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Abstract.

Soil moisture plays an important part in predicting different forest-related phenomena, such as tree growth or forest fire risk.

As they influence the carbon storage capacity of boreal forest ecosystems, it is crucial to provide soil moisture information at

high spatio-temporal scales. Current satellite-based soil moisture products often have high temporal resolution at the expense of

spatial resolution. Therefore, we developed a machine-learning-based model to estimate soil moisture at high spatial resolution5

over boreal forested areas for the annual time period from May to October, while retaining the high temporal resolution. The

basis data of the model is the 36 km spatial resolution soil moisture data from the Soil Moisture Active Passive (SMAP) mission.

Additionally, vegetation properties, weather-related parameters, and measured in situ soil moisture data are used to guide the

model construction process. The analysis of the developed model shows that it retains the temporal and large-scale spatial

variability of SMAP soil moisture. Furthermore, comparisons with the independent in situ soil moisture data indicate that the10

model’s predictions align more closely with in situ values than SMAP soil moisture, as RMSE decreases from 0.103 m3/m3

to 0.092 m3/m3, and correlation increases from 0.46 to 0.55 over forest sites. Therefore, this machine-learning-based model

can be used to predict high-resolution soil moisture over boreal forested areas.

1 Introduction

Boreal forest ecosystems are important carbon sinks and stocks (Pan et al. (2011), Pan et al. (2024)). Trees, mineral soil, and15

organic layer account for about 70% of the carbon pool in boreal forests (Merilä et al. (2023)). Trees remove carbon dioxide

from the atmosphere through photosynthesis, turn it into organic carbon compounds, and use them for growing. Carbon is

stored in all parts of the tree, i.e. in branches, stems, leaves, bark, and roots (e.g. Clemmensen et al. (2013), Thurner et al.

(2014)). This carbon stored in the boreal ecosystems is released back into the atmosphere due to forest fires (Walker et al.

(2019)) and the decomposition of trees, turning forests from carbon sinks to sources. As soil moisture plays a significant role in20

predicting tree growth (Larson et al. (2024)), forest fire risks (Walker et al. (2019)), and carbon stock partitioning (Larson et al.

(2023)), it is essential to provide soil moisture data at a large spatial scale and high temporal frequency across boreal forests.
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Due to the considerable local variation in soil moisture and the sparsity of the in-situ measurement network, the only

viable way to extensively observe soil moisture over boreal forests is to use satellite-based soil moisture data sets. However,

persistent cloud cover, other weather-related phenomena, and high solar zenith angles hinder the use of optical satellite-based25

soil moisture data, making microwave-based soil moisture the most feasible option. For example, Sentinel-1 C-band Synthetic

Aperture data (SAR) has been used to retrieve soil moisture with high resolution (e.g. Bauer-Marschallinger et al. (2019),

Balenzano et al. (2021), Manninen et al. (2022)), but the dense vegetation prevents the radar signal from reaching the soil

surface (Flores et al. (2019)), and thus causes uncertainty in the results (Bauer-Marschallinger et al. (2019), Flores et al.

(2019)). A longer wavelength band, like L-band, can penetrate the vegetation to reach the soil surface (Flores et al. (2019)),30

and possibly even deeper than the documented -5 cm depth in the boreal forest (Ambadan et al. (2022)). The well-known

L-band-based soil moisture mission Soil Moisture Active Passive (SMAP, https://smap.jpl.nasa.gov/) has been measuring soil

moisture globally from 2015 onwards, and has been reported to be sensitive to soil moisture changes under the forest canopy

(Colliander et al. (2020), Ayres et al. (2021)). The disadvantage of soil moisture data from SMAP is that the spatial resolution

is coarse, 36 km (Entekhabi et al. (2014)). SMAP soil moisture data has been regridded to 9 km, but as soil moisture is known35

to be spatially heterogeneous (Mälicke et al. (2020)), there is a need for soil moisture data in a finer spatial resolution. SMAP

L-band radiometer data has been combined with the Sentinel-1 C-band radar data to obtain higher resolution (1 km and 3 km)

soil moisture data (O’Neill et al. (2021), Das et al. (2019)). The unbiased root-mean-square-error (RMSE) of this combined

data is around 0.05 m3/m3 (Das et al. (2019)). The limitations of this data set include its temporal frequency, which is around

6 days over Europe, and only around 12 days elsewhere, and also its limited global coverage, as the product covers only the40

area between -60◦S and 60◦S, excluding the most of the boreal forest zone.

In addition to of directly using satellite-based measurements to retrieve soil moisture, another approach is downscaling. This

involves enhancing coarse-resolution soil moisture data to a finer spatial scale using regression or more advanced machine

learning methods. Downscaling has been used widely (e.g. Peng et al. (2017), Sabaghy et al. (2018), and references therein)

with promising results. A few examples of downscaled soil moisture in 1 km spatial resolution include GLASS SM (Zhang45

et al. (2023)), which is based on ERA5-Land soil moisture; an over 20-year gap-free global and daily soil moisture data set

(Zheng et al. (2023)) based on ESA-CCI soil moisture; and downscaled SMAP (Fang et al. (2022)). Since the original data sets

have very coarse spatial resolutions, the downscaled data sets typically aim for a spatial resolution of 1 km or coarser.

Our main goal is to develop a model for estimating high-resolution soil moisture data over boreal forests of Northern

Finland. There we can use two elements to our advantage. First is the SMAP soil moisture retrieval process, which is based50

on the dominant land use classification in each pixel. In the studied area, the SMAP soil moisture is most accurate for forested

areas with a shrub and herb dominated understory, because, by definition, the dominant land cover classification is woody

savanna (i.e. a herbaceous understory and forest canopy cover between 30-60%; different class definitions can be found in

Strahler et al. (1999)). The second element is that most available in situ sites are located in forested sites. By combining these

two details we provide a model optimized to calculate a high resolution (1 km and 250 m pixel-sized) soil moisture for boreal55

forests. We use SMAP soil moisture data in 36 km spatial resolution as the basis, and we combine SMAP soil moisture with
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in situ soil moisture observations. Other high-resolution and soil moisture linked parameters (like vegetation properties) are

added to our downscaling machine learning model to guide the process.

This paper is constructed as follows. First, all the used data sets are introduced in Section 2, followed by preprocessing

steps and model construction in Section 3. In Section 4, the results of the model analysis and model validation are shown. We60

conclude with a discussion and conclusions in Sections 5 and 6, respectively.

2 Data

In this study, we used in situ data from two large boreal forest in situ observation areas with easily accessible data, one in

Northern Finland (NF), operated by the Finnish Meteorological Institute (FMI), and the other in Alaska, operated by multiple

networks (see section 2.9 below). For model construction, we decided to use NF sites, leaving the Alaska sites for validation.65

The locations of the sites are shown in Figure 1. Based on the observations between the years 2019 and 2023 from the weather

stations located in the NF (https://www.ilmatieteenlaitos.fi/havaintojen-lataus), there is snow cover typically from mid-October

to May, depending on the site and location. Therefore, we chose the annual interval spanning from the first of May to 15 of

October 2019–2023 as the study period. From here onwards, the use of the soil moisture term indicates volumetric water

content (%).70

2.1 Study area

The main study area is located in Northern Finland, between latitudes 65.5◦N and 70.0◦N, placing it in the boreal forest biome.

Based on the land cover classification data in 100 m resolution from CORINE land cover (see Section 2.8) for NF (area shown

in Figure 1), around 61% of the area is covered by tree cover (42% coniferous trees, 10% broadleaved trees, and 9% mixed

trees). One fifth of the area (almost 20%) is covered in peat bogs, and 4.5% is covered by water bodies (lakes). Water bodies75

include three large lakes (Lake Inari, Lokka Reservoir, and Porttipahta Reservoir), but also many smaller lakes. The rest of the

land use (around 15%) is different urban areas, heatlands, bare areas, and agriculture.

2.2 SMAP soil moisture

The SMAP mission was meant to combine radiometer (passive) and radar (active) observations. However, since the radar broke

down just months after the launch, the radiometer is currently the only instrument observing the surface. This SMAP L-band80

(1.41 GHz) radiometer has a native spatial footprint of 36 km and the data is provided on the global cylindrical EASE-Grid 2.0

(Brodzik et al. (2012)).

SMAP soil moisture is based on retrieved brightness temperature data in horizontal and vertical polarizations (O’Neill et al.

(2021)). Water body correction is applied to the brightness temperature data first to remove water bodies, as they lower the

brightness temperature values and hence cause overestimated soil moisture values. Then tau-omega-model (tau, vegetation85

optical depth τ and, omega, vegetation single scattering albedo, ω) is applied to the single channel (horizontal and vertical)

brightness temperature data to separate soil and vegetation contributions from the total brightness temperature. After that,
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soil moisture is retrieved by inversion from the tau-omega corrected brightness temperature. Land use classification data is

used to determine the τ and ω values for different areas. For dual-channel retrieved soil moisture, the tau-omega corrected

single-channel brightness temperature data is used.90

In this study, we use the SMAP SPL3SMP V009 product (O’Neill et al. (2023)), in which the global surface soil moisture

(0–5 cm) in m3/m3 is provided twice a day, at 6:00 am (descending) and at 6:00 pm (ascending). Three different soil moisture

products are available, one calculated from each single channel and one dual-channel product. As the latter one is currently the

baseline product (Chan and Dunbar (2021)), we chose that for this study. Further, we focus on the soil moisture data at 6 am

(descending overpasses). This SMAP data in 36 km resolution is used as an input for the soil moisture model.95

2.3 MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are aboard the Terra and Aqua satellites, which

were launched in 1999 and 2002, respectively. As Sun-synchronous satellites, they provide almost global coverage every 1 to 2

days. Terra is set to a descending orbit (measurements at 10.30 am) and Aqua to an ascending orbit (measurements at 1.30 pm).

The MODIS instrument measures multiple wavelength bands, resulting in a wide range of obtained parameters. In this study,100

we use vegetation indices from both MODIS instruments. We use MYD13Q1 (from Aqua, Didan (2021a)) and MOD13Q1

(from Terra, Didan (2021b)) products (version 6.1) which are global 16-day-mean data sets with 250 m spatial resolution. The

data used, the Enhanced Vegetation Index (EVI) and the Normalized Vegetation Index (NDVI), are provided in the Sinusoidal

tile grid. EVI and NDVI contribute to the vegetation effects of the soil moisture model.

2.4 SMAP-based 1 km soil moisture data105

SMAP, enhanced to 9 km spatial resolution, was further downscaled to 1 km (Lakshmi and Fang (2023)) by using thermal

inertia theory (Fang et al. (2022)). Based on that theory, the land surface temperature (LST) difference between night and day

is negatively correlated to the soil moisture. For downscaling SMAP, the MODIS LST data in 1 km spatial resolution from

Terra (night) and Aqua (day) were used, combined with the NDVI, also from MODIS. The NDVI, divided into 10 groups by

using an interval of 0.1, is used for grouping soil moisture and LST differences. The assumption behind this is that changes in110

NDVI affect the relationship between soil moisture and LST difference. Based on the validation, the downscaled SMAP data

performs better in low latitudes and warm months, compared to high latitudes and cold months (Fang et al. (2022)). The SMAP

in 1 km resolution is used in this study as an example of downscaled data based on SMAP data.

2.5 Interpolated daily weather observations

Finnish Meteorological Institute provides different weather-related parameters in spatial resolution of 1 km (https://en.ilmatieteenlaitos.115

fi/gridded-observations-on-aws-s3), covering the time period starting from 1961 through the present day. Daily weather station

observations are interpolated into a 1 km× 1 km grid by using kriging with external drift. In that method, external predictors

are used as covariates. Elevation, relative altitude, the effect of the seas, and the effect of the lakes are the chosen external
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predictors for these weather station observation based maps (Aalto et al. (2016)). Daily precipitation sum and daily mean

temperature are used as inputs for the soil moisture model.120

2.6 GPM

The Global Precipitation Measurement mission (GPM, https://gpm.nasa.gov/missions/GPM) is a network of satellites, aiming

to provide precipitation observations every 2-3 hours. This is achieved by using active radar observations and passive mi-

crowave radiometer measurements. Precipitation data is provided in multiple levels and processing steps, of which we use the

level 3 Integrated Multi-satellitE Retrievals for GPM (IMERG) Final Run data. This data is based on intercalibrated data from125

all microwave precipitation estimates, and microwave-calibrated infrared satellite estimates, as well as bias corrected by using

precipitation gauge analyses (Huffman et al. (2023)). The Final Run product is provided in either 30-minute intervals or daily

and monthly means. The spatial resolution is 0.1◦ (around 10 km). For this study, we use daily means of precipitation.

2.7 ERA5-Land

ERA5-Land, the land component of the fifth generation of European Centre for Medium-Range Weather Forecasts (ECMWF)130

atmospheric reanalysis of the global climate (ERA5), is produced by the Copernicus Climate Change Service. Similarly to

ERA5, the land component also covers the period from 1940 to the present day (Hersbach et al. (2020)), but with enhanced

spatial resolution (from 31 km to 9 km). ERA5-Land provides hourly data of various surface parameters, of which we used air

temperature at 2 m above the surface (K).

2.8 CORINE land cover135

The Coordination of Information on the Environment (CORINE) program was launched in the 1980s, as there was a need for

detailed and harmonized land cover data set over the European continent (Büttner et al. (2017)). The current land cover data

covers the pan-European area with 100 m spatial resolution. The data set consists of 44 classes, and it is updated every six

years. In this study, we use CORINE land cover data from 2018 to determine the land use classifications of the study area, the

land cover classes of the used in situ sites in the NF area, and we also used land cover data to create a mask to exclude water140

bodies and all the other land covers except forested areas.

2.9 In situ data

In situ soil moisture data for model training and testing are from the Arctic Space Centre of the Finnish Meteorological Institute

(FMI-ARC, https://fmiarc.fmi.fi/). FMI-ARC hosts a measurement infrastructure, which is used to monitor, for example, the

atmosphere, soil properties, snow properties, precipitation, and carbon and water cycles. All collected observations can be145

found at https://litdb.fmi.fi/ (last accessed: 30 September 2024). For in situ soil moisture observations, the measurement sites are

located around Sodankylä and Saariselkä, and they cover mostly boreal forested sites. The chosen in situ sites with additional
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information can be found in Table A1, and their locations are shown in Figure 1. The in situ soil moisture is measured at

different depths, and for this study, we chose a depth of -5 cm.

The in situ data for validation of the constructed model are located in the boreal zone in Alaska. In situ soil moisture data has150

been collected in the International Soil Moisture Network (ISMN) database starting from 1952 (Dorigo et al. (2013), Dorigo

et al. (2021)). In situ soil moisture data is provided to the ISMN by multiple organizations for free use. From ISMN we chose 16

stations located in the boreal zone (Figure 1, right side), and information about those sites can be found in Table A2. Similarly

to NF sites, the in situ soil moisture is also measured at different depths, and for this study, we chose a depth of -5 cm.

Additionally, we included one in situ site from the U.S National Science Foundation’s National Ecological Observatory155

Network (NEON). NEON has multiple measurement sites around the United States, of which 5 are located in Alaska. From

these 5 sites, we chose Delta Junction as its dominant land use class is evergreen forest. The used data product is DP1.00094.001

(National Ecological Observatory Network (2025)), in which soil volumetric water content is included in various depths. For

this study, we chose a depth of -6 cm, which is the shallowest one.

3 Methods160

3.1 Preprocessing

All gridded data used (SMAP, EVI, NDVI, and interpolated weather station observations) are reprojected to the global EASE2-

grid if needed and resampled to achieve a spatial resolution of 1 km. This means that the projection matches that of SMAP, but

the spatial resolution is finer than that of SMAP. If the original resolution is coarser than the resampled one, the resampling

is done by using the nearest neighbor. On the other hand, if the original resolution is finer than the resampled one, then the165

resampling is done by taking the average of all values within the coarser pixel. The average is taken even if there is only one

value within the coarser pixel. This ensures that the model inputs have a minimal number of missing values.

After resampling and reprojecting, some of the data are further preprocessed. As EVI and NDVI data from both MODIS

instruments are originally provided every 16 days, we obtain daily maps of EVI and NDVI by linear interpolation over time

using the closest available observations. The linear interpolation was chosen because it is easy to implement and does not170

cause any major discrepancies in the interpolated data for vegetation types with weak seasonal changes, such as evergreen

needle-leaved forests (Li et al. (2021)).

After interpolation, we calculate the mean value of Terra and Aqua -based vegetation maps to obtain only one EVI and

NDVI map per day. Precipitation and air temperature from interpolated weather station data are provided as daily means.

Based on preliminary testing, we decided to use a precipitation sum of 2 and 7 days preceding each SMAP observation, and175

a temperature sum of 8 and 10 days preceding each SMAP observation instead of using just the daily means of one previous

day. This approach takes into account the cumulative effects of temperature and precipitation. In situ data for training and

testing was cleaned by removing those stations and those years where soil moisture values were abnormally low (below 0.05

continuously, or decreased to zero regularly), as including those values might lead to the model underestimating soil moisture.

Also, there are two in situ sites located in or close to the peatlands, where soil moisture values of those sites are extremely180
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high (> 0.75 m3/m3). Including those locations in the training set caused the model to predict erroneous soil moisture values.

Therefore, those two sites were excluded from the study data set.

After preprocessing and data cleaning, all the gridded data are matched with NF in situ locations. If there are multiple in situ

values within the same 1 km pixel, we take a mean value of those soil moisture values and use that instead to represent the soil

moisture in that location. By doing this, we end up with only 10 individual locations, as most of the in situ sites are located185

near each other.

3.2 Model for soil moisture

The data set for model construction consists of only 10 individual locations. We aimed to have similar distributions of soil

moisture values in both training and test sets. Therefore, we chose 7 of those 10 sites for the training data set, and the other 3

were left for the test set. The placing of the individual in situ sites to training or test set is shown in Figure 1 and Table A1.190

We used all the available data from the chosen annual periods covering the years 2019–2023, and hence we had 3415 values

for training and 1775 for testing. Tree-based algorithms are commonly used in soil moisture predictions (e.g.Wei et al. (2019),

Tramblay and Quintana Seguí (2022), Ning et al. (2023), Shokati et al. (2024)), and it has been reported that tree-based methods

can outperform deep-learning methods (Li and Yan (2024)). The Gradient Boosting (GB) method (Breiman (1997), Friedman

(2001), Friedman (2002)), in which the weak learners (decision trees) are trained sequentially by correcting the residuals of195

the previous model, was therefore chosen for model construction. We used a framework for tree-based algorithms called Light

Gradient-Boosting Machine (lightGBM), as it is faster to use (Ke et al. (2017)).

We hypertuned the model parameters by using the GridSearchCV method from scikit-learn (Pedregosa et al. (2011)). It is

a method where all possible combinations of given model parameters and their grids are tested and evaluated by using cross-

validation. In our model building, we used CV=3. The chosen parameters with their test ranges are shown in Table 1. The200

learning rate was chosen to be 0.05. We also limited the maximum bins to 200, and a minimum number of data values in one

leaf to 40 at maximum to limit overfitting.

4 Results

4.1 Analysis of the model

The SHapley Additive exPlanations (SHAP, Lundberg et al. (2020)) values (which specify the effect of different individual205

inputs on the output) indicate that vegetation inputs dominate the results, as can be seen from Figure 2. All inputs have clear

linear effects on the results. Precipitation-related inputs have the smallest effect on the model.

The RMSE, R, and R2 values between the training and test set indicate no overfitting (Table 2). RMSE and uRMSE values

between in situ values and training and test sets are almost identical (0.058 and 0.062, and 0.058 and 0.061, respectively).

On the other hand, R and R2 values are higher between in situ values and predicted soil moisture values from the training set210

compared to values between in situ values and test set predicted soil moisture values. Based on results in Figure 3, there is a
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possibility of the model underestimating higher soil moisture values (> 0.3 m3/m3). Also, as there are no higher than 0.4 m3/m3

soil moisture values in the training set, the model will have difficulties predicting soil moisture values above 0.4 m3/m3.

As the original highest spatial resolution of some inputs is 250 m (NDVI and EVI), we also resampled SMAP soil moisture

and weather-related inputs to that same 250 m spatial resolution using nearest neighbor resampling. We then calculated soil215

moisture maps from those 250 m resolution data maps using the constructed GB model to study how sensitive the developed

model is to small changes in vegetation values (i.e. as those are the only parameter values changing within one time step).

Exemplary time series for NF test sites for the year 2020 are shown in Figure 4. The individual in situ sites are located close

to each other and therefore the Test sites A-B have the same in situ sites in both resolutions. Only in Test site C one site

(MET0010) locates in a different pixel. Therefore, for Figure 4, we have added an extra Test site D, which includes the in220

situ site MET0010. Overall, as all sites (A-D) are boreal forest sites, SMAP soil moisture is temporally well in line with in

situ soil moisture values, but due to the coarse resolution, there are systematic differences, especially in Test site C (and D).

Predicted values calculated for both 1 km and 250 m resolution data are better in line with in situ values. Based on these results

for NF sites, the developed model is not overly sensitive to small changes in weather-related and vegetation properties data.

Also, based on these time series results, the developed model detects temporal changes well. In hindsight, as the model is225

constructed using SMAP soil moisture, and SMAP soil moisture data is noisy, some of the same noisy features can be found in

predicted values. Also, due to the SMAP being the basis for the developed model, the predicted values have the same temporal

resolution as SMAP, meaning that data can be predicted almost daily if SMAP soil moisture data are available. Mean relative

differences (Table 3) between in situ values and GB model-based predicted values indicate varying under- and overestimations.

In 1 km resolution, the underestimation for the whole test set is just < 1%, which is to be expected. For 250 m resolution, the230

underestimation is higher, almost 20% for the whole test set.

We also calculated the soil moisture values for the whole NF area using the constructed model to analyze how well the

model captures the spatial variations and also to show the impact of missing pixels on the predicted maps. We calculated soil

moisture maps using 1 km and 250 m resolution data. Examples of these predicted soil moisture maps are shown in Figures

5 and 6. Predicted soil moisture values are lower than SMAP soil moisture values, and for 250 m resolution maps the number235

of missing pixels increases. Nevertheless, spatial changes are well detected by the predicted values when compared to SMAP

soil moisture. The missing values in predicted maps are due to the missing data in the inputs. SMAP data have missing data

because of water bodies or otherwise failed soil moisture retrievals. Similarly, vegetation properties are not retrieved over water

bodies, but vegetation data are also missing because of missing measurements, caused typically by cloud cover (as vegetation

properties are based on optical data). Furthermore, as the model is developed mainly for forested areas, a land cover mask was240

applied to the results (shown only in Figure 6, and omitted in Figure 5 for clarity). We used CORINE land cover data in 100 m

spatial resolution as the basis of the mask. Land cover data was resampled to the 1 km and 250 m spatial resolutions and those

pixels where forest classes covered under 50% of the coarser pixel were masked.
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4.2 Model uncertainty

We used the sensitivity of the most important inputs and the standard deviation of the difference between predicted soil moisture245

values and in situ values from test data as the uncertainty of the model. First, we approximated the uncertainty each input

causes to the results. Predicted soil moisture from the training data was used as the reference data. Then we added errors

to the important inputs separately from their error distributions ϵ ∼ N (0,σ2). For vegetation indexes, we used the reported

uncertainties, 0.015 for EVI and 0.025 for NDVI (https://modis-land.gsfc.nasa.gov/ValStatus.php?ProductID=MOD13). For

SMAP soil moisture, we used the standard deviation from the difference between SMAP soil moisture and in situ soil moisture250

from the whole in situ data set from NF. The obtained standard deviation was 0.097. For weather-related inputs, we used

reported RMSE values (Aalto et al. (2016)), 1.4 mm for precipitation and 0.58◦C for temperature. As we use cumulative sums,

we used error propagation of sum to estimate the uncertainty of them. The uncertainties have therefore a form of
√
x ·RMSEi,

where x in the number of days the cumulative sum is obtained, and i is either precipitation or temperature. This way we

obtained 1.98 mm uncertainty for precipitation sum over 2 days, and 3.7 mm uncertainty for precipitation sum over 7 days,255

and 1.64◦C and 1.83◦C uncertainties for temperature sums over 8 and 10 days, respectively. We calculated the difference

between the error-added values and the reference data 100 times. The sensitivity of each varied input, the test std, and the total

uncertainty for the constructed model are shown in Table 4. The total uncertainty is calculated as a squared sum between the

individual sensitives and test std, that is:

ϵ=

N∑
i

(u2
i ). (1)260

SMAP soil moisture has the highest impact on the model uncertainty for individual inputs. On the other hand, vegetation

properties and weather-related data have the lowest impact. In total, the model uncertainty is around 0.080 m3/m3.

4.3 Validation with Alaska sites

The weather station network over Alaska is sparse, and thus kriging-based interpolation to obtain precipitation and tempera-

ture in high resolution (as done over Northern Finland) is not possible. Therefore, we decided to use satellite-based data for265

precipitation (GPM data) and for temperature, we used ERA5-Land temperature data. GPM data was calculated to required

cumulative sums without any modifications, but as ERA5-Land data is provided hourly, we preprocessed it in daily mean

temperatures and then further processed it to required cumulative sums.

Altogether 17 stations from Alaska were used as an independent model validation set. One site located in Alaska, Tokositna

Valley, was excluded from the validation set, because its soil moisture values varied abnormally. In addition, the predicted270

soil moisture values below 0.05 m3/m3 were also excluded. We calculated statistical values (RMSE, uRMSE, and R) for each

site between in situ soil moisture and SMAP in 36 km resolution, SMAP enhanced to 1 km resolution, and GB-model-based

predicted values, both 1 km and 250 m. The median statistical values are similar (Figure 7), only R values are slightly higher

with SMAP in 36 km resolution compared to others.
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Of the 16 stations, only 5 were reported to be located in forested sites (information is based on ESA CCI Land Cover (ESA275

(2017)) and NLCD (https://www.mrlc.gov/)). Soil moisture data comparisons from those five sites are shown in Figure 8.

SMAP soil moisture in both resolutions has a lot of variability compared to predicted estimates. It is also evident that the GB-

model cannot predict high soil moisture values (> 0.4 m3/m3), as was expected. Overall, there are clear correlations between

satellite-based estimates and in situ soil moisture values when taking into account all data, but correlations are less clear when

focusing on individual sites.280

Exemplary time series for sites Nenana and Gulkana River (tree-covered sites) are shown in Figure 9, and a close-up focusing

on the year 2019 in Figure 10. The high soil moisture values at the beginning of the summer (due to the snow melt) are not

detected by SMAP data. On the other hand, the GB-model-based estimates do catch them better. Otherwise, SMAP data in both

resolutions detect the soil moisture values well. The GB-model-based soil moisture estimates have more temporal variation

compared to SMAP data. The close-up of the year 2019 shows that the model can detect the U-shape of the in situ soil moisture285

better than SMAP data.

Sixteen in situ sites in Alaska were grouped into coarser land use classification classes (forest, mosaic, shrub, and sparse),

and RMSE, uRMSE, and R values were calculated between in situ values and each satellite-based data, the values are shown

in Table 5. For forested sites, predicted values in 250 m have the lowest RMSE and uRMSE, and highest R values compared

to other data sets. Predicted values in 1 km resolution have the second-highest model validation statistics. For mosaic sites,290

SMAP in 36 km has the lowest RMSE and uRMSE, and the highest R value. All data sets struggle to predict soil moisture

values in sparse sites. In shrub sites, predicted values in 1 km resolution are more in line with in situ values compared to SMAP

soil moisture values in both resolutions. Based on these validation results, the developed model predicts temporal changes

relatively well.

5 Discussion295

Spatio-temporal data on the variation in soil moisture for boreal regions is crucial for predicting forest-related phenomena,

such as tree growth and forest fire risk, both of which influence the carbon storage capacity of these ecosystems. However,

existing satellite-based soil moisture products for vegetated areas often have coarse spatial resolution. To address this issue,

higher-resolution data is necessary to capture the finer spatial variations in soil moisture. Consequently, we developed a model

utilizing satellite data to estimate soil moisture at high resolution (1 km and 250 m) over boreal forested regions. We used a300

tree-based machine learning method called gradient boosting with SMAP soil moisture in 36 km spatial resolution as a basis.

Produced data maps have the same temporal resolution as SMAP (typically daily, but are missing if SMAP soil moisture

retrieval has failed). The developed model is shown to retain the temporal and spatial variability of SMAP soil moisture, but

validated against independent data, the predicted values show better agreement compared to the SMAP soil moisture (RMSE

decreasing from 0.103 m3/m3 to 0.092 m3/m3, and correlation increasing from 0.46 to 0.55 over forest sites).305

There exist numerous other soil moisture products at a 1 km spatial resolution, which differ on the underlaying data they use,

the methods they implement, and also whether they are global or regional (Table 6). Overall, our constructed model has higher
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uRMSE values than many other 1 km spatial resolution data sets, but most of them do not cover boreal forest areas or are not

validated against boreal forest soil moisture. Of those that do cover boreal forests, the uRMSE and R2 values are in line with

the results we obtained from validation against forested sites in Alaska. Those data products which are based on Sentinel-1310

SAR and cover boreal forest zone (Bauer-Marschallinger et al. (2018), Fan et al. (2025), Meyer et al. (2022)) have difficulties

with dense vegetation, which is to be expected due to the C-band being sensitive to vegetation. On the other hand, good results

are obtained when using ERA5 soil moisture as the basis data (Zhang et al. (2023)). Used downscaling methods and algorithms

vary. Change detection method (used in Bauer-Marschallinger et al. (2018)) and forward model (Fan et al. (2025)) are used for

Sentinel-1 SAR data, whereas for Sentinel-1 and SMAP combination uses SMAP active-passive algorithm (used in Das et al.315

(2019) and Meyer et al. (2022), and is based on work by Das et al. (2014), Entekhabi et al. (2014), and Das et al. (2018)).

Machine-learning methods are also implemented (Kovačević et al. (2020), Rao et al. (2022), Zhang et al. (2023), Zheng et al.

(2023), Zhang et al. (2024)), mostly when using ESA-CCI or ERA5 soil moisture data. When SMAP soil moisture is used

as a data source, typical algorithms are based either on the thermal inertia theory (used in Fang et al. (2022) and Dandridge

et al. (2020)) or the Temperature-Vegetation (T-V) method (used in Yin et al. (2020) and Mohseni et al. (2024), based on320

Sandholt et al. (2002)). Once again, the validation results from our constructed ML-method-based model are consistent with

other ML-based data sets.

Soil properties are commonly used inputs for soil moisture models (e.g. Ranney et al. (2015), O et al. (2022), Ma et al.

(2023), Zhang et al. (2023)). As we have a small number of individual sites in training and test sets, we excluded soil prop-

erties data from this study. Additionally, other commonly used inputs include topography and geography data (i.e. elevation,325

slope, aspect, latitude, and longitude). Again, as we have a relatively small amount of model construction data, adding ge-

ographical information would have caused major overfitting. We also excluded topography data, as it has been found that

models using topography data as inputs may not be useful in other locations (Kemppinen et al. (2023)). Weather-related data,

i.e. precipitation, and temperature, are included as inputs because they are related to the soil moisture. Precipitation is positively

correlated with soil moisture (Sehler et al. (2019)), but air temperature has the opposite effect (Feng and Liu (2015)). Based on330

feature importances (Figure 2), air temperature in both cumulative sums (sums over 8 and 10 days) have a negative impact on

the results as expected, but precipitation has a varying effect. Precipitation sum over 7 days has the expected positive effect, but

the precipitation sum over 2 days has the opposite effect. The latter might be due to the canopy interception and no-rain values.

The canopy interception of precipitation can be up to 50% in the dense boreal forest (Molina and del Campo (2012), Zabret

et al. (2017), Hassan et al. (2017)), leading to only a small amount of rain attributed to the soil moisture, but also it is possible335

that there are no rain events happening, leading the sum of rain over 2 days to cause negative effect to the soil moisture values.

It has also been studied that air temperature has a higher impact on soil moisture than precipitation, even over forest areas

(Feng and Liu (2015)). This effect can be seen in feature importances (Figure 2), as temperature has a clearly higher impact on

the soil moisture estimates compared to precipitation. The cumulated precipitation and temperature values increased the model

accuracy compared to the instantaneous values, and therefore they were chosen. An additional useful data source would have340

been the land surface temperature (LST), as the LST difference between night and day correlates with soil moisture. LST data

has been widely used for estimating soil moisture (e.g. Matsushima et al. (2012), Hao et al. (2022), Han et al. (2023)). The
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disadvantage of LST is that it is obtained from optical measurements. Due to the difficulties caused by cloud cover, obtaining

even moderately gap-free LST data regularly over the whole NF area was an impossible task, and therefore we did not include

LST as an input.345

To choose the best model, we tested three tree-based methods: random forest, level-wise gradient boosting, and leaf-wise

growth-based gradient boosting. The leaf-wise growth GB (lightGBM) produced the results with the highest accuracy and was

therefore chosen. However, because it is a tree-based method, it cannot extrapolate well when inputs differ from training data,

as the decision boundaries are determined during training. Therefore, our predicted estimates are more or less bounded, and

unexpectedly high or low soil moisture values are not predicted correctly (i.e. soil moisture values below 0.05 m3/m3 or above350

0.4 m3/m3). To overcome this disadvantage, there needs to be much more data from diverse in situ locations. The available

data from the in situ networks is limited and thus hinders model’s predictive ability.

We included SMAP in 1 km resolution to be compared to our model predictions. Other downscaled data sets were also

considered, but as the soil moisture network is sparse, they, unfortunately, use some of the same in situ sites from NF and

Alaska for training, and therefore we couldn’t use them as independent data sets. The comparisons with SMAP in 1 km355

resolution indicate that downscaled SMAP lacks some of the variability found in our model. For some sites in Alaska, SMAP

in 1 km even performed weaker compared to SMAP in 36 km resolution. Based on those results, it could be possible that

thermal inertia theory is not ideal for downscaling soil moisture data over forested areas.

As our model provides high-resolution soil moisture for forested areas, it covers approximately 60% of the NF area (see

Section 2.1). Additionally, SMAP soil moisture has a lot of noise, and some of those features are also transferred to our model360

predictions. Smoothing would have been one option to decrease the effect of noise, but choosing the method that would have

retained the actual temporal variations was not a straightforward task. Also, we tried to implement precipitation and temperature

data to smooth some of the noise, but due to the dense nature of the boreal forest, there was no clear relationship between soil

moisture changes and weather. Therefore, we decided to leave the noise in the end results.

In the future, L-band-based missions, like the NASA-ISRO SAR mission (NISAR, https://nisar.jpl.nasa.gov/, Lal et al.365

(2023), Lal et al. (2024)) with a planned launch around April 2025, and Radar Observing System for Europe in L-band

(ROSE-L, https://sentiwiki.copernicus.eu/web/rose-l) with a planned launch in 2028, are aiming to provide soil moisture data

with higher spatial resolution (around 200 m for NISAR and around 25 m for ROSE-L). With those resolutions, even peatlands

can be taken into account. As they cover over 20% of NF and are important carbon sinks, peatlands need to be included in soil

moisture studies. If there were more in situ observation sites located in varying kinds of peatlands, one could construct a model370

based on them, and then combine models focused on forested areas and peatlands to better account for all the variability in

soil moisture over boreal forest areas. As it is, the constructed GB-model does provide an alternative to downscale SMAP soil

moisture in 36 km resolution to finer spatial scales over boreal forests.
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6 Conclusions

We developed a model to predict high-resolution soil moisture in boreal forests. This model specifically targets forests, as375

peatlands are not represented in SMAP soil moisture data, and most in situ soil moisture observation sites are located within

forests. The model was developed by using SMAP soil moisture at 36 km spatial resolution as the basis data, and additional

vegetation properties and weather-related data were used to guide the machine learning model together with in situ soil moisture

values. The model produces predictions at a resolution of 1 km, which aligns well with SMAP measurements. However, it can

also generate soil moisture estimates at a finer resolution of 250 m, offering improved accuracy in certain applications, for380

example hydrological modelling and carbon exchange studies. Consequently, the model provides a valuable tool for predicting

soil moisture in high resolution across boreal forested landscapes.

Data availability. The data sets associated with this paper are available in the Finnish Meteorological Institute Research Data repository

METIS (http://hdl.handle.net/11304/a0c2b377-2e2f-4054-8d82-37abc28beec9).
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Table 1. Gradient Boosting model parameters, their ranges and chosen values to be used for model building. Parameter ranges are constrained

to prevent overfitting. The chosen values are determined by using GridSeachCV method with CV=3.

Parameter name Range Chosen value

Number of leaves [4,5,6] 5

Maximum depth [4,5,6] 4

Minimal amount of data in one leaf [20,30,40] 40

Maximum number of bins [100,150,200] 200

Number of trees [200,300,400] 300
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Table 2. Statistical values between predicted values and in situ soil moisture for training and test sets.

RMSE uRMSE R R2 N

Training 0.058 0.058 0.81 0.66 3415

Test 0.062 0.061 0.71 0.51 1725

Test site A 0.069 0.059 0.43 0.19 585

Test site B 0.044 0.039 0.71 0.50 524

Test site C 0.067 0.061 0.51 0.26 616
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Table 3. Mean relative differences [%] between in situ soil moisture values and predicted soil moisture estimates from both GB model.

Values are from test set, and they cover the time period 2019–2023.

Resolution Test site A Test site B Test site C Test site D All

1 km -17.37 -7.11 24.25 – -0.88

250 m 0.12 -19.14 -58.36 0.83 -19.55
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Table 4. Sensitivities for chosen inputs, standard deviation between test set in situ soil moisture and predicted soil moisture, and calculated

total uncertainty of the model. All results have the unit m3/m3.

Source Uncertainty

SMAP soil moisture 0.029

NDVI 0.020

EVI 0.019

Prec. 2d sum 0.003

Prec. 7d sum 0.004

T2m 8d sum 0.002

T2m 10d sum 0.003

Test standard deviation 0.069

total 0.080
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Table 5. Model validation statistics between observed in situ soil moisture from Alaska sites and predicted soil moisture values.

RMSE forest mosaic shrub sparse all

SMAP 0.103 0.149 0.174 0.156 0.144

SMAP 1 km 0.095 0.162 0.197 0.152 0.150

Predicted 1 km 0.093 0.175 0.147 0.131 0.138

Predicted 250 m 0.092 0.174 0.126 0.136 0.145

uRMSE

SMAP 0.101 0.147 0.138 0.142 0.144

SMAP 1 km 0.094 0.156 0.161 0.134 0.149

Predicted 1 km 0.093 0.163 0.091 0.128 0.131

Predicted 250 m 0.092 0.163 0.104 0.133 0.137

R

SMAP 0.46 0.61 -0.41 -0.15 0.18

SMAP 1 km 0.43 0.40 -0.43 -0.03 0.09

Predicted 1 km 0.50 0.21 0.42 0.14 0.25

Predicted 250 m 0.55 0.14 -0.01 0.03 0.16

N

SMAP 2680 2556 1550 2530 9316

SMAP 1 km 2680 2556 1550 2530 9316

Predicted 1 km 2680 2556 1550 2530 9316

Predicted 250 m 2788 2497 1554 2460 9299
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Table 6. A collection of downscaled soil moisture data sets in 1 km spatial resolution, with reported accuracies. The uRMSE values have the unit

m3/m3.

Area Source data uRMSE R R2 Boreal forest Reference

global S1-SAR 0.080a 0.39 – RMSE = 0.035 m3/m3; R = 0.28 Bauer-Marschallinger et al. (2018)

global S1-SAR 0.077 – – uRMSE = 0.097 m3/m3 Fan et al. (2025)

global S1-SAR and SMAP 0.050 – – does not cover Das et al. (2019)

global S1-SAR and SMAP 0.056a – 0.70 RMSE ∈ [0.043,0.162]; R ∈ [0.33, 0.61] Meyer et al. (2022)

global ESA-CCI SM 0.058 – 0.73 does not cover Kovačević et al. (2020)

global ESA-CCI SM 0.052 0.82 – not validated Zhang et al. (2024)

global ESA-CCI SM 0.045 0.89 – not validated Zheng et al. (2023)

global ERA5 SM 0.048 0.89 – uRMSE = 0.061 m3/m3; R = 0.73 Zhang et al. (2023)

global SMAP 0.063 – – not optimal over high latitudes Fang et al. (2022)

global SMAP 0.054 0.64 – includes dense vegetation Yin et al. (2020)

regionalb SMAP – – 0.70 not for boreal forest Dandridge et al. (2020)

regionalc SMAP 0.069 0.64 – not for boreal forest Mohseni et al. (2024)

regionald SMAP 0.057 – – not for boreal forest Rao et al. (2022)

a RMSE instead of uRMSE
b Lower Mekong River Basin
c Africa
d China
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Figure 1. Locations of the chosen training, test, and validation data sites. Left: Northern Finland study area in a broader context (blue squared

area). Middle: Location of the chosen model training (black circles) and test (red circles) in situ sites. Right: Location of the chosen model

validation in situ sites. Black stars indicate forest sites and red circles indicate other sites (mosaic, shrub, sparse).
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Figure 2. The SHapley Additive exPlanations (SHAP) values for the constructed gradient boosting model. Left: the mean SHAP values for

each predictor. Right: More detailed view of the effect of different feature values on predictions.
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Figure 3. Scatter plots of predicted training and test set soil moisture values from years 2019–2023. Left: scatter plot of training data set.

Right: scatter plot of test set.
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Figure 4. Exemplary time series of test sites for the year 2020. Predicted soil moisture values in 1 km and 250 m resolutions are from a

developed gradient boosting model. In test site C, one in situ site (MET0010) locates in different pixel in 250 m resolution. Therefore, we

added an extra Test site D, which includes the in situ site MET0010.
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Figure 5. Exemplary maps show SMAP soil moisture for two dates, along with predicted soil moisture at spatial resolutions of 1 km and

250 m. Missing values due to the missing values in inputs and water bodies are indicated in white. Even though developed model is just for

forested areas, all pixels with data in these maps are shown for clarity.
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Figure 6. Exemplary maps show SMAP soil moisture for two dates, along with predicted soil moisture at spatial resolutions of 1 km and

250 for a smaller area located around Lake Pallas (N68.033◦, E24.197◦). Missing values due to the water bodies are indicated in white and

other land uses than forest are indicated in grey. The land use mask is based on CORINE land use classification in 100 m resolution. Pixel is

assumed to be forest if the forest class fraction is above 50 %.
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in 36 km resolution, SMAP in 1 km resolution, predicted values using 1 km resolution data, and 250 m resolution data) shown as violin plots.

The data is from the annual time period between 1 May and 15 Oct, covering varying number of years depending on the in situ site.
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Figure 8. Comparisons between in situ values from Alaska sites (five forested sites) and different soil moisture data sets (SMAP in 36 km

resolution, SMAP in 1 km resolution, predicted values using 1 km resolution data, and 250 m resolution data). The data is from the annual

time period between 1 May and 15 Oct, covering varying number of years depending on the in situ site.
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Figure 9. Exemplary time series of soil moisture for two Alaska sites located in forested areas. Left: Nenana, right: Gulkana River. Black

indicates in situ soil moisture and grey, turquoise, red, and blue satellite-based soil moisture data. The curtain in the two bottom rows indicates

the model uncertainty (uncertainty 0.080 m3/m3 added and subtracted from the predicted values). Data for Nenana is from years 2018–2021,

and for Gulkana River from years 2019–2022.
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Figure 10. Close-up from the exemplary time series for two Alaska sites located in forested areas. Left: Nenana right: Gulkana River. Black

indicates in situ soil moisture and grey, turquoise, red, and blue satellite-based soil moisture data. The curtain in the two bottom rows indicates

the model uncertainty (uncertainty 0.080 m3/m3 added and subtracted from the predicted values). Data are from the year 2019.
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Table A1. In situ sites for training and testing the soil moisture model, located in Northern

Finland. Land cover information is from CORINE land cover data set.

Name Number of spots Location Land use

Training set

DIS0002 3 N67.153 , E26.729 Transitional woodland-shrub

DIS0004 2 N67.253 , E26.862 Coniferous forest

DIS0005 1 N67.253 , E26.861 Coniferous forest

KAI0001 3 N67.357 , E26.685 Coniferous forest

KAI0002a 2 N67.359 , E26.686 Coniferous forest

LEN0001 2 N67.384 , E26.625 Coniferous forest

SAA0001 3 N68.330 , E27.550 Moors and heathland

SAA0002 2 N68.339 , E27.535 Transitional woodland-shrub

SAA0003 2 N68.370 , E27.614 Coniferous forest

Test set

DIS00011 3 N67.257 , E26.749 Coniferous forest

IOA00022 1 N67.362 , E26.634 Coniferous forest

IOA0003b,2 8 N67.362 , E26.634 Coniferous forest

IOA00072 2 N67.362 , E26.634 Coniferous forest

MET00102,4 1 N67.362 , E26.638 Coniferous forest

DIS00033 8 N67.243 , E26.660 Coniferous forest

a KAI0002 has 3 spots, but one of them had abnormally low soil moisture values and was

therefore removed.
b IOA0003 has 8 spots, but two of them had abnormally low soil moisture values and were

therefore removed. ).
1 Test site A.
2 Test site B.
3 Test site C.
4 Test site D in 250 m resolution.
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Table A2. In situ sites for model validation, sites located in Alaska. Data are from four different networks, SCAN (Schaefer et al. (2007)),

SNOTEL (Leavesley et al. (2008), Leavesley (2010)), USCRN (Bell et al. (2013)), and NEON (National Ecological Observatory Network

(2025)). Land cover information for SCAN, SNOTEL, and USRN sites is from ESA CCI Land Cover (ESA (2017)), and for NEON, the land

cover information is from NLCD (https://www.mrlc.gov/).

Name Location Network Land use Data years

Aniak N61.58, W159.58 SCAN Tree cover 2016–2023

Delta Junction N63.88, W145.75 NEON Evergreen Forest 2017–2022

Eagle Summit N65.49, W145.41 SNOTEL Sparse vegetation (tree shrub herbaceous cover) (<15%) 2016–2022

Granite Creek N63.94, W145.40 SNOTEL Sparse vegetation (tree shrub herbaceous cover) (<15%) 2016–2022

Gulkana River N62.41, W145.38 SCAN Tree cover 2018–2023

Little Chena Ridge N65.12, W146.73 SNOTEL Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 2016– 2023

Monahan Flat N63.31, W147.65 SNOTEL Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 2016–2023

Monument Creek N65.08, W145.87 SNOTEL Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 2016–2023

Mt. Ryan N65.25, W146.15 SNOTEL Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 2016–2022

Munson Ridge N64.85, W146.21 SNOTEL Sparse vegetation (tree shrub herbaceous cover) (<15%) 2016–2023

Nenana N64.68, W148.92 SCAN Tree cover 2016–2023

Spring Creek N61.66, W149.13 SCAN Shrub or herbaceous cover 2018–2023

Summit Creek N60.62, W149.53 SNOTEL Shrubland 2016–2023

Susitna Valley High N62.13, W150.04 SNOTEL Shrub or herbaceous cover flooded fresh/saline/brakish water 2016–2023

Tok N63.33, W143.04 SNOTEL Tree cover needleleaved evergreen closed to open (>15%) 2016–2023

Upper None Creek N65.37, W146.59 SNOTEL Sparse vegetation (tree shrub herbaceous cover) (<15%) 2016–2023
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Carbon Stocks and Transfers in Coniferous Boreal Forests Along a Latitudinal Gradient, Ecosystems, 27, https://doi.org/10.1007/s10021-

024-00921-0, 2023.

Meyer, R., Zhang, W., Kragh, S. J., Andreasen, M., Jensen, K. H., Fensholt, R., Stisen, S., and Looms, M. C.: Exploring the combined use of

SMAP and Sentinel-1 data for downscaling soil moisture beyond the 1 km scale, Hydrology and Earth System Sciences, 26, 3337–3357,540

https://doi.org/10.5194/hess-26-3337-2022, 2022.

Mohseni, F., Ahrari, A., Haunert, J.-H., and and, C. M.: The synergies of SMAP enhanced and MODIS products in a ran-

dom forest regression for estimating 1 km soil moisture over Africa using Google Earth Engine, Big Earth Data, 8, 33–57,

https://doi.org/10.1080/20964471.2023.2257905, 2024.

36

https://doi.org/https://doi.org/10.1016/j.rse.2024.114288
https://doi.org/10.1038/s41598-023-42091-4
https://doi.org/10.1038/s41598-024-61098-z
https://doi.org/10.3390/land13081331
https://doi.org/10.3390/rs13245018
https://doi.org/10.3390/rs15061531
https://doi.org/10.5194/hess-24-2633-2020
https://doi.org/10.1109/TGRS.2021.3109695
https://doi.org/10.1175/JHM-D-10-05024.1
https://doi.org/10.1007/s10021-024-00921-0
https://doi.org/10.1007/s10021-024-00921-0
https://doi.org/10.1007/s10021-024-00921-0
https://doi.org/10.5194/hess-26-3337-2022
https://doi.org/10.1080/20964471.2023.2257905


Molina, A. J. and del Campo, A. D.: The effects of experimental thinning on throughfall and stemflow: A contribu-545

tion towards hydrology-oriented silviculture in Aleppo pine plantations, Forest Ecology and Management, 269, 206–213,

https://doi.org/https://doi.org/10.1016/j.foreco.2011.12.037, 2012.

National Ecological Observatory Network: Soil water content and water salinity (DP1.00094.001), https://doi.org/10.48443/QHMT-HH62,

2025.

Ning, J., Yao, Y., Tang, Q., Li, Y., Fisher, J. B., Zhang, X., Jia, K., Xu, J., Shang, K., Yang, J., Yu, R., Liu, L., Zhang, X., Xie,550

Z., and Fan, J.: Soil moisture at 30 m from multiple satellite datasets fused by random forest, Journal of Hydrology, 625, 130 010,

https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130010, 2023.

O, S., Orth, R., Weber, U., and Park, S. K.: High-resolution European daily soil moisture derived with machine learning (2003–2020), Sci Data,

9, https://doi.org/10.1038/s41597-022-01785-6, 2022.

O’Neill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., and Chaubell, J.: SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil555

Moisture, Version 9, https://doi.org/10.5067/4XXOGX0OOW1S, 2023.

O’Neill, P., Bindlish, R., Chan, S., Chaubell, J., Colliander, A., Njoku, E., and Jackson, T.: Algorithm Theoretical Basis Document Level

2 3 Soil Moisture (Passive) Data Products, available online: https://nsidc.org/sites/default/files/l2_sm_p_atbd_rev_g_final_oct2021_0.pdf,

Accessed: 2024-10-08, 2021.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais,560

P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in

the World’s Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.

Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J.,

Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., and Murdiyarso, D.: The enduring world forest carbon sink,

Nature, 631, 563–569, https://doi.org/10.1038/s41586-024-07602-x, 2024.565

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,

J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal of Machine

Learning Research, 12, 2825–2830, 2011.

Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.: A review of spatial downscaling of satellite remotely sensed soil moisture, Reviews of

Geophysics, 55, 341–366, https://doi.org/https://doi.org/10.1002/2016RG000543, 2017.570

Ranney, K. J., Niemann, J. D., Lehman, B. M., Green, T. R., and Jones, A. S.: A method to downscale soil moisture to fine resolutions using topo-

graphic, vegetation, and soil data, Advances in Water Resources, 76, 81–96, https://doi.org/https://doi.org/10.1016/j.advwatres.2014.12.003,

2015.

Rao, P., Wang, Y., Wang, F., Liu, Y., Wang, X., and Wang, Z.: Daily soil moisture mapping at 1 km resolution based on SMAP data for

desertification areas in northern China, Earth System Science Data, 14, 3053–3073, https://doi.org/10.5194/essd-14-3053-2022, 2022.575

Sabaghy, S., Walker, J. P., Renzullo, L. J., and Jackson, T. J.: Spatially enhanced passive microwave derived soil moisture: Capabilities and

opportunities, Remote Sensing of Environment, 209, 551–580, https://doi.org/https://doi.org/10.1016/j.rse.2018.02.065, 2018.

Sandholt, I., Rasmussen, K., and Andersen, J.: A simple interpretation of the surface temperature/vegetation index space for assessment of sur-

face moisture status, Remote Sensing of Environment, 79, 213–224, https://doi.org/https://doi.org/10.1016/S0034-4257(01)00274-7, recent

Advances in Remote Sensing of Biophysical Variables, 2002.580

Schaefer, G., Cosh, M., and Jackson, T.: The USDA natural resources conservation service soil climate analysis network (SCAN), Journal of

Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL, 24, 2073 – 2077, https://doi.org/10.1175/2007JTECHA930.1, 2007.

37

https://doi.org/https://doi.org/10.1016/j.foreco.2011.12.037
https://doi.org/10.48443/QHMT-HH62
https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130010
https://doi.org/10.1038/s41597-022-01785-6
https://doi.org/10.5067/4XXOGX0OOW1S
https://nsidc.org/sites/default/files/l2_sm_p_atbd_rev_g_final_oct2021_0.pdf
https://doi.org/10.1126/science.1201609
https://doi.org/10.1038/s41586-024-07602-x
https://doi.org/https://doi.org/10.1002/2016RG000543
https://doi.org/https://doi.org/10.1016/j.advwatres.2014.12.003
https://doi.org/10.5194/essd-14-3053-2022
https://doi.org/https://doi.org/10.1016/j.rse.2018.02.065
https://doi.org/https://doi.org/10.1016/S0034-4257(01)00274-7
https://doi.org/10.1175/2007JTECHA930.1


Sehler, R., Li, J., Reager, J., and Ye, H.: Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing

Observations, Journal of Contemporary Water Research Education, 168, 106–118, https://doi.org/10.1111/j.1936-704x.2019.03324.x, 2019.

Shokati, H., Mashal, M., Noroozi, A., Abkar, A. A., Mirzaei, S., Mohammadi-Doqozloo, Z., Taghizadeh-Mehrjardi, R., Khosravani, P., Nabi-585

ollahi, K., and Scholten, T.: Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral

Data, Remote Sensing, 16, https://doi.org/10.3390/rs16111962, 2024.

Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lambin, E., and Moody, A.: MODIS Land Cover Product Algorithm Theoretical

Basis Document (ATBD) Version 5.0, available at: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf, 1999.

Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., Kompter, E., Ahrens, B., Levick, S. R.,590

and Schmullius, C.: Carbon stock and density of northern boreal and temperate forests, Global Ecology and Biogeography, 23, 297–310,

https://doi.org/https://doi.org/10.1111/geb.12125, 2014.

Tramblay, Y. and Quintana Seguí, P.: Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture

accounting scheme, Natural Hazards and Earth System Sciences, 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, 2022.

Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz, S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E.595

A. G., Turetsky, M. R., and Mack, M. C.: Increasing wildfires threaten historic carbon sink of boreal forest soils, Nature, pp. 520–523,

https://doi.org/10.1038/s41586-019-1474-y, 2019.

Wei, Z., Meng, Y., Zhang, W., Peng, J., and Meng, L.: Downscaling SMAP soil moisture estimation with gradient boosting decision tree

regression over the Tibetan Plateau, Remote Sensing of Environment, 225, 30–44, https://doi.org/https://doi.org/10.1016/j.rse.2019.02.022,

2019.600

Yin, J., Zhan, X., Liu, J., Moradkhani, H., Fang, L., and Walker, J. P.: Near-real-time one-kilometre Soil Moisture Active Passive soil moisture

data product, Hydrological Processes, 34, 4083–4096, https://doi.org/https://doi.org/10.1002/hyp.13857, 2020.

Zabret, K., Rakovec, J., Mikoš, M., and Šraj, M.: Influence of Raindrop Size Distribution on Throughfall Dynamics under Pine and Birch Trees

at the Rainfall Event Level, Atmosphere, 8, https://doi.org/10.3390/atmos8120240, 2017.

Zhang, D., Lu, L., Li, X., Zhang, J., Zhang, S., and Yang, S.: Spatial Downscaling of ESA CCI Soil Moisture Data Based on Deep Learning605

with an Attention Mechanism, Remote Sensing, 16, https://doi.org/10.3390/rs16081394, 2024.

Zhang, Y., Liang, S., Ma, H., He, T., Wang, Q., Li, B., Xu, J., Zhang, G., Liu, X., and Xiong, C.: Generation of global 1 km daily soil moisture

product from 2000 to 2020 using ensemble learning, Earth System Science Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023,

2023.

Zheng, C., Jia, L., and Zhao, T.: A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution, Sci Data,610

10, vzj2012.0097, https://doi.org/10.1038/s41597-023-01991-w, 2023.

38

https://doi.org/10.1111/j.1936-704x.2019.03324.x
https://doi.org/10.3390/rs16111962
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf
https://doi.org/https://doi.org/10.1111/geb.12125
https://doi.org/10.5194/nhess-22-1325-2022
https://doi.org/10.1038/s41586-019-1474-y
https://doi.org/https://doi.org/10.1016/j.rse.2019.02.022
https://doi.org/https://doi.org/10.1002/hyp.13857
https://doi.org/10.3390/atmos8120240
https://doi.org/10.3390/rs16081394
https://doi.org/10.5194/essd-15-2055-2023
https://doi.org/10.1038/s41597-023-01991-w

