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Abstract.

Soil moisture plays an important part in predicting different forest-related phenomena, such as tree growth or forest fire
risk. As these-pheremena-they influence the carbon storage capacity of boreal forest ecosystems, it is crucial to provide soil
moisture information at high temperal-and-spatial-spatio-temporal scales. Current satellite-based soil moisture products often
have high temporal resolution at the expense of spatial resolution. Therefore, we developed a machine-learning-based model
to estimate soil moisture at high temperal-and-high-spatial resolution over boreal forested areas for the annual time period
from May to October, while retaining the high temporal resolution. The basis data of the model is the enhaneed-9-36 km
spatial resolution soil moisture data from the Soil Moisture Active Passive (SMAP) mission. Additionally, seil-and-vegetation
properties, reanalysis-based-weather-related parameters, and measured in situ soil moisture data are used to guide the model
construction process. The analysis of the developed model shows that the-medekit retains the temporal and large-scale spatial
variability of SMAP soil moisture. Furthermore, comparisons with the independent in situ soil moisture data shew-that-the

at-indicate that the model’s predictions align more
closely with in situ values than SMAP soil moisture, as RMSE decreases from 6:097-0.103 m?/m? to 6:065-0.092 m?/m3,

and correlation increases from 6:36-t0-0-52-0.46 to 0.55 over forest sites. Therefore, this machine-learning-based model can be

used to predict high-resolution soil moisture over boreal forested areas.

1 Introduction

Boreal forest ecosystems are important carbon sinks and stocks (Pan et al. (2011), Pan et al. (2024)). Trees, mineral soil, and
organic layer account for about 70% of the carbon pool in boreal forests (Merild et al. (2023)). Trees remove carbon dioxide
from the atmosphere through photosynthesis, turn it into organic carbon compounds, and use them for growing. Carbon is stored
in all parts of the tree, i.e. in branches, stems, leaves, bark, and roots (e.g. Clemmensen et al. (2013), Thurner et al. (2014)).
This carbon stored in the boreal ecosystems is released back into the atmosphere forexample-due to forest fires (Walker et al.

(2019)) and the decomposition of trees, turning forests from carbon sinks to sources. As soil moisture plays a significant role in
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predicting tree growth (Larson et al. (2024)), forest fire risks (Walker et al. (2019)), and carbon stock partitioning (Larson et al.
(2023)), it is essential to provide soil moisture data at a large spatial scale and high temporal frequency across boreal forests.
Due to the considerable local variation in soil moisture and the sparsity of the in-situ measurement network, the only
viable way to extensively observe soil moisture over boreal forests is to use satellite-based soil moisture data sets. However,
persistent cloud cover, other weather-related phenomena, and high solar zenith angles hinder the use of optical satellite-based
soil moisture data, making microwave-based soil moisture the most feasible option. For example, Sentinel-1 C-band Synthetic
Aperture data (SAR) has been used to retrieve soil moisture with high resolution (e.g. Bauer-Marschallinger et al. (2019),
Balenzano et al. (2021), Manninen et al. (2022)), but the dense vegetation prevents the radar signal from reaching the soil
surface (Flores et al. (2019)), and thus causes uncertainty in the results (Bauer-Marschallinger et al. (2019), Flores et al.
(2019)). A longer wavelength band, like L-band, can penetrate the vegetation al-the-way-te-to reach the soil surface (Flores
et al. (2019)), and possibly alse-even deeper than the documented -5 cm depth in the boreal forest (Ambadan et al. (2022)).
The well-known L-band-based soil moisture mission Soil Moisture Active Passive (SMAP, https://smap.jpl.nasa.gov/) has
been measuring soil moisture globally from 2015 onwards, and has been reported to be sensitive to soil moisture changes
under the forest canopy (Colliander et al. (2020), Ayres et al. (2021)). The disadvantage of soil moisture data from SMAP
is that the eriginat-spatial resolution is very-coearse;with-grid-size-being-coarse, 36 km (Entekhabi et al. (2014)). SMAP soil
moisture data has been enhaneed-regridded to 9 km, but as soil moisture ean-change-a-lot-evenin-ashert-distanee-is known
to be spatially heterogeneous (Milicke et al. (2020)), there is a need for soil moisture data in a finer spatial resolution. SMAP

soil moisture data (O’Neill et al. (2021), Das et al. (2019)). The unbiased root-mean-square-error (RMSE) of this combined
data is around 0.05 m*/m? (Das et al. (2019)). The limitations of this data set include its temporal frequency, which is around
6 days over Europe, and only around 12 days elsewhere, and also its limited global coverage, as the product covers only the

area between -60°S and 60°S, excluding the most of the boreal forest zone.
Instead-In addition to of directly using satellite-based measurements to retrieve soil moisture, another approach is down-

scaling. This involves enhancing coarse-resolution soil moisture data to a finer spatial scale using regression or more advanced
machine learning methods. Downscaling has been used widely (e.g. Peng et al. (2017), Sabaghy et al. (2018), and references
therein) with promising results. A few examples of downscaled soil moisture in 1 km spatial resolution include GLASS SM
(Zhang et al. (2023)), which is based on ERA5-Land soil moisture; an over 20-year gap-free global and daily soil moisture
data set (Zheng et al. (2023)) based on ESA-CCI soil moisture; and downscaled SMAP (Fang et al. (2022)). Since the original

data sets have very coarse spatial resolutions, the downscaled data sets typically aim for a spatial resolution of 1 km or coarser.

Our main goal is to develop a model for estimating high-resolution soil moisture data over boreal forests of Northern
Finland. There we can use two elements to our advantage. First is the SMAP soil moisture retrieval process, which is based
on the dominant land use classification in each pixel. In the studied area, the SMAP soil moisture is most accurate for forested
areas with a shrub and herb dominated understory, because, by definition, the dominant land cover classification is woody.


https://smap.jpl.nasa.gov/

60

65

70

75

80

85

savanna (i.e. a herbaceous understory and forest canopy cover between 30-60%:; different class definitions can be found in
Strahler et al. (1999)). The second element is that most available in situ sites are located in forested sites. By combining these

two details we provide a model optimized to calculate a high resolution (1 km and 250 m pixel-sized) soil moisture for boreal
forests. We use SMAP soil moisture data in 936 km spatial resolution as the basis, and we combine SMAP soil moisture with in
situ soil moisture observations. Other high-resolution and soil moisture linked parameters (like vegetation and-seil-properties)
are added to our downscaling machine learning model to guide the process. Fhe-coarseresolution-of SMAR-the-small-amount

This paper is constructed as follows. First, all the used data sets are introduced in Section 2, followed by preprocessing

steps and model construction in Section 3. In Section 4, the results of the model analysis and model validation are shown. We

conclude with a discussion and conclusions in Sections 5 and 6, respectively.

2 Data

In this study, we used in situ data from two larger-bereal-forests-large boreal forest in situ observation areas with easily
accessible data, one in Northern Finland (NF), operated by the Finnish Meteorological Institute (FMI), and the other in Alaska,
operated by multiple networks (see section 2.9 below). For model construction, we decided to use NF sites, leaving the Alaska
sites for validation. The locations of the sites are shown in Figure 1. Based on the observations between the years 2019 and
2023 from the weather stations located in the NF (https://www.ilmatieteenlaitos.fi/havaintojen-lataus), there is snow cover
typically from mid-October to May, depending on the site and location. Therefore, for-the-stady-timeperiod;-we chose the
annual peried-interval spanning from the first of May to 15 of October ;cevering-the-years-2019-2023 as the study period.

From here onwards, the use of the soil moisture term indicates volumetric water content (%).

2.1 Study area

The main study area is located in Northern Finland, between latitudes 65.5°N and 70.0°N, placing it in the boreal forest biome.
Based on the land cover classification data in 100 m resolution from CORINE land cover (see Section 2.8) for NF (area shown
in Figure 1), around 61% of the area is covered by tree cover (42% coniferous trees, 10% broadleaved trees, and 9% mixed
trees). One fifth of the area (almost 20%) is covered in peat bogs, and 4.5% is covered by water bodies (lakes). Water bodies
include three large lakes (Lake Inari, Lokka Reservoir, and Porttipahta Reservoir), but also many smaller lakes. The rest of the
land use (around 15%) is different urban areas, heatlands, bare areas, and agriculture.

2.2 SMAP soil moisture

The SMAP mission was meant to combine radiometer (passive) and radar (active) observations. However, since the radar broke

down just months after the launch, the radiometer is currently the only instrument observing the surface. This SMAP L-band
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(1.41 GHZ) radiometer has a native spatlal footprmt of 36 km ;but-the footprintis-enhanced-to-9-kmresolation-byusing-the
are-and the data is provided on

the global cylindrical EASE-Grid 2.0 (Brodzik et al. (2012)).

SMAP soil moisture is based on retrieved brightness temperature data in horizontal and vertical polarizations (O’Neill et al.

(2021)). Water body correction is applied to the brightness temperature data first to remove water bodies, as they lower the
brightness temperature values and hence cause overestimated soil moisture values. Then tau-omega-model (tau, vegetation
optical depth 7 and, omega, vegetation single scattering albedo, w) is applied to the single channel (horizontal and vertical)
brightness temperature data to separate soil and vegetation contributions from the total brightness temperature. After that,
soil moisture is retrieved by inversion from the tau-omega corrected brightness temperature. Land use classification data is
used to determine the 7 and w values for different areas. For dual-channel retrieved soil moisture, the tau-omega corrected
single-channel brightness temperature data is used.

In this study, we use the enhanced-SMAP-L3-SM-P-E-product(O Neill-et-ak(26235)SMAP SPL3SMP V009 product
(O’Neill et al. (2023a)), in which the global surface soil moisture (0-5 cm) in m3/m? is provided twice a day, at 6:00 am
(descending) and at 6:00 pm (ascending). Three different soil moisture products are available, one calculated from each single
channel and one dual-channel product. As the latter one is currently the baseline product (Chan and Dunbar (2021)), we chose

that for this study. Further, we €h we-focus on the soil moisture data

at 6 am (descending overpasses). This SMAP data in 936 km resolution is used as an input for the soil moisture model.
2.3 MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are aboard the Terra and Aqua satellites, which
were launched in 1999 and 2002, respectively. As Sun-synchronous satellites, they provide almost global coverage every 1 to 2
days. Terra is set to a descending orbit (measurements at 10.30 am) and Aqua to an ascending orbit (measurements at 1.30 pm).
The MODIS instrument measures multiple wavelength bands, resulting in a wide range of obtained parameters. In this study,
we use vegetation indices from both MODIS instruments. We use MYD13Q1 (from Aqua, Didan (2021a)) and MOD13Q1
(from Terra, Didan (2021b)) products (version 6.1) which are global 16-day-mean data sets with 250 m spatial resolution. The

used-data-enhaneed-vegetationindex-data used, the Enhanced Vegetation Index (EVI) and the Normalized Vegetation Index
(NDVI), are provided in the Sinusoidal tile grid. EVI and NDVI contribute to the vegetation effects of the soil moisture model.

2.4 SMAP-based 1 km soil moisture data

SMAP, enhanced to 9 km spatial resolution, was further downscaled to 1 km (Lakshmi and Fang (2023)) by using thermal
inertia theory (Fang et al. (2022)). Based on that theory, the land surface temperature (LST) difference between night and day
is negatively correlated to the soil moisture. For downscaling SMAP, the MODIS LST data in 1 km spatial resolution from
Terra (night) and Aqua (day) were used, combined with the NDVI, also from MODIS. The NDVI, divided into 10 groups by
using an interval of 0.1, is used for grouping soil moisture and LST differences. The assumption behind this is that changes in

NDVTI affect the relationship between soil moisture and LST difference. Based on the validation, the downscaled SMAP data



performs better in low latitudes and warm months, compared to high latitudes and cold months (Fang et al. (2022)). The SMAP
in 1 km resolution is used in this study as an example of downscaled data based on SMAP in-9-kmrreselution—data. _

2.5 Interpolated daily weather observations

125 Finnish Meteorological Institute provides different weather-related parameters in spatial resolution of 1 km (https://en.ilmatieteenlaitos.
fi/gridded-observations-on-aws-s3), covering the time period starting from 1961 through the present day. Daily weather station
observations are interpolated into a 1 kmx 1 km grid by using kriging with external drift. In that method, external predictors are
used as covariates. Elevation, relative altitude, the effect of the seas, and the effect of the lakes are the chosen external predictors
for these weather station observation based maps (Aalto et al. (2016)). Daily precipitation sum and daily mean temperature are

130 used as inputs for the soil moisture model.

26 GPM

The Global Precipitation Measurement mission (GPM, https://gpm.nasa.gov/missions/GPM) is a network of satellites, aiming
to provide precipitation observations every 2-3 hours. This is achieved by using active radar observations and passive microwave
radiometer measurements. Precipitation data is provided in multiple levels and processing steps, of which we use the level 3
135 Integrated Multi-satellitE Retrievals for GPM (IMERG) Final Run data. This data is based on intercalibrated data from all

microwave precipitation estimates, and microwave-calibrated infrared satellite estimates, as well as bias corrected by usin

ses (Huffman et al. (2023)). The Final Run product is provided in either 30-minute intervals or dail

and monthly means. The spatial resolution is 0.1° (around 10 km). For this study, we use daily means of precipitation.

recipitation gauge anal

2.7 ERAS-Land

140 ERAS-Land, the land component of the fifth generation of European Centre for Medium-Range Weather Forecasts (ECMWF)
atmospheric reanalysis of the global climate (ERAS), is produced by the Copernicus Climate Change Service. Similarly to
ERAS3, the land component also covers the period from 1940 to the present day (Hersbach et al. (2020)), but with enhanced

spatial resolution (from 31 km to 9 km). ERAS-Land provides hourly data of various surface parameters, of which we used

145
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2.8 CORINE land cover

The Coordination of Information on the Environment (CORINE) program was launched in the 1980s, as there was a need for
detailed and harmonized land cover data set over the European continent (Biittner et al. (2017)). The current land cover data
covers the pan-European area with 100 m spatial resolution. The data set consists of 44 classes, and it is updated every six
years. In this study, we use CORINE land cover data from 2018 to determine the land use classifications of the study area, the
land cover classes of the used in situ sites in the NF area, and we also used land cover data to create a mask to exclude water

bodies and all the other land covers except forested areas.
2.9 Insitu data

In situ soil moisture data for model training and testing are from the Arctic Space Centre of the Finnish Meteorological Institute
(FMI-ARC, https://fmiarc.fmi.fi/). FMI-ARC hosts a measurement infrastructure, which is used to monitor, for example, the
atmosphere, soil properties, snow properties, precipitation, and carbon and water cycles. All collected observations can be
found at https://litdb.fmi.fi/ (last accessed: 30 September 2024). For in situ soil moisture observations, the measurement sites are
located around Sodankyld and Saariselki, and they cover mostly boreal forested sites. The chosen in situ sites with additional
information can be found in Table Al, and their locations are shown in Figure 1. The in situ soil moisture is measured at
different depths, and for this study, we chose a depth of -5 cm.

The in situ data for validation of the constructed model are located in the boreal zone in Alaska. In situ soil moisture data has
been collected in the International Soil Moisture Network (ISMN) database starting from 1952 (Dorigo et al. (2013), Dorigo
et al. (2021)). In situ soil moisture data is provided to the ISMN by multiple organizations for free use. We-From ISMN we
chose 16 stations located in the boreal zone (Figure 1, right side), and information about those sites can be found in Table A2.

ar-Similarly to NF sites, the in situ soil moisture

is also measured ta-at different depths, and for this study, we chose a depth of -5 cm.

Additionally, we included one in situ site from the U.S National Science Foundation’s National Ecological Observatory.
Network (NEON). NEON has multiple measurement sites around the United States, of which 5 are located in Alaska. From
these 3 sites, we chose Delta Junction as its dominant land use class is evergreen forest. The used data product is DP1.00094.001
(National Ecological Observatory Network (2025)), in which soil volumetric water content is included in various depths. For
this study, we chose a depth of -6 cm, which is the shallowest one.

3 Methods

3.1 Preprocessing

All gridded data used (SMAP, EVI, NDVI, ERAS-Land-data;-and-seil-propertiesand interpolated weather station observations)
are reprojected to the global EASE2-grid if needed and resampled to achieve a spatial resolution of 1 km. This means that the

projection matches that of SMAP, but the spatial resolution is finer than that of SMAP. If the original resolution is coarser than
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the resampled one, the resampling is done by using the nearest neighbor. On the other hand, if the original resolution is finer
than the resampled one, then the resampling is done by taking the average of all values within the coarser pixel. The average
is taken even if there is only one value within the coarser pixel. This ensures that the model inputs have a minimal number of
missing values.

After resampling and reprojecting, some of the data are further preprocessed. As EVI and NDVI data from both MODIS
instruments are originally provided every 16 days, we obtain daily maps of EVI and NDVI by linear interpolation over time
using the closest available observations. The linear interpolation was chosen because it is easy to implement and does not
cause any major discrepancies in the interpolated data for vegetation types with weak seasonal changes, such as evergreen
needle-leaved forests (Li et al. (2021)).

After interpolation, we calculate the mean value of Terra and Aqua -based vegetation maps to obtain only one EVI and

NDVI map per day. Precipitation

hour-Instead-of using instantaneous preeipitation-and air temperature from interpolated weather station data are provided as
daily means. Based on preliminary testing, we decided to use a precipitation sum of 2 and 7 days preceding each SMAP
observation, and a temperature sum of 8 and air-temperature-reanalysis—valueswe-caleulated-asum-over-72-hours-before-10
days preceding each SMAP observation instead of using just the daily means of one previous day. This approach takes into
account the cumulative effects of temperature and precipitation. From-surface-netselarradiation,we-used-instantaneous-valaes
onthy-

In situ data for training and testing was cleaned by removing those stations and those years where soil moisture values were

abnormally low (below 0.05 continuously, or decreased to zero regularly), as including those values might lead to the model

underestimating soil moisture. Also, there are two in situ sites located in or close to the peatlands, where soil moisture values
of those sites are extremely high (> 0.75 m®/m?). Including those locations in the training set caused the model to predict
erroneous soil moisture values. Therefore, those two sites were excluded from the study data set.

After preprocessing and data cleaning, all the gridded data are matched with NF in situ locations. If there are multiple in
situ values within the same 1 km pixel, we take a mean value of those soil moisture values and use that instead to represent
the soil moisture in that location. By doing this, we end up with only +4-10 individual locations, as most of the in situ sites are

located near each other.

3.2 Model for soil moisture

The data set for model construction consists of only Bﬂﬁdmdﬂﬂ%&@%&&eﬂs—meamﬂgfh&&%hefeﬂfeﬂﬂ}y%dﬁfefeﬂkbtﬂk
mwmemmm We aimed i

similar distributions of soil moisture values in both training and test sets. Therefore, we chose 9-ef-these13-7 of those 10 sites
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tes: ,.and the other 3 were left for the

test set. In-the-trainingset;

in situ sites to training or test set is shown in Figure 1 and Table Al.

We used all the available data from the chosen annual periods covering the years 2019-2023, and hence we had 4486
3415 values for training and 22211775 for testing. Tree-based algorithms are commonly used in soil moisture predictions
(e.g.Wei et al. (2019), Tramblay and Quintana Segui (2022), Ning et al. (2023), Shokati et al. (2024)), and it has been reported
that tree-based methods can outperform deep-learning methods (Li and Yan (2024)). The Gradient Boosting (GB) method
(Breiman (1997), Friedman (2001), Friedman (2002)), in which the weak learners (decision trees) are trained sequentially
by correcting the residuals of the previous model, was therefore chosen for model construction. We used a framework for
tree-based algorithms called Light Gradient-Boosting Machine (lightGBM), as it is faster to use (Ke et al. (2017)).

We hypertuned the model parameters by using the GridSearchCV method from scikit-learn (Pedregosa et al. (2011)). It is
a method where all possible combinations of given model parameters and their grids are tested and evaluated by using cross-
validation. In our model building, we used CV=3. The chosen parameters with their test ranges are shown in Table 1. The

learning rate was chosen to be 0.05

inputs, We also limited the maximum bins to 200, and a minimum number of data values in one leaf to 40 at maximum to limit

overfitting.

4 Results
4.1 Analysis of the model

The SHapley Additive exPlanations (SHAP, Lundberg et al. (2020)) values (which specify the effect of different individual
inputs on the output) indicate that statie-vegetation inputs dominate the results, as can be seen from Figure 2. Bulk-density-and

mrate ompared-to-sta RPYES he-rest-of-the-inpy VEND VL -and and-based) have much-lowe

are-significantenough-to-be-included-as-inputs. Precipitation-related inputs have the smallest effect on the model.

The RMSE, R, and R? values between the training and test set indicate ateastsmat-overfitting-when-using-at-test-datano
overfitting (Table 2). Pue-to-the-smatt-size-of-the- RMSE and uRMSE values between in situ values and training and test sets

ean-be-seeninFigure3are almost identical (0.058 and 0.062, and 0.058 and 0.061, respectively). On the other hand, R and R2
values are higher between in situ values and predicted soil moisture values from the training set compared to values between
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in situ values and test set predicted soil moisture values. Based on results in Figure 3, there is a possibility of the model
underestimating higher soil moisture values (> 0.3 m3/m?). Also, as there are no higher than 0.4 m®/m? soil moisture values in

3

the training set, the model will have difficulties predicting soil moisture values above 0.4 m3/m3.
As the original highest spatial resolution of some inputs is 250 m (NDVI ;- EVk-and-soil-propertiesand EVI), we also re-

sampled SMAP soil moisture and ERAS-Land-based-weather-related inputs to that same 250 m spatial resolution using nearest
neighbor resampling. We then calculated soil moisture maps from those 250 m resolution data maps using the constructed GB
model to study how sensitive the developed model is to small changes in vegetation and-seil-property-values (i.e. as those are
the only parameter values changing within one time step). Exemplary time series for NF test sites for the year 2623-2020 are
shown in Figure 4. The individual in situ sites are located close to each other and therefore the Test sites A-C-A-B have the

same in situ sites in both resolutions. Only in Test site B-C one site (BE560004-spotZMET0010) locates in a different pixel. Bue

L I S PN o _ _ N o no O o 3 /03 1o -
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resolutions;we-omitted-Therefore, for Figure 4, we have added an extra Test site D, which includes the in situ seil-meisturein
250-m-resolutionfrom-the-test-site- D-in-Figure-4site MET0010. Overall, as all sites (A-D) are boreal forest sites, SMAP soil

moisture is temporally well in line with in situ soil moisture values-—Furthermere-predicted-, but due to the coarse resolution,

there are systematic differences, especially in Test site C (and D). Predicted values calculated for both 1 km and 250 m resolu-

tion data are better in line with in situ valuesa
systematie-differenees(Test-site-B). Based on these results for NF sites, the developed model is not overly sensitive to small
changes in seil-weather-related and vegetation properties data. Also, based on these time series results, the developed model
detects temporal changes well. In hindsight, as the model is constructed using SMAP soil moisture, and SMAP soil moisture
data is noisy, some of the same noisy features can be found in predicted values. Also, due to the SMAP being the basis for the
developed model, the predicted values have the same temporal resolution as SMAP, meaning that data can be predicted almost

daily if SMAP soil moisture data are available. Mean relative differences (Table 3) between in situ values and GB model-based

redicted values indicate varying under- and overestimations. In 1 km resolution, the underestimation for the whole test set is
just < 1%, which is to be expected. For 250 m resolution, the underestimation is higher, almost 20% for the whole test set.

We also calculated the soil moisture values for the whole NF area using the constructed model to analyze how well the
model captures the spatial variations and also to show the impact of missing pixels on the predicted maps. We calculated soil
moisture maps using 1 km and 250 m resolution data. Examples of these predicted soil moisture maps are shown in Figures
5 and 6. Predicted soil moisture values are lower than SMAP soil moisture values, and for 250 m resolution maps the number
of missing pixels increases. Nevertheless, spatial changes are well detected by the predicted values when compared to SMAP
soil moisture. The missing values in predicted maps are due to the missing data in the inputs. SMAP data have missing data
because of water bodies or otherwise failed soil moisture retrievals;-whereas—sot-property-data—are-missing-only-due-to-water
bedies. Similarly, vegetation properties are not retrieved over water bodies, but vegetation data are also missing because of
missing measurements, caused typically by cloud cover (as vegetation properties are based on optical data). Furthermore, as

the model is developed mainly for forested areas, a land cover mask was applied to the results (shown only in Figure 6, and
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omitted in Figure 5 for clarity). We used CORINE land cover data in 100 m spatial resolution as the basis of the mask. Land
cover data was resampled to the 1 km and 250 m spatial resolutions and those pixels where forest classes covered under 50%

of the coarser pixel were masked.
4.2 Model uncertainty

We used the sensitivity of the most important inputs and the standard deviation of the difference between predicted soil moisture
values and in situ values from test data as the uncertainty of the model. First, we approximated the uncertainty each impertant

input causes to the results. Predicted soil moisture from the training data was used as the reference data. Then we added

errors to the important inputs separately from their error distributions € ~ A(0,02). For seil-properties;the-o—wastaken

from-theiruneertainty-estimations—For-vegetation indexes, we used the reported uncertainties, 0.015 for EVI and 0.025 for
NDVTI (https://modis-land.gsfc.nasa.gov/ValStatus.php?ProductID=MOD13). For SMAP soil moisture, we used the standard

deviation from the difference between SMAP soil moisture and in situ soil moisture from the whole in situ data set from NF.

The obtained standard deviation was 0-12-—ForERAS-Land-based-0.097. For weather-related inputs, we decided-to-omit-their

~used reported RMSE values (Aalto et al. (2016)), 1.4 mm for precipitation
and 0.58°C for temperature. As we use cumulative sums, we used error propagation of sum to estimate the uncertainty of them.
The uncertainties have therefore a form of \/z - RM S E;, where x in the number of days the cumulative sum is obtained, and 7.
is either precipitation or temperature, This way we obtained 1.98 mm uncertainty for precipitation sum over 2 days, and 3.7 mm

uncertainty for precipitation sum over 7 days, and 1.64°C and 1.83°C uncertainties for temperature sums over 8 and 10 days
respectively. We calculated the difference between the error-added values and the reference data 100 times. The sensitivity of

each varied input, the test std, and the total uncertainty for the constructed model are shown in Table 4. The total uncertainty is

calculated as a squared sum between the individual sensitives and test std, that is:

N
€= (uf). (1)

SMAP soil moisture has the highest impact on the model uncertainty for individual inputs. On the other hand, vegetation

properties and weather-related data have the lowest impact. In total, the model uncertainty is around 8-+49-0.080 m? /m3.

4.3 Validation with Alaska sites

Altogether16-The weather station network over Alaska is sparse, and thus kriging-based interpolation to obtain precipitation
and temperature in high resolution (as done over Northern Finland) is not possible. Therefore, we decided to use satellite-based
data for precipitation (GPM data) and for temperature, we used ERAS-Land temperature data, GPM data was calculated to
required cumulative sums without any modifications, but as ERAS-Land data is provided hourly, we preprocessed it in daily.
mean temperatures and then further processed it to required cumulative sums.
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Altogether 17 stations from Alaska were used as an independent model validation set. One site located in Alaska, Tokositna

Valley, was excluded from the validation set, because its soil moisture values varied abnormally. In addition, the predicted soil
moisture values below 0.05 m*/m?® were also excluded. We calculated statistical values (RMSE, BRMSEuRMSE, and R) for

each site between in situ soil moisture and SMAP in 9-36 km resolution, SMAP enhanced to 1 km resolution, and GB-model-

ee-The median statistical values are similar (Figure 7), only R
values are slightly higher with SMAP in 36 km resolution compared to others. GB-mede}-ba%ed—pfedteted—valﬂe%—m—be&H—km

Of the 16 stations, only 4-5 were reported to be located in forested sites (information is based on ESA CCI Land Cover (ESA
(2017)) and NLCD (https://www.mrlc.gov/)). Soil moisture data comparisons from those four-five sites are shown in Figure 8.
SMAP soil moisture in both resolutions has a lot of variability compared to predicted estimates. Predicted-vatues-are-closerto

the-in-site-vatuesIt is also evident that the GB-model cannot predict high soil moisture values (> 0.4 m*/m*), as was expected.
Ouerall, there are clear correlations between satellite-based estimates and in situ soil moisture values when taking into account
Fhe-Exemplary time series for wmme%%&&@e&beﬂ—fe&sﬁesﬁm&km and Gulkana River (tree-covered

sites) are shown in Figure 22

in Figure 10. The high soil moisture values

sets-have-diffieulties-at the beginning of the summer —Fhe-highsoil-moisture-values-are-probably(due to the snow meting
tﬂefeasmg—the—seﬂ—meiﬁufe—whteh—t&melt) are not detected by SMAP ‘Pfedieted—vahies%a{eh—fheﬁgh—va}ues—a{—fhe%egmﬂmg

which-is-missingfrom-the250-m-data. On the other hand, the GB-model-based estimates do catch them better. Otherwise

SMAP data in both resolutions detect the soil moisture values well. The GB-model-based soil moisture estimates have more

temporal variation compared to SMAP data. The close-up of the year 2019 shows that the model can detect the U-shape of the

in situ soil moisture better than SMAP data.

Sixteen in situ sites in Alaska were grouped into coarser land use classification classes (forest, mosaic, shrub, and sparse),
and RMSE, URMSEURMSE, and R values were calculated between in situ values and each satellite-based data, the values
are shown in Table 5. For forested sites, predicted values in 250 m have the lowest RMSE and URMSEuURMSE, and highest
R values compared to other data sets. Predicted values in 1 km resolution have the second-highest model validation statistics.
For mosaic sites, SMAP in 936 km has the lowest RMSE

vatuesand uRMSE, and the highest R value. All data sets struggle to predict soil moisture values in shrub-and-sparse sites. In
shrub sites, predicted values in 1 km resolution are more in line with in situ values compared to SMAP soil moisture values in

both resolutions. Based on these validation results, the developed model predicts temporal changes relatively well.
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5 Discussion

Spatio-temporal data on the variation in soil moisture for boreal regions is crucial for predicting forest-related phenomena,
such as tree growth and forest fire risk, both of which influence the carbon storage capacity of these ecosystems. However,
existing satellite-based soil moisture products for vegetated areas often have coarse spatial resolution. To address this issue,
higher-resolution data is necessary to capture the finer spatial variations in soil moisture. Consequently, we developed a model
utilizing satellite data to estimate soil moisture at high resolution (1 km and 250 m) over boreal forested regions. We used
a tree-based machine learning method called gradient boosting with SMAP soil moisture in 936 km spatial resolution as a
basis. Produced data maps have the same temporal resolution as SMAP (typically daily, but are missing if SMAP soil moisture
retrieval has failed). The developed model is shown to retain the temporal and spatial variability of SMAP soil moisture, but
validated against independent data, the predicted values show better agreement compared to the SMAP soil moisture (RMSE
decreasing from 6:097-0.103 m?/m? to 8:065-0.092 m®/m?, and correlation increasing from 6:36-t0-0-52-0.46 to 0.55 over

forest sites).

roducts at a 1 km spatial resolution, which differ on the underlaying data they use, the methods they implement, and also
whether they are global or regional (Table 6). Overall, our constructed model has higher uRMSE values than many other 1 km

3 /3

parameters—for—each-9-Jkm—pixel-spatial resolution data sets, but most of them do not cover boreal forest areas or are not
validated against boreal forest soil moisture. Of those that do cover boreal forests, the uRMSE and R? values are in line
with the results we obtained from validation against forested sites in Alaska. Those data products which are based on the

(Bauer-Marschallinger et al. (2018), Fan et al. (2025), Meyer et al. (2022)) have difficulties with dense vegetation, which is to
be expected due to the C-band being sensitive to vegetation. On the other hand, good results are obtained when using ERAS
soil moisture as the basis data (Zhang et al. (2023)). Used downscaling methods and algorithms vary. Change detection method
(used in Bauer-Marschallinger et al. (2018)) and forward model (Fan et al. (2025)) are used for Sentinel-1 SAR data, whereas
for Sentinel-1 and SMAP combination uses SMAP active-passive algorithm (used in Das et al. (2019) and Meyer et al. (2022)
»and is based on work by Das et al. (2014), Entekhabi et al. (2014), and Das et al. (2018)). fn-the studied-area;the SMAP

12
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7--Machine-learning methods
are also implemented (Kovacevic et al. (2020), Rao et al. (2022), Zhang et al. (2023), Zheng et al. (2023), Zhang et al. (2024
, mostly when using ESA-CCI or ERAS soil moisture data. When SMAP soil moisture has-alot-of-noise-and-those-features

decided-toleave-the noise—inthe-endresults—is used as a data source, typical algorithms are based either on the thermal

inertia theory (used in Fang et al. (2022) and Dandridge et al. (2020)) or the Temperature-Vegetation (T-V) method (used
in Yin et al. (2020) and Mohseni et al. (2024), based on Sandholt et al. (2002)). Once again, the validation results from our

constructed ML-method-based model are consistent with other ML-based data sets.

At—Soil

properties are commonly used inputs for soil moisture models (e.g. Ranney et al. (2015), O et al. (2022), Ma et al. (2023),
Zhang et al. (2023)); < sed. As we have an-exceedingly-small-set-of

o

) DA 5 1)

small number of individual sites in training and test sets, we excluded soil properties data from this study. Additionally, other
commonly used inputs include topography and geography data (i.e. elevation, slope, aspect, latitude, and longitude). As-Again,

as we have a very-relatively small amount of model construction data, adding geographical information would have caused
major overfitting. We also excluded topography data, as it has been found that models using topography data as inputs may
not be useful in other locations (Kemppinen et al. (2023)). Weather-related data, i.e. precipitation, temperatare;—and-selar
radiationfrom-ERAS-Land;-and temperature, are included as inputs because they are related to the soil moisture. Precipitation
is positively correlated with soil moisture (Sehler et al. (2019)), but air temperature has the opposite effect (Feng and Liu

(2015)). Based on feature importances (Figure 2), air temperature has-in both cumulative sums (sums over 8 and 10 days) have
a negative impact on the results as expected, but precipitation dees-nothave-has a varying effect. Precipitation sum over 7 days

has the expected positive effect—Fhis-, but the precipitation sum over 2 days has the opposite effect. The latter might be due to

the eearseresolutionof ERA and-d B T e e e S e e

to-preeipitationcanopy interception and no-rain values. The canopy interception of precipitation can be up to 50% in the dense
boreal forest (Molina and del Campo (2012), Zabret et al. (2017), Hassan et al. (2017)), leading to only a small amount of rain

attributed to the soil moisture, but also it is possible that there are no rain events happening, leading the sum of rain over 2 days
to cause negative effect to the soil moisture values. It has also been studied that air temperature has a higher impact on soil

moisture than precipitation, even over forest areas (Feng and Liu (2015)). This effect can be seen in feature importances (Figure

13
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2), as temperature has a clearly higher impact on the soil moisture estimates compared to precipitation. Selarradiation-impaets

—The cumulated precipitation and temperature

values {a—sum-over—72-hours)-increased the model accuracy compared to the instantaneous values, and therefore they were

chosen. —An additional useful data

source would have been the land surface temperature (LST), as the LST difference between night and day correlates with soil
moisture. LST data has been widely used for estimating soil moisture (e.g. Matsushima et al. (2012), Hao et al. (2022), Han
et al. (2023)). The disadvantage of LST is that it is obtained from optical measurements. Due to the difficulties caused by cloud
cover, obtaining even moderately gap-free LST data regularly over the whole NF area was an impossible task, and therefore
we did not include LST as an input.

To choose the best model, we tested three different-tree-based methods: random forest, level-wise gradient boosting, and leaf-
wise growth-based gradient boosting. The leaf-wise growth GB (lightGBM) produced the results with the highest accuracy and
was therefore chosen. However, because it is a tree-based method, it cannot extrapolate well when inputs differ from training

data, as the decision boundaries are determined during training. Therefore, our predicted estimates are more or less bounded,
and unexpectedly high or low soil moisture values are not predicted correctly (i.e. soil moisture values below 0.05 m?®/m?

or above 0.4 m3/m?3). To overcome this disadvantage, there needs to be much more data from diverse in situ locations. The
available data from the in situ networks is limited and thus hinders model’s predictive ability. Puring-the-medel-construction

We included SMAP in 1 km resolution to be compared to our model predictions. There-exist-other-Other downscaled data

sets were also considered, but as the soil moisture network is sparse, they, unfortunately, use some of the same in situ sites
from NF and Alaska for training, and therefore we couldn’t use them as independent data sets. The comparisons with SMAP
in 1 km resolution indicate that downscaled SMAP lacks some of the variability found in our model. For some sites in Alaska,
SMAP in 1 km even performed weaker compared to SMAP in 936 km resolution. Based on those results, it could be possible

that thermal inertia theory is not ideal for downscaling soil moisture data over forested areas.

As our model provides high-resolution soil moisture for forested areas, it covers approximately 60% of the NF area (see
Section 2.1). Additionally, SMAP soil moisture has a lot of noise, and some of those features are also transferred to our model
predictions. Smoothing would have been one option to decrease the effect of noise, but choosing the method that would have
retained the actual temporal variations was not a straightforward task. Also, we tried to implement precipitation and temperature
data to smooth some of the noise, but due to the dense nature of the boreal forest, there was no clear relationship between soil

moisture changes and weather. Therefore, we decided to leave the noise in the end results.
In the future, L-band-based missions, like the NASA-ISRO SAR mission (NISAR, https://nisar.jpl.nasa.gov/, Lal et al. (2023

Lal et al. (2024)) with a planned launch at-the-end-ef2024around April 2025, and Radar Observing System for Europe in L-
band (ROSE-L, https://sentiwiki.copernicus.eu/web/rose-1) with a planned launch in 2028, are aiming to provide soil moisture

data with higher spatial resolution (around 6200 m for NISAR and around 25 m for ROSE-L). With those resolutions, even
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peatlands can be taken into account. As they cover over 20% of
impertanee-as-NF and are important carbon sinks, peatlands need to be included in soil moisture studies. If there were more
in situ observation sites located in varying kinds of peatlands, one could construct a model based on them, and then combine

models focused on forested areas and peatlands to better account for all the variability in soil moisture over boreal forest areas.

As it is, the constructed GB-model does provide an alternative to downscale SMAP soil moisture in 36 km resolution to finer
spatial scales over boreal forests.

6 Conclusions

We developed a model to predict high-resolution soil moisture values-in boreal forests. This model specifically targets forested
regionsforests, as peatlands are not represented in SMAP soil moisture data, and most in situ soil moisture observation sites are
located in-forested-areaswithin forests. The model is-was developed by using SMAP soil moisture at 9-36 km spatial resolution
as the basis data, and additional vegetation and-seil-properties-are-properties and weather-related data were used to guide the
machine learning model together with in situ soil moisture values. The model produces predictions at a resolution of 1 km,
which aligns well with SMAP measurements. However, it can also generate soil moisture estimates at a finer resolution of
250 m, offering improved accuracy in certain applications, for example hydrological modelling and carbon exchange studies.
Consequently, this-the model provides a valuable tool for predicting soil moisture in high resolution across boreal forested

landscapes.

Data availability. The data sets associated with this paper are available in the Finnish Meteorological Institute Research Data repository

METIS (http://hdl.handle.net/11304/a0c2b377-2e2f-4054-8d82-37abc28beec9).
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Table 1. Gradient Boosting model parameters, their ranges and chosen values to be used for model building. Parameter ranges are constrained

to prevent overfitting. The chosen values are determined by using GridSeachCV method with CV=3.

Parameter name Range Chosen value
Number of leaves [3+4,5,6] 5

Maximum depth [2:3:4,5,6] 4

Minimal amount of data in one leaf  [+6;20,30,40] 2640
Maximum number of bins [36:46:50:66:76100,150,200] 66200
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Table 2. Statistical values between predicted values and in situ soil moisture for training and test sets.

RMSE BRMSE-URMSE R R? N
Training 6:064-0.058 6:064-0.058 6:86-0.81  ©6:740.60 44803415
Test all- 6:678-0.062 6:063-0.061 646-0.71  6460.51 22241725
TFest(DIS0004-exchuded)-0-6040-0-045-0-66-0-44-2221-heightTest site A 0:646-0.069 6:643-0.059 6:64-043  644+0.19 534585
Test site B 6:676-0.044 6:649-0.039 672071  6:520.50 579524
Test site C 6:646-0.067 6:634-0.061 674051 656026 569616
TFest-site-height
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Table 3. Mean relative differences [%] between in situ soil moisture values and predicted soil moisture estimates from both GB model.
Values are from test set, and they cover the time period 2019-2023.

Testsite D-(DISO004-exeluded)250m  0:0340.12  0:6025-19.14  672-58.36 6:520.83 599-19.55
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Table 4. Sensitivities for chosen inputs, standard deviation between test set in situ soil moisture and predicted soil moisture, and calculated

total uncertainty of the model. All results have the unit m* /m?.

Bulk-density-0-057Silteontent-0-075SMAP soil moisture 0:6350.029
NDVI 6:663-0.020
EVI 0.019
Prec. 7d sum. 0.004
Test standard deviation 6:065-0.069
total 6-++90.080
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Table 5. Model validation statistics between observed in situ soil moisture from Alaska sites and predicted soil moisture values.

RMSE forest mosaic shrub sparse all
SMAP 6:097-0.103  0:4220.149  6493-0.174 O0-H20.156  64370.144
SMAP 1 km 6-H2-0.095  64360.162  047600.197 04230.152  64330.150

Predicted 1 km  0:0670.093 04520175 04820147  0:1100.131  0:1370.138
Predicted 250 m  0:0650.092  0-1380.174 01850126 01100136  04340.145

URMSE-uRMSE
SMAP 0:0960.101  0:4210,147 04340.138  0:1040.142  0:4330.144
SMAP 1 km 0:097.0.094  04310.156  0-464-0.161  0:1080.134  0:1280.149

Predicted 1 km  0:0670.093 04190163 04140091  01060.128  0-1480.131
Predicted 250 m  0:0650.092 0170163  01060.104  0:4080.133  0:1130.137

R

SMAP 030046 037061  -047-041  0:66-0.15 0.18
SMAP 1 km 0:02043 043040  -065-043  6:60-003 042009
Predicted 1 km 0470.50 654021 044042  -00H0.04 022025
Predicted 250 m  6:520.55  0:580.14 -0.01 062003 6:200.16
N

SMAP 482680 4622556 4391550 3672530 46269316
SMAP 1 km 4342680 4072556 2401550 3742530 14559316
Predicted 1 km 4972680 4842556 5481550 4242530 195069316

Predicted 250 m 4052788 2882497 4091554 3082460 44329299

20



Table 6. A collection of downscaled soil moisture data sets in 1 km spatial resolution, with reported accuracies. The uRMSE values have the unit

gobal  SL-SARand SMAP 0056 - 070 RMSEE[00430.1621:R € [033,061] Meyeretal (2022)
regional! SMAP_ 0057 = = notforboreal forest Raoetal, (2022)

2 Lower Mekong River Basin

~Africa

“China_
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Figure 1. Locations of the chosen training, test, and validation data sites. Left: Northern Finland study area in a broader context (blue squared

area). Middle: Location of the chosen model training (black circles) and test (red circles) in situ sites. Right: Location of the chosen model

validation in situ sites. Black stars indicate forest sites and red circles indicate other sites (mosaic, shrub, sparse).
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NDVI NDVI
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Figure 2. The SHapley Additive exPlanations (SHAP) values for the constructed gradient boosting model. Left: the mean SHAP values for

each predictor. Right: More detailed view of the effect of different feature values on predictions.
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Figure 3. Scatter plots of predicted training and test set soil moisture values from years 2019-2023. Left: scatter plot of training data set.
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Figure 4. Exemplary time series of test sites for the year 2623-2020. Predicted soil moisture values in 1 km and 250 m resolutions are from

a developed gradient boosting model. In test site C, one in situ site (MET0010) locates in different pixel in 250 m resolution. Therefore, we

added an extra Test site D, which includes the in situ site MET0010.
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15 Jul 2023 03 Sep 2023
SMAP SMAP

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 5. Exemplary maps show SMAP soil moisture for two dates, along with predicted soil moisture at spatial resolutions of 1 km and 250
m. Missing values due to the missing values in inputs and water bodies are indicated wwith-in white. Even though developed model is just for

forested areas, all pixels with data in these maps are shown for clarity.
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15 Jul 2023 03 Sep 2023
SMAP SMAP

Figure 6. Exemplary maps show SMAP soil moisture for two dates, along with predicted soil moisture at spatial resolutions of 1 km and 250
for a smaller area located around Lake Pallas (N68.033°, E24.197°). Missing values due to the water bodies are indicated with-in white and
other land uses than forest are indicated with-in grey. The land use mask is based on CORINE land use classification in 100 m resolution.

Pixel is assumed to be forest if the forest class fraction is above 50 %.
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Figure 7. RMSE, BRMSEURMSE, and R values between in situ values from Alaska validation data set and different soil moisture data sets
(SMAP in 936 km resolution, SMAP in 1 km resolution, predicted values using 1 km resolution data, and 250 m resolution data) shown as
violin plots. The data is from the annual time period between 1 May 264+9-and 15 Oct2649;, covering varying number of years depending on
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Figure 8. Comparisons between in situ values from Alaska sites (feurfive forested sites) and different soil moisture data sets (SMAP in

936 km resolution, SMAP in 1 km resolution, predicted values using 1 km resolution data, and 250 m resolution data). The data is from the

annual time period between May-1 2649-May and Oetober-15 Oct, 2649-covering varying number of years depending on the in situ site.
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Figure 9. Exemplary time series of soil moisture for two Alaska sites located in forested areas. Left: AniakNenana, right: Gulkana River.
Black indicates in situ soil moisture and grey, turquoise, red, and blue satellite-based soil moisture data. The curtain in the two bottom rows
indicates the model uncertainty (uncertainty 6-++9-0.080 m®/m® added and subtstracted-subtracted from the predicted values). AH-data-are
Data for Nenana is from the-year26+9-years 2018-2021, and for Gulkana River from years 2019-2022.
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Figure 10. Close-up from the exemplary time series for two Alaska sites located in forested areas. Left: Nenana right: Gulkana River. Black

indicates in situ soil moisture and grey, turquoise, red, and blue satellite-based soil moisture data. The curtain in the two bottom rows indicates
the model uncertainty (uncertainty 0.080 m® /m® added and subtracted from the predicted values). Data are from the year 2019.
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Table Al. In situ sites for training and testing the soil moisture model, located in Northern Finland. Land cover information is from CORINE land cover

Name Number of s,

Training set

10A0002-DIS0002 =N
10A0003DIS0004. 72
10A0067-DIS0005 21
KAIO001 3
KAI0002% 2
LENO0001 2
F0SAA0001 3
SAA0002 2
SAA0003 2

DIS0001" 3
DIS006210A0002° 31
DISGQG%IOAMWOVOV(@"'Z 28
DIS600410A0007 2
DIS606SMET0010** 1
DIS0003° 6:5518

=3yKAI0002 has 3 spots, but one of them had abnormally low
b KA16662-has-3-TOA0003 has 8 spots, but ene-two of them had abnormally low soil moisture values and was-were therefore removed. ).

! Test site A.
2 Test site B.
 Test site C.

* Test site D in 250 m resolution.
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Table A2. In situ sites for model validation, sites located in Alaska. Data are from three—four different networks, SCAN
(Schaefer et al. (2007)), SNOTEL (Leavesley et al. (2008), Leavesley (2010)), USCRN (Bell et al. (2013)), and NEON

National Ecological Observatory Network (2025)). Land cover information for SCAN, SNOTEL, and USRN sites is from ESA CCI Land
Cover (ESA (2017)), and for NEON, the land cover information is from NLCD (https://www.mrlc.gov/).

Name Location
Aniak N61.58, W159.58
Eagle Summit N65.49, W145.41
Granite Creek N63.94, W145.40
Gulkana River N62.41, W145.38
Little Chena Ridge  N65.12, W146.73
Monahan Flat N63.31, W147.65
Monument Creek N65.08, W145.87
Mt. Ryan N65.25, W146.15
Munson Ridge N64.85, W146.21
Nenana N64.68, W148.92
Summit Creek N60.62, W149.53
Susitna Valley High N62.13, W150.04
Fokesitna-Vatey-Tok N62:63-WH56:78-N6!
Upper None Creek N65.37, W146.59
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