities are urged to examine potential climate adaptation options (Han and 56 

Mozumder, 2021;) and test their cost-effectiveness in designed socio-economicsocial 57 

and climate scenarios to address the rising flood risks (Lin et al., 2020).  Dottori et al. 58 

(2023) proposed economically attractive strategies for European cities to deal with 59 

increasing river flood risk from cost-effective point of view. However, if these strategies 60 

or options will remain effective within a fixed timeframe under the uncertainties of 61 

climate change, land use change or political change is questionable; in addition, how 62 

flexible these strategies can be up-scaled to meet the future needs is also rarely 63 

discussed. This comes to is a pressing concern for decision makers in long-term 64 

planning. In the field of Decision decision Making making under Ddeep Uuncertainty 65 

(DMDU), various approaches have been emerged, such as Robust Decision Making 66 

(RDM) . Robust Decision Making (RDM) is effective at identifying strategies that 67 

perform well across a wide range of future scenarios through vulnerability analysis and 68 

stress-testing, but it lacks explicit guidance on how to sequence actions over time 69 

(Lempert et al., 2013; Workman et al., 2021)., Dynamic Adaptive Policy Pathway 70 



4 

 

(DAPP) by contrast, excels at planning flexible adaptation pathways to avoid lock-in, 71 

but is relatively weaker in quantitatively evaluating robustness across uncertainties 72 

(Haasnoot et al., 2013; Dias et al., 2020) and Real Options Analysis (ROA) (Buurman 73 

and Babovic, 2016; Kim et al., 2018; Xu et al., 2023).  74 

These DMDU approaches have been continuously improved and optimized, the 75 

boundaries between methods have become increasingly blurred, and fusion thinking is 76 

progressively adopted (Haasnoot et al., 2020). As pointed out by Lempert et al. (2003), 77 

RDM provides systematic procedures that emphasize the iterative analysis process of 78 

scenario exploration, which can help decision-makers discover situations where options 79 

may fail, and understand the trade-off among all the adaptation options (Lempert et al., 80 

2013). Kasprzyk et al. (2013) proposed the Multi-Objective Robust Decision Making 81 

(MORDM) approach by the combination concept of both multi-objective evolutionary 82 

optimizations and RDM (Bartholomew and Kwakkel, 2020; Yang et al., 2021). 83 

Kwakkel et al. (2019) pointed out that the RDM approach usually pays less attention to 84 

the dynamic planning of pathways on long-term scales of climate change. On the other 85 

hand, DAPP, which consist of the strengths of both Adaptive Policymaking (Walker et 86 

al., 2001) and Adaptation pathway (Haasnoot et al., 2012; Ranger et al., 2010), focuses 87 

on generating alternative dynamic pathway to achieve flexibility and avoid lock-in 88 

effects while it lacks quantitative robustness evaluation metrics (e.g., regret-based 89 

criteria or satisficing thresholds) robustness metrics (i.e. satisficing and regret) as well 90 

as a thorough and vulnerability analysis to quantify potential failures (Haasnoot et al., 91 

2013).  92 
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Both the RDM and DAPP approaches are arguably in most widely applied, and 93 

the concept of integrating two approaches has been proposed (Kwakkel et al., 2016) 94 

and practiced in cases (Tariq et al., 2017). However, as Ramm et al. (2018a) illustrated, 95 

integration of RDM and DAPP has not been thoroughly implemented, . and fFuture 96 

opportunities for a combined RDM–DAPP approach includeto engaginge with 97 

participants in a combined RDM and DAPP approach includestakeholders to defineing 98 

clear adaptation objectives, establish suitable metrics, and determine risk tolerance 99 

(Ramm et al., 2018b) as since all these factors are anticipated to largelysignificantly 100 

influence the outcomes of alternative pathways (Ramm et al., 2018b). Robustness 101 

emphasizes the ability of a strategy to perform in an effective way in many plausible 102 

scenariosfutures.  How to define robustness and assess whether options are insensitive 103 

to deep uncertainty to ensure certain performance across multiple plausible futures have 104 

sparked extensive discussions, especially when meeting multi-objective targets 105 

(Herman et al., 2015; McPhail et al., 2018).  106 

The selection of indicators for robustness depends on the priorities and preferences 107 

by policymakers and it will substantially affect the outcomes of decisions (Giuliani and 108 

Castelletti, 2016). For example, the decision-makers who endorse risk aversion may 109 

under-estimate adaptation options’ performance. To overcome the single objective 110 

problem framing, Quinn et al. (2017) optimized operations of the four largest reservoirs 111 

under several different multi-objective problem framings in Hanoi city (Vietnam), and 112 

highlighted the importance of formulating and evaluating alternative stakeholder 113 

objectives.  114 
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However, an open question remains: to what extent can a traditional robustness 115 

evaluation (especially under risk-averse assumptions) suffice for rational decision-116 

making, versus using a multi-objective trade-off analysis to gain a more comprehensive 117 

view?there is a need for a discussion on either the robustness evaluation of alternatives 118 

concerning policymakers' risk aversion can exclusively underpin rational decision-119 

making or the multi-objective trade-off analysis can offer more comprehensive practical 120 

and theoretical support. For example, while one might assume the cost of a climate 121 

adaptation option is normally proportional to its benefit (risk reduction rate), in practice,. 122 

Options options with high performance often entailmean higher costs  input and 123 

potentially longer construction periods (Dottori et al., 2023). Focusing on aThe single-124 

objective (whether maximizing risk reduction or cost-benefit efficiency alone) in either 125 

performance assessment in reducing the risk or solely considering cost-benefit provided 126 

limited information for long-term planning, indicating a potential forand can lead to 127 

lock-in or path dependency issues due to overinvestment or maladaptation over time. 128 

Adaptiveness refers to the ability of a strategy to adapt adjust to changing 129 

conditionse (Haasnoot et al., 2013; Malekpour et al., 2020). Rather than being in 130 

opposition, adaptiveness and robustness are complementary: incorporating flexibility 131 

can enhance long-term robustness by avoiding overinvestment and lock-in. In this sense, 132 

maintaining high level of robustness compromise high level of adaptiveness of a 133 

strategy as conditions change. For example, committing immediately to an extremely 134 

high-level (and high-cost) flood defense could lead to path-dependency if future 135 

conditions turn out less severe than expected, whereas a strategy that can be 136 
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incrementally upgraded retains both flexibility and robust performance over time. high 137 

cost of effective solution may cause path-dependency and fails to adapt to the changing 138 

circumstances due to its financial commitment and over-confidence on the safety from 139 

societies. Despite its importance, the quantification of ‘adaptiveness’ (e.g., in terms of 140 

flexibility) remains challengingConsidered as the other side of coins against robustness, 141 

quantification of adaptiveness is yet clearly addressed (Kind et al., 2018). Adaptation 142 

Ttipping point analysis provided insight into when the an options will no longer meet a 143 

specified performance target might falter, indicating potential failure point concerning 144 

the risk reduction target (Haasnoot et al., 2013), and Patient Rule Induction Method 145 

(PRIM) offers a quantitative way to identify these tipping points  is proven to be 146 

illuminated to identify the use-by date of tipping points in a quantitative way (Ramm et 147 

al., 2018a; 2018b). Kirshen et al. (2015) raised noted that the preferred urban flood 148 

control strategy may change once additional criteria like no-regret and flexibility are 149 

considered at critical thresholds. Rather than choosing an ‘optimal’ here-and-now 150 

solution that could become suboptimal later, a “wait-and-see” approach (delaying or 151 

staging investments) can preserve flexibility.option of selecting urban flood control 152 

options may differ if additional criteria of no-regret and flexibility were considered, 153 

when a critical threshold is reached under a climate change scenario. Instead of applying 154 

optimal here-and-now options, wait-and-see decisions allow for flexibility. Within In 155 

the ROA paradigm, flexibility is explicitly valued since it allows decision-makers to 156 

deferdelaying commitcommittingment to large, costly, and irreversible decisions 157 

measures while implementing smaller steps either exercising different interventions or 158 
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incrementally implementing interventions with long construction times until more 159 

information is available (Erfani et al., 2018). In this paper, we define ‘robustness’ as the 160 

ability of a strategy to maintain acceptable performance across a wide range of plausible 161 

futures, and ‘adaptiveness’ as the ability to adjust or augment the strategy over time in 162 

response to how the future unfolds. Therefore, in our framework we incorporate both 163 

the timing of adaptations (the tipping point, termed the ‘effectiveness period’ in this 164 

paper) and the flexibility to adjust, as key characteristics of adaptiveness that support 165 

better long-term planning.incorporating both the tipping point (specify as valid period 166 

later in this paper) and flexibility reflect the key characteristics of adaptiveness and thus 167 

better assists in a long-term planning   168 

In this study, we aim to propose a decision-making synthesized framework which 169 

incorporatesthat integrates both robustness and adaptiveness to formulate a robust 170 

adaptive pathway for long-term climate adaptation planning under deep uncertainties. 171 

This framework can be utilized is intended to guide decision-makers in prioritizing and 172 

sequencing adaptation options – a pressing challenge in urban climate action 173 

planningdecision-making on the prioritization and sequencing of climate adaptation 174 

alternatives, which nowadays remains as a pressing question for urban practitioners on 175 

climate action planning. To We demonstrate the novel synthesized framework, it was 176 

applied  by applying it to examine various climate adaptation alternatives to address the 177 

increasing pluvial flood risk in a delta city – (Shanghai), to evaluate a range of flood 178 

adaptation alternatives under plausible mid-21st-century scenarios (combining extreme 179 

rainfall and deteriorating drainage capacity by the 2070s).based on future (uncertain) 180 
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scenarios of a combination of extreme rainstorm and the deteriorating drainage capacity 181 

by the time of 2050s, to support the decision-making. 182 

The remainder of this article is organized as follows: Section 2 presents the 183 

proposed comprehensive framework and methodology. Section 3 introduces the 184 

background of the case study area and the preprocessing procedures. Section 4 presents 185 

the results, where a multi-objective trade-off is applied to evaluate the potential 186 

pathways for generating a robust adaptive pathway. This analysis combines metrics 187 

such as the average risk reduction rate (ARRR), benefit-cost ratio (BCR), valid 188 

periodeffectiveness period, and flexibility of all options. Section 5 discusses the key 189 

findings related to pluvial flood risk management in coastal cities, the implications of 190 

multi-objective trade-off considering both robustness and adaptiveness, how the 191 

synthesized framework can inform long-term adaptive policy formulation, and provides 192 

recommendations for future work. Finally, Section 6 concludes with a summary. 193 

2 MethodologiesMethodology 194 

2.1 Framework development 195 

Having established outlined the challenges of pluvial flood risks posed by 196 

futureunder deep uncertainties, this studywe now presents a robust adaptive pathway 197 

framework designed to supportfor long-term planning. To We build built thisrobust 198 

adaptive pathway framework, we by extendinged the taxonomy of DMDU approaches 199 

proposed by Kwakkel et al. (2019), ), which categorizes existing DMDU approaches 200 

into five dimensions of decision frameworks,, andkin incorporating recent 201 

advancements in  robustness and adaptation methods.to the taxonomy in the robustness 202 



10 

 

framework (Herman et al., 2015). Figure 1 provides an overview of our framework’s 203 

eight sequential steps. We summarize these steps below, then detail each component of 204 

the methodology:Building on recent advancements in DMDU approaches, we further 205 

refined the framework into the following procedures: 206 

 207 

Figure1 Integrated framework of robust adaptive pathways for long-term flood control 208 

1) Research framing. Define the long-term flood management objectives and a 209 

dynamic policy structure. Unlike a static, short-term plan, the proposed policy structure 210 

is dynamic and adaptive, providing a continuous pathway toward achieving long-term 211 

flood control goals while retaining flexibility to adjust as future conditions evolve. In 212 

our framework, introducing “adaptive” measures alongside traditional approaches 213 

enhances overall robustness by reducing the risk of over-investment or lock-in. In 214 

contrast to the short-term implementation of baseline standards, the policy structure 215 

proposed in this work is designed to be dynamic and adaptive. It provides a continuous 216 
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pathway toward achieving long-term flood control goals while maintaining the 217 

flexibility to adjust to an uncertain future. As a result, the 'adaptive' options enhance the 218 

robustness of the solutions and reduce the risk of over-investment. 219 

2) Scenario generation. Develop a set of plausible future scenarios capturing key 220 

uncertainties (meteorological, hydrological, socio-economic, etc.). The ranges for 221 

uncertain factors can be derived from expert judgments, policy targets, or climate 222 

projections (Lempert et al., 2013). We employed a Latin Hypercube Sampling approach 223 

(Workman et al., 2021) to efficiently generate diverse futures. In our case study, for 224 

instance, futures were defined by varying extreme rainfall intensities and drainage 225 

capacity degradation by 2050, based on climate model outputs and local planning 226 

assumptions. The process of scenario generation applies multiple (uncertain) factors of 227 

meteorological, hydrological, or social-economic. The range of uncertain factors may 228 

either according to expert’s opinion, policy guideline or climate projections (Lempert 229 

et al., 2013). Plausible futures can be generated via scenario sampling algorithms as of 230 

Latin Hyper Cube Sampling (Workman et al., 2021).  231 

3) Alternative generation. Identify and develop a portfolio of adaptation options. 232 

In our study, we used stakeholder workshops and policy document analysis to formulate 233 

viable flood control measures (both structural and non-structural). The current flood 234 

management strategy (status quo) serves as a baseline option, and a range of new 235 

adaptation alternatives (e.g., green infrastructure, drainage upgrades, tunnels, and their 236 

combinations) were assembled for evaluation.Climate adaptation alternatives were 237 

developed through focus-group discussions during a workshop and an analysis of policy 238 
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documents. The workshop included key stakeholders such as flood experts, 239 

policymakers, and residents. As a result, the existing flood options serve as the baseline 240 

scenario, compared to the generated climate adaptation alternatives which are set to be 241 

evaluated using flood modelling. 242 

4) Model simulation. Evaluate each option (and combinations of options) under 243 

all futures using an appropriate flood simulation model. The framework can 244 

accommodate models of varying complexity: for instance, high-fidelity 1D/2D 245 

hydrodynamic models (e.g., SOBEK, MIKE 1D2D; Wang et al., 2018) could be used 246 

for detailed analysis at the cost of more computation, whereas simpler conceptual 247 

models allow faster simulation of many scenarios. In our case study, we employed a 248 

simplified hydrological model based on the SCS-CN method to simulate runoff and 249 

flooding, which kept computational demands manageable given the thousands of 250 

plausible futures simulations, although the framework could integrate more complex 251 

models if needed. Flood inundation models such as SOBEK1D2D, Mike1D2D (Wang 252 

et al., 2018) and Info Works can be used to simulate flood routing process and produce 253 

maximum inundation maps, which further can be used for flood risk assessment when 254 

incorporating the geospatial statistics.  255 

5) Robustness analysis. Assess each option’s performance across all futures using 256 

robustness criteria, which used to be depicted as f(a,wj) meaning the performance of 257 

option a under scenario wj. In this study, we assume all scenarios are equally likely (an 258 

application of Laplace’s principle of insufficient reason) and compute performance 259 

indicators for each option under each scenario. Key indicators include the average risk 260 
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reduction rate (ARRR), percentage reduction in expected damages compared to 261 

baseline, averaged over scenarios, and the benefit cost ratio (BCR), ratio of total 262 

avoided damage to total cost. Using these, we evaluate how “robust” each option is, for 263 

instance, how well it performs on average and whether it consistently meets acceptable 264 

thresholds across scenarios. To evaluate the robustness of all options that have the 265 

highest utility under a certain threshold, robustness metrics (e.g. Laplace’s principle of 266 

insufficient reason) were used as the decision-making criterion. The calculation of 267 

indicators such as the average risk reduction rate (ARRR) and benefit-cost ratio (BCR) 268 

for each alternative option was performed for each scenario, with an assumption of 269 

equal probability for their occurrence. Subsequently, the performance of each option 270 

and its combination was evaluated by quantitative comparison and ranking stability 271 

(McPhail et al., 2018).  272 

6) Adaptiveness analysis. Valid period Determine how long each option remains 273 

effective and how easily it can be adjusted. For each single or combined alternatives, 274 

we identify its effectiveness period – the duration or range of conditions over which it 275 

meets the flood risk target – by finding the point at which its performance falls below 276 

the acceptable threshold. We used the PRIM algorithm to analyze scenario results and 277 

pinpoint these tipping points; in doing so, we optimized PRIM’s coverage (the 278 

proportion of scenarios captured by a tipping point condition) and density (the success 279 

rate within those scenarios) to balance generality and precision to balance generality 280 

and precision. We refer to the conditions triggering failure as signposts, which are 281 

observable indicators that an adaptation or policy change will soon be needed. 282 
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Furthermore, we quantify each option’s and combination’s flexibility in our framework 283 

by the number of measures it contains. In other words, a multi-component strategy 284 

planned with, say, three measures have a higher planned flexibility score than a single-285 

measure strategy, since it inherently includes more future actions. This flexibility metric 286 

reflects only the strategy’s planned adaptability, not an absolute limit – even a one-287 

measure strategy could be expanded laters of the alternative options were determined 288 

based on the conditions of the successful scenarios under each (individual or combined) 289 

option, in conjunction with a specific flood control objective. Optimizing the value of 290 

coverage and density of subspace in the PRIM (Patient Rule Induction Method) 291 

algorithm help to identify signposts in the adaptation pathway which is in line with the 292 

idea of the tipping point in DAPP.  Flexibility is evaluated by the ability of convertibility. 293 

7) Multi-objective trade-off. Evaluate each alternative across multiple metrics to 294 

understand trade-offs. We consider both robustness metrics (e.g., risk reduction, benefit 295 

cost ratio, regret-based measures) and adaptiveness metrics (effectiveness period and 296 

flexibility) for every strategy. For comparison, all metric values are normalized and, in 297 

our analysis, treated with equal importance. This allows us to compute an overall 298 

performance score for each alternative. Options that achieve a good balance across all 299 

criteria are deemed the most promising candidates for robust and adaptive planning. We 300 

did not run a computational multi-objective optimizer which would be typical if there 301 

were hundreds of options. Instead, we effectively enumerated and evaluated a small set 302 

of candidate solutions manually or with simple search, given the case study’s scope. 303 
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Multi-objective trade-off was implemented using robustness and adaptiveness 304 

metrics to evaluate the candidate alternatives. All the metrics are given equal weight 305 

and are compared based on their normalized values. The alternative options with 306 

highest score to satisfy all the objectives are regarded most promising.  307 

8) Robust adaptive pathway. Formulate and select robust adaptive pathways. 308 

Using the information on each option’s effectiveness period and flexibility, we identify 309 

sequences of actions that extend flood protection over time. We generate an adaptation 310 

roadmap by considering how the system could transition under transient scenarios. 311 

From the set of possible pathways, we then select a robust adaptive pathway that best 312 

satisfies the flood control objectives in the long term based on the multi-objective 313 

analysis from step 7. Along this pathway, we define key signposts – measurable 314 

indicators (e.g., a threshold of rainfall intensity or drainage failure rate) that signal when 315 

it’s time to shift to the next action. Monitoring these signposts will support future 316 

decision-making and adjustments to the plan.In light of the adaptability of the valid 317 

period (tipping point) and flexibility of transitions in each alternative portfolio, 318 

potential pathways were identified, and generated a roadmap based on transient 319 

scenarios. A robust adaptive pathway was selected in multi-objective to satisfy the flood 320 

control criteria for long-term planning. The signposts can be monitored to support 321 

future decisions. 322 
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2.2 Methods of robust adaptive pathway procedures  323 

Robustness analysis 324 

Deciding on a robustness criterion is essentially a meta-decision problemThe 325 

choice of robustness option is the meta-problem of how to decide (Herman et al., 2015). 326 

In our context, robustness of a strategy refers to its satisfactory performance across a 327 

range of uncertain future states.The performance of a system is frequently described by 328 

robustness option when dealing with a decision-making process, including significant 329 

uncertainty. Various robustness metrics can be used to quantify robustness under 330 

uncertainty,  including Maximax, Maximin, Mean-variance, Starr’s domain criterion, 331 

Laplace’s principle of insufficient reason, etc., Each metric embodies a different risk 332 

preference, so the choice of metric can influence which option appears most favorable  333 

are used to evaluate a system's performance in various scenarios (state of the worlds). 334 

Different robustness metrics represent distinctive risk preferences, and the selection of 335 

robustness indicators influences the choice of alternative options (Giuliani and 336 

Castelletti, 2016). In this study, we adopted For the risk aversion metric, the neutral risk 337 

aversion of Laplace’s principle of insufficient reason as one robustness measure: iin the 338 

absence of known scenario probabilities, we assign equal weight to all scenarios and 339 

identify solutions that perform best on average.s widely documented to help identify 340 

the solution that performs best in neutral risk aversion. Furthermore, it suggests that in 341 

the absents of knowledge of the probabilities associated with the different scenarios, 342 

the decision could be taken by assigning equal probability to all scenarios. The 343 

performance of option or combination ai is depicted as Equation (1).  344 
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                                       𝑎𝑝 =345 

𝑎𝑟𝑔 max
𝑎

(
1

𝑛
∑ ∑ 𝑓(𝑎𝑖, 𝑤𝑗)

𝑛
𝑗=1

𝑚
𝑖=1 )                             (1) 346 

where a∗ denotes the optimal option or combination, A is the set of all options or combinations 347 

(listed in table 2), N is the total number of futures. And f(a,wj) is the performance of option or 348 

combination a under future wj, which represents the expected flood risk associated with adaptation 349 

option or combination a under future wj , as generated from the flood-damage simulation model. 350 

This risk value forms the basis for evaluating robustness through indicators such as the ARRR. 351 

Where 𝑎𝑖 is option 𝑖 of alternative options set (𝑎) (listed in table 2), and 𝑤𝑗 is in 352 

the scenario set 𝑤. 𝑓(𝑎𝑖 , 𝑤𝑗) represents the option performance value of scenario 𝑗, 𝑎𝑝 353 

is the selection of option p with best performance. 354 

In many robust decision-making frameworks, criteria related to satisficing and 355 

regret are used as performance measures Satisfaction and regret are frequent indications 356 

of robustness options in RDM decision-making procedures (Herman et al., 2015). 357 

Regret is broadly the opportunity loss incurred by not choosing the optimal action in a 358 

given scenario – essentially, how much worse a strategy performs compared to the best 359 

possible outcome in that scenario. Satisfaction can be viewed as a measure of how well 360 

a strategy meets a predefined target (combining effectiveness and efficiency). In our 361 

evaluation, we compute these metrics relative to a baseline scenario or option. Broadly, 362 

regret quantifies the cost (not necessarily monetary) of choosing incorrectly. It can be 363 

defined as the cost of a single solution, associated with the deviation from its baseline 364 

performance. On the other hand, satisfaction can be defined as the amalgamation of 365 

effectiveness and efficiency. Equation (2) illustrates how we calculate regret-based 366 

performance for the alternatives.In this situation, the evaluation of candidate options' 367 
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performance is presented as the deviation from the baseline performance. see Equation 368 

(2). 369 
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1

𝑛
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𝑓(𝑎0,𝑤𝑗)

𝑛
𝑗

𝑚
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Where 𝑃𝑖 is the average performance value of average risk reduction rate (ARRR) 372 

of alternative options or combinations in all plausible futures N, 𝑓(𝑎𝑖𝑎, 𝑤𝑗) represents 373 

the performance value of pluvial flood risk of option a in scenariofuture 𝑤𝑗𝑗 , and 374 

𝑓(𝑎0, 𝑤𝑗) is the performance value of pluvial flood risk of the baseline option 𝑎0of in 375 

scenario future 𝑤𝑗. 376 

Decision-makers also examine whether any given strategy has vulnerable 377 

scenarios – situations in which it fails to meet minimum acceptable performance care 378 

that whether the scenario sets of alternative options contain an unacceptable possibility. 379 

The A threshold can be set to define what constitutes intolerable performancefor 380 

vulnerable scenarios defines whether there is an intolerable risk control level. Metrics 381 

like the domain criterion quantify the fraction of the uncertainty space (subsets of all 382 

futures) in which a solution meets all performance requirementsThe domain criterion 383 

quantifies the volume of the uncertain factor space in which a solution meets the 384 

decision-makers’ performance requirements. Such considerations align with policy risk 385 

indicators often used in practice (e.g., minimum safety standards or environmental 386 

protection criteria) to ensure options avoid unacceptable outcomes. Indicators of risk 387 

control policy are frequently included in the research, such as local environmental 388 

protection legislation, urban drainage planning, and other documents. They can also 389 
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provide appropriate reference opinions determined by local governments or relevant 390 

decision makers and experts. Based on the elicitation of local requirements, we define 391 

the 𝑃𝑖
∗  as the average performance of average risk reduction rate(ARRR) which 392 

satisfies the minimum threshold of the given flood control target (𝐹0, 𝐹0=0.7 in this 393 

case), as depicted in Equation (3).  394 

                              𝑃𝑖
∗ =

1

𝑠
∑
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𝑠
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1

𝑛
∑ ∑ 𝑓(𝑎𝑖 , 𝑤𝑗)𝑛

𝑗=1
𝑚
𝑖=1 ≥ 𝐹0                                          (3) 396 

Where 𝑃𝑖
∗ represents the average performance value of ARRR of the option or 397 

combination 𝑎𝑖𝑎 in all subsets s of all plausible scenario futures N that meets the given 398 

flood control target 𝐹0 . PRIM is applied to identify clusters of successful cases by 399 

searching across the full set of futures N for each option or combination. Specifically, 400 

for each option or combination a, we select the subset of future s that leads to the most 401 

successful outcome by balancing coverage and density with given flood control target. 402 

Internationally, the net present value of benefits (PVB) and the net present value of 403 

costs (PVC) are commonly used to represent benefits and costs, respectively (Liao et 404 

al., 2014). In this study, PVB is selected as the pluvial flood risk reduction rate (RRR) 405 

before and after the implementation of the options, rather than as the pluvial flood risk 406 

reduction value. It is important to note that the goal of this study is not to calculate the 407 

direct risk of extreme pluvial flooding in the future, as the absolute value of the risk 408 

would be too large for meaningful comparison. Therefore, the benefit-cost ratio (BCR) 409 

is presented simply as the ratio of PVB to PVC. 410 
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Adaptiveness analysis 411 

PRIM is an interactive statistical clustering algorithm that generates a series of 412 

subspaces by peeling away layers of the uncertainty space, where the coverage and 413 

density of points of interest in each box are greater than in the surrounding space 414 

(Matrosov, 2013). As a visualized tool for exploratory analysis, PRIM is widely used in 415 

many works to investigate either key factors causing system failure or vulnerable 416 

scenarios that might cause alternative options' failure. Parameters of coverage, density, 417 

and interpretability characterize the subspaces. These three metrics are usually 418 

correlated, with increasing density resulting in decreasing coverage and interpretability. 419 

It turns out that an analyst needs to trade-off in selecting the potential coverage, density, 420 

and interpretability to achieve the best combination. The subspaces describe the 421 

conditions beyond which coastal inundation impacts are unacceptable signifying 422 

adaptation tipping points are reached (Ramm et al., 2018a). Key factors along with the 423 

tipping point of options are evaluated in associated timeframes which need not be exact. 424 

Identifying an indicative period at which conditions describing adaptation tipping 425 

points indicate a valid periodeffectiveness period (or use-by year) (Haasnoot et al., 426 

2013). The results of PRIM can assist decision-makers in identifying sensitive ranges 427 

of uncertain factors or combinations, and factors with little influence can be safely 428 

disregarded.  429 

Following a decision initially, flexibility in decision theory is related to the 430 

remaining choices available in the following period. The larger this set, the more 431 

flexibility the decision maker retains. This idea can be generalized to staged choices 432 
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over multiple periods. For example, Erfani et al. (2018) proved that flexibility is 433 

valuable in providing decision nodes in multistage scenarios (planning periods in every 434 

5 years) for least-cost water supply intervention scheduling. One way of deriving the 435 

value of flexibility is thus by comparing costs and benefits of a flexible investment 436 

strategy with those of a less flexible, that is, a more robust strategy (Kind et al., 2018). 437 

However, flexibility is not treated as delayed option value as other ROA work 438 

calculated, instead, we consider the convertibility of options that is still in line with the 439 

idea of wait-and-see yet is more straight-forward. It is important to note that a strategy 440 

initially implemented as a single measure does not preclude future augmentation if 441 

conditions worsen. In our framework, however, such augmentations were not pre-442 

planned in single-measure scenarios. Therefore, our ‘flexibility’ metric should be 443 

interpreted as the degree of planned adaptability, rather than an absolute limit on a 444 

strategy’s potential to adapt. 445 

Multi-objective trade-off 446 

The cost and benefit of investment in adaption options may lead to a static 447 

decision-making perspective. Therefore, an important question was raised for robust 448 

decision-making of how to avoid failure scenarios regarding factors including risk 449 

reduction rates over time, cost of option, and economic benefit ratio. On this basis, 450 

making robust decisions needs to include other factors beyond cost and benefit, such as 451 

valid periodeffectiveness period and flexibility, for a comprehensive evaluation in the 452 

long-term (Erfani et al. 2018)  453 

The optimization of options’ combinations can be identified via the trade-off 454 
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process by Equation (4).  455 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹(𝑙𝑝,𝑟) =456 

(𝑦
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦

, 𝑦
𝑣𝑎𝑙𝑖𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

, 𝑦
𝑐𝑜𝑠𝑡−𝑏𝑒𝑛𝑒𝑓𝑖𝑡

, 𝑦
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

, )     (4) 457 

Where  𝑙𝑝,𝑟 =  [𝑝𝑖 , 𝑟𝑖]  ∀𝑝 ∈ 𝑃; ∀𝑟 ∈ 𝑅 458 

Where l ∈ L is a candidate adaptation pathway from the set of feasible pathways 459 

L; y1(l): Flexibility — number of successful alternatives reachable from pathway l; 460 

y2(l): Effectiveness period — duration before performance drops below threshold; y3(l): 461 

Benefit-Cost Ratio (BCR) — economic efficiency of pathway l; y4(l): Average Risk 462 

Reduction Rate (ARRR) — robustness of flood risk performance.Where lp,r represents 463 

the pathway scheme, 𝑟𝑖 is any of the robustness metric set R. 𝑦𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 y𝑣𝑎𝑙𝑖𝑑 𝑝𝑒𝑟𝑖𝑜𝑑, 464 

𝑦𝑐𝑜𝑠𝑡−𝑏𝑒𝑛𝑒𝑓𝑖𝑡and 𝑦𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒are the values of indicators from different dimensional 465 

objects. 466 

 467 

Robust adaptive pathway 468 

Adaption tipping points (valid periodeffectiveness periods) are central to 469 

adaptation pathways, the conditions under which an action no longer meets the 470 

specified objectives. The timing of the adaptation points for a given action, its valid 471 

periodeffectiveness period, is scenario dependent. The DAPP, manually drawn based 472 

on model results or expert judgment, presents an overview of relevant pathways 473 

(Haasnoot et al., 2020). In this study, we first examined the valid periodeffectiveness 474 
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period of alternative options by PRIM analysis to identify acceptably robust adaptation 475 

pathway for future flood control. We then identified the combination of candidate 476 

pathways in consideration of both valid periodeffectiveness period and flexibility, 477 

ensuring the adaptive solutions in incremental stages allow for maintaining flood 478 

control levels before committing to larger schemes. Roadmap of candidate’s pathways 479 

are generated during this procedure. Lastly, the preferred robust pathway is determined 480 

by a trade-off analysis of all the criteria. 481 

3 Case study 482 

3.1 Background 483 

Shanghai, with a domain of 6,340 km2, provides residences to 24.9 million 484 

population with a built-up area of 1237.9km2 in 2021. Shanghai has been perhaps the 485 

most important economic and financial center in China, and it now aspires to be one of 486 

the world's most important economic, financial, shipping, and trade centers (Shanghai 487 

Statistic Yearbook, 2021). Shanghai is surrounded by water on three sides: the East 488 

China Sea to the east, the Yangtze River Estuary to the north, and Hangzhou Bay to the 489 

south. In addition, the Huangpu River, a Yangtze River tributary, flows through the heart 490 

of Shanghai. The average yearly precipitation is approximately 1400mm in recent 10 491 

years, with 63% concentrated during the flooding season from May to September 492 

(Shanghai Climate Change Research Center, 2022). As a result, the most catastrophic 493 

hazard in Shanghai has been floods produced by torrential rainfall, which annually 494 

disrupts transportation and other social activities, causes substantial economic losses, 495 

and threatens urban safety. 496 
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Shanghai has the lowest elevation (with averagely 4m above m.s.l.) and large 497 

numbers of old-lane residential buildings in central city, which have fewer floors 498 

compared to other districts that is vulnerable to the extreme pluvial flood events see 499 

Figure 12). The spatial distribution of rainfall will continue to concentrate in urban areas, 500 

and the increasing likelihood of extreme precipitation (Liang and Ding, 2017), 501 

combined with the trends of relative sea-level, will cause stakeholders, includes 502 

residents, policymakers, and scientists etc., to be concerned about the rising flooding 503 

risk in delta cities of Shanghai (Du et al., 2020). 504 

 505 

Figure 1 2 Case area, administrative, and solution district (blue shade) in center Shanghai, 506 

including spatial distribution of building footprints indicating the number of stories (gray shades), 507 

the base map was provided by Esri, using ArcGIS Online Services. 508 
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3.2 Research Framing 509 

Based on the proposed framework, the dimensions, components, and metrics of 510 

this study are organized as shown in Table 1. To ensure urban safety, this study defines 511 

an explicit flood control objective of achieving a 70% average risk reduction rate, in 512 

alignment with the Shanghai Flood Control and Drainage Plan (2020–2035) (Shanghai 513 

Municipal Water Authority, 2020).  514 

Table 1 Dimensions of the research framework  515 

Dimension Components Metrics 

Research 

framing 

Alternative options to generate robust and adaptive 

pathway  

Definition of flood 

control objective 

Scenarios 

generation 

Increased 

rainfall 
Rain island effect Drainage decrease 

Latin hypercube 

sampling (LHS) 

Alternatives 

generation 

Drainage 

increased 

Increase of green 

area 

Deep tunnel with 

30%, 50%, or 

70% of runoff 

absorption 

Predefined by local 

flood control plan 

Model 

simulation 
Hydrology Flood risk  

Geospatial 

statistics 
Grid aggregation  

Robustness 

analysis 

Performance  

(ARRR) 

Measure Cost 

(Life cycle cost) 
Benefit 

Laplace and Domain 

criterion 

Adaptiveness 

analysis 
Signpost 

Valid 

periodEffectivene

ss period 

Flexibility PRIM 

Multi-

objective 

Trade-off  

Robustness Adaptiveness Metric evaluation 

Robust 

adaptive 

pathway  

Candidate pathway identification, roadmap generation, 

and monitoring of signposts 
Transition scenarios 

The robustness analysis serves as the foundation of our methodology, ensuring 516 

that the proposed solutions can withstand future uncertainties. Once robustness is 517 

assessed, we proceed to the adaptiveness analysis, which allows us to account for 518 

flexibility in response to unforeseen challenges. We conductThe a trade-off 519 

optimizationanalysis in terms of robustness and adaptiveness was of particular 520 

significance to providing iterative stress tests over many plausible scenarios using 521 
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robustness metrics and identifying valid periodeffectiveness periods and flexibility to 522 

generate alternative pathways. Following the structure of robust decision-making 523 

pathway framework, Figure 2 3 illustrates the entire procedures for long-term flood 524 

control planning in the Shanghai case study. 525 

 526 

Figure 2 3 Framework of robust adaptive decision-making pathway, which incorporates the 527 
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robustness, adaptiveness, multi-objective trade-off, and pathway generation (blue boxes). 528 

3.3 Scenario generation 529 

Precipitation is predicted very likely to increase in the Yangtze River Basin in the 530 

21st century (Hui et al., 2018), and the frequency and intensity of extreme rainstorm 531 

events may continue to increase (uncertain factor of the 𝛼, future rainfall assumed to 532 

increase from 7% to 18%). Shanghai's spatial rainfall patterns reveal a significant "rain 533 

island effect" between urban centers and suburbs (Liang and Ding, 2017) (uncertain 534 

factor of the 𝛽, assumed to increase from 10% to 20% in central region (Xujiahui and 535 

Pudong rain gauges), decrease from -0.076% to -0.038% (other 9 rain gauges in 536 

Shanghai)). In addition, land subsidence has been a persistent issue due to the 537 

groundwater exploitation and construction of high-rise buildings (Yang et al., 2020). 538 

By 2050, it is projected that the current river embankment and drainage systems in 539 

Shanghai will experience a 20-30% reduction in capacity due to a likely relative rise in 540 

sea level of 50 cm (compared to the year of 2010), caused by both sea level rise and 541 

land subsidence (Wang et al., 2018). The uncertain factor of the decrease of drainage 542 

capacity (γ, assumed to decrease from 0 to 50% due to the anthropogenic land 543 

subsidence and sea level rise) is designed to be the degradation effect of restraining the 544 

water from the urban drainage system flowing to the river system due to the high river 545 

water level caused by the continually rising sea level, land subsidence, and other 546 

degradation factors. 547 

This study focused on a record-breaking convective rainfall that occurred on 548 

September 13, 2013 and had an intensity record of 140.7mm within 3 hour (at 17-19h). 549 



28 

 

The variation interval of each uncertainty factors was clarified, and Latin Hyper Cube 550 

Sampling (LHS) was used to construct 100 plausible futures scenario cases based on 551 

the historic "913" extreme rainfall event in 2013 (Supplementary materials Text 1). 552 

3.4 Alternative generation 553 

It is acknowledged that the current Shanghai flood control infrastructure is 554 

insufficient to protect the city from long-term inundation risk (Shanghai Municipal 555 

Water Authority, 2020). Three options, drainage improvement, increase of green area, 556 

and construction of deep tunnel, are pre-defined with stakeholders of experts and 557 

decision-makers following the Shanghai Flood Control and Drainage Plan (2020-2035). 558 

The solution district locates in the core business district (CBD) of Shanghai and is 559 

highlighted in Figure 12. We defined the existing structure of flood control measures as 560 

the baseline and evaluated alternative measures’ performance verse the baseline control 561 

level in the flood simulation model (Table S4).  562 

3.5 Model simulation 563 

Simulations of extreme pluvial flood inundation under climate change scenarios 564 

are carried out using the Shanghai Urban Inundation Model (SUIM) (Supplementary 565 

materials Text 2). It was created to couple multiple simulation processes, which consists 566 

of the SCS-CN hydrological model, statistical analysis of flooding results, risk 567 

assessment, and assessment of adaptation measures. Appropriate socioeconomic 568 

indicators were selected to characterize the exposure of the elements at risk and the 569 

vulnerability curve to evaluate the flood risk in all plausible scenarios (Supplementary 570 
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materials Text 3). We then coupled the hydrological module and risk assessment module 571 

to assess the future risk (Supplementary materials Text 3). Three climate adaptation 572 

options are quantitatively characterized in the risk assessment system. The benefit-cost 573 

ratio (BCR) of all options is calculated according to the performances of the risk 574 

reduction rate over the life cycle cost (Supplementary materials Text 4).  575 

4 Results 576 

4.1 Robustness analysis 577 

This section presents the performance evaluation results, including average risk 578 

reduction rate (ARRR) and Benefit-cost ratio (BCABCR), to reflect the robustness of 579 

potential climate adaptation options (Supplementary materials Text 34). Benefit-cost is 580 

the evaluation dimension for the robustness metrics, we evaluated their robustness 581 

under various plausible scenarios (Equation 1 in Section of ‘Methods’). It should be 582 

noted that benefit-cost,BCR was defined as the average risk reduction rate (ARRR) per 583 

unit cost (Equation S4 in Supplementary materials Text 4) based on the robustness 584 

metrics of Laplace’s Principal of Insufficient Reason. Specifically, the benefit is the 585 

reduction in expected flood losses compared to the no-action scenario (Equation 3), 586 

while the cost refers to the total implementation cost of each adaptation option 587 

(Equation S5 in Supplementary materials Text 4). We adopt Laplace’s principle of 588 

insufficient reason, assuming all scenarios are equally likely when calculating average 589 

outcomes across scenarios. Given that drainage capacity reduction (γ) is the main factor 590 

affecting the solutions’ performance, thus the study selects γ as the only explanatory 591 

indicator to explore the failure scenario of options based on the PRIM method.  592 
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As depicted in Table 2, the ARRR is calculated (Equation 2) to analyze the 593 

effectiveness of (the combination of) options. The average yearly cost of single options, 594 

which includes increasing drainage capacity (Dr), expanding green areas (GA), and 595 

constructing a deep tunnel with 30% runoff absorption (Tun30), is at a comparative 596 

level, ranging from 39 to 41 million USD per year. Their performance is relatively 597 

unsatisfactory (the ARRR is less than 0.39.) However, the ARRR for the combined 598 

option (D+G), drainage improvement and public green area, is higher (0.62) than the 599 

sum of two single options (0.51), indicating that the composite option will be more 600 

effective of reducing flood risk. Furthermore, it demonstrates that the combined options 601 

(i.e., D+G and D+G+T30) are satisfactory in terms of ARRR performance but not 602 

economically attractive due to their relatively higher costs. It is noted that if an option 603 

defers a major investment (like the Tun30) to later years, in reality its present value cost 604 

would be lower with discounting, potentially making the strategy more economically 605 

attractive than our simple BCR suggests. 606 

 607 

Figure 3 4 Yearly cost and total cost of alternative options  608 
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While two single single-options involving of deep tunnel (namely Tun50, Tun70) 609 

seem very attractive in terms of  (achieving high ranks in both ARRR and BCR).   610 

Table 2 The ratio of the benefit-cost of each adaptation options 611 

Option 

ARRR (without 

control target, %) 

Cost (million 

USD / year) 

Benefit-cost 

ratio (%) 

Dr 0.25 39 0.09 

GA 0.26 37 0.10 

Tun30 0.39 41 0.14 

D+G 0.62 76 0.12 

Tun50 0.74 68 0.16 

D+G+Tun30 0.85 117 0.10 

Tun70 0.87 95 0.13 

4.2 Adaptiveness analysis  612 

Scenario discovery validates the decrease of drainage capacity is the most critical 613 

uncertainty in defining the risk reduction rate of performance objective. The failure 614 

scenarios could be are identified when the flood control target F0=0.7 is not met. We 615 

further interpret failure scenarios by selecting subspace of each alternative options 616 

under flood control target using PRIM algorithm to optimize the combined value of 617 

coverage and density. Table 3 summarizes these metrics, where coverage and density 618 

are derived from PRIM-identified failure boxes, and ARRR is calculated as the average 619 

performance within those clusters. The valid period is defined by the point 620 

(characterized by γ) when a single option or combination no longer meets the 621 

performance targetThe valid period is determined as the point when the single options 622 

or the combinations cease to fulfill the flood control target, indicated by the time which 623 
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is characterized by γ (the reduction in drainage capacity).  624 

According to the results in Table 3, it was found that within the 70% risk reduction 625 

control target (Equation 3), the single options of Dr and GA performed less favorably 626 

(relatively smaller ARRR) and can quickly fail to meet the risk reduction target (with 627 

no larger than 0.1 of γ). Tun30 and D+R are very comparative since they preform very 628 

closely (similar results on ARRR and γ) but still not attractive. While Tun50 seems very 629 

attractive in terms of ARRR (0.89), however, it does not possess higher valid 630 

periodeffectiveness period (γ) than both D+G+Tun30 and Tun 70. Surprisingly, both 631 

D+G+Tun30 and Tun70 can function well in an effective way for a longer time. So far, 632 

D+G+Tun30 and Tun70 have proven to be highly competitive in terms of cost-633 

effectiveness and valid periodeffectiveness period over time. 634 

Table 3 ARRR and coverage and density of success scenarios in each option combinations 635 

under 70% risk reduction control standard 636 

Option 

ARRR (with 

control target, %) Coverage Density 

Decreased drainage 

capacity (γ) (valid 

periodeffectiveness 

period) 

GA 0.59 1 0.22 0.04 

Dr 0.62 1 0.20 0.07 

Tun30 0.73 1 0.75 0.1 

D+G 0.74 0.9 0.82 0.11 

Tun50 0.89 0.95 0.98 0.29 

D+G+Tun30 0.86 0.99 0.98 0.48 

Tun70 0.87 1 1 0.5 
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we We define flexibility as the number of transitions by enumerating overall option 637 

combinations regarding adaptive transferable pathways from the original option 638 

(current flood control infrastructure) to the destination options (e.g., D+G+Tun30 and 639 

Tun70, Figure 56). For example, the D+G+Tun30 comprises three single options, 640 

allowing it to begin with any of the three and delay further action until a tipping point 641 

approaches, giving it a convertibility score of three (Table S6). Therefore, each single 642 

option has a value of one for convertibility. 643 

4.3 Multi-objective trade-off 644 

The robustness-focused analysis (e.g., looking only at ARRR and BCR) would 645 

rank options like Tun50 and Tun70 as the top performers, whereas the adaptiveness-646 

focused analysis (looking at effectiveness period and flexibility) made D+G+Tun30 the 647 

most appealing. These differing outcomes demonstrate why it is crucial to evaluate 648 

multiple criteria together. Only by considering all metrics simultaneously (a true multi-649 

objective trade-off) can we identify strategies that strike an appropriate balance for 650 

long-term flood managementRobustness analysis suggests Tun50 and Tun70 might be 651 

attractive while adaptiveness analysis indicates D+G+30 as the most appealing. 652 

Therefore, the single-objective metrics yield different decision choices, it is crucial to 653 

evaluate all the metrics to conduct a multi-objective trade-off among the alternative 654 

options to assist the robust and adaptive decision making. Multi-objectives of (the 655 

combination of) options consider all four metrics, including BCR, and performance of 656 

the risk reduction control criteria (ARRR>70%), valid periodeffectiveness period (γ), 657 

and the flexibility. We solved the multi-objective problem using normalized and equally 658 
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weighted metrics (Equation 4). Figure 4 5 depicts the results of BCR, ARRR in control 659 

criteria, valid periodeffectiveness period, and flexibility of each option's combination. 660 

The higher the normalized rating, the greater the payoff. The outcome demonstrates that 661 

both GA and Dr perform poorly, whereas Tun30 and D+G are not robust enough 662 

compared to Tun 50, D+G+Tun30, and Tun70. It needs to be highlighted that Tun 50, 663 

D+G+Tun30, and Tun70 possess high priority; . however, We found that the 664 

D+G+Tun30 pathway achieved a well-balanced performance across risk reduction, 665 

cost-effectiveness, and our flexibility metricD+G+Tun30 outperforms due to its well-666 

balanced overall risk control performance and high value of flexibility (Table S7). In 667 

our initial analysis, this made D+G+Tun30 appear as the most promising option overall. 668 

However, as discussed, this planned flexibility advantage does not necessarily mean a 669 

single-component strategy cannot be adapted later. It is important to note that this 670 

conclusion is contingent on including the flexibility metric. If flexibility were defined 671 

differently or given less weight, another option – for example, the single large tunnel 672 

Tun70 – could emerge as preferable for long-term risk control.  673 
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 674 

Figure 4 5 Multi-objective trade-off of alternative options with normalized value of 675 

robustness metrics (the preference of priority is accepted from low(bottom) to high(top)). 676 

4.4 Robust adaptive pathway 677 

Pathway identification 678 

The candidate pathway was identified by enumerating the possible combinations 679 

of options. In this study, we found two potential pathways including from Tun30 to 680 

Tun70, and from Dr or GA to D+G+Tun30. It can be observed from Figure 5 6 that 681 

when γ increases, the performance of options of Dr (or GA, vice versa) steadily 682 

diminishes until the risk control target are not satisfied.  683 

The drainage capacity, affected by the compound event of land subsidence, sea 684 

level rise, and storm surge, is deemed to be undermined (which is reflected by drainage 685 

capacity reduction rate γ) over time. Figure 5 6 illustrates the concept of an option 686 

combination's valid periodeffectiveness period using Dr+GA+Tun30 as an example. 687 
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ARRR to begin with Dr is 0.62, with an increase in γ, Dr fails (γ=0.07), and ARRR will 688 

decrease further if no additional options are taken. The addition of GA can increase the 689 

ARRR to 0.74 before Dr and D+G fail (γ= 0.11). The ARRR will continue to decrease 690 

if options are not strengthened. Before D+G completely fails, incorporating Tun30 can 691 

increase the ARRR to 0.86; as γ increases, D+G+Tun30 fails at γ=0.48. To ensure the 692 

adaptive robustness of the combination of options, decision-makers can increase the 693 

service coverage area and rainwater absorption capacity of the deep tunnel project in 694 

the core area prior to the total failure of D+G+ Tun30. In other words, the transition 695 

from Tun30 to Tun50 and even Tun70, along with the combination of options, will be 696 

stable over the long-term time horizon. It is noted that the slight rise in performance 697 

after GA and Tun30 installation reflects a short ramp-up period in our model, during 698 

which newly implemented measures gradually reach full effectiveness, then 699 

performance begins to decline as expected under continued climate-induced stressors. 700 

The differing curvature of the performance decline is due to the interaction of 701 

measures. For the Dr-only strategy, once implemented, its risk reduction gradually 702 

diminishes at an accelerating rate as climate stressors intensify – producing a concave-703 

down curve (initially gentle slope, steepening later). In contrast, the strategies with 704 

multiple measures (D+G and D+G+Tun30) show a more linear decline. This is because 705 

when drainage alone begins to lose effectiveness, the next measure (GA, and later 706 

Tun30) either has just been implemented or is concurrently mitigating risk, effectively 707 

offsetting some of the non-linear drop. The combined result is a more steady 708 

(approximately linear) decrease in performance over time, as the measures’ effects 709 
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complement each other. We normalized time as 𝛾  = t/T (with T=50 years, the simulation 710 

period), so 𝛾 corresponds to the year 2070. 711 

 712 

Figure 5 6 Flexible pathway of combination options of drainage improvement (Dr), 713 

green area increment (GA), and deep tunnel with 30% absorption (Tun30), representing the 714 

risk reduction rate undermines with the reduction of drainage capacity. An example of 715 

Dr+GA+Tun30. 𝛾 is a dimensionless time, where 𝛾 =1 corresponds to Year 2070, the end of 716 

our planning horizon 717 

Pathway generation 718 

We comprehensively evaluated the candidate pathways by considering 719 

performances, BCR, valid periodeffectiveness period, and flexibility. The time frame 720 

lacks an absolute time reference but still offers a relative tracking of the rate at which 721 

relative sea levels are rising.  722 

Figure 6 7 depicts two robust transition pathways: D+G to D+G+Tun30 and Tun30 723 
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to either Tun50 or Tun70. The two pathways D+G+Tun30 and Tun30 to Tun70, provide 724 

adaptive short and long-term pathway schemes from a flexibility standpoint. The short-725 

term options are used as transitional schemes, and new options can be added before 726 

their failure, i.e., pathway transition, to maintain the risk control objectives. In addition, 727 

the two schemes can complement each other and incorporate new options before the 728 

system's long-term robustness is compromised. Additionally, D+G+Tun30 and Tun70 729 

leave room for upgrading to the costlier and more durable D+G+Tun70 in the long run 730 

when γ exceeds 0.5 (e.g., sea level or land subsidence exceeds observing increase 731 

speed).  732 

We observed that Tun70 offered the highest robustness in terms of ARRR and the 733 

longest effectiveness period among all single options.Tun70 possesses the highest 734 

robustness and the longest valid period; However, its lack of initial flexibility – 735 

requiring a large up-front investment in gray infrastructure – could lead to path 736 

dependency if future conditions turn out to be mild. In contrast, strategies that start with 737 

smaller measures (like Dr or GA) and can add on bigger projects later avoid that risk of 738 

over-commitment. This underscores the classic tension in planning: a strategy like 739 

Tun70 is robust but inflexible, whereas a phased approach is flexible but may initially 740 

be less robust. Our framework attempts to balance these aspects by evaluating 741 

both.however, the early investment in large gray infrastructure will lead to a path-742 

dependency dilemma if the mild scenarios unfold in the future. Considering that Dr and 743 

GA have been gradually implemented according to Shanghai Urban Rainwater 744 

Drainage Planning (2020-2035) (Shanghai Municipal Water Authority, 2020) and that 745 
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combining green and grey options is in line with the direction of sustainable urban 746 

development and has been widely adopted domestically. In conclusion, A promising 747 

robust adaptive pathway should initially begin with GA and Dr, followed by a 748 

combination of D+G. Ultimately as time goes by with gradually undermined drainage 749 

capacity, it should incorporate Tun30 with the flexibility to expand to Tun70. 750 

 751 

Figure 6 7 Generation of robust adaptive pathways with two potential pathways from either Dr or 752 

GA to D+G+Tun30, and from Tun30 to Tun70 as the reduction of drainage capacity over time (x-753 

axis). The options are sequenced in an upward relative higher BCR (y-axis, also see in Table 2). 754 

5 Discussion 755 

5.1 Key findings 756 

Applying this framework to the case of the reoccurrence in the 2050s (of the 757 
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extreme rainfall events on 13 September 2013) in Shanghai reveals informative findings 758 

to urban planners and other stakeholders. First, the performance of climate adaptation 759 

options (for addressing pluvial flood risk) decreases as the drainage capacity reduction 760 

rate (γ) increases (Table 3). This result is indirectly supported by events in June 2015 761 

and July 2021, which caused severe inundation in central Shanghai for days because 762 

the high water levels of rivers in the region prevented rainwater from being pumped or 763 

drained from the drainage system into the river network. This finding also suggests that 764 

drainage capacity is a key determining factor for the performance of options in other 765 

delta cities which may rely on discharge to the rivers (e.g., Guangzhou, Ho Chi mMingh 766 

City, London, etc.) (Hu et al., 2019). Urban planners in those cities need to consider 767 

scenarios of high-water levels in the river with a joint of extreme storm surge under 768 

typhoon takes place in a high astronomical tide period at estuary. Such an event would 769 

significantly undermine the drainage capacity thus leading to severe flooding inside the 770 

city and bringing potential disastrous impacts (e.g. Zhou et al., 2019).  771 

Second, as the drainage capacity decreases(γ), valid periodeffectiveness periods of 772 

different option  combinations varied significantly, showing a discrete distribution, 773 

which ranged from 0.04～0.5 with a corresponding ARRR ranging from 0.59～0.89 774 

(Table 3). Moreover, the most cost-effective solution may not always offer the longest 775 

valid periodeffectiveness period within an explicit flood control target (e.g. 70% risk 776 

reduction as a target in our case study), and therefore cannot be considered satisfactory 777 

(Figure 45). The findings highlight the importance of the discussion regarding the long-778 

term robustness of solutions which has been overseen in many flood- risk control works 779 
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in delta megacities. It is also further implying that if there is no consideration of the 780 

flood risk reduction target, discussions about a robust decision plan with stakeholders 781 

is meaningless. This urges to pay great attention to be proactive by strengthening the 782 

dynamic pathway and closely monitoring the decrease of the drainage capacity ahead 783 

of the pace of relative sea level rising (Figure 56).  784 

5.2 Robustness and adaptiveness trade-off 785 

The comparison in Section 5.1 brings up a vital decision-making issue on the trade-786 

offs between the benefit and cost of alternative options. In general, options with better 787 

performance required higher costs, which was also proved in any distinctive option in 788 

Table 2 and Table S6. It is also demonstrated that the combination of alternative options 789 

such as D+G showed a better performance than the single option of Dr and GA at the 790 

same cost. However, the cost of an option is not strictly proportional to its benefit (risk 791 

reduction rate) (Figure 34). For instance, Tun 50 possesses better performance in 792 

reducing inundation risks associated with the relatively low yearly economic cost 793 

compared to D+G. Because it is difficult to measure the pros and cons of the costly 794 

solution to maintain a higher protection standard and economical solution to possess an 795 

acceptable performance (cost-effectiveness), planners typically underestimate both 796 

influences by a large margin.  797 

In recognition of this limitation, it can be realized that single-objective targets e.g., 798 

flood control performance (ARRR), or financial control (BCR) may lead to biased 799 

decisions or maladaptation for the long-term horizon. For example, Table 2 shows that 800 

Tun50 has the highest cost-effectiveness (0.16), while the D+G+Tun30 is positioned at 801 
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an average level, both of which performed well in reducing flood risk. In sharp contrast, 802 

the adaptiveness analysis shows that the D+G+Tun30 behaved significantly better 803 

during a reasonable period than Tun 50, which is a more flexible and adaptive option 804 

for long-term planning (Figure 67). Therefore, it tends to a biased decision if the 805 

decision maker only focus on economic return (BCR). Besides, it illuminates the 806 

decision maker that priorities on grey infrastructure (e.g., Tun 50) at the starting point 807 

yields good performance (74% of ARRR) but may lead to over-investment and path 808 

dependency.  Moreover, there is concern that the valid periodeffectiveness period could 809 

be shortenshortened if decision-makers opt for the most cost-effective solution (Tun50) 810 

instead of choosing a more expensive but very effective combination (D+G+Tun30). 811 

This example enriches the literature on “no regret” planning, which should be robust, 812 

adaptive, and financially efficient at the starting point for decision-makers, keep options 813 

open (flexible), and avoid lock-ins. To minimize regret in the near to long future, the 814 

adaptation solutions should pay great attention to both robustness and adaptiveness, 815 

which also illuminates the importance of multi-objective trade-off as mentioned in 816 

previous work (Kirshen et al., 2015; Ramm et al., 2018a). 817 

Furthermore, we directly compare the top contenders Tun70 and D+G+Tun30. 818 

Notably, Tun70 actually achieved higher values than D+G+Tun30 on several individual 819 

metrics – it provided the greatest average risk reduction and a superior cost-benefit ratio, 820 

and it had the longest effectiveness period among single strategies. The multi-821 

component D+G+Tun30 pathway, on the other hand, had a moderate cost-benefit ratio 822 

and slightly lower risk reduction, but scored much higher on planned flexibility. This 823 
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illustrates a trade-off: if one prioritizes near-term performance and economic efficiency, 824 

Tun70 is very attractive; if one prioritizes incorporating flexibility to adapt over time, 825 

D+G+Tun30 gains the edge. Our framework’s value lies in revealing this trade-off 826 

clearly. 827 

5.3 Optimization of the synthesis framework 828 

Although there is a myriad of research running flood risk simulations and assessing 829 

the BCR of solutions in Shanghai and other megacities in the coastal areas, seldom of 830 

which considers the entire process in making the applicable decision (Du et al., 2020; 831 

Sun et al., 2021; Ward et al., 2017). In filling up this niche, this study has proposed a 832 

synthesized planning-supporting framework that is capable of considering the entire 833 

cascade of procedures from the uncertainties of future urban rainfall pattern, to the 834 

sampling of future scenarios, to the hydrological modeling, and to flood risk assessment 835 

for the robustness and adaptiveness of alternative options, allowing for making robust 836 

and adaptive pathways (refer to Figure 1).  837 

Compared to other DMDU theories, the synthesized framework asks for finding 838 

proxies for solutions’ performances in reducing risk, decision-making in terms of cost 839 

and benefit, and identifying priorities and adaptive pathways from option combinations 840 

in the multi-objective fusion process. The conversations established a fast modeling-841 

interpreting-remodeling feedback mechanism between the analyst and decision maker, 842 

which helps reduce the complexities and uncertainties encountered in ROA or other 843 

related work (e.g. Kind et al., 2018), and defining explicit objective (Raso et al., 2019). 844 

Upon that, incorporating the multi-dimensions of constraints allows for rapidly 845 
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minimizing disruption factors, balancing alternative solutions' interpretability, coverage, 846 

and density, and visualizing the applicable pathway.  847 

One advantage of our decision-support tool is that it can run comprehensive 848 

evaluations for thousands of future–option combinations within a few days, using only 849 

moderate amounts of input data. This computational efficiency is largely due to our use 850 

of a simplified model (SCS-CN) and a relatively small case-study area. However, this 851 

highlights a trade-off: using a more detailed 1D–2D model or expanding to a larger 852 

region would substantially increase computational time and data requirements. In other 853 

words, the ‘moderate’ resource demand we experienced may not hold in cases that 854 

require high-resolution modeling. This limitation suggests that careful model selection 855 

(or the use of techniques like emulators and parallel computing) is important when 856 

applying the framework to bigger or more complex systems. 857 

The advantage of our decision-supporting tool in running comprehensive 858 

evaluations for thousand combinations of scenarios within one or a few days and with 859 

moderate demand for input data implies its disadvantage in lack of details at the finer 860 

grid-cell level, e.g., 10m or even smaller grid-cells, or at larger research area. The 861 

second limitation is that tAnother limitation is our risk assessment scope: we considered 862 

direct flood losses (inundation damage) but did not model disruptions to transportation 863 

or other urban functions, nor wider cascading effects across sectors. Similarly, our cost-864 

benefit analysis focused mainly on direct financial costs; we did not fully quantify co-865 

benefits like ecosystem services or social benefits of adaptation options, which means 866 

our economic evaluation was somewhat narrow. Additionally, our cost estimates didn’t 867 



45 

 

account for certain practical factors such as human resource efforts (e.g., time and 868 

coordination required for implementation) or land availability constraints (for instance, 869 

the feasibility of allocating sufficient space for new green infrastructure in Shanghai). 870 

These simplifications should be kept in mind when interpreting the results. Future work 871 

could explore dynamic adaptation difference of “on-the-fly” upgrades versus planned 872 

pathways to provide a more direct assessment of flexibility in the real-world sense. he 873 

risk assessment in our work considered only the direct losses caused by inundation 874 

while ignoring influences on transportation and other urban functions and the cascading 875 

effect across urban sectors. Moreover, when discussing cost-benefit analysis, there is a 876 

limitation in fully accounting for the social and environmental benefits. These 877 

overlooked aspects lead to a narrow focus on financial costs, while the broader impacts 878 

on communities and ecosystems are neglected. Besides, cost should not be limited to 879 

financial expenditure alone. Human resources, such as the effort and time required for 880 

design and implementation in cross-sector collaboration, are significant components of 881 

cost, particularly when implementing nature-based solutions. Additionally, it is 882 

important to consider whether Shanghai has sufficient land resources available for the 883 

expansion of green spaces, as this is a critical factor in the cost assessment. 884 

In addition, further work needs to discuss the determination the weights of multi-885 

objectives when conducting trade-off analysis. The balance between robustness and 886 

adaptiveness may vary depending on whether the priority is for immediate, high-impact 887 

actions or long-term sustainability. The weight assigned to each factor should reflect 888 

the specific goals. Besides, scenario discovery was implemented to find the 889 
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combination option rather than an optimization algorithm to search for the best optimal 890 

combinations in many alternative options. We demonstrated a case study with a 891 

manageable set of options so that solving the optimization problem was outside the 892 

scope. Future work may apply machine learning methods, for example evolutionary 893 

optimizationgenetic algorithms, to solve complex problems of multi-objective targets 894 

if there were hundreds of possible interventions or sequencesunder different robust 895 

metrics. 896 

6 Conclusion 897 

This work provides a novel decision-making framework for flood mitigation in 898 

coastal megacities by synthesizing and building upon established DMDU methods 899 

(such as RDM and DAPP).  Rather than introducing a new theory, our contribution lies 900 

in the innovative combination and application of these methods to address the joint 901 

challenges of robustness and adaptiveness in flood risk management. From short to 902 

long-term planning, managing inundation risk caused by future extreme flooding events 903 

is challenged by physical, environmental, social-economic and political uncertainty, etc. 904 

This research presents a robust adaptive pathway framework that integrates robustness 905 

and adaptiveness to evaluate flood-control options. We demonstrated this framework in 906 

a case study, evaluating flood management strategies across multiple criteria – 907 

including performance, cost-effectiveness, effectiveness period, and flexibility – under 908 

many plausible futures. The results showed that traditional evaluation using only short-909 

term effectiveness or cost-efficiency can be insufficient for long-term planning. 910 

Integrating the additional metrics of effectiveness period and flexibility provides more 911 
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nuanced insights, helping to develop adaptive pathways that remain effective as 912 

conditions change.The new framework was tested to carry out the research on robust 913 

adaptive pathways regarding the multi-objective that includes solutions’ performance, 914 

cost-effectiveness, valid period, and flexibility under many plausible climate change 915 

futures.  916 

The results showed that traditional evaluation criteria, such as effectiveness and 917 

cost-efficiency, are insufficient for addressing long-term robustness in climate 918 

adaptation options, as they may result in biased and path-dependent outcomes. 919 

Therefore, integrating valid period and flexibility metrics will offer more rational 920 

insights for developing adaptive pathways that can respond to future dynamic changes.   921 

Our case study also illustrated the trade-offs between robustness and adaptiveness. For 922 

instance, a high-robustness single option (Tun70) performed very well in meeting flood 923 

control targets and had a strong BCR, but it lacked flexibility to adjust if future 924 

conditions turned out less severe than anticipated. On the other hand, a multi-925 

component strategy (D+G+Tun30) achieved a high overall score when both robustness 926 

and adaptiveness were considered, due to its balance of risk reduction and planned 927 

flexibility. This comparison highlights that the “optimal” strategy can change 928 

depending on which criteria decision-makers prioritize. In practice, our robust adaptive 929 

pathways approach allows stakeholders to see how emphasizing or de-emphasizing 930 

flexibility (or other metrics) would lead to different preferred strategies, thus supporting 931 

more informed decision-making.Our case study showed that the high robustness option 932 

(e.g., Tun 50 and Tun 70) performs well under flood control targets and may yield a 933 
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better BCR(Tun50). While it possesses low flexibility if the decreased of drainage 934 

capacity(γ) induced by future sea level rising and land subsidence unfold to be not 935 

attractive/satisfactory. D+G+Tun30, achieves the highest score of multi-objective trade-936 

off if both robustness and adaptiveness are taken into account in long-term planning 937 

under uncertainty. 938 

Overall, this work provides a novel framework to inform Shanghai’s long-term 939 

flood adaptation planning under climate change. Beyond this case, the approach 940 

contributes a theoretical foundation and practical insights for other coastal megacities 941 

facing similar challenges, helping decision-makers integrate robustness and 942 

adaptiveness into their climate adaptation strategies to better cope with deep uncertainty 943 

in extreme flood risks.This work can not only provide a scientific framework for 944 

Shanghai’s adaptation strategic policies planning in coping with extreme weather and 945 

climate events under climate change, but also provide both the theoretical foundation 946 

of decision-making methods and best practices to support the decision-making process 947 

for other coastal megacities to adapt to the changing climate and mitigate the extreme 948 

pluvial flood risk.  949 
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