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Abstract. A novel metric for rainfall-runoff model calibration and performance assessment is proposed. By integrating 

entropy and mutual information concepts as well as uncertainty quantification through BLUECAT (likelihood-free 10 

approach), RUMI (Ratio of Uncertainty to Mutual Information) offers a robust framework for quantifying the shared 

information between observed and simulated stream flows. RUMI’s capabilities to calibrate rainfall-runoff models is 

demonstrated using the GR4J rainfall-runoff model over 99 catchments from various macroclimatic zones, ensuring a 

comprehensive evaluation. Four additional performance metrics and 50 hydrological signatures were also used for 

performance assessment. Key findings indicate that RUMI-based simulations provide more consistent and reliable results 15 

compared to the traditional Kling-Gupta Efficiency (KGE), with improved performance across multiple metrics and reduced 

variability. Additionally, RUMI includes uncertainty quantification as a core computation step, offering a more holistic view 

of model performance. This study highlights the potential of RUMI to enhance hydrological modelling through better 

performance metrics and uncertainty assessment, contributing to more accurate and reliable hydrological predictions. 

1 Introduction 20 

1.1 Motivation 

Rainfall-runoff models are valuable tools for studying catchment responses to different hydrometeorological inputs and 

variations in catchment characteristics. Rainfall-runoff modelling considers various modelling choices that can significantly 

affect modelling results (see, e.g., Alexander et al., 2023; Knoben et al., 2019; Melsen et al., 2019; Mendoza et al., 2016; 

Thirel et al., 2024; Trotter et al., 2022). Among these, it is worth mentioning the model structure, spatial and temporal 25 

discretisation, input data, and calibration strategies. The latter refers not only to the selection period for warm-up, calibration, 

and validation, but also to one or more hydrological variable(s) considered for calibration purposes. The adopted objective 

function, which quantifies the similarity between observations and simulations, is also a critical step. Previous studies have 

highlighted the need for particular objective functions to reproduce case-specific parts of the streamflow time series (see, 

e.g., Acuña and Pizarro, 2023; Garcia et al., 2017; Mizukami et al., 2019). For instance, if the modeller is intended to 30 
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reproduce high flows (without caring too much about low flows), specific objective functions for high flows are 

recommended (Hundecha and Bárdossy, 2004; Mizukami et al., 2019). The same can be said for low or middle flows 

(Garcia et al., 2017). 

The Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE, Gupta et al., 2009) are 

two widely used objective functions for calibration purposes in rainfall-runoff modelling. Despite their popularity, 35 

alternatives are available in the literature (see, e.g., without intending to provide a comprehensive list, Kling et al., 2012; 

Koutsoyiannis, 2025; Onyutha, 2022; Pechlivanidis et al., 2014; Pizarro and Jorquera, 2024; Pool et al., 2018; Tang et al., 

2021; Yilmaz et al., 2008). The reader is also referred to the following studies: Bai et al., 2021; Barber et al., 2020; Clark et 

al., 2021; Jackson et al., 2019; Lamontagne et al., 2020; Lin et al., 2017; Liu, 2020; Melsen et al., n.d.; Pushpalatha et al., 

2012; Vrugt and de Oliveira, 2022; Ye et al., 2021. However, and to the best of our knowledge, only a small number of 40 

objective functions consider uncertainty quantification explicitly as a core step in their computation (even though hydrology 

has witnessed a growing emphasis on uncertainty quantification, driven by the need to enhance our understanding of 

catchments and to provide decision-makers with accurate model predictions). Advancements in the direction of proposing a 

novel and easy-to-use objective function that considers uncertainty quantification in its formulation is the primary goal of 

this paper. 45 

1.2 Uncertainty quantification methods 

Various methodologies are available aimed at better treating uncertainty, each differing in underlying assumptions, 

mathematical rigour, and the treatment of error sources (see, e.g., Beven, 2018; Blazkova and Beven, 2002, 2004; 

Krzysztofowicz, 2002). Among these approaches (see Gupta and Govindaraju 2023 for a recent review), we can mention the 

additive Gaussian and generalised-Gaussian process, the inference in the spectral domain, the time-varying model 50 

parameters, and multi-model ensemble methods. Additionally, two philosophies for uncertainty analysis are widely 

recognised, following formal and informal Bayesian methods (Kennedy and O’Hagan, 2001; Kuczera et al., 2006). 

Formal Bayesian methods offer robust frameworks for uncertainty estimation, but they come with their own challenges. 

Identifying a suitable likelihood function for hydrological models involves careful assumptions that must be transparent and 

understandable to end users (Beven, 2024; Vrugt et al., 2022). Statistical analysis of model errors and likelihood-free 55 

approaches have also been proposed. For example, Montanari and Koutsoyiannis (2012) proposed converting deterministic 

models into stochastic predictors by fitting model errors with meta-Gaussian probability distributions. Similarly, Sikorska, 

Montanari, and Koutsoyiannis (2015) proposed the nearest neighbouring method to estimate the conditional probability 

distribution of the error. More recently, Koutsoyiannis and Montanari (2022) introduced a simple method to simulate 

stochastic runoff responses called Brisk Local Uncertainty Estimator for Hydrological Simulations and Predictions 60 

(BLUECAT). BLUECAT is a likelihood-free approach as relies on data only. BLUECAT has recently been applied coupled 

with climate extrapolations (Koutsoyiannis and Montanari 2022), rainfall-runoff modelling in a variety of different 
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hydroclimatic conditions (Jorquera and Pizarro, 2023), and comparisons with machine-learning methods (Auer et al., 2024; 

Rozos et al., 2022). 

Informal Bayesian methods are more flexible, but they lack statistical rigour. A notable example of a relatively simple 65 

approach is the Generalised Likelihood Uncertainty Estimation (GLUE) method introduced by Beven and Binley (1992). 

GLUE operates within the framework of Monte Carlo analysis coupled with Bayesian or fuzzy uncertainty estimation and 

propagation. Since its introduction, GLUE has seen widespread application across various fields, including rainfall-runoff 

modelling (among others). Its popularity is mainly due to its conceptual simplicity and ease of implementation. It can 

account for all causes of uncertainty, either explicitly or implicitly, and allows for evaluating multiple competing modelling 70 

approaches, embracing the concept of equifinality (Beven, 1993). However, GLUE has faced criticism in terms of the 

subjective decisions required in its application and how these affect prediction limits (informal likelihood function, lack of 

maximum likelihood parameter estimation, and omission of explicit model error consideration). This subjectivity might lead 

to not being formally Bayesian (for that reason, GLUE includes the term "generalised" in its name). Proponents of GLUE 

argue that it is a practical methodology for assessing uncertainty in non-ideal cases (Beven, 2006), while critics advocate for 75 

coherent probabilistic approaches. This ongoing debate underscores the need to establish common ground between these 

perspectives. Under various conditions, both Bayesian and informal Bayesian methods can yield similar estimates of 

predictive uncertainty. Building on previous work (see, e.g., Blasone et al. 2008), researchers have compared GLUE with 

formal Bayesian approaches. In this regard, both formal Bayesian approaches as well as GLUE can be used with advanced 

Monte Carlo Markov Chain (MCMC) schemes such as the Differential Evolution Adaptive Metropolis (DREAM, Vrugt et 80 

al. 2008). It is important to note that defining likelihood functions and searching the solution space during calibration are two 

independent issues. One way to get around these problems relies on the limits of acceptability which are typically used (but 

not mandatory) with GLUE (see, e.g., Beven et al., 2024; Beven and Lane, 2022; Freer et al., 2004; Page et al., 2023; Vrugt 

and Beven, 2018), involving more thoughtful decisions about the data (even though still with subjectivity). Additionally, 

studies have addressed these questions by assessing the uncertainty in synthetic river flow data using GLUE (see, e.g., 85 

Montanari 2005) and introducing open-source software packages such as  the CREDIBLE uncertainty estimation toolbox 

(CURE, Page et al. (2023)), coded in Matlab (https://www.lancaster.ac.uk/lec/sites/qnfm/credible/default.htm, last access: 

03/12/2024). CURE includes several methods, among them the Forward Uncertainty Estimation; GLUE; and, Bayesian 

Statistical Methods. 

In addition to these methods, information theory offers valuable tools for quantifying information in hydrological models. 90 

Shannon's (1948) seminal work on information theory introduced measures such as Shannon entropy, which quantifies the 

expected surprise (or information) in a sample from a distribution of states. Shannon entropy can be extended to joint 

distributions of multiple variables, including conditional dependencies. In hydrology, Shannon entropy and mutual 

information have been used to assess the uncertainty in discharge predictions, as demonstrated by Amorocho and Espildora 

(1973) and Chapman (1986). More recently, Weijs, Schoups, and van de Giesen (2010); Weijs, Van Nooijen, and Van De 95 

Giesen (2010); Gong et al. (2013, 2014); Pechlivanidis et al. (2014); Pechlivanidis et al. (2016); Ruddell, Drewry, and 

https://www.lancaster.ac.uk/lec/sites/qnfm/credible/default.htm
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Nearing (2019) used information-theoretic objective functions for model evaluation. Despite the challenges associated with 

accounting for uncertainties and statistical dependencies in time series data, information-theoretic objective functions have 

proven valuable for streamflow simulations, complementing traditional measures such as the Nash-Sutcliffe efficiency 

(NSE; Nash and Sutcliffe 1970) and the Kling-Gupta efficiency (KGE; Gupta et al. 2009; Kling, Fuchs, and Paulin 2012). 100 

1.3 Manuscript’s goals 

In this work, we study the combination of likelihood-free (BLUECAT) and information theory approaches for rainfall-runoff 

modelling over 99 catchments having different hydroclimatic contexts. The latter with the intention to quantify and reduce 

uncertainty in hydrological predictions. The Ratio of Uncertainty to Mutual Information (RUMI) is proposed as a 

dimensionless metric to be adopted as objective function for calibration purposes. The target aligns with the twentieth of the 105 

twenty-three unsolved problems in hydrology (20. How can we disentangle and reduce model structural/parameter/input 

uncertainty in hydrological prediction?, Blöschl et al. 2019). In detail, the following questions are herein addressed: 

a) How can the calibration of deterministic model parameters be improved by using a stochastic formulation of the 

deterministic model? 

b) How can uncertainty resulting from the final stochastic model be incorporated into the calibration process of the 110 

deterministic model? 

This paper is organised as follows: Section 2 presents the used database (catchments properties and data availability), 

rainfall-runoff model description, and calibration strategies. Section 3 shows the calibration’s and validation’s results of 

RUMI-based simulations (as well as KGE-based ones). Daily runoff simulations as well as hydrological signatures' are 

considered. Strengths and limitations are discussed in Section 4, and conclusions are at the end. 115 

2 Methods 

2.1 Data 

99 catchments were selected from the CAMELS-CL database (Alvarez-Garreton et al., 2018) to ensure that only catchments 

with near-natural hydrological regimes were included (see Figure 1 for location and chosen catchment characteristics. Five 

macroclimatic zones are covered). The latter was achieved through eight specific criteria: first, the daily discharge time 120 

series, though possibly non-consecutive, had to have less than 25% missing data for the period 1990–2018. Additionally, 

catchments with large dams were excluded (big_dam = 0). Additionally, catchments with more than 10% of discharge 

allocated to consumptive uses were excluded (i.e., interv_degree < 0.1 to be considered). Catchments with glacier cover 

higher than 5% were also excluded (i.e., lc_glacier < 5% to be considered). Furthermore, the selected catchments had less 

than 5% of their area classified as urban (imp_frac < 5%), and irrigation abstractions did not exceed 20% (crop_frac < 20%). 125 

Areas with forest plantations covering more than 20% of the catchment area were also excluded (fp_frac < 20%). Finally, 

catchments showing signs of artificial regulation in their hydrographs were removed. Worth mentioning is that after each 
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criterion mentioned above there is a parenthesis which followed the CAMELS-CL nomenclature. For instance, glaciar cover 

is catalogued as “lc_glacier” and large dams as “big_dam”. 

The chosen catchments have diverse characteristics, reflecting significant variability. For instance, the smallest catchment 130 

has a size of 35 km2, whereas the largest one has a size of 11,137 km2 (median catchment size is 672 km²). In terms of mean 

annual precipitation, it ranges from 94 to 3,660 mm/year (median value of 1,393 mm/year). The aridity index also covers a 

wide spectrum of values, ranging from 0.3 (Southern Chile) to 31.6 (Northern Chile). Its median is 0.69. In terms of mean 

elevations, they range between 118 (western, Pacific Ocean) and 4,270 (eastern, Andes Mountains) meters above sea level 

(m.a.s.l.). They have a median elevation of 1,052 m.a.s.l.. In terms of seasonality, winter rainfall predominates with a few 135 

exceptions in Northern catchments where precipitation is concentrated during the summer (Garreaud, 2009). Additionally, 

precipitation usually increases from north to south while temperatures decrease (Sarricolea et al., 2017). Daily precipitation 

and potential evapotranspiration data from the CAMELS-CL database were used, with the primary output being simulated 

daily streamflow. The analysis focuses on the period from 1990 to 2018, with a warm-up phase from 1990 to 1992, a 

calibration phase from 1992 to 2005, and a validation phase from 2005 to 2018.  140 
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Figure 1: Locations and characteristics of analysed catchments. Coloured dots represent the catchment outlet locations. Five zones 

are explicitly presented on the right to highlight differences of catchment climatic characteristics. From a) to c), mean annual 
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precipitation, runoff, and potential evapotranspiration (all of them in [mm]). d) Mean annual temperature in [º C], e) Aridity 145 
index (dimensionless), and, f) Catchment outlet elevations in [m].  

2.2 Rainfall-Runoff Model 

The Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT – Knoben, Freer, Fowler, et al., 2019; Trotter 

et al., 2022) was selected due to its open-source feature and modular structure. Implemented in MATLAB, MARRMoT 

offers a suite of 47 lumped models for simulating rainfall-runoff processes.  150 

MARRMoT version 2.1.2, with the GR4J model, was employed for this study. The GR4J model has four parameters and two 

storage components. Its primary purpose is to represent processes such as vegetation interception, time delays within the 

catchment, and water exchange with neighbouring catchments (for detailed information of the GR4J model, see Perrin et al., 

2003; and the official website of the developers: https://webgr.inrae.fr/eng/tools/hydrological-models). MARRMoT’s 

nomenclature for rainfall-runoff models is “m_XX_YY_ZZp_KKs”, where XX is the number of the model within 155 

MARRMoT, YY is the model name, ZZ is the number of parameters, and KK is the number of storages. As a consequence, 

the GR4J model following MARRMoT nomenclature is: “m_07_gr4j_4p_2s”. For a comprehensive description, readers are 

directed to the MARRMoT user manual, available at: 

https://github.com/wknoben/MARRMoT/blob/master/MARRMoT/User%20manual/v2.-%20User%20manual%20-

%20Appendices.pdf  (last accessed: 03/12/2024). 160 

2.3 Ratio of Uncertainty to Mutual Information (RUMI) objective function  

The primary goal of this paper is to introduce a new objective function that considers uncertainty quantification in its 

formulation and, therefore, it is expected to minimise this quantified uncertainty in calibration. As a consequence, the Ratio 

of Uncertainty to Mutual Information (RUMI) is proposed (see Eq. 4 for the mathematical expression and Figure 3 for 

RUMI computation flowchart). RUMI relies on BLUECAT and mutual information (entropy-based computation) which are 165 

briefly introduced as follows.  

Koutsoyiannis and Montanari (2022) proposed BLUECAT with the intention to transform a deterministic prediction model 

into a stochastic one. BLUECAT’s predecessor was introduced by Montanari and Koutsoyiannis (2012). BLUECAT 

transforms deterministic simulations into stochastic simulations (with confidence bands). Unlike deterministic predictions, 

the confidence band represents a range of possible outcomes, allowing to consider the stochastic result as a representative 170 

value of the sample (such as the mean or median). It is worth mentioning that uncertainty can be quantified as well. We use 

BLUECAT to transform deterministic rainfall-runoff simulations to stochastic ones to consider uncertainty quantification in 

model calibration. 

BLUECAT’s flowchart starts with a deterministic simulation and identifies the simulated variable (streamflow in our case) at 

each time point (see Figure 2 for a conceptual illustration of BLUECAT methodology). For each point, a sample is 175 

established comprising neighbouring simulated river flows (in magnitude), defined by 𝑚! flows smaller and 𝑚" flows larger 

https://webgr.inrae.fr/eng/tools/hydrological-models
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than the point's discharge, both with the smallest differences. The observed data corresponding to these simulated flows 

forms a sample of streamflow values. The latter is happening at each time point. An empirical distribution function of this 

sample is then used to estimate uncertainty for a given confidence level, using the mean or median as representative results 

of the stochastic simulation. Alternative methods, such as the ones using a theoretical probability distribution can also 180 

manage the sample (e.g., Pareto-Burr-Feller with knowable moments).  

 
Figure 2: Conceptual illustration of BLUECAT methodology. Blue colour represents observed (streamflow) data, whereas red and 

pink colours are deterministic and stochastic predictions respectively. 

 185 

In this work, BLUECAT is used with empirical computations with the intention to avoid any additional assumption. It is 

worth mentioning that BLUECAT allows uncertainty quantification through an uncertainty measure. Montanari and 

Koutsoyiannis (2025) proposed 4 measures basing on the distance between the confidence bands, for a given significance 

level, and the mean value of the prediction. BLUECAT was originally implemented in R (coupled with the HyMod rainfall-

runoff model, Koutsoyiannis and Montanari 2022) and recently, Montanari and Koutsoyiannis (2025) made available 190 

BLUECAT with multimodel usage in R and Python. Codes in Matlab are also available (see Jorquera and Pizarro 2023). 

In information theory, the entropy of a random variable is a measure of its uncertainty or the measure of the information 

amount required, on average, to describe the random variable itself (Thomas and Joy, 2006). The amount of information one 

random variable contains about another random variable is usually defined as mutual information (MI). MI is, indeed, the 
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reduction of one random variable uncertainty due to the knowledge of the other. MI can be defined as a function of marginal 195 

&𝐻(𝑌*+ and conditional entropies (𝐻(𝑌/𝑋)*: 

MI(𝑌, 𝑋) = 𝐻(𝑌* − 𝐻(𝑌/𝑋), (1) 

where 𝐻(𝑌* = −𝐸2log(𝑝(𝑌)*7, 𝐻(𝑌/𝑋* = −𝐸2log(𝑝(𝑌/𝑋)*7, 𝑝(𝛼) is the probability mass function of a random variable 

𝛼 (or the probability density if the variable is of continuous type), and 𝐸[ ] denotes expectation. Note that random variables 

are underlined, following the Dutch convention (Hemelrijk, 1966). 

Additionally, the normalised mutual information (also called as uncertainty coefficient, entropy coefficient, or Theil’s U) can 200 

be computed as: 

𝑈(𝑌, 𝑋* = #$%&,()
*%&)

= *%&)+*(&/()
*%&)

. (2) 

Taking 𝑌 as the observed streamflow &𝑄/01+ and 𝑋 as the simulated one with BLUECAT (𝑄123, given by the mean value of 

the distribution of the predictand), 𝑈(𝑌, 𝑋* = 𝑈 &𝑄/01, 𝑄123+ represents the normalised amount of information that 𝑄123 

contains about 𝑄/01. Note that 𝑄123 can also be estimated by the median value of the distribution of the predictand (or 

another quantile). The decision of using the mean value relies on Jorquera and Pizarro (2023) results that showed higher 205 

KGE values using the mean than the median value for all analysed catchments. Additionally, and with the intention to avoid 

any additional assumption, marginal and conditional entropies are computed empirically with bins. 

Furthermore, an uncertainty measure (in line with Jorquera and Pizarro (2023) and Montanari and Koutsoyiannis (2025) 

uncertainty quantification proposal) of the stochastic model computed with BLUECAT can be defined as the width of the 

confidence limits divided by its mean value and averaged through the whole simulation period, i.e.: 210 

𝑢 = ∑ !
4
?5!,#+5!,$
5!,%&'

?4
67! , (3) 

where 𝑄6,8 − 𝑄6,9 are the upper and lower confidence limits for the streamflow stochastic prediction at time step 𝜏, 𝑄6,123 is 

its mean value at time step 𝜏, and 𝑛 is the total number of time steps. 

Notice that both 𝑢 and 𝑈&𝑄/01, 𝑄123+ are dimensionless quantities and, in ideal conditions, it is desirable that 𝑢 is minimised 

(i.e., low uncertainty), whereas 𝑈&𝑄/01, 𝑄123+ is maximised (i.e., high mutual information between simulated and observed 

stream flows). Therefore, the ratio between 𝑢 and 𝑈 &𝑄/01, 𝑄123+ gives a measure of the simulation performance. It is worth 215 

to mention that the advantage of taking this ratio does not only rely on a mathematical desire (i.e., the ratio should be 

minimised in calibration) but on the fact that it is possible to have narrow confidence limits (i.e., low uncertainty) with a bad 

performance between the stochastic model predictand and observed values (i.e., low mutual information. See Fig. 3a). 

Additionally, it is also possible to have high mutual information (stochastic model predictand close to observed values) but 
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with high uncertainty as shown in Fig. 3b. Therefore, taking the ratio is twofold: i) mathematical desire (i.e., optimisation); 220 

and, ii) deductive conceptual reasoning. As a consequence, and with the intention to provide a metric ranging between 0 and 

1, the Ratio of Uncertainty to Mutual Information (RUMI) is presented:  

RUMI = !
!:;

= !
!: #

()*+,%,*%&'-

. (4) 

Notice that RUMI follows common-efficiency notions (i.e., perfect simulation means the highest metric value). Figure 3d 

shows the core steps of RUMI computation, whereas codes for RUMI are also available within this manuscript in Matlab and 

R (see Code and Results Availability statement). 225 

 
Figure 3: Illustration of possible modelling scenarios: a) low uncertainty and low mutual information (i.e., low RUMI value); b) 

high uncertainty and high mutual information (i.e., low RUMI value); and, c) low uncertainty and high mutual information (i.e., 

high RUMI value). d) Flowchart of RUMI computation. Marginal and conditional entropies are computed empirically with bins. 

The filled cyan band is the area between the 97.5 and 2.5 percentiles of simulation estimated by BLUECAT. 230 

2.4 Calibration and validation strategies 

The GR4J rainfall-runoff model calibration is conducted using the Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) algorithm (Hansen et al., 2003; Hansen and Ostermeier, 1996). Catchments were calibrated with two different objective 
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functions: KGE and RUMI. KGE (Kling et al., 2012) – computed in this study with Eq. (5) – is the modified version of the 

KGE proposed initially by Gupta et al. (2009): 235 

KGE = 1 − '(!!
!"
− 1)

"
+ (($!/!!)($"/!")

− 1)
"
+ (𝜌 − 1)", (5) 

where, 𝜇< is the mean value of deterministic streamflow simulations; 𝜇= is the mean value of streamflow observations; 𝜎< is 

the standard deviation of deterministic streamflow simulations; 𝜎= is the standard deviation of streamflow observations; and, 

𝜌 is the Pearson correlation coefficient between observed and deterministic simulation of streamflow. 

Four additional metrics were used to assess performance of results: i) Nash-Sutcliffe Efficiency (NSE); ii) KGE knowable 

moments (KGEkm, Pizarro and Jorquera 2024); iii) Normalised Root Mean Squared Error (NRMSE); and, iv) Mean 240 

Absolute Relative Error (MARE). Equations for NSE, KGEkm, NRMSE, and MARE are presented from Eq. (6) to Eq. (9): 

NSE = 1 − ∑ (?.+@.	)/	
0
.12
∑ %?.+𝜇𝑜)
0
.12

/, (6) 

KGEkm = 1 −)*!23
!24

− 1+
"
+ -

#$!/3/!23&

#$!/4/!24&
− 1.

"

+ (𝜌 − 1)", (7) 

NRMSE =
B20%∑ (@.+?.)/0

.12 )

max(𝑂)−min(𝑂) , (8) 

MARE =
∑ C

56.78.9
8.

C0
.12

4
, 

(9) 

where, K'( and K') are the first knowable moment of simulated and observed streamflow time series, and K"< and K"= are 

dispersion relying on the second knowable moments of simulated and observed streamflow time series. Notice that the 

square operator in K"  is not necessary in Eq. (7) but intentionally used to be in line with classical statistics and KGE 

formulation (see Eq. 5). 𝑆 and 𝑂 mean simulated and observed streamflow time series, respectively. 𝑛 is the length of the 245 

analysed period (at daily scale). RMSE, NRMSE and MARE have 0 at the perfect ideal value, whereas their values range 

from 0 to positive infinite. NSE and KGEkm have a range from minus infinite to 1, being 1 the ideal value. 

Additionally, and with a particular focus on different runoff characteristics, 50 hydrological signatures were computed. 

Observed runoff, simulations with model calibrated with KGE, and simulations with model calibrated with RUMI were 

considered. Hydrological signatures were computed with the Toolbox for Streamflow Signatures in Hydrology (TOSSH, 250 

Gnann et al. (2021)). Table 1 shows the 50 computed signatures. 
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Table 1: 50 hydrological signatures computed with the Toolbox for Streamflow Signatures in Hydrology (TOSSH). The computed 

hydrological signatures follow TOSSH nomenclature (e.g., TotalRR is the total runoff ratio). A description of the signatures is also 255 
included. 

Nº 

Hydrological signature 

(using TOSSH 

nomenclature) 

Description 

 
1 Q_mean Mean streamflow  

2 TotalRR Total runoff ratio  

3 QP_elasticity Streamflow-precipitation elasticity  

4 FDC_slope Slope of the flow duration curve  

5 BFI Baseflow index  

6 HFD_mean Half flow date  

7 Q5 5th streamflow percentile  

8 Q95 95th streamflow percentile  

9 high_Q_freq High flow frequency  

10 high_Q_dur High flow duration  

11 low_Q_freq Low flow frequency  

12 low_Q_dur Low flow duration  

13 AC1 Lag-1 autocorrelation  

14 AC1_low Lag-1 autocorrelation for low flow period  

15 RLD Rising limb density  

16 PeakDistribution Slope of distribution of peaks  

17 PeakDistribution_low Slope of distribution of peaks for low flow period  

18 IE_effect Infiltration excess importance  

19 SE_effect Saturation excess importance  

20 IE_thresh_signif 
Infiltration excess threshold significance (in a plot 

of quickflow volume vs. maximum intensity) 
 

21 SE_thresh_signif 
Saturation excess threshold significance (in a plot of 

quickflow volume vs. total precipitation) 
 

22 IE_thresh 
Infiltration excess threshold location (in a plot of 

quickflow volume vs. maximum intensity) 
 

23 SE_thresh 
Saturation excess threshold location (in a plot of 

quickflow volume vs. total precipitation) 
 

24 SE_slope 

Saturation excess threshold above-threshold slope 

(in a plot of quickflow volume vs. total 

precipitation) 
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25 Storage_thresh_signif 

Storage/saturation excess threshold significance (in 

a plot of quickflow volume vs. antecedent 

precipitation index + total precipitation) 

 

26 Storage_thresh 

Storage/saturation excess threshold location (in a 

plot of quickflow volume vs. antecedent 

precipitation index + total precipitation) 

 

27 min_Qf_perc Minimum quickflow as a percentage of precipitation  

28 EventRR Event runoff ratio  

29 RR_Seasonality Runoff ratio seasonality  

30 Recession_a_Seasonality Seasonal variations in recession parameters  

31 AverageStorage 
Average storage from average baseflow and storage-

discharge relationship 
 

32 MRC_num_segments 
Number of different segments in master recession 

curve (MRC) 
 

33 BaseflowRecessionK Exponential recession constant  

34 First_Recession_Slope 
Steep section of MRC = storage that is quickly 

depleted 
 

35 Spearmans_rho 
Non-uniqueness in the storage-discharge 

relationship 
 

36 EventRR_TotalRR_ratio Ratio between event and total runoff ratio  

37 VariabilityIndex Variability index of flow  

38 BaseflowMagnitude 
Difference between maximum and minimum of 

annual baseflow regime 
 

39 FlashinessIndex Richards-Baker flashiness idex  

40 HFI_mean Half flow interval  

41 Q_CoV Coefficient of variation  

42 Q_mean_monthly Mean monthly streamflow  

43 Q_7_day_max 7-day maximum streamflow  

44 Q_7_day_min 7-day minimum streamflow  

45 Q_skew Skewness of streamflow  

46 Q_var Variance of streamflow  

47 RecessionK_part 
Recession constant of early/late (exponential) 

recessions 
 

48 ResponseTime Catchment response time  

49 SnowStorage 
Snow storage derived from cumulative P-Q regime 

curve 
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50 StorageFromBaseflow 
Average storage from average baseflow and storage-

discharge relationship 
 

3 Results 

Fig. 4 shows a graphical example of RUMI-based hydrological modelling of two of the catchments in calibration (Fig. 4a, 

catchment number: 8123001) and validation (Fig. 4b, catchment number: 9437002) over the years 1996 and 2016, 

respectively. Additionally, it shows observed and simulated stream flows, which were calibrated with KGE (red continuous 260 

line) and RUMI (blue continuous line is the mean of the stochastic simulation). 97.5 and 2.5 percentiles (computed with 

BLUECAT and RUMI) are shown with a violet band. Fig. 4a.2 and Fig. 4b.2 show observed and simulated stream flows 

over the complete period of analysis (performance of KGE-based simulations was 0.89 (0.80) and 0.95 (0.91) in calibration 

(validation) as well as the performance of RUMI-based simulations was 0.27 (0.20) and 0.46 (0.48) in calibration 

(validation), respectively). Worth to mention is that observed streamflow was between the 97.5 and 2.5 percentiles (i.e., the 265 

violet band) all the time except 4.93% and 0.19% of the time, presenting higher and lower observed streamflow, respectively 

(see, e.g., one event in June 1996 in Fig. 3a and one event in July 2016 in Fig. 3b). 

 
Figure 4: Observed and simulated stream flows for the hydrological year 1996-1997 (a) and 2016-2017 (b). a.1) Catchment ID: 

8123001 in calibration; b.1) Catchment ID: 9437002 in validation. Black: observed streamflow; Red: simulated by the 270 
deterministic model calibrated with KGE; Blue: simulated with the model calibrated with RUMI (mean stochastic simulation). 
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The filled violet band is the area between the 97.5 and 2.5 percentiles of simulation estimated by BLUECAT. The dashed line 

represents the perfect agreement between observed and simulated streamflow. 
 

In terms of other performance metrics, Fig. 5 shows NSE (a.1, b.1), KGEkm (a.2, b.2), NRMSE (a.3, b.3), and MARE (a.4, 275 

b.4) in calibration (a.1, a.2, a.3, a.4) and validation (b.1, b.2, b.3, b.4). Red markers are outliers, and grey dots represent the 

mean values (as a function of RUMI- and KGE-based simulations) which are linked with a grey line. 

 
Figure 5: Performance metrics in calibration (a.1, a.2, a.3, a.4) and validation (b.1, b.2, b.3, b.4). Red markers denote outliers. 

Grey dots represent the mean values computed with RUMI and KGE, which are linked to grey lines. Note that the y-axis limits are 280 
truncated for visualisation purposes. 
 

Remarkably, RUMI-based simulations outperform KGE-based ones in calibration and validation, and for the four 

performance metrics analysed. The latter in terms of variability (e.g., the interquartile range – IQR), median of boxplots, and 

number of outliers for both calibration and validation periods. Table 2 summarises the four considered performance metrics 285 

in terms of: a) calibration and validation; b) RUMI and KGE; and, c) minimum, maximum, median, IQR, and mean values. 
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Table 2: Statistic’s summary of boxplots results (see also Fig. 5). 
  Calibration Validation 

  NSE KGEkm NRMSE MARE NSE KGEkm NRMSE MARE 

Min 
RUMI -0.59 -0.89 0.02 0.12 -14.11 -0.69 0.02 0.12 

KGE -1.80 -0.51 0.02 0.14 -299732 -616 0.02 0.15 

Max 
RUMI 0.91 0.95 0.14 7.81 0.92 0.95 0.23 5.56 

KGE 0.91 0.95 0.22 3.90 0.92 0.96 12.58 1755 

Median 
RUMI 0.63 0.79 0.04 0.38 0.53 0.71 0.04 0.44 

KGE 0.58 0.79 0.05 0.48 0.41 0.70 0.05 0.53 

IQR 
RUMI 0.43 0.27 0.03 0.36 0.56 0.34 0.04 0.41 

KGE 0.63 0.41 0.05 0.51 0.62 0.39 0.06 0.61 

Mean 
RUMI 0.57 0.72 0.05 0.59 0.34 0.67 0.06 0.71 

KGE 0.38 0.67 0.06 0.72 -3027 -5.67 0.19 18.76 

Based on Fig. 4 and Table 2, RUMI-based simulations showed more stable and consistent performance than KGE in 

calibration and validation phases. While KGE can achieve high accuracy (see, e.g., the maximum value of NSE for RUMI 290 

and KGE), it exhibits more variability and more extreme outliers (see, e.g., the minimum values of NSE: -14.11 vs -299732 

for RUMI and KGE; the mean values of NSE: 0.34 vs -3027 for RUMI and KGE; the minimum values of KGEkm: -0.69 vs 

-616 for RUMI and KGE; the maximum values of NRMSE: 0.23 vs 12.58 for RUMI and KGE; and, the maximum values of 

MARE: 5.56 vs 1755 for RUMI and KGE). The latter, particularly during validation, indicates a lack of robustness. On the 

other hand, RUMI presented lower variability, more consistent results, and the opportunity to consider the confidence 295 

intervales in calibration. 

Table 3 shows the Pearson’s correlation coefficient for the 50 computed hydrological signatures considering observed and 

simulated streamflow data (“Obs vs KGE” means the Pearson’s correlation coefficient using observed and simulated-with-

KGE stream flows to compute any hydrological signature. “Obs vs RUMI” means the Pearson’s correlation coefficient using 

observed and simulated-with-RUMI stream flows to compute any hydrological signature). On average, RUMI outperforms 300 

KGE-based simulations (average values: 0.72 vs 0.48) and minimum and maximum values (-0.07 vs -0.10 and 1.00 vs 0.96, 

respectively). RUMI-based simulations outperform KGE-based ones by 82% of the considered hydrologic signatures. Fig. 6 

shows four examples of this comparison in terms of the runoff ratio (TotalRR, Fig. 6a), streamflow-precipitation elasticity 

(QP_elasticity, Fig. 6b); 5-th flow percentile of streamflow (Q5, Fig. 6c), and 95-th flow percentile of streamflow (Q95, Fig. 

6d). Colours of the dots are related to the five different defined macroclimatic zones depicted in Fig. 1. 305 
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Table 3: 50 used hydrological signatures. Performance was assessed using Pearson's correlation coefficient. Hydrological 

signatures were computed with TOSSH. Obs vs KGE means the Pearson’s correlation coefficient using observed and simulated-

with-KGE stream flows to compute any hydrological signature. Obs vs RUMI means the Pearson’s correlation coefficient using 

observed and simulated-with-RUMI stream flows to compute any hydrological signature. The average, minimum, and maximum 310 
values were computed and added at the end of the list. 

Hydrological signature  Obs versus KGE  Obs versus RUMI  

Q_mean 0.90 1.00 

TotalRR -0.06 1.00 

QP_elasticity 0.30 0.63 

FDC_slope 0.30 0.86 

BFI 0.74 0.83 

HFD_mean 0.75 0.94 

Q5 0.96 0.99 

Q95 0.41 0.99 

high_Q_freq 0.52 0.91 

high_Q_dur 0.27 0.28 

low_Q_freq 0.56 0.95 

low_Q_dur -0.09 0.61 

AC1 0.67 0.69 

AC1_low 0.61 0.59 

RLD 0.16 0.15 

PeakDistribution 0.28 0.76 

PeakDistribution_low 0.07 0.57 

IE_effect 0.53 0.51 

SE_effect 0.68 0.67 

IE_thresh_signif 0.63 0.50 

SE_thresh_signif 0.51 0.41 

IE_thresh -0.04 0.53 

SE_thresh -0.06 0.65 

SE_slope 0.71 0.72 

Storage_thresh_signif 0.49 0.53 

Storage_thresh -0.04 0.70 

min_Qf_perc -0.02 0.63 



18 
 

EventRR 0.96 0.98 

RR_Seasonality 0.83 0.86 

Recession_a_Seasonality 0.20 0.37 

AverageStorage 0.72 0.87 

MRC_num_segments -0.10 -0.07 

BaseflowRecessionK 0.33 0.65 

First_Recession_Slope 0.34 0.40 

Spearmans_rho 0.48 0.65 

EventRR_TotalRR_ratio 0.85 0.97 

VariabilityIndex 0.06 0.91 

BaseflowMagnitude 0.95 0.97 

FlashinessIndex 0.86 0.91 

HFI_mean 0.63 0.86 

Q_CoV 0.89 0.82 

Q_mean_monthly 0.74 0.99 

Q_7_day_max 0.77 0.94 

Q_7_day_min -0.04 0.95 

Q_skew 0.45 0.58 

Q_var 0.10 0.98 

RecessionK_early 0.82 0.67 

ResponseTime 0.42 0.25 

SnowStorage 0.95 0.98 

StorageFromBaseflow 0.79 0.84 

Average 0.48 0.72 

Min -0.10 -0.07 

Max 0.96 1.00 
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Figure 6: Observed and simulated hydrological signatures for each case (a.1, b.1, c.1, d1: simulated with KGE; and, a.2, b.2, c.2, 

d.2: simulated with RUMI). a: runoff ratio (TotalRR); b: streamflow-precipitation elasticity (QP_elasticity); c: 5-th flow percentile 

of streamflow (Q5); d: 95-th flow percentile of streamflow (Q95). Colours of dots are related to the five considered macroclimatic 315 
zones. The dashed line represents the perfect agreement between observed and simulated hydrological signature. Note that the y-

axis limits for the a.1 plot are truncated for visualisation purposes (original y-axis range: [0, 30]). 

4 Strengths and limitations 

One of the main strengths of this study was the proposal of a new dimensionless metric to be used as objective function for 

rainfall-runoff model calibration. The proposed approach provides a comprehensive measure of the shared information 320 

between observed and simulated stream flows, normalises this measure for comparability, and integrates uncertainty 

quantification in the calibration process. The rescaling of the performance metric ensures intuitive interpretation (RUMI 

ranges between 0 and 1, being the latter the optimal value), aligning with standard efficiency metrics and making it easy to 

understand. This study presented a large-sample rainfall-runoff modelling experiment, analysing 99 catchments in a pseudo-

natural hydrologic regime that covers five different macroclimatic zones and, therefore, giving robustness to the analysis. 325 

The latter ensures a diverse representation of hydrological characteristics and a broad evaluation of the RUMI-based 

modelling approach. The simplicity of the approach, its capacity to quantify confidence intervals and, therefore, also 
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uncertainty quantification are significant strengths. As demonstrated by the IQR, the median of results, and outliers (see 

Table 2), simulations during validation are also seen to improve (alongside with calibration results). Also, using the 50 

hydrological signatures, the RUMI-based approach was compared considering different runoff dynamics characteristics 330 

showing improvements for most (82% of the analysed signatures showed a better correlation with observed data compared to 

KGE). RUMI-based performances rely on the combination of available information (in terms of observed quantities) and 

physically based consistency of modelled hydrological processes (BLUECAT alongside entropy-based computations and 

deterministic rainfall-runoff model). RUMI-based modelling implementation is also facilitated by the codes provided in this 

manuscript (see Code and Results availability statement), which enhances the reproducibility of the methodology. 335 

In terms of limitations – and considering that RUMI considers uncertainty quantification in its computing process – we 

emphasise the fact that other methodologies for such purposes should be testing (such as multi-model ensemble methods or 

time-varying model parameters. See Gupta and Govindaraju 2023 for a recent review in this regard). The latter with the 

intention to quantify the sensibility of RUMI as a function of those additional methodologies. Additionally, RUMI 

calculations can be computationally intensive. The method's accuracy depends on high-quality input data and length of the 340 

time series (BLUECAT assumes that the calibration dataset is extended enough to upgrade from the deterministic to the 

stochastic model). It also assumes that observed and simulated stream flows can be effectively described by these measures, 

which may not capture all dependencies and non-linearities. Finally, entropy and mutual information might be sensitive to 

outliers. 

5 Conclusions 345 

The RUMI-based hydrological modelling approach outperforms KGE-based modelling in both calibration and validation 

phases across various performance metrics. This method demonstrates lower variability and a consistent performance 

improvement. RUMI's capability to quantify uncertainty and incorporate it into the calibration process ensures more reliable 

predictions. The analysis of hydrological signatures further confirms the superiority of RUMI, with 82% of the signatures 

showing a better correlation with observed data compared to KGE. RUMI offers a valuable tool for hydrological modelling, 350 

enhancing the understanding and prediction of streamflow under different hydrological conditions. 

Possible additional research is mentioned as follows: (a) Testing the RUMI-based approach with other rainfall-runoff models 

(lumped, semi-distributed, and distributed hydrological models); (b) Testing the RUMI-based approach under other 

hydroclimatological catchment characteristics and in a higher number of catchments; (c) Testing alternative uncertainty 

quantification methods; (d) Exploring the impact of varying data quality on RUMI performance to establish guidelines for 355 

data requirements; (e) Testing with higher resolution data to reduce discretisation issues; and, (f) Exploring the applicability 

of RUMI in other disciplines such as meteorology, environmental science, and ecology where modelling and uncertainty 

quantification are critical. 
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