1	Robust Adaptive Pathways for Long-Term Flood Control in Delta				
2	Cities: Addressing Pluvial Flood Risks under Future Deep				
3	Uncertainty				
4 5 6	Hengzhi Hu ^{1,2} , Qian Ke ³ , Wei Wu ² , Min Zhang ⁴ , <u>Yanjuan Wu⁵, Chengming Jin⁶,</u> Jiahong Wen ^{4*}				
7	¹ Department of Hospitality Management, Shanghai Business School, Shanghai 200234,				
8	China				
9 10	² Key Laboratory of Cities' Mitigation and Adaptation To Climate Change in Shanghai, China Meteorological Administration, Shanghai 200030, China				
11	³ Institute for Housing and Urban Development Studies (IHS), Erasmus University				
12	Rotterdam, Rotterdam 3062 PA The Netherlands				
13	⁴ School of Environmental and Geographical Sciences, Shanghai Normal University,				
14	Shanghai 200234, China				
15	⁵ Department of Geography and Spatial Information Techniques, Zhejiang				
16	Collaborative Innovation Center for Land and Marine Spatial Utilization and				
17	Governance Research, Donghai Institute, Ningbo University, Ningbo 315211, China				
18	⁶ Shanghai Institute of Geological Survey, Shanghai 200072, China				
19	Correspondence: jhwen@shnu.edu.cn (Jiahong Wen)				
20					
21	Abstract:				
22	Delta cities are increasingly vulnerable to flood risks due to the uncertainties				
23	surrounding climate change and socioeconomic development. Decision-makers face				
24	significant challenges in determining whether to invest in high level flood defenses for				
25	long term planning. Adaptation solutions should be given considerable				
26	attention consider not only to robustness but also to adaptiveness in case if the future				

unfolds not as expectation other than as expected. To support decision-making and meet long-term multi-objective targets, we propose a synthesized framework that integrates robustness analysis, adaptiveness analysis, and pathway generation. This framework was applied to evaluate alternative solutions for managing pluvial flood risk in central Shanghai. The results showdemonstrate that using arelying on a single-objective decision-making approach (focused only on robustness) tends to yield can lead to biased options outcomes. By examining the valid period effectiveness period and flexibility of candidate solutions, we assessed whether alternative solutions could their potential to meet long-term flood control targets. The analysis reveals that a combined option incorporating increased green areas, an improved drainage system, and a deep tunnel with a 30% runoff absorption capacity (D+G+Tun30)—is emerged as one of the most robust and adaptive pathways, based on multi-objective trade-off analysis. This study highlights the importance of considering effectiveness period valid period within predefined control targets and retaining flexibility to avoid path-dependency and minimize long-term regrets. The proposed framework is broadly applicable and can be applied to other delta cities to guide adaptive responses to future flood risks in other delta cities. Keywords: decision-making under deep uncertainty; flood risk reduction; multiobjective trade-off, robust adaptive pathway, Shanghai

1 Introduction

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Flood risk is increasing in low-lying delta cities due to rapid urbanization and climate change (Yang et al., 2023), hindering the capacity of urban development. Delta

cities such as Shanghai (Yin et al., 2020), Ho Chi Minh City (Scussolini et al., 2017), 49 and London (Dottori et al., 2023) are facing the combined challenges from extreme 50 rainstorms, sea level rise and urbanization-induced land subsidence with regard to flooding risk reduction (Ward et al., 2017). It is anticipated that as a result of changing 52 climate patterns, the frequency and severity of extreme flood events will increase in urban areas, thereby increasing the flood risk, particularly in increasing rapidly developing delta cities (Sun et al., 2021). 56 Delta cities are urged to examine potential climate adaptation options (Han and Mozumder, 2021;) and test their cost-effectiveness in designed socio-economicsocial 57 and climate scenarios to address the rising flood risks (Lin et al., 2020). Dottori et al. 58 (2023) proposed economically attractive strategies for European cities to deal with 59 60 increasing river flood risk from cost effective point of view. However, if these strategies or options will remain effective within a fixed timeframe under the uncertainties of climate change, land use change or political change is questionable; in addition, how 62 63 flexible these strategies can be up-scaled to meet the future needs is also rarely 64 discussed. This comes to is a pressing concern for decision makers in long-term planning. In the field of Decision decision Making making under Deep Uuncertainty 65 (DMDU), various approaches have been emerged, such as Robust Decision Making 66 (RDM). Robust Decision Making (RDM) is effective at identifying strategies that perform well across a wide range of future scenarios through vulnerability analysis and 68 stress-testing, but it lacks explicit guidance on how to sequence actions over time

51

53

54

55

61

67

69

70

(Lempert et al., 2013; Workman et al., 2021). Dynamic Adaptive Policy Pathway

```
71
      (DAPP) by contrast, excels at planning flexible adaptation pathways to avoid lock-in,
72
      but is relatively weaker in quantitatively evaluating robustness across uncertainties
      (Haasnoot et al., 2013; Dias et al., 2020) and Real Options Analysis (ROA) (Buurman
73
74
      and Babovic, 2016; Kim et al., 2018; Xu et al., 2023).
75
          These DMDU approaches have been continuously improved and optimized, the
76
      boundaries between methods have become increasingly blurred, and fusion thinking is
77
      progressively adopted (Haasnoot et al., 2020). As pointed out by Lempert et al. (2003),
78
      RDM provides systematic procedures that emphasize the iterative analysis process of
      scenario exploration, which can help decision-makers discover situations where options
79
      may fail, and understand the trade-off among all the adaptation options (Lempert et al.,
80
      2013). Kasprzyk et al. (2013) proposed the Multi-Objective Robust Decision Making
81
82
      (MORDM) approach by the combination concept of both multi-objective evolutionary
      optimizations and RDM (Bartholomew and Kwakkel, 2020; Yang et al., 2021).
83
      Kwakkel et al. (2019) pointed out that the RDM approach usually pays less attention to
84
85
      the dynamic planning of pathways on long-term scales of climate change. On the other
86
      hand, DAPP, which consist of the strengths of both Adaptive Policymaking (Walker et
      al., 2001) and Adaptation pathway (Haasnoot et al., 2012; Ranger et al., 2010), focuses
87
88
      on generating alternative dynamic pathway to achieve flexibility and avoid lock-in
89
      effects while it lacks quantitative robustness evaluation metrics (e.g., regret-based
90
      criteria or satisficing thresholds) robustness metrics (i.e. satisficing and regret) as well
      as a thorough and vulnerability analysis to quantify potential failures (Haasnoot et al.,
91
92
      2013).
```

Both the RDM and DAPP approaches are arguably in-most widely applied, and the concept of integrating two approaches has been proposed (Kwakkel et al., 2016) and practiced in cases (Tariq et al., 2017). However, as Ramm et al. (2018a) illustrated, integration of RDM and DAPP has not been thoroughly implemented, and fFuture opportunities for a combined RDM-DAPP approach includeto engaginge with participants in a combined RDM and DAPP approach includestakeholders to definging clear adaptation objectives, establish suitable metrics, and determine risk tolerance (Ramm et al., 2018b) as since all these factors are anticipated to largely significantly influence the outcomes of alternative pathways (Ramm et al., 2018b). Robustness emphasizes the ability of a strategy to perform in an effective way in many plausible scenarios futures. How to define robustness and assess whether options are insensitive to deep uncertainty to ensure certain performance across multiple plausible futures have sparked extensive discussions, especially when meeting multi-objective targets (Herman et al., 2015; McPhail et al., 2018). The selection of indicators for robustness depends on the priorities and preferences by policymakers and it will substantially affect the outcomes of decisions (Giuliani and Castelletti, 2016). For example, the decision-makers who endorse risk aversion may under-estimate adaptation options' performance. To overcome the single objective problem framing, Quinn et al. (2017) optimized operations of the four largest reservoirs under several different multi-objective problem framings in Hanoi city (Vietnam), and highlighted the importance of formulating and evaluating alternative stakeholder objectives.

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

However, an open question remains: to what extent can a traditional robustness evaluation (especially under risk-averse assumptions) suffice for rational decisionmaking, versus using a multi-objective trade-off analysis to gain a more comprehensive view?there is a need for a discussion on either the robustness evaluation of alternatives concerning policymakers' risk aversion can exclusively underpin rational decisionmaking or the multi-objective trade-off analysis can offer more comprehensive practical and theoretical support. For example, while one might assume the cost of a climate adaptation option is normally proportional to its benefit (risk reduction-rate), in practice,-Options options with high performance often entailmean higher costs - input and potentially longer construction periods (Dottori et al., 2023). Focusing on a The singleobjective (whether maximizing risk reduction or cost-benefit efficiency alone) in either performance assessment in reducing the risk or solely considering cost-benefit provided limited information for long-term planning, indicating a potential for and can lead to lock-in or path dependency issues due to overinvestment or maladaptation over time. Adaptiveness refers to the ability of a strategy to adapt adjust to changing conditionse (Haasnoot et al., 2013; Malekpour et al., 2020). Rather than being in opposition, adaptiveness and robustness are complementary: incorporating flexibility can enhance long-term robustness by avoiding overinvestment and lock-in. In this sense, maintaining high level of robustness compromise high level of adaptiveness of a strategy as conditions change. For example, committing immediately to an extremely high-level (and high-cost) flood defense could lead to path-dependency if future conditions turn out less severe than expected, whereas a strategy that can be

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

incrementally upgraded retains both flexibility and robust performance over time. high cost of effective solution may cause path-dependency and fails to adapt to the changing circumstances due to its financial commitment and over-confidence on the safety from societies. Despite its importance, the quantification of 'adaptiveness' (e.g., in terms of flexibility) remains challenging Considered as the other side of coins against robustness, quantification of adaptiveness is yet clearly addressed (Kind et al., 2018). Adaptation <u>Ttipping point analysis provided insight into when the an</u> options <u>will no longer meet a</u> specified performance target might falter, indicating potential failure point concerning the risk reduction target (Haasnoot et al., 2013), and Patient Rule Induction Method (PRIM) offers a quantitative way to identify these tipping points is proven to be illuminated to identify the use-by date of tipping points in a quantitative way (Ramm et al., 2018a; 2018b). Kirshen et al. (2015) raised noted that the preferred urban flood control strategy may change once additional criteria like no-regret and flexibility are considered at critical thresholds. Rather than choosing an 'optimal' here-and-now solution that could become suboptimal later, a "wait-and-see" approach (delaying or staging investments) can preserve flexibility option of selecting urban flood control options may differ if additional criteria of no regret and flexibility were considered, when a critical threshold is reached under a climate change scenario. Instead of applying optimal here and now options, wait and see decisions allow for flexibility. Within In the ROA paradigm, flexibility is explicitly valued since it allows decision-makers to deferdelaying committingment to large, costly, and irreversible decisions measures while implementing smaller steps either exercising different interventions or

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

incrementally implementing interventions with long construction times until more information is available (Erfani et al., 2018). In this paper, we define 'robustness' as the ability of a strategy to maintain acceptable performance across a wide range of plausible futures, and 'adaptiveness' as the ability to adjust or augment the strategy over time in response to how the future unfolds. Therefore, in our framework we incorporate both the timing of adaptations (the tipping point, termed the 'effectiveness period' in this paper) and the flexibility to adjust, as key characteristics of adaptiveness that support better long-term planning.incorporating both the tipping point (specify as valid period later in this paper) and flexibility reflect the key characteristics of adaptiveness and thus better assists in a long-term planning In this study, we aim to propose a decision-making synthesized framework which incorporatesthat integrates both robustness and adaptiveness to formulate a robust adaptive pathway for long-term climate adaptation planning under deep uncertainties. This framework can be utilized is intended to guide decision-makers in prioritizing and sequencing adaptation options - a pressing challenge in urban climate action planning decision-making on the prioritization and sequencing of climate adaptation alternatives, which nowadays remains as a pressing question for urban practitioners on climate action planning. To We demonstrate the novel synthesized framework, it was applied by applying it to examine various climate adaptation alternatives to address the increasing pluvial flood risk in a delta city —(Shanghai), to evaluate a range of flood adaptation alternatives under plausible mid-21st-century scenarios (combining extreme rainfall and deteriorating drainage capacity by the 2070s), based on future (uncertain)

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

scenarios of a combination of extreme rainstorm and the deteriorating drainage capacity by the time of 2050s, to support the decision making.

The remainder of this article is organized as follows: Section 2 presents the proposed comprehensive framework and methodology. Section 3 introduces the background of the case study area and the preprocessing procedures. Section 4 presents the results, where a multi-objective trade-off is applied to evaluate the potential pathways for generating a robust adaptive pathway. This analysis combines metrics such as the average risk reduction rate (ARRR), benefit-cost ratio (BCR), valid periodeffectiveness period, and flexibility of all options. Section 5 discusses the key findings related to pluvial flood risk management in coastal cities, the implications of multi-objective trade-off considering both robustness and adaptiveness, how the synthesized framework can inform long-term adaptive policy formulation, and provides recommendations for future work. Finally, Section 6 concludes with a summary.

2 Methodologies Methodology

2.1 Framework development

Having established outlined the challenges of pluvial flood risks posed by futureunder deep uncertainties, this studywe now presents a robust adaptive pathway framework designed to support for long-term planning. To We build built this robust adaptive pathway framework, we by extendinged the taxonomy of DMDU approaches proposed by Kwakkel et al. (2019),), which categorizes existing DMDU approaches into five dimensions of decision frameworks, and kin incorporating recent advancements in robustness and adaptation methods to the taxonomy in the robustness

framework (Herman et al., 2015). Figure 1 provides an overview of our framework's eight sequential steps. We summarize these steps below, then detail each component of the methodology: Building on recent advancements in DMDU approaches, we further refined the framework into the following procedures:

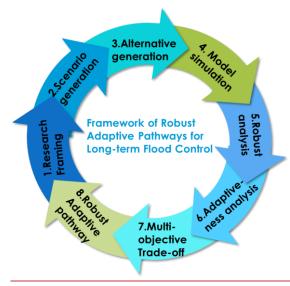


Figure 1 Integrated framework of robust adaptive pathways for long-term flood control

1) Research framing. Define the long-term flood management objectives and a dynamic policy structure. Unlike a static, short-term plan, the proposed policy structure is dynamic and adaptive, providing a continuous pathway toward achieving long-term flood control goals while retaining flexibility to adjust as future conditions evolve. In our framework, introducing "adaptive" measures alongside traditional approaches enhances overall robustness by reducing the risk of over-investment or lock-in.—In contrast to the short term implementation of baseline standards, the policy structure proposed in this work is designed to be dynamic and adaptive. It provides a continuous

pathway toward achieving long-term flood control goals while maintaining the flexibility to adjust to an uncertain future. As a result, the 'adaptive' options enhance the robustness of the solutions and reduce the risk of over investment.

2) Scenario generation. Develop a set of plausible future scenarios capturing key uncertainties (meteorological, hydrological, socio-economic, etc.). The ranges for uncertain factors can be derived from expert judgments, policy targets, or climate projections (Lempert et al., 2013). We employed a Latin Hypercube Sampling approach (Workman et al., 2021) to efficiently generate diverse futures. In our case study, for instance, futures were defined by varying extreme rainfall intensities and drainage capacity degradation by 2050, based on climate model outputs and local planning assumptions. The process of scenario generation applies multiple (uncertain) factors of meteorological, hydrological, or social economic. The range of uncertain factors may either according to expert's opinion, policy guideline or climate projections (Lempert et al., 2013). Plausible futures can be generated via scenario sampling algorithms as of Latin Hyper Cube Sampling (Workman et al., 2021).

3) Alternative generation. Identify and develop a portfolio of adaptation options.

In our study, we used stakeholder workshops and policy document analysis to formulate viable flood control measures (both structural and non-structural). The current flood management strategy (status quo) serves as a baseline option, and a range of new adaptation alternatives (e.g., green infrastructure, drainage upgrades, tunnels, and their combinations) were assembled for evaluation. Climate adaptation alternatives were developed through focus group discussions during a workshop and an analysis of policy

documents. The workshop included key stakeholders such as flood experts, policymakers, and residents. As a result, the existing flood options serve as the baseline scenario, compared to the generated climate adaptation alternatives which are set to be evaluated using flood modelling.

4) Model simulation. Evaluate each option (and combinations of options) under all futures using an appropriate flood simulation model. The framework can accommodate models of varying complexity: for instance, high-fidelity 1D/2D hydrodynamic models (e.g., SOBEK, MIKE 1D2D; Wang et al., 2018) could be used for detailed analysis at the cost of more computation, whereas simpler conceptual models allow faster simulation of many scenarios. In our case study, we employed a simplified hydrological model based on the SCS-CN method to simulate runoff and flooding, which kept computational demands manageable given the thousands of plausible futures simulations, although the framework could integrate more complex models if needed. Flood inundation models such as SOBEK1D2D, Mike1D2D (Wang et al., 2018) and Info Works can be used to simulate flood routing process and produce maximum inundation maps, which further can be used for flood risk assessment when incorporating the geospatial statistics.

5) Robustness analysis. Assess each option's performance across all futures using robustness criteria, which used to be depicted as $f(a, w_i)$ meaning the performance of option a under scenario w_i . In this study, we assume all scenarios are equally likely (an application of Laplace's principle of insufficient reason) and compute performance indicators for each option under each scenario. Key indicators include the average risk

baseline, averaged over scenarios, and the benefit cost ratio (BCR), ratio of total avoided damage to total cost. Using these, we evaluate how "robust" each option is, for instance, how well it performs on average and whether it consistently meets acceptable thresholds across scenarios. To evaluate the robustness of all options that have the highest utility under a certain threshold, robustness metrics (e.g. Laplace's principle of insufficient reason) were used as the decision making criterion. The calculation of indicators such as the average risk reduction rate (ARRR) and benefit cost ratio (BCR) for each alternative option was performed for each scenario, with an assumption of equal probability for their occurrence. Subsequently, the performance of each option and its combination was evaluated by quantitative comparison and ranking stability (McPhail et al., 2018).

6) Adaptiveness analysis. Valid period Determine how long each option remains effective and how easily it can be adjusted. For each single or combined alternatives, we identify its effectiveness period – the duration or range of conditions over which it meets the flood risk target – by finding the point at which its performance falls below the acceptable threshold. We used the PRIM algorithm to analyze scenario results and pinpoint these tipping points; in doing so, we optimized PRIM's coverage (the proportion of scenarios captured by a tipping point condition) and density (the success rate within those scenarios) to balance generality and precision to balance generality and precision. We refer to the conditions triggering failure as signposts, which are observable indicators that an adaptation or policy change will soon be needed.

Furthermore, we quantify each option's and combination's flexibility in our framework by the number of measures it contains. In other words, a multi-component strategy planned with, say, three measures have a higher planned flexibility score than a singlemeasure strategy, since it inherently includes more future actions. This flexibility metric reflects only the strategy's planned adaptability, not an absolute limit - even a onemeasure strategy could be expanded laters of the alternative options were determined based on the conditions of the successful scenarios under each (individual or combined) option, in conjunction with a specific flood control objective. Optimizing the value of coverage and density of subspace in the PRIM (Patient Rule Induction Method) algorithm help to identify signposts in the adaptation pathway which is in line with the idea of the tipping point in DAPP. Flexibility is evaluated by the ability of convertibility. 7) Multi-objective trade-off. Evaluate each alternative across multiple metrics to understand trade-offs. We consider both robustness metrics (e.g., risk reduction, benefit cost ratio, regret-based measures) and adaptiveness metrics (effectiveness period and flexibility) for every strategy. For comparison, all metric values are normalized and, in our analysis, treated with equal importance. This allows us to compute an overall performance score for each alternative. Options that achieve a good balance across all criteria are deemed the most promising candidates for robust and adaptive planning. We did not run a computational multi-objective optimizer which would be typical if there were hundreds of options. Instead, we effectively enumerated and evaluated a small set of candidate solutions manually or with simple search, given the case study's scope.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

Multi-objective trade off was implemented using robustness and adaptiveness metrics to evaluate the candidate alternatives. All the metrics are given equal weight and are compared based on their normalized values. The alternative options with highest score to satisfy all the objectives are regarded most promising.

8) Robust adaptive pathway. Formulate and select robust adaptive pathways. Using the information on each option's effectiveness period and flexibility, we identify sequences of actions that extend flood protection over time. We generate an adaptation roadmap by considering how the system could transition under transient scenarios. From the set of possible pathways, we then select a robust adaptive pathway that best satisfies the flood control objectives in the long term based on the multi-objective analysis from step 7. Along this pathway, we define key signposts — measurable indicators (e.g., a threshold of rainfall intensity or drainage failure rate) that signal when it's time to shift to the next action. Monitoring these signposts will support future decision-making and adjustments to the plan. In light of the adaptability of the valid period (tipping point) and flexibility of transitions in each alternative portfolio, potential pathways were identified, and generated a roadmap based on transient scenarios. A robust adaptive pathway was selected in multi-objective to satisfy the flood control criteria for long term planning. The signposts can be monitored to support future decisions.

2.2 Methods of robust adaptive pathway procedures

Robustness analysis

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Deciding on a robustness criterion is essentially a meta-decision problem The choice of robustness option is the meta-problem of how to decide (Herman et al., 2015). In our context, robustness of a strategy refers to its satisfactory performance across a range of uncertain future states. The performance of a system is frequently described by robustness option when dealing with a decision-making process, including significant uncertainty. Various robustness metrics can be used to quantify robustness under uncertainty, including Maximax, Maximin, Mean-variance, Starr's domain criterion, Laplace's principle of insufficient reason, etc., Each metric embodies a different risk preference, so the choice of metric can influence which option appears most favorable are used to evaluate a system's performance in various scenarios (state of the worlds). Different robustness metrics represent distinctive risk preferences, and the selection of robustness indicators influences the choice of alternative options (Giuliani and Castelletti, 2016). In this study, we adopted For the risk aversion metric, the neutral risk aversion of Laplace's principle of insufficient reason as one robustness measure: in the absence of known scenario probabilities, we assign equal weight to all scenarios and identify solutions that perform best on average.s widely documented to help identify the solution that performs best in neutral risk aversion. Furthermore, it suggests that in the absents of knowledge of the probabilities associated with the different scenarios, the decision could be taken by assigning equal probability to all scenarios. The performance of option or combination a; is depicted as Equation (1).

 $a^* = rg \max_{a \in A} \left(rac{1}{N} \sum_{j=1}^N f(a, w_j)
ight)$ $a_{\overline{p}} = 0$ 345 $\arg\max_{a}\left(\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{n}f(a_{i},w_{j})\right)$ 346 347 where a^* denotes the optimal option or combination, A is the set of all options or combinations (listed in table 2), N is the total number of futures. And $f(a, w_j)$ is the performance of option or 348 349 combination a under future w_j, which represents the expected flood risk associated with adaptation 350 option or combination a under future w_i , as generated from the flood-damage simulation model. 351 This risk value forms the basis for evaluating robustness through indicators such as the ARRR. 352 Where a_t is option i of alternative options set (a) (listed in table 2), and w_t is in the scenario set w. $f(a_1, w_1)$ represents the option performance value of scenario j, a_n 353 354 is the selection of option p with best performance. In many robust decision-making frameworks, criteria related to satisficing and 355 356 regret are used as performance measures Satisfaction and regret are frequent indications 357 of robustness options in RDM decision-making procedures (Herman et al., 2015). 358 Regret is broadly the opportunity loss incurred by not choosing the optimal action in a 359 given scenario – essentially, how much worse a strategy performs compared to the best possible outcome in that scenario. Satisfaction can be viewed as a measure of how well 360 a strategy meets a predefined target (combining effectiveness and efficiency). In our 361 362 evaluation, we compute these metrics relative to a baseline scenario or option. Broadly, 363 regret quantifies the cost (not necessarily monetary) of choosing incorrectly. It can be 364 defined as the cost of a single solution, associated with the deviation from its baseline performance. On the other hand, satisfaction can be defined as the amalgamation of 365 366 effectiveness and efficiency. Equation (2) illustrates how we calculate regret-based 367 performance for the alternatives. In this situation, the evaluation of candidate options'

performance is presented as the deviation from the baseline performance, see Equation

369 (2).

370
$$P_i = \frac{1}{N} \sum_{j=1}^{N} \frac{|f(a_i w_j) - f(a_0, w_j)|}{f(a_0, w_j)}$$

$$\frac{P_{t} = \frac{1}{n} \sum_{i=1}^{m} \sum_{j}^{n} \frac{|f(a_{i}w_{j}) - f(a_{ij}w_{j})|}{f(a_{ij}w_{j})}}{f(a_{ij}w_{j})}$$
(2)

Where P_i is the average performance value of average risk reduction rate (ARRR) of alternative options or combinations in all plausible futures N, $f(a_i a, w_j)$ represents the performance value of pluvial flood risk of option a in seenario future $w_j f$, and $f(a_0, w_j)$ is the performance value of pluvial flood risk of the baseline option $a_0 of$ in seenario future w_j .

Decision-makers also examine whether any given strategy has vulnerable scenarios – situations in which it fails to meet minimum acceptable performance-care that whether the scenario sets of alternative options contain an unacceptable possibility.

The A threshold can be set to define what constitutes intolerable performance for vulnerable scenarios defines whether there is an intolerable risk control level. Metrics like the domain criterion quantify the fraction of the uncertainty space (subsets of all futures) in which a solution meets all performance requirements. The domain criterion quantifies the volume of the uncertain factor space in which a solution meets the decision-makers' performance requirements. Such considerations align with policy risk indicators often used in practice (e.g., minimum safety standards or environmental protection criteria) to ensure options avoid unacceptable outcomes. Indicators of risk control policy are frequently included in the research, such as local environmental protection legislation, urban drainage planning, and other documents. They can also

provide appropriate reference opinions determined by local governments or relevant decision makers and experts. Based on the elicitation of local requirements, we define the P_i^* as the average performance of average risk reduction rate(ARRR) which satisfies the minimum threshold of the given flood control target (F_0 , F_0 =0.7 in this case), as depicted in Equation (3).

$$P_{i}^{*} = \frac{1}{s} \sum_{j=1}^{s} \frac{|f(a, w_{j}) - f(a_{0}, w_{j})|}{f(a_{0}, w_{j})} \ge F_{0}$$

$$\frac{1}{s} \sum_{i=1}^{m} \sum_{j=1}^{n} f(a_{i}, w_{j}) \ge F_{0}$$
(3)

Where P_t^* represents the average performance value of ARRR of the option or combination $\alpha_t a$ in all subsets s of all plausible seenario futures N that meets the given flood control target F_0 . PRIM is applied to identify clusters of successful cases by searching across the full set of futures N for each option or combination. Specifically, for each option or combination a, we select the subset of future s that leads to the most successful outcome by balancing coverage and density with given flood control target.

Internationally, the net present value of benefits (PVB) and the net present value of costs (PVC) are commonly used to represent benefits and costs, respectively (Liao et al., 2014). In this study, PVB is selected as the pluvial flood risk reduction rate (RRR) before and after the implementation of the options, rather than as the pluvial flood risk reduction value. It is important to note that the goal of this study is not to calculate the direct risk of extreme pluvial flooding in the future, as the absolute value of the risk would be too large for meaningful comparison. Therefore, the benefit-cost ratio (BCR)

is presented simply as the ratio of PVB to PVC.

Adaptiveness analysis

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

PRIM is an interactive statistical clustering algorithm that generates a series of subspaces by peeling away layers of the uncertainty space, where the coverage and density of points of interest in each box are greater than in the surrounding space (Matrosov, 2013). As a visualized tool for exploratory analysis, PRIM is widely used in many works to investigate either key factors causing system failure or vulnerable scenarios that might cause alternative options' failure. Parameters of coverage, density, and interpretability characterize the subspaces. These three metrics are usually correlated, with increasing density resulting in decreasing coverage and interpretability. It turns out that an analyst needs to trade-off in selecting the potential coverage, density, and interpretability to achieve the best combination. The subspaces describe the conditions beyond which coastal inundation impacts are unacceptable signifying adaptation tipping points are reached (Ramm et al., 2018a). Key factors along with the tipping point of options are evaluated in associated timeframes which need not be exact. Identifying an indicative period at which conditions describing adaptation tipping points indicate a valid periodeffectiveness period (or use-by year) (Haasnoot et al., 2013). The results of PRIM can assist decision-makers in identifying sensitive ranges of uncertain factors or combinations, and factors with little influence can be safely disregarded. Following a decision initially, flexibility in decision theory is related to the remaining choices available in the following period. The larger this set, the more flexibility the decision maker retains. This idea can be generalized to staged choices over multiple periods. For example, Erfani et al. (2018) proved that flexibility is valuable in providing decision nodes in multistage scenarios (planning periods in every 5 years) for least-cost water supply intervention scheduling. One way of deriving the value of flexibility is thus by comparing costs and benefits of a flexible investment strategy with those of a less flexible, that is, a more robust strategy (Kind et al., 2018). However, flexibility is not treated as delayed option value as other ROA work calculated, instead, we consider the convertibility of options that is still in line with the idea of wait-and-see yet is more straight-forward. It is important to note that a strategy initially implemented as a single measure does not preclude future augmentation if conditions worsen. In our framework, however, such augmentations were not preplanned in single-measure scenarios. Therefore, our 'flexibility' metric should be interpreted as the degree of planned adaptability, rather than an absolute limit on a strategy's potential to adapt.

Multi-objective trade-off

The cost and benefit of investment in adaption options may lead to a static decision-making perspective. Therefore, an important question was raised for robust decision-making of how to avoid failure scenarios regarding factors including risk reduction rates over time, cost of option, and economic benefit ratio. On this basis, making robust decisions needs to include other factors beyond cost and benefit, such as valid periodeffectiveness period and flexibility, for a comprehensive evaluation in the long-term (Erfani et al. 2018)

The optimization of options' combinations can be identified via the trade-off

455 process by Equation (4).

 $F(l)=[y_1(l),\ y_2(l),\ y_3(l),\ y_4(l)]$ 456 457 $(y_{flexibility}, y_{valid\ period}, y_{cost-benefit}, y_{performance})$ (4) Where $l_{p,r} = [p_i, r_i] \ \forall p \in P; \ \forall r \in R$ 458 459 Where $l \in L$ is a candidate adaptation pathway from the set of feasible pathways L; yI(l): Flexibility — number of successful alternatives reachable from pathway 1; 460 y2(l): Effectiveness period — duration before performance drops below threshold; y3(l): 461 Benefit-Cost Ratio (BCR) — economic efficiency of pathway 1; y4(l): Average Risk 462 463 Reduction Rate (ARRR) — robustness of flood risk performance. Where lp,r represents 464 the pathway scheme, r_t is any of the robustness metric set R. $y_{tlexibility}$ $y_{valid period}$, $y_{cost-benefit}$ and $y_{performance}$ are the values of indicators from different dimensional 465 466 objects. 467

Robust adaptive pathway

468

469

470

471

472

473

474

Adaption tipping points (valid periodeffectiveness periods) are central to adaptation pathways, the conditions under which an action no longer meets the specified objectives. The timing of the adaptation points for a given action, its valid periodeffectiveness period, is scenario dependent. The DAPP, manually drawn based on model results or expert judgment, presents an overview of relevant pathways (Haasnoot et al., 2020). In this study, we first examined the valid periodeffectiveness

period of alternative options by PRIM analysis to identify acceptably robust adaptation pathway for future flood control. We then identified the combination of candidate pathways in consideration of both valid periodeffectiveness period and flexibility, ensuring the adaptive solutions in incremental stages allow for maintaining flood control levels before committing to larger schemes. Roadmap of candidate's pathways are generated during this procedure. Lastly, the preferred robust pathway is determined by a trade-off analysis of all the criteria.

3 Case study

3.1 Background

Shanghai, with a domain of 6,340 km², provides residences to 24.9 million population with a built-up area of 1237.9km² in 2021. Shanghai has been perhaps the most important economic and financial center in China, and it now aspires to be one of the world's most important economic, financial, shipping, and trade centers (Shanghai Statistic Yearbook, 2021). Shanghai is surrounded by water on three sides: the East China Sea to the east, the Yangtze River Estuary to the north, and Hangzhou Bay to the south. In addition, the Huangpu River, a Yangtze River tributary, flows through the heart of Shanghai. The average yearly precipitation is approximately 1400mm in recent 10 years, with 63% concentrated during the flooding season from May to September (Shanghai Climate Change Research Center, 2022). As a result, the most catastrophic hazard in Shanghai has been floods produced by torrential rainfall, which annually disrupts transportation and other social activities, causes substantial economic losses, and threatens urban safety.

Shanghai has the lowest elevation (with averagely 4m above m.s.l.) and large numbers of old-lane residential buildings in central city, which have fewer floors compared to other districts that is vulnerable to the extreme pluvial flood events see Figure +2). The spatial distribution of rainfall will continue to concentrate in urban areas, and the increasing likelihood of extreme precipitation (Liang and Ding, 2017), combined with the trends of relative sea-level, will cause stakeholders, includes residents, policymakers, and scientists etc., to be concerned about the rising flooding risk in delta cities of Shanghai (Du et al., 2020).

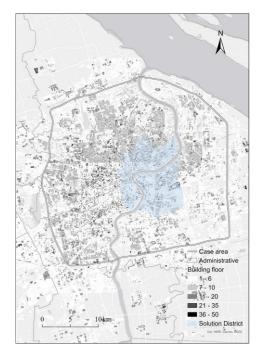


Figure 4-2 Case area, administrative, and solution district (blue shade) in center Shanghai, including spatial distribution of building footprints indicating the number of stories (gray shades), the base map was provided by Esri, using ArcGIS Online Services.

3.2 Research Framing

Based on the proposed framework, the dimensions, components, and metrics of this study are organized as shown in Table 1. To ensure urban safety, this study defines an explicit flood control objective of achieving a 70% average risk reduction rate, in alignment with the Shanghai Flood Control and Drainage Plan (2020–2035) (Shanghai Municipal Water Authority, 2020).

Table 1 Dimensions of the research framework

Dimension		Metrics		
Research framing	Alternative options to generate robust and adaptive pathway			Definition of flood control objective
Scenarios generation	Increased rainfall	Rain island effect	Drainage decrease	Latin hypercube sampling (LHS)
Alternatives generation	Drainage increased	Increase of green area	Deep tunnel with 30%, 50%, or 70% of runoff absorption	Predefined by local flood control plan
Model simulation	Hydrology	Flood risk	Geospatial statistics	Grid aggregation
Robustness analysis	Performance (ARRR)	Measure Cost (Life cycle cost)	Benefit	Laplace and Domain criterion
Adaptiveness analysis	Signpost	Valid periodEffectivene ss period	Flexibility	PRIM
Multi- objective Robus Trade-off		ness	Adaptiveness	Metric evaluation
Robust adaptive pathway	Candidate pathway identification, roadmap generation, and monitoring of signposts			Transition scenarios

The robustness analysis serves as the foundation of our methodology, ensuring that the proposed solutions can withstand future uncertainties. Once robustness is assessed, we proceed to the adaptiveness analysis, which allows us to account for flexibility in response to unforeseen challenges. We conduct a trade-off optimization analysis in terms of robustness and adaptiveness was of particular significance to providing iterative stress tests over many plausible scenarios using

robustness metrics and identifying valid-periodeffectiveness periods and flexibility to generate alternative pathways. Following the structure of robust decision-making pathway framework, Figure 2–3_illustrates the entire procedures for long-term flood control planning in the Shanghai case study.

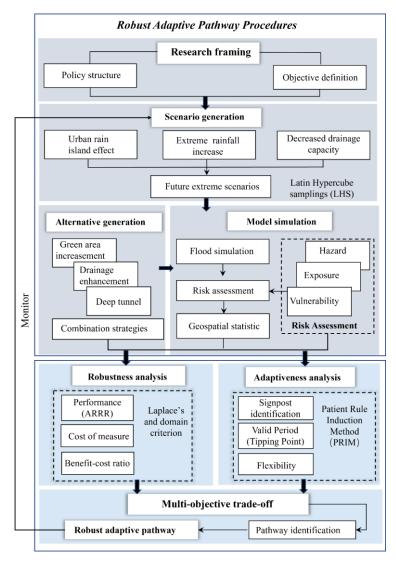


Figure 2-3 Framework of robust adaptive decision-making pathway, which incorporates the

robustness, adaptiveness, multi-objective trade-off, and pathway generation (blue boxes).

3.3 Scenario generation

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Precipitation is predicted very likely to increase in the Yangtze River Basin in the 21st century (Hui et al., 2018), and the frequency and intensity of extreme rainstorm events may continue to increase (uncertain factor of the α , future rainfall assumed to increase from 7% to 18%). Shanghai's spatial rainfall patterns reveal a significant "rain island effect" between urban centers and suburbs (Liang and Ding, 2017) (uncertain factor of the β , assumed to increase from 10% to 20% in central region (Xujiahui and Pudong rain gauges), decrease from -0.076% to -0.038% (other 9 rain gauges in Shanghai)). In addition, land subsidence has been a persistent issue due to the groundwater exploitation and construction of high-rise buildings (Yang et al., 2020). By 2050, it is projected that the current river embankment and drainage systems in Shanghai will experience a 20-30% reduction in capacity due to a likely relative rise in sea level of 50 cm (compared to the year of 2010), caused by both sea level rise and land subsidence (Wang et al., 2018). The uncertain factor of the decrease of drainage capacity (y, assumed to decrease from 0 to 50% due to the anthropogenic land subsidence and sea level rise) is designed to be the degradation effect of restraining the water from the urban drainage system flowing to the river system due to the high river water level caused by the continually rising sea level, land subsidence, and other degradation factors. This study focused on a record-breaking convective rainfall that occurred on September 13, 2013 and had an intensity record of 140.7mm within 3 hour (at 17-19h).

The variation interval of each uncertainty factors was clarified, and Latin Hyper Cube Sampling (LHS) was used to construct 100 <u>plausible</u> futures <u>seenario cases</u> based on the historic "913" extreme rainfall event in 2013 (Supplementary materials Text 1).

3.4 Alternative generation

It is acknowledged that the current Shanghai flood control infrastructure is insufficient to protect the city from long-term inundation risk (Shanghai Municipal Water Authority, 2020). Three options, drainage improvement, increase of green area, and construction of deep tunnel, are pre-defined with stakeholders of experts and decision-makers following the Shanghai Flood Control and Drainage Plan (2020-2035). The solution district locates in the core business district (CBD) of Shanghai and is highlighted in Figure 42. We defined the existing structure of flood control measures as the baseline and evaluated alternative measures' performance verse the baseline control level in the flood simulation model (Table S4).

3.5 Model simulation

Simulations of extreme pluvial flood inundation under climate change scenarios are carried out using the Shanghai Urban Inundation Model (SUIM) (Supplementary materials Text 2). It was created to couple multiple simulation processes, which consists of the SCS-CN hydrological model, statistical analysis of flooding results, risk assessment, and assessment of adaptation measures. Appropriate socioeconomic indicators were selected to characterize the exposure of the elements at risk and the vulnerability curve to evaluate the flood risk in all plausible scenarios (Supplementary

materials Text 3). We then coupled the hydrological module and risk assessment module to assess the future risk (Supplementary materials Text 3). Three climate adaptation options are quantitatively characterized in the risk assessment system. The benefit-cost ratio (BCR) of all options is calculated according to the performances of the risk reduction rate over the life cycle cost (Supplementary materials Text 4).

4 Results

4.1 Robustness analysis

This section presents the performance evaluation results, including average risk reduction rate (ARRR) and Benefit-cost ratio (BCABCR), to reflect the robustness of potential climate adaptation options (Supplementary materials Text 34). Benefit cost is the evaluation dimension for the robustness metrics, we evaluated their robustness under various plausible scenarios (Equation 1 in Section of 'Methods'). It should be noted that benefit cost, BCR was defined as the average risk reduction rate (ARRR) per unit cost (Equation S4 in Supplementary materials Text 4) based on the robustness metrics of Laplace's Principal of Insufficient Reason. Specifically, the benefit is the reduction in expected flood losses compared to the no-action scenario (Equation 3), while the cost refers to the total implementation cost of each adaptation option (Equation S5 in Supplementary materials Text 4). We adopt Laplace's principle of insufficient reason, assuming all scenarios are equally likely when calculating average outcomes across scenarios. Given that drainage capacity reduction (γ) is the main factor affecting the solutions' performance, thus the study selects γ as the only explanatory indicator to explore the failure scenario of options based on the PRIM method.

As depicted in Table 2, the ARRR is calculated (Equation 2) to analyze the effectiveness of (the combination of) options. The average yearly cost of single options, which includes increasing drainage capacity (Dr), expanding green areas (GA), and constructing a deep tunnel with 30% runoff absorption (Tun30), is at a comparative level, ranging from 39 to 41 million USD per year. Their performance is relatively unsatisfactory (the ARRR is less than 0.39.) However, the ARRR for the combined option (D+G), drainage improvement and public green area, is higher (0.62) than the sum of two single options (0.51), indicating that the composite option will be more effective of reducing flood risk. Furthermore, it demonstrates that the combined options (i.e., D+G and D+G+T30) are satisfactory in terms of ARRR performance but not economically attractive due to their relatively higher costs. It is noted that if an option defers a major investment (like the Tun30) to later years, in reality its present value cost would be lower with discounting, potentially making the strategy more economically attractive than our simple BCR suggests.

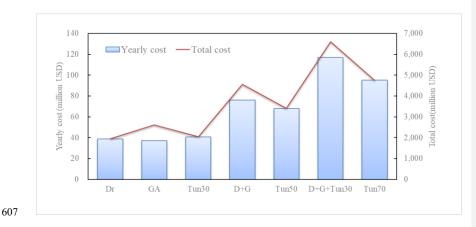


Figure 3 4 Yearly cost and total cost of alternative options

While two single-single-options involving of deep tunnel (namely Tun50, Tun70) seem very attractive in terms of (achieving high ranks in both ARRR and BCR).

Table 2 The ratio of the benefit-cost of each adaptation options

	ARRR (without	Cost (million	Benefit-cost
Option	control target, %)	USD / year)	ratio (%)
Dr	0.25	39	0.09
GA	0.26	37	0.10
Tun30	0.39	41	0.14
D+G	0.62	76	0.12
Tun50	0.74	68	0.16
D+G+Tun30	0.85	117	0.10
Tun70	0.87	95	0.13

4.2 Adaptiveness analysis

Scenario discovery validates the decrease of drainage capacity is the most critical uncertainty in defining the risk reduction rate of performance objective. The failure scenarios could be are identified when the flood control target $F_0=0.7$ is not met. We further interpret failure scenarios by selecting subspace of each alternative options under flood control target using PRIM algorithm to optimize the combined value of coverage and density. Table 3 summarizes these metrics, where coverage and density are derived from PRIM-identified failure boxes, and ARRR is calculated as the average performance within those clusters. The valid period is defined by the point (characterized by γ) when a single option or combination no longer meets the performance target The valid period is determined as the point when the single options or the combinations cease to fulfill the flood control target, indicated by the time which

is characterized by γ (the reduction in drainage capacity).

According to the results in Table 3, it was found that within the 70% risk reduction control target (Equation 3), the single options of Dr and GA performed less favorably (relatively smaller ARRR) and can quickly fail to meet the risk reduction target (with no larger than 0.1 of γ). Tun30 and D+R are very comparative since they preform very closely (similar results on ARRR and γ) but still not attractive. While Tun50 seems very attractive in terms of ARRR (0.89)₂ however, it does not possess higher valid periodeffectiveness period (γ) than both D+G+Tun30 and Tun 70. Surprisingly, both D+G+Tun30 and Tun70 can function well in an effective way for a longer time. So far, D+G+Tun30 and Tun70 have proven to be highly competitive in terms of cost-effectiveness and valid periodeffectiveness period over time.

Table 3 ARRR and coverage and density of success scenarios in each option combinations under 70% risk reduction control standard

				Decreased drainage
				capacity (γ) (valid
	ARRR (with			period effectiveness
Option	control target, %)	Coverage	Density	period)
GA	0.59	1	0.22	0.04
Dr	0.62	1	0.20	0.07
Tun30	0.73	1	0.75	0.1
D+G	0.74	0.9	0.82	0.11
Tun50	0.89	0.95	0.98	0.29
D+G+Tun30	0.86	0.99	0.98	0.48
Tun70	0.87	1	1	0.5

we-We define flexibility as the number of transitions by enumerating overall option combinations regarding adaptive transferable pathways from the original option (current flood control infrastructure) to the destination options (e.g., D+G+Tun30 and Tun70, Figure 56). For example, the D+G+Tun30 comprises three single options, allowing it to begin with any of the three and delay further action until a tipping point approaches, giving it a convertibility score of three (Table S6). Therefore, each single option has a value of one for convertibility.

4.3 Multi-objective trade-off

The robustness-focused analysis (e.g., looking only at ARRR and BCR) would rank options like Tun50 and Tun70 as the top performers, whereas the adaptiveness-focused analysis (looking at effectiveness period and flexibility) made D+G+Tun30 the most appealing. These differing outcomes demonstrate why it is crucial to evaluate multiple criteria together. Only by considering all metrics simultaneously (a true multipolicitive trade-off) can we identify strategies that strike an appropriate balance for long-term flood managementRobustness analysis suggests Tun50 and Tun70 might be attractive while adaptiveness analysis indicates D+G+30 as the most appealing. Therefore, the single objective metrics yield different decision choices, it is crucial to evaluate all the metrics to conduct a multi-objective trade off among the alternative options to assist the robust and adaptive decision making. Multi-objectives of (the combination of) options consider all four metrics, including BCR, and performance of the risk reduction control criteria (ARRR>70%), valid periodeffectiveness period (γ), and the flexibility. We solved the multi-objective problem using normalized and equally

weighted metrics (Equation 4). Figure 4-5_depicts the results of BCR, ARRR in control criteria, valid periodeffectiveness period, and flexibility of each option's combination. The higher the normalized rating, the greater the payoff. The outcome demonstrates that both GA and Dr perform poorly, whereas Tun30 and D+G are not robust enough compared to Tun 50, D+G+Tun30, and Tun70. It needs to be highlighted that Tun 50, D+G+Tun30, and Tun70 possess high priority;—, however,—We found that the D+G+Tun30 pathway achieved a well-balanced performance across risk reduction, cost-effectiveness, and our flexibility metricD+G+Tun30 outperforms due to its well-balanced overall risk control performance and high value of flexibility (Table S7). In our initial analysis, this made D+G+Tun30 appear as the most promising option overall. However, as discussed, this planned flexibility advantage does not necessarily mean a single-component strategy cannot be adapted later. It is important to note that this conclusion is contingent on including the flexibility metric. If flexibility were defined differently or given less weight, another option — for example, the single large tunnel Tun70 — could emerge as preferable for long-term risk control.

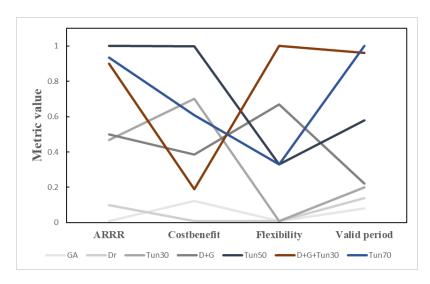


Figure 4-5 Multi-objective trade-off of alternative options with normalized value of robustness metrics (the preference of priority is accepted from low(bottom) to high(top)).

4.4 Robust adaptive pathway

Pathway identification

The candidate pathway was identified by enumerating the possible combinations of options. In this study, we found two potential pathways including from Tun30 to Tun70, and from Dr or GA to D+G+Tun30. It can be observed from Figure 5–6 that when γ increases, the performance of options of Dr (or GA, vice versa) steadily diminishes until the risk control target are not satisfied.

The drainage capacity, affected by the compound event of land subsidence, sea level rise, and storm surge, is deemed to be undermined (which is reflected by drainage capacity reduction rate γ) over time. Figure 5–6 illustrates the concept of an option combination's valid periodeffectiveness period using Dr+GA+Tun30 as an example.

ARRR to begin with Dr is 0.62, with an increase in γ , Dr fails (γ =0.07), and ARRR will decrease further if no additional options are taken. The addition of GA can increase the ARRR to 0.74 before Dr and D+G fail (γ = 0.11). The ARRR will continue to decrease if options are not strengthened. Before D+G completely fails, incorporating Tun30 can increase the ARRR to 0.86; as γ increases, D+G+Tun30 fails at γ =0.48. To ensure the adaptive robustness of the combination of options, decision-makers can increase the service coverage area and rainwater absorption capacity of the deep tunnel project in the core area prior to the total failure of D+G+ Tun30. In other words, the transition from Tun30 to Tun50 and even Tun70, along with the combination of options, will be stable over the long-term time horizon. It is noted that the slight rise in performance after GA and Tun30 installation reflects a short ramp-up period in our model, during which newly implemented measures gradually reach full effectiveness, then performance begins to decline as expected under continued climate-induced stressors. The differing curvature of the performance decline is due to the interaction of measures. For the Dr-only strategy, once implemented, its risk reduction gradually diminishes at an accelerating rate as climate stressors intensify - producing a concavedown curve (initially gentle slope, steepening later). In contrast, the strategies with multiple measures (D+G and D+G+Tun30) show a more linear decline. This is because when drainage alone begins to lose effectiveness, the next measure (GA, and later Tun30) either has just been implemented or is concurrently mitigating risk, effectively offsetting some of the non-linear drop. The combined result is a more steady (approximately linear) decrease in performance over time, as the measures' effects

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

complement each other. We normalized time as $\gamma = t/T$ (with T=50 years, the simulation period), so γ corresponds to the year 2070.

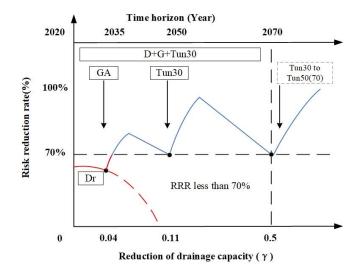


Figure 5-6 Flexible pathway of combination options of drainage improvement (Dr), green area increment (GA), and deep tunnel with 30% absorption (Tun30), representing the risk reduction rate undermines with the reduction of drainage capacity. An example of Dr+GA+Tun30. γ is a dimensionless time, where γ =1 corresponds to Year 2070, the end of our planning horizon

Pathway generation

We comprehensively evaluated the candidate pathways by considering performances, BCR, valid periodeffectiveness period, and flexibility. The time frame lacks an absolute time reference but still offers a relative tracking of the rate at which relative sea levels are rising.

Figure 6-7_depicts two robust transition pathways: D+G to D+G+Tun30 and Tun30

to either Tun50 or Tun70. The two pathways D+G+Tun30 and Tun30 to Tun70, provide adaptive short and long-term pathway schemes from a flexibility standpoint. The shortterm options are used as transitional schemes, and new options can be added before their failure, i.e., pathway transition, to maintain the risk control objectives. In addition, the two schemes can complement each other and incorporate new options before the system's long-term robustness is compromised. Additionally, D+G+Tun30 and Tun70 leave room for upgrading to the costlier and more durable D+G+Tun70 in the long run when γ exceeds 0.5 (e.g., sea level or land subsidence exceeds observing increase speed). We observed that Tun70 offered the highest robustness in terms of ARRR and the longest effectiveness period among all single options. Tun70 possesses the highest robustness and the longest valid period; However, its lack of initial flexibility requiring a large up-front investment in gray infrastructure - could lead to path dependency if future conditions turn out to be mild. In contrast, strategies that start with smaller measures (like Dr or GA) and can add on bigger projects later avoid that risk of over-commitment. This underscores the classic tension in planning: a strategy like Tun70 is robust but inflexible, whereas a phased approach is flexible but may initially be less robust. Our framework attempts to balance these aspects by evaluating both however, the early investment in large gray infrastructure will lead to a pathdependency dilemma if the mild scenarios unfold in the future. Considering that Dr and GA have been gradually implemented according to Shanghai Urban Rainwater

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

Drainage Planning (2020-2035) (Shanghai Municipal Water Authority, 2020) and that

combining green and grey options is in line with the direction of sustainable urban development and has been widely adopted domestically. In conclusion, A promising robust adaptive pathway should initially begin with GA and Dr, followed by a combination of D+G. Ultimately as time goes by with gradually undermined drainage capacity, it should incorporate Tun30 with the flexibility to expand to Tun70.

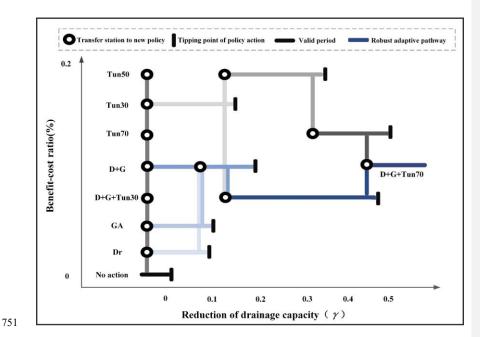


Figure 6-7 Generation of robust adaptive pathways with two potential pathways from either Dr or GA to D+G+Tun30, and from Tun30 to Tun70 as the reduction of drainage capacity over time (x-axis). The options are sequenced in an upward relative higher BCR (y-axis, also see in Table 2).

5 Discussion

5.1 Key findings

Applying this framework to the case of the reoccurrence in the 2050s (of the

extreme rainfall events on 13 September 2013) in Shanghai reveals informative findings to urban planners and other stakeholders. First, the performance of climate adaptation options (for addressing pluvial flood risk) decreases as the drainage capacity reduction rate (γ) increases (Table 3). This result is indirectly supported by events in June 2015 and July 2021, which caused severe inundation in central Shanghai for days because the high water levels of rivers in the region prevented rainwater from being pumped or drained from the drainage system into the river network. This finding also suggests that drainage capacity is a key determining factor for the performance of options in other delta cities which may rely on discharge to the rivers (e.g., Guangzhou, Ho Chi mMingh City, London, etc.) (Hu et al., 2019). Urban planners in those cities need to consider scenarios of high-water levels in the river with a joint of extreme storm surge under typhoon takes place in a high astronomical tide period at estuary. Such an event would significantly undermine the drainage capacity thus leading to severe flooding inside the city and bringing potential disastrous impacts (e.g. Zhou et al., 2019). Second, as the drainage capacity decreases(γ), valid periodeffectiveness periods of different option combinations varied significantly, showing a discrete distribution, which ranged from 0.04~0.5 with a corresponding ARRR ranging from 0.59~0.89 (Table 3). Moreover, the most cost-effective solution may not always offer the longest valid periodeffectiveness period within an explicit flood control target (e.g. 70% risk reduction as a target in our case study), and therefore cannot be considered satisfactory

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

(Figure 45). The findings highlight the importance of the discussion regarding the long-

term robustness of solutions which has been overseen in many flood-risk control works

in delta megacities. It is also further implying that if there is no consideration of the flood risk reduction target, discussions about a robust decision plan with stakeholders is meaningless. This urges to pay great attention to be proactive by strengthening the dynamic pathway and closely monitoring the decrease of the drainage capacity ahead of the pace of relative sea level rising (Figure 56).

5.2 Robustness and adaptiveness trade-off

The comparison in Section 5.1 brings up a vital decision-making issue on the tradeoffs between the benefit and cost of alternative options. In general, options with better
performance required higher costs, which was also proved in any distinctive option in
Table 2 and Table S6. It is also demonstrated that the combination of alternative options
such as D+G showed a better performance than the single option of Dr and GA at the
same cost. However, the cost of an option is not strictly proportional to its benefit (risk
reduction rate) (Figure 34). For instance, Tun 50 possesses better performance in
reducing inundation risks associated with the relatively low yearly economic cost
compared to D+G. Because it is difficult to measure the pros and cons of the costly
solution to maintain a higher protection standard and economical solution to possess an
acceptable performance (cost-effectiveness), planners typically underestimate both
influences by a large margin.

In recognition of this limitation, it can be realized that single-objective targets e.g., flood control performance (ARRR), or financial control (BCR) may lead to biased decisions or maladaptation for the long-term horizon. For example, Table 2 shows that Tun50 has the highest cost-effectiveness (0.16), while the D+G+Tun30 is positioned at

an average level, both of which performed well in reducing flood risk. In sharp contrast, the adaptiveness analysis shows that the D+G+Tun30 behaved significantly better during a reasonable period than Tun 50, which is a more flexible and adaptive option for long-term planning (Figure 67). Therefore, it tends to a biased decision if the decision maker only focus on economic return (BCR). Besides, it illuminates the decision maker that priorities on grey infrastructure (e.g., Tun 50) at the starting point yields good performance (74% of ARRR) but may lead to over-investment and path dependency. Moreover, there is concern that the valid periodeffectiveness period could be shortened if decision-makers opt for the most cost-effective solution (Tun50) instead of choosing a more expensive but very effective combination (D+G+Tun30). This example enriches the literature on "no regret" planning, which should be robust, adaptive, and financially efficient at the starting point for decision-makers, keep options open (flexible), and avoid lock-ins. To minimize regret in the near to long future, the adaptation solutions should pay great attention to both robustness and adaptiveness, which also illuminates the importance of multi-objective trade-off as mentioned in previous work (Kirshen et al., 2015; Ramm et al., 2018a). <u>Furthermore</u>, we directly compare the top contenders Tun70 and D+G+Tun30. Notably, Tun70 actually achieved higher values than D+G+Tun30 on several individual metrics – it provided the greatest average risk reduction and a superior cost-benefit ratio, and it had the longest effectiveness period among single strategies. The multicomponent D+G+Tun30 pathway, on the other hand, had a moderate cost-benefit ratio and slightly lower risk reduction, but scored much higher on planned flexibility. This

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

illustrates a trade-off: if one prioritizes near-term performance and economic efficiency,

Tun70 is very attractive; if one prioritizes incorporating flexibility to adapt over time,

D+G+Tun30 gains the edge. Our framework's value lies in revealing this trade-off

clearly.

5.3 Optimization of the synthesis framework

Although there is a myriad of research running flood risk simulations and assessing the BCR of solutions in Shanghai and other megacities in the coastal areas, seldom of which considers the entire process in making the applicable decision (Du et al., 2020; Sun et al., 2021; Ward et al., 2017). In filling up this niche, this study has proposed a synthesized planning-supporting framework that is capable of considering the entire cascade of procedures from the uncertainties of future urban rainfall pattern, to the sampling of future scenarios, to the hydrological modeling, and to flood risk assessment for the robustness and adaptiveness of alternative options, allowing for making robust and adaptive pathways (refer to Figure 1).

Compared to other DMDU theories, the synthesized framework asks for finding proxies for solutions' performances in reducing risk, decision-making in terms of cost and benefit, and identifying priorities and adaptive pathways from option combinations in the multi-objective fusion process. The conversations established a fast modeling-interpreting-remodeling feedback mechanism between the analyst and decision maker, which helps reduce the complexities and uncertainties encountered in ROA or other related work (e.g. Kind et al., 2018), and defining explicit objective (Raso et al., 2019). Upon that, incorporating the multi-dimensions of constraints allows for rapidly

minimizing disruption factors, balancing alternative solutions' interpretability, coverage, and density, and visualizing the applicable pathway.

One advantage of our decision-support tool is that it can run comprehensive evaluations for thousands of future—option combinations within a few days, using only moderate amounts of input data. This computational efficiency is largely due to our use of a simplified model (SCS-CN) and a relatively small case-study area. However, this highlights a trade-off: using a more detailed 1D–2D model or expanding to a larger region would substantially increase computational time and data requirements. In other words, the 'moderate' resource demand we experienced may not hold in cases that require high-resolution modeling. This limitation suggests that careful model selection (or the use of techniques like emulators and parallel computing) is important when applying the framework to bigger or more complex systems.

The advantage of our decision supporting tool in running comprehensive evaluations for thousand combinations of scenarios within one or a few days and with moderate demand for input data implies its disadvantage in lack of details at the finer grid cell level, e.g., 10m or even smaller grid cells, or at larger research area. The second limitation is that tAnother limitation is our risk assessment scope: we considered direct flood losses (inundation damage) but did not model disruptions to transportation or other urban functions, nor wider cascading effects across sectors. Similarly, our cost-benefit analysis focused mainly on direct financial costs; we did not fully quantify cobenefits like ecosystem services or social benefits of adaptation options, which means our economic evaluation was somewhat narrow. Additionally, our cost estimates didn't

account for certain practical factors such as human resource efforts (e.g., time and coordination required for implementation) or land availability constraints (for instance, the feasibility of allocating sufficient space for new green infrastructure in Shanghai). These simplifications should be kept in mind when interpreting the results. Future work could explore dynamic adaptation difference of "on-the-fly" upgrades versus planned pathways to provide a more direct assessment of flexibility in the real-world sense. he risk assessment in our work considered only the direct losses caused by inundation while ignoring influences on transportation and other urban functions and the cascading effect across urban sectors. Moreover, when discussing cost benefit analysis, there is a limitation in fully accounting for the social and environmental benefits. These overlooked aspects lead to a narrow focus on financial costs, while the broader impacts on communities and ecosystems are neglected. Besides, cost should not be limited to financial expenditure alone. Human resources, such as the effort and time required for design and implementation in cross-sector collaboration, are significant components of cost, particularly when implementing nature-based solutions. Additionally, it is important to consider whether Shanghai has sufficient land resources available for the expansion of green spaces, as this is a critical factor in the cost assessment.

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

In addition, further work needs to discuss the determination the weights of multiobjectives when conducting trade-off analysis. The balance between robustness and adaptiveness may vary depending on whether the priority is for immediate, high-impact actions or long-term sustainability. The weight assigned to each factor should reflect the specific goals. Besides, scenario discovery was implemented to find the combination option rather than an optimization algorithm to search for the best optimal combinations in many alternative options. We demonstrated a case study with a manageable set of options so that solving the optimization problem was outside the scope. Future work may apply machine learning methods, for example evolutionary optimizationgenetic algorithms; to solve complex problems of multi-objective targets if there were hundreds of possible interventions or sequences under different robust metrics.

6 Conclusion

This work provides a novel decision-making framework for flood mitigation in coastal megacities by synthesizing and building upon established DMDU methods (such as RDM and DAPP). Rather than introducing a new theory, our contribution lies in the innovative combination and application of these methods to address the joint challenges of robustness and adaptiveness in flood risk management. From short to long-term planning, managing inundation risk caused by future extreme flooding events is challenged by physical, environmental, social economic and political uncertainty, etc. This research presents a robust adaptive pathway framework that integrates robustness and adaptiveness to evaluate flood-control options. We demonstrated this framework in a case study, evaluating flood management strategies across multiple criteria—including performance, cost-effectiveness, effectiveness period, and flexibility—under many plausible futures. The results showed that traditional evaluation using only short-term effectiveness or cost-efficiency can be insufficient for long-term planning. Integrating the additional metrics of effectiveness period and flexibility provides more

nuanced insights, helping to develop adaptive pathways that remain effective as conditions change. The new framework was tested to carry out the research on robust adaptive pathways regarding the multi-objective that includes solutions' performance, cost effectiveness, valid period, and flexibility under many plausible climate change futures.

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

The results showed that traditional evaluation criteria, such as effectiveness and cost efficiency, are insufficient for addressing long-term robustness in climate adaptation options, as they may result in biased and path-dependent outcomes. Therefore, integrating valid period and flexibility metrics will offer more rational insights for developing adaptive pathways that can respond to future dynamic changes. Our case study also illustrated the trade-offs between robustness and adaptiveness. For instance, a high-robustness single option (Tun70) performed very well in meeting flood control targets and had a strong BCR, but it lacked flexibility to adjust if future conditions turned out less severe than anticipated. On the other hand, a multicomponent strategy (D+G+Tun30) achieved a high overall score when both robustness and adaptiveness were considered, due to its balance of risk reduction and planned flexibility. This comparison highlights that the "optimal" strategy can change depending on which criteria decision-makers prioritize. In practice, our robust adaptive pathways approach allows stakeholders to see how emphasizing or de-emphasizing flexibility (or other metrics) would lead to different preferred strategies, thus supporting more informed decision-making. Our case study showed that the high robustness option (e.g., Tun 50 and Tun 70) performs well under flood control targets and may yield a

better BCR(Tun50). While it possesses low flexibility if the decreased of drainage eapacity(γ) induced by future sea level rising and land subsidence unfold to be not attractive/satisfactory. D+G+Tun30, achieves the highest score of multi-objective tradeoff if both robustness and adaptiveness are taken into account in long term planning under uncertainty.

Overall, this work provides a novel framework to inform Shanghai's long-term flood adaptation planning under climate change. Beyond this case, the approach contributes a theoretical foundation and practical insights for other coastal megacities facing similar challenges, helping decision-makers integrate robustness and adaptiveness into their climate adaptation strategies to better cope with deep uncertainty in extreme flood risks. This work can not only provide a scientific framework for Shanghai's adaptation strategic policies planning in coping with extreme weather and climate events under climate change, but also provide both the theoretical foundation of decision making methods and best practices to support the decision making process for other coastal megacities to adapt to the changing climate and mitigate the extreme pluvial flood risk.

Acknowledgment

This research was funded by the Shanghai Philosophy Social Science Planning General Project (Grant No. 2024BJC014), and National Natural Science Foundation of China (Grant No. 42171080 and 42171282).

Code/Data availability

Case study region data in Shanghai can be found via Shanghai Statistic Yearbook, Shanghai Flood Control and Drainage Plan (2020-2035). Figures are made in ArcGIS Pro 3.0 and Microsoft Excel. Models in this paper are mainly coding in Rust environment. All the data and software will be opened to the research community upon acceptance of publication. Data sample can be found via open-accessed figShare via following URL:

Hu, Hengzhi (2023). Robust Adaptive Pathway for Long-term Flood Control Planning: Urban Delta in Coping with Pluvial Flood Risk under Future Deep Uncertainty. Multi-criteria trade-off.xlsx. figshare. Dataset.

Author contribution

https://doi.org/10.6084/m9.figshare.24899340.v1

Hengzhi Hu conceived the study, designed the framework, collected the data and led the analysis of the result and responsible for writing the manuscript and ensuring its intellectual content. Qian Ke contributed to the design and implementation of the decision-making framework, and conduct the manuscript writing and revising. Wei Wu supported the climate projection of the case study area of Shanghai and identified the scenario uncertainties. Min Zhang validated the simulation result of pluvial flood and funding support. Yanjuan Wu assessed the pluvial flood risk in plausible futures. Chengming Jin manipulated the boundary condition data of flood simulation in study region. Jiahong Wen supervised the project and provided expertise in flood risk management, and assisted in finalizing the manuscript.

Competing interests

The authors declare that they have no competing interests.

References

978

980

981	Bartholomew, E., & Kwakkel, J.H. (2020). On considering robustness in the search phase of robust
982	decision making: a comparison of many-objective robust decision making, multi-scenario
983	many-objective robust decision making, and many objective robust optimization.
984	Environmental Modelling & Software, 127, 104699.
985	Buurman, J., & Babovic, V. (2016). Adaptation Pathways and Real Options Analysis: An approach
986	to deep uncertainty in climate change adaptation policies. Policy and Society, 35(2), 137-150.
987	Dias, L. F., Aparício, B. A., Nunes, J. P., Morais, I., Fonseca, A. L., Pastor, A. V., & Santos, F. D.
988	(2020). Integrating a hydrological model into regional water policies: Co-creation of climate
989	change dynamic adaptive policy pathways for water resources in southern
990	Portugal. Environmental Science & Policy, 114, 519-532.
991	Du, S, P. Scussolini, P. Ward, et al. (2020). Hard or soft flood adaptation? Advantages of a hybrid
992	strategy for Shanghai. Global Environmental Change 61, 102037.
993	Dottori, F., Mentaschi, L., Bianchi, A., Alfieri, L., & Feyen, L. (2023). Cost-effective adaptation
994	strategies to rising river flood risk in Europe. Nature Climate Change, 13(2), 196-202.
995	Erfani T, Pachos K, Harou JJ. Real-Options Water Supply Planning: Multistage Scenario Trees for
996	Adaptive and Flexible Capacity Expansion Under Probabilistic Climate Change Uncertainty.
997	Water Resources Research. 2018;54(7):5069-87.
998	Giuliani, M., Castelletti, A. (2016). Is robustness really robust? How different definitions of
999	robustness impact decision-making under climate change. Climatic Change, 135, 409-424.

1000	Han, Y., & Mozumder, P. (2021). Building-level adaptation analysis under uncertain sea-level
1001	rise. Climate Risk Management,32, 305.
1002	Haasnoot, M., Kwakkel, J.H., Walker, W.E., et al. (2013). Dynamic adaptive policy pathways: A
1003	method for crafting robust decisions for a deeply uncertain world. Global Environmental
1004	Change, 23, 485-498.
1005	Haasnoot, M., van Aalst, M., Rozenberg, J., et al. (2020). Investments under non-stationarity:
1006	economic evaluation of adaptation pathways. Climatic change, 161(3), 451-463.
1007	Haasnoot, M., Warren A, , Kwakkel J., (2019) Decision making under deep uncertainty: from theory
1008	to practice (p. 405). Springer Nature. Chapter 4.
1009	Hui P, Tang J, Wang S, et al.(2018). Climate change projections over China using regional climate
1010	models forced by two CMIP5 global models. Part II: projections of future climate. International
1011	Journal of Climatology, 38:e78-e94.
1012	Hu, H.Z, Tian, Z., Sun, L.X, et al. (2019). Synthesized trade-off analysis of flood control solutions
1013	under future deep uncertainty: An application to the central business district of Shanghai. Water
1014	research, 166, 115067.
1015	Hu, H., Yang, H., Wen, J., Zhang, M., & Wu, Y. (2023). An Integrated Model of Pluvial Flood Risk
1016	and Adaptation Measure Evaluation in Shanghai City. Water, 15(3), 602.
1017	Herman, J.D., Reed, P.M., Zeff, H.B., et al. (2015). How should robustness be defined for water
1018	systems planning under change. Journal of Water Resources Planning and Management, 141,
1019	10, 04015012.
1020	Kwakkel, J.H., Haasnoot, M., Walker, W.E. (2016). Comparing robust decision-making and
1021	dynamic adaptive policy pathways for model-based decision support under deep uncertainty.

1022	Environmental Modelling & Software, 86, 168-183.
1023	Kwakkel J H, Haasnoot M. (2019) Supporting DMDU: A Taxonomy of Approaches and Tools [M].
1024	Decision Making under Deep Uncertainty. 355-374.
1025	Liang P, Ding Y. (2017). The long-term variation of extreme heavy precipitation and its link to
1026	urbanization effects in Shanghai during 1916-2014. Advances in Atmospheric Sciences,
1027	34(3):321-34.
1028	Lin, W.B., Sun, Y.M., Nijhuis, S., et al. (2020). Scenario-based flood risk assessment for urbanizing
1029	deltas using future land-use simulation (FLUS): Guangzhou metropolitan area as a case study
1030	Science of the Total Environment, 739: 139899.
1031	Lempert, R., Kalra, N., Peyraud, S., et al. (2013). Ensuring robust flood risk management in Ho Chi
1032	Minh City. World Bank Policy Research Working Paper, (6465).
1033	Lempert, R. J. (2003). Shaping the next one hundred years: new methods for quantitative, long-term
1034	policy analysis. Santa Monleica, CA: RAND Corporation, MR-1626-RPC.
1035	Kim, M. J., Nicholls, R. J., Preston, J. M., & Almeida, G. A. M. (2018). An assessment of the
1036	optimum timing of coastal flood adaptation given sea-level rise using real options analysis.
1037	Journal of Flood Risk Management, 12(S2). doi:10.1111/jfr3.12494
1038	Kind, J. M., Baayen, J. H., & Botzen, W. J. W. (2018). Benefits and Limitations of Real Options
1039	Analysis for the Practice of River Flood Risk Management. Water Resources Research, 54(4)
1040	3018-3036.
1041	Kirshen, P., Caputo, L., Vogel, R. M., et al. (2015). Adapting Urban Infrastructure to Climate Change
1042	A Drainage Case Study. Journal of Water Resources Planning and Management, 141(4).
1043	Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision

1044	making for complex environmental systems undergoing change. Environmental Modelling &
1045	Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007
1046	McPhail, C., Maier, H.R., Kwakkel, J.H., et al. (2018). Robustness metrics: How are they calculated,
1047	when should they be used and why do they give different results? Earth's Future, 6(2), 169-
1048	191.
1049	Malekpour, S., & Newig, J. (2020). Putting adaptive planning into practice: A meta-analysis of
1050	current applications. Cities, 106.
1051	Marchau, V. A., Walker, W. E., Bloemen, P. J, et al. (2019). Decision making under deep uncertainty:
1052	from theory to practice (p. 405). Springer Nature.
1053	Matrosov, E.S., Woods, A.M., & Harou, J.J. (2013). Robust decision making and info-gap decision
1054	theory for water resource system planning. Journal of Hydrology, 494, 43-58.
1055	Quinn JD, Reed PM, Giuliani M, Castelletti A. Rival framings: A framework for discovering how
1056	problem formulation uncertainties shape risk management trade-offs in water resources
1057	systems. Water Resources Research. 2017;53(8):7208-33.
1058	Ramm TD, Watson CS, White CJ. (2018a). Describing adaptation tipping points in coastal flood
1059	risk management. Computers, Environment and Urban Systems, 69:74-86.
1060	Ramm TD, Watson CS, White CJ. (2018b) Strategic adaptation pathway planning to manage sea-
1061	level rise and changing coastal flood risk. Environmental Science & Policy, 87:92-101.
1062	Ranger N, Millner A, Dietz S, et al. (2010). Adaptation in the UK: a decision-making process[J].
1063	Environment Agency, 9: 1-62.
1064	Raso, L., Kwakkel, J., Timmermans, J., & Panthou, G. (2019). How to evaluate a monitoring system
1065	for adaptive policies: criteria for signposts selection and their model-based evaluation. Climatic

1066	Change, 153(1-2), 267-283.
1067	Scussolini P, Tran TVT, Koks E, et al. (2017). Adaptation to sea level rise: a multidisciplinary
1068	analysis for Ho Chi Minh city, Vietnam[J]. Water Resources Research, 53: 10841-10857.
1069	Sun, X., Li, R., Shan, X., et al. (2021). Assessment of climate change impacts and urban flood
1070	management schemes in central Shanghai. International Journal of Disaster Risk Reduction,
1071	65, 102563.
1072	Stanton, M.C.B., & Roelich, K. (2021). Decision making under deep uncertainties: A review of the
1073	applicability of methods in practice. Technological Forecasting and Social Change, 171,
1074	120939.
1075	Shanghai Climate Change Research Center, 2021. Shanghai Climate Change Monitor Bulletin 2022.
1076	Shanghai (in Chinese).
1077	Shanghai Statistical Bureau, 2021. Shanghai Statistical Yearbook 2021. China Statistical Press,
1078	Beijing. http://tjj.sh.gov.cn/tjnj/sh2017e.htm.
1079	Shanghai Municipal Water Authority, 2020. Shanghai Flood Control and Drainage Plan (2020-2035)
1080	https://swj.sh.gov.cn/ghjhua/20211009/ae9ce5cd33384864b345c75a68e655d4.html?eqid=ad3
1081	<u>1d8020008eed00000000464360c1a</u> . (in Chinese).
1082	Tariq, A., Lempert, R.J., Riverson, J., et al. (2017). A climate stress test of Los Angeles' water quality
1083	plans. Climatic Change, 144(4), 625-639.
1084	Walker, W. E., Rahman, S. A., & Cave, J. (2001). Adaptive policies, policy analysis, and
1085	policymaking. European Journal of Operational Research, 128(2), 282–289.
1086	Ward, P. J., Jongman, B., Aerts, J.C.J.H., et al. (2017). A global framework for future costs and
1087	benefits of river-flood protection in urban areas. Nature climate change, 7(9), 642-646.

1088	Wang, J., Yi, S., Li, M., Wang, L., Song, C., 2018. Effects of sea level rise, land subsidence
1089	bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Sci
1090	Total Environ. 621, 228-234.
1091	Werners, S. E., Wise, R. M., Butler, J. R. A., Totin, E., & Vincent, K. (2021). Adaptation pathways
1092	A review of approaches and a learning framework. Environmental Science & Policy, 116, 266-
1093	275. doi:10.1016/j.envsci.2020.11.003
1094	Workman, M., Darch, G., Dooley, K., et al. (2021). Climate policy decision making in contexts of
1095	deep uncertainty-from optimistion to robustness. Environmental Science & Policy, 120, 127-
1096	137.
1097	Xu, K., Zhuang, Y., Yan, X., Bin, L., & Shen, R. (2023). Real options analysis for urban flood
1098	mitigation under environmental change. Sustainable Cities and Society, 93, 104546.
1099	Yang, T., Yan, X., Huang, X. et al. (2020). Integrated management of groundwater exploitation and
1100	recharge in Shanghai based on land subsidence control. Proceedings of the International
1101	Association of Hydrological Sciences, 382, 831-836.
1102	Yang, W., Xu, K., Ma, C., Lian, J., Jiang, X., Zhou, Y., & Bin, L. (2021). A novel multi-objective
1103	optimization framework to allocate support funds for flash flood reduction based on multiple
1104	vulnerability assessment. Journal of Hydrology, 603, 127144.
1105	Yang, W., Zhang, J., & Krebs, P. (2023). Investigating flood exposure induced socioeconomic risk
1106	and mitigation strategy under climate change and urbanization at a city scale. Journal of
1107	Cleaner Production, 387, 135929.
1108	Yin, J., Jonkman, S., Lin, N., Yu, D., Aerts, J., Wilby, R., Wang, J. (2020). Flood Risks in Sinking
1109	Delta Cities: Time for a Reevaluation? Earth's Future, 8(8). doi:10.1029/2020ef001614

Zhang, M., Dai, Z., Bouma, T.J., et al. (2021). Tidal-flat reclamation aggravates potential risk from
 storm impacts. Coastal Engineering, 166, 103868.
 Zhou, Q., Leng, G., Su, J., et al. (2019). Comparison of urbanization and climate change impacts on
 urban flood volumes: Importance of urban planning and drainage adaptation. Sci Total Environ,
 658, 24-33.