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Introduction 

This supporting information includes five sections that support the analysis. The S1 Key 

parameters and metrics for the proposed framework introduce the concept of model parameters 

and evaluation metrics used in this study. The S2 Assistive techniques for the proposed 

framework introduce the techniques used in this study. The S3 Seasonal dynamic catchment 

characteristics sections are used to support the 2.2 Seasonal dynamic catchment characteristics 

section in the main manuscript. The S4 Test results of the EDCC framework on the MOPEX 

dataset is used to support the 4.1 Model performance in the main manuscript. The S5 State 

variables and fluxes assessment in the study cases section is used to support the 4.2 State 

variables and fluxes section in the main manuscript. The S6 Correlation between model 

parameters is used to support the 5.1.1 Complex correlation between parameters section in the 

main manuscript. 
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S1 Key parameters and metrics for proposed framework 

Table S1. HYMOD model parameters, state variables and fluxes (Vrugt et al., 2003; 
Wagener et al., 2001) 
Label Property Range Description 

Huz Parameter 10–1500 mm 
Maximum height of the soil moisture accounting 
tank 

B Parameter 0–1.99 mm Scaled distribution function shape 

α Parameter 0–0.99 mm Quick or slow split 

Kq Parameter 0–0.99 mm Quick-flow routing tanks’ rate 

Ks Parameter 0–0.99 mm Slow-flow routing tank’s rate 

XHuz State variable mm Upper-zone soil moisture tank state height 

XCuz State variable mm Upper-zone soil moisture tank state contents 

Xq State variable mm Quick-flow tank state contents 

Xs State variable mm Slow-flow tank state contents 

AE Flux mm d−1 Actual evapotranspiration flux 

OV Flux mm d−1 Precipitation excess flux 

Qq Flux mm d−1 Quick-flow flux 

Qs Flux mm d−1 Slow-flow flux 

Qsim Flux mm d−1 Total simulated streamflow flux 

Table S2. Description of performance metrics. 
No. Metric Description 

1 NSE Sensitive to peaks and discharge dynamic 

2 LNSE Emphasizing low flows with the log of discharge 

3 RMSE RMSE sensitive to flood peaks 

4 MSE MSE sensitive to high flow 

5 MSEL MSEL sensitive to low flow 

6 MAE MAE measuring the overall discharge 

7 RMSE_Q5 RMSE in FDC Q5 very-high-segment volume 

8 RMSE_Q20 RMSE in FDC between Q5 and Q20 high-segment volume 

9 RMSE_Qmid RMSE in FDC between Q20 and Q70 mid-segment volume 

10 RMSE_Q70 RMSE in FDC between Q70 and Q95 low-segment volume 

11 RMSE_Q95 RMSE in FDC Q95 very-low-segment volume 

Note that the FDC is usually split into different segments to describe different flow characteristics of a catchment (Gupta et 
al., 2009; Cheng et al., 2012; Pfannerstill et al., 2014). The RMSE with quadratic character is usually used to evaluate poor 
model performance due to the strong sensitivity to extreme positive and negative error values. 
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S2 Assistive techniques for the proposed framework 

S2.1 Hamon potential evapotranspiration equation 

To fill in missing data and ensure data consistency, this study employs the Hamon potential 

evapotranspiration equation to calculate potential evapotranspiration. The Hamon-derived 

evaporation equation is as simple as possible. He only used two main input parameters, 

including the temperature and sunshine hours. The developed equation is applicable to both 

humid and dry climatic conditions(Mccabe et al., 2015). According to this method, the 

evaporation may be calculated as follows(Hamon, 1961; Morton, 1971): 

𝐸 ൌ 𝐵ଵሺ𝐷ሻమ10
ቀ ಳయౣ
ౣశమళయ

ቁ
     (1) 

where D is the maximum sunshine duration ratio and Tmean is the mean air temperature. The 

value of D may be estimated using the equation given below. 𝐵1, 𝐵2, and 𝐵3 are constants with 

typical values of 0.63, 2.0, and 7.5, respectively. 

𝐷 ൌ ଵ

ଽ
arccos ቀെ tanሺØሻ . tan 23.45° sin ቀି଼

ଷହ
ቁ360°ቁ   (2) 

In this equation, “ϕ” is the latitude and J represents the Julian day (Ghumman et al., 2021). 

S2.2 Maximal information coefficient (MIC) 

The MIC, as proposed by Reshef et al. (2011), is a measurement approach that doesn't rely on 

the distributional assumptions of datasets. This method captures extensive mutual information 

between variables, whether they exhibit functional or non-functional relationships. In the case 

of functional relationships, the MIC algorithm provides a score similar to the coefficient of 

determination (𝑅²) of the datasets. We analyze the datasets using the SG-MIC algorithm 

(utilizing simulated annealing and genetic techniques) developed for optimal MIC calculation. 

Convergence of the SG-MIC is established based on Markov theory (Zhang et al., 2014). 

S2.3 Principal component analysis (PCA) 

PCA is a multivariate statistical procedure that reduces data redundancy and unveils embedded 

patterns. This algorithm employs orthogonal transformations to convert a set of potentially 

correlated variables into linearly uncorrelated vectors with lower dimensionality. These 

resulting vectors, referred to as Principal Components (PCs), are orthogonal because the 

eigenvectors of the covariance matrix are symmetric. The first PC captures the maximum 
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possible variance (Frey and Pimentel, 1978; Wright et al., 2009; Fan et al., 2017; Wold et al., 

1987). 

S2.4 Fuzzy C-means clustering (FCM) 

The FCM clustering approach is a widely used probabilistic-type clustering method originally 

proposed by Dunn (1973) and further improved by Bezdek et al. (1984). The FCM algorithm 

can be summarized as follows: First, initialize the membership function matrix 𝜇𝑖𝑗 based on the 

selected value of m. Second, compute the cluster center 𝑧𝑗 and the Euclidean distance 𝑑𝑖𝑗. 

Finally, update the membership function 𝜇𝑖𝑗 once the iteration has converged. The termination 

criterion for the FCM algorithm is a low relative change in the cluster center values. It's 

important to note that the FCM algorithm is sensitive to initial conditions (Hathaway and 

Bezdek, 2001). 

S2.5 Shuffled Complex Evolution approach (SCE-UA) 

The shuffled complex evolution approach (SCE-UA), as an effective global optimization 

method, is a commonly used algorithm, because it is open source and was the first algorithm 

aimed specifically at calibrating hydrological models (Khakbaz and Kazeminezhad, 2012; 

Eckhardt and Arnold, 2001; Duan et al., 1994; Sorooshian et al., 2010). The technical details 

of the SCE-UA can be shown in the flowchart (see Fig. S1) (Duan et al., 1994). In the SCE-

UA, the upper limit of the objective function evaluation is set to 10,000 times. All other settings 

of the SCE-UA technique are the default. 

 

Figure S1. The flowchart of the SCE-UA algorithm (Duan et al., 2010; Duan et al., 1993; Duan 
et al., 1994). 
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S2.6 Degree Day Model 

The Degree Day Model is a widely used method for estimating the melting of ice and snow. 

The Degree Day Model is based on a positive linear relationship between glaciers and 

snowmelt and temperature, especially the positive degree days on the surface of ice and snow. 

It assumes that when the daily average temperature exceeds the critical temperature for melting, 

a certain amount of melting occurs. Key parameters include the temperature threshold and the 

degree day factor (Hock, 2003; Wang et al., 2022). 
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In the formula: is the amount of melt (mmꞏd-1); is the degree day factor (mmꞏd-1ꞏ°C-1); is the 

daily average air temperature (°C); is the critical temperature for melting (°C). 

S3 Seasonal dynamic catchment characteristics 

S3.1 EDCC algorithmic processes 

A systematic approach for Extracting seasonal Dynamic Catchment Characteristics (EDCC) is 

developed, and the specific procedures are as follows (Fig. S2): 

Sampling hydrological processes: The extraction of seasonal dynamic catchment 

characteristics relies on the computation of relevant indices at the minimum time unit. 

Therefore, the appropriate sampling of hydrological processes is crucial. It is necessary to avoid 

excessive discretization or disruption that might impede the normal functioning of hydrological 

processes while still extracting more detailed and comprehensive information about dynamic 

catchment characteristics (Choi and Beven, 2007). In light of this, a 15-day moving window 

serves as the sampling unit, effectively capturing variations in hydrological response resulting 

from the seasonal dynamics of the catchment. The moving window moves one day at a step 

with the 14-day overlap between adjacent windows, ensuring the continuity of hydrological 

processes and facilitating smooth transitions of state variables and fluxes. Each window 

contains data for the current day and the preceding period, since hydrological processes are 

responsible for antecedent inputs in the catchment, including meteorology, landscape 

composition, topography, and other factors (Pande and Moayeri, 2018; Zhang et al., 2018; Li 

et al., 2015). 

Seasonal characteristic index system, consisting of climatic and land-surface subsystems, is 

designed to systematically capture seasonal dynamic behaviors of catchments, enabling the 
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EDCC approach to extract valuable information for the enhancement of hydrological model 

robustness. The index system covers the recent input, memory, and storage dynamics within 

the catchment system, as detailed in Tables S3-S6 (De Vos et al., 2010a; Peterson et al., 2001; 

Karl et al., 1999; Guo et al., 2023). The climatic subsystem includes indices for precipitation, 

temperature, and evapotranspiration. Additionally, extreme climatic indices, referring to the 

World Climatic Organization Joint Expert Team on Climate Change Detection and Indices, are 

incorporated into the climate clustering indices, since hydrological behaviours are highly 

sensitive to them (Tank et al., 2009). Land-surface subsystem comprises the dynamic 

vegetation cover, antecedent soil moisture, antecedent streamflow, antecedent baseflow, and 

precipitation-runoff relationships. It is essential to note the difficulty in obtaining monitoring 

data for land-surface changes, especially in data-limited catchments. Hence, antecedent soil 

moisture is simulated in advance using hydrological models (De Vos et al., 2010a). As both 

antecedent streamflow and baseflow are the primary fluxes influencing current runoff at 

various temporal scales, relevant indices are further taken into consideration (Fan et al., 2017). 

Moreover, the runoff coefficient, a simple measure reflecting the relationship between 

precipitation and runoff, is employed in the land-surface subsystem to characterize the 

catchment's runoff generation capacity (Şen and Altunkaynak, 2006). 

Identification of seasonality: The seasonal characteristic index system is designed to provide 

a comprehensive insight into seasonal dynamic catchment characteristics. However, when 

applied to a specific basin, not all indices were demonstrated to exhibit significant seasonal 

dynamics. In response to this, the Seasonality Index (SI) is undertaken to assess the statistical 

significance of seasonal variations of specific features within the catchment (Swain et al., 2021; 

Rai and Dimri, 2019), involving SIeffP, SIT, SIPE, SINDVI, and SIQ. Hydrological factors with a 

seasonality index exceeding 0.6 are deemed to exhibit significant seasonality (Walsh and 

Lawler, 2012). It is crucial to highlight that the precipitation-runoff relationships, antecedent 

soil moisture, antecedent streamflow, and antecedent baseflow within the seasonal 

characteristic index system are directly or indirectly derived from hydrological models or 

streamflow data. Therefore, the SIQ is employed to depict the seasonality of these indices. The 

introduction of the seasonality index facilitates an initial screening of indices, ensuring a more 

targeted and effective posterior screening of indices based on their seasonal characteristics, 

which enhances the precision of index utilization in specific basins. 

Screening of indices: The presence of indices independent of streamflow may potentially 

disturb the identification of seasonal dynamics in hydrological processes. Therefore, the 
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seasonal characteristic index system is further screened by assessing the degree of complex 

linear and nonlinear relationships between the indices and streamflow. Maximal Information 

Coefficient (MIC), as a statistical metric, is employed to indicate both linear and nonlinear 

correlation between the variables (Zhang et al., 2014). A detailed introduction of the MIC 

metric is available in the Supporting Information. The screening process utilizes MIC to 

evaluate the indices. It is assumed that the indices significantly influencing streamflow are 

screened when the MIC value exceeds 0.35. 

Eliminating redundant information: Furthermore, despite the dual screening of indices, a 

considerable amount of redundant information persists, posing a potential threat to the 

availability of the extracted information. To mitigate this issue, Principal Components Analysis 

(PCA) is employed to further eliminate multicollinearity among the indices (Kinney and Atwal, 

2014; Maćkiewicz and Ratajczak, 1993). 

Clustering hydrological processes: Unsupervised clustering operations are executed based 

on pre-processed climatic and land-surface index systems. The Fuzzy C-Means (FCM) 

clustering algorithm was applied for clustering operations (Pathiraja et al., 2018; Bezdek et al., 

1984). By employing clustering operations, the calibration period is divided into distinct sub-

periods. To mitigate the risk of overfitting associated with an excessive number of sub-periods, 

it is crucial to predetermine the number of clusters. The elbow technique is employed for this 

purpose, assessing clustering algorithm performance by cluster validity indices, including the 

Partition index (SC), Separation index (S), and Xie and Beni's index (XB). These cluster validity 

indices, commonly used for evaluating the effectiveness of clustering algorithms in data 

partitioning, contribute to the identification of the optimal number of clusters (Bensaid et al., 

1996; Xie and Beni, 1991; De Vos et al., 2010b). Through clustering operations, the 

hydrological processes are partitioned into distinct sub-periods with similar catchment 

characteristics. 
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Figure S2. Flowchart illustrating the process of the EDCC approach 

Note. In the formula for calculating the Seasonality Index (SI), where Ri represents the annual 

precipitation, and Xin represents the precipitation for month n in a specific ith year. Seasonality 

indices were computed for effective precipitation (SIeffP), temperature (SIT), evaporation (SIPE), 

NDVI (SINDVI), and discharge (SIQ). MIC denotes the maximal information coefficient, and 

PCA stands for principal component analysis. 

Table S3. Precipitation indices in climatic index system 

Indices Descriptive names Definitions Units Type 
Extreme 
indices 

P Precipitation Falling of water from the atmosphere mm 
Recently 

input 
 

effP Effective precipitation 
Precipitation output from the degree day 

model 
mm 

Recently 
input 

 

PT Total precipitation Total precipitation in window mm Memory  

effPT 
Total effective 
precipitation 

Total effective precipitation in window mm 
Memory  

RX1day 
Maximun 1-day 

precipitation 
Maximun 1 d precipitation in window mm 

Memory √ 
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RX5day 
Maximun 5-day 

precipitation 
Maximun 5 d precipitation in window mm 

Memory √ 

R95pTOT 
Annual total PRCP 

when RR > 95p 
Total daily precipitation exceeding the 95th 

percentile of precipitation on wet days 
mm 

Memory √ 

R99pTOT 
Annual total PRCP 

when RR > 99p 
Total daily precipitation exceeding the 99th 

percentile of precipitation on wet days 
mm 

Memory √ 

PRCPTOT 
Annual total 

precipitation in wet 
days 

Total daily precipitation on rainy days mm 
Memory √ 

SDII 
Simple pricipitation 

intensity index 
Average precipitation on rainy days mm 

Memory √ 

R10mm 
Annual count of days 
when PRCP≥ 10mm 

Heavy rainfall days: The number of days with 
daily precipitation (RR) more than 10 mm 

days 
Memory √ 

R20mm 
Annual count of days 
when PRCP≥ 20mm 

Heavy rainfall days: The number of days with 
daily precipitation (RR) more than 20 mm 

days 
Memory √ 

CDD 
Maximum length of dry 

spell 
Consecutive drought days: The maximum 

duration of drought (RR < 1 mm) 
days 

Memory √ 

CWD 
Maximum length of wet 

spell 
Consecutive wet days: The maximum 

duration of wetness (RR > 1 mm) 
days 

Memory √ 

Table S4. Temperature indices in climatic index system 

Indices 
Descriptive 

names 
Definitions Units Type 

Extreme 
indices 

T Temperature Daily average temperature ℃ 
Recently 

input 
 

Tmax 
Maximum 

temperature 
Daily maximum temperature ℃ 

Recently 
input 

 

Tmin 
Minimum 

temperature 
Daily minimum temperature ℃ 

Recently 
input 

 

Tmax 
Maximum 

temperature 
Mean daily maximum temperature ℃ 

Memory  

Tmin 
Minimum 

temperature 
Mean daily minimum temperature ℃ 

Memory  

K 
Accumulated 
temperature 

The accumulated value of temperatures above 0°C ℃ 
Memory  

TXx Warmest day The maximum daytime temperature in window ℃ Memory √ 

TNx Warmest night The maximum night temperature in window ℃ Memory √ 

TXn Coldest day The minimum daytime temperature in window ℃ Memory √ 

TNn Coldest night The minimum night temperature in window ℃ Memory √ 

FD 
Number of frost 

days 
The number of days with Tmin (daily minimum 

temperature) < 0°C. 
days 

Memory √ 

SU 
Number of 

summer days 
The number of days with Tmax (daily maximum 

temperature) > 25°C. 
days 

Memory √ 

ID 
Number of icing 

days 
The number of days with Tmax (daily minimum 

temperature) < 0°C. 
days 

Memory √ 

TR 
Number of 

tropical nights 
The number of days with Tmin (daily maximum 

temperature) > 20°C. 
days 

Memory √ 

TN10p Cold nights 
Number of days with Tmin < 10% (daily maximum 

temperature series ranked frequency) 
days 

Memory √ 
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TX10p Cold days 
Number of days with Tmax < 10% (daily maximum 

temperature series ranked frequency) 
days 

Memory √ 

TN90p Warm nights 
Number of days with Tmin > 90% (daily minimum 

temperature series ranked frequency) 
days 

Memory √ 

TX90p Warm days 
Number of days with Tmax > 90% (daily maximum 

temperature series ranked frequency) 
days 

Memory √ 

Table S5. Evapotranspiration indices in climatic index system 

Indices Descriptive names Definitions Units Type 
Extreme 
indices 

PE Potential evapotranspiration 
Evaporation observed from 

evaporation pan 
mm 

Recently 
input 

 

PET Total potential evapotranspiration Total pan evaporation in window mm Memory  

PEx 
Maximum 1-day potential 

evapotranspiration 
Highest 1 d pan evaporation in 

window 
mm 

Memory  

PEn 
Minimum 1-day potential 

evapotranspiration 
Highest 5 d pan evaporation in 

window 
mm 

Memory  

Table S6. Vegetation indices in land-surface index system 

Indices Descriptive names Definitions Units Type 
Extreme 
indices 

NDVI 
Normalized 

difference vegetation 
index 

The ratio of the difference between near-infrared 
channel and visible light channel reflectance to 

their sum. 
/ 

Memory  

C Runoff coefficient Ratio of runoff volume to rainfall volume / Memory  

St-i 
Antecedent soil 

moisture 
Antecedent n days soil moisture / 

Storage 
dynamics 

 

Qt-i Antecedent 
streamflow 

Antecedent n days average streamflow m3/s 
Storage 

dynamics 
 

Qbt-i Antecedent baseflow Antecedent n days average baseflow m3/s 
Storage 

dynamics 
 

 

S3.2 Clustering results for EDCC 

The results of implementing the EDCC approach in the MOPEX basins are as follows and four 

selected case studies were analysed in detail. Identification of seasonality: The seasonality 

indices for the MOPEX basins are illustrated in Fig. 1(a). The seasonal dynamics of the 

MOPEX basins intensify from south to north. Specifically, minimal seasonal variation is 

observed in the south-eastern basins, while significant seasonality is evident in the central-

northern basins, which have been chosen for exploring hydrological models with dynamic 

catchment characteristics. The seasonality of effective precipitation is predominantly 

influenced by precipitation, with temperature also playing a noteworthy role, particularly in the 

central-western and high-latitude mountainous basins. Temperature seasonality becomes more 

significant with increasing latitude, particularly evident in the Rocky Mountains. Influenced 
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by ocean currents, the west coast exhibits lower temperature seasonality compared to inland 

regions. The seasonality of potential evapotranspiration, which is positively correlated with 

temperature, is mainly driven by temperature, which yields geographical patterns that share 

similarities with temperature patterns, but distinct differences emerge in high-latitude 

mountainous areas. The northern basins of the Great Plains exhibit the most significant 

seasonality of NDVI due to the combined effects of precipitation, temperature, and 

evapotranspiration. Seasonality of antecedent soil moisture simulated by the hydrological 

model is a holistic response to various inputs and does not exhibit a distinct geographical 

seasonality. For enhanced clarity in subsequent descriptions, we adopt abbreviations for the 

four basins mentioned earlier to facilitate in-depth analysis and discussion, which are 

respectively referred to as Case A (N13302500), Case B (N04073500), Case C (N06192500), 

and Case D (N08085500). Screening of indices: Based on the results of the Seasonality Index 

(SI), the corresponding seasonal characteristic index system was initially screened. To further 

eliminate interference from the indices with invalid information, complex linear and non-linear 

relationships between the indices and streamflow are calculated to facilitate the further 

screening of the index system. The interconnected networks of correlation, as measured by 

MIC values among all the candidate indices and streamflow in the study cases, are illustrated 

in Fig. S3. The color depth of the index dots manifests the magnitude of the correlation between 

the indices and streamflow, while the color of the lines connecting the indices represents the 

correlation among interconnected indices. There are complex correlations between the indices, 

ranging from 0.35 to nearly 1 in magnitude, both with streamflow and among the indices 

themselves. After two-step screening, the number of selected indices in the four study cases is 

5, 13, 29, and 12, respectively. Eliminating redundant information: The multicollinearity 

among the screened indices is further addressed before the clustering processes using PCA. 

The first two principal components (PCs) are selected based on the results of PCA. In the study 

cases A, B, C, and D, PC1 accounts for 84.0%, 99.5%, 98.0%, and 99.6% of the total variance 

of indices, respectively. PC2 accounts for 11.6%, 0.3%, 1.5%, and 0.3% of the total variance 

of indices. These proportions are acceptable (Peres-Neto et al., 2005). Clustering operations: 

In accordance with the cluster validity indices (Fig. 1(c)), the optimal number of clusters for 

the four study cases has been determined as 5. Fig. 1(d) illustrates the results of the clustering 

operation. The boundaries of the clusters between different periods are sharp, and the cluster 

centres exhibit significant spatial dispersion. This clustering outcome is visually represented 

on the hydrographs in Fig. 1(e). The results suggest that relying solely on climatic indices is 
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insufficient to comprehensively capture the patterns of typical catchment characteristics in 

hydrological datasets. This inadequacy arises from the fact that hydrological processes 

influenced by similar climatic patterns can vary significantly due to diverse land-surface 

influences. 

S3.3 MIC values among clustering indices and streamflow 

 

Figure S3. The interconnected network of the nonlinear relationships (MIC values) among the 
candidate clustering indices and the streamflow in the case A (a), case B (b), case C (c) and 
case D (d). The nodes correspond to the MIC values between all the candidate inputs and the 
streamflow. The color of the nodes are proportional to the MIC values. The edges correspond 
to the MIC values occurring for any two variables (minimum is red; maximum is blue). MIC 
= maximal information coefficient. 

S3.4 Characteristic values in diverse sub-periods in study cases 

Table S7. The selected seasonal characteristic indices in diverse sub-periods in case A. 
Index Sub-period 1 Sub-period 2 Sub-period 3 Sub-period 4 Sub-period 5 

RX1day 7.18 9.36 11.08 5.83 4.04 

TXx 2.07 9.06 23.38 17.49 27.77 

TNx -6.31 -2.28 5.79 1.00 8.69 

TXn -7.97 -0.61 10.01 5.15 18.69 
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TNn -16.10 -12.66 -2.35 -7.63 1.78 

Q 0.27 0.31 0.88 0.46 0.42 

Table S8. The selected seasonal characteristic indices in diverse sub-periods in case B. 
Index Sub-period 1 Sub-period 2 Sub-period 3 Sub-period 4 Sub-period 5 

PET 25.31  40.81  15.38  57.86  7.55  

PEx 2.50  3.69  1.61  4.86  0.75  

PEn 1.13  1.91  0.64  2.92  0.32  

Tmax 16.37  22.72  9.11  27.75  -0.52  

FD 2.91  0.14  9.84  0.00  14.59  

ID 0.01  0.00  0.55  0.00  7.43  

TXx 24.00  28.51  17.75  32.21  6.42  

TNx 10.87  15.77  5.37  19.75  -1.94  

TXn 9.03  16.31  1.63  22.72  -7.69  

TNn -2.45  3.31  -8.82  9.43  -14.93  

TN10p 0.01  0.00  0.31  0.00  4.47  

TX10p 0.00  0.00  0.14  0.00  4.55  

K 151.68  243.11  63.66  320.50  6.30  

Q 1.16  0.91  1.36  0.78  0.88  

Table S9. The selected seasonal characteristic indices in diverse sub-periods in case C. 
Index Sub-period 1 Sub-period 2 Sub-period 3 Sub-period 4 Sub-period 5 

effP 2.76  4.90  0.99  1.28  0.88  

effPT 39.44  87.72  10.75  17.97  10.33  

RX1day 9.48  10.02  7.21  7.91  8.42  

T 6.68  9.87  -1.93  0.46  -3.02  

Tmax 14.22  18.09  4.57  7.01  3.04  

Tmin -0.85  1.66  -8.42  -6.08  -9.09  

FD 7.62  5.80  13.04  11.38  13.88  

ID 1.68  0.00  5.46  4.05  6.40  

TXx 19.50  22.91  10.40  13.42  9.18  

TNx 3.24  4.22  -3.20  -0.85  -3.41  

TXn 7.01  9.70  -2.10  1.15  -4.05  

TNn -6.03  -2.97  -13.92  -10.78  -14.88  

TN10p 0.57  0.00  2.73  1.38  2.84  

TX10p 0.80  0.00  2.29  1.60  2.63  

K 116.04  132.21  36.08  61.53  27.52  

S1 189.43  222.24  142.26  163.63  89.63  

S3 568.35  667.86  426.32  490.66  267.81  

S7 1326.30  1561.87  993.29  1143.96  620.25  

S15 2841.63  3344.28  2127.65  2450.51  1311.95  

QT1 1.23  2.85  0.41  0.56  0.31  
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QT3 3.69  8.55  1.21  1.68  0.93  

QT7 8.67  19.92  2.79  3.93  2.16  

QT15 19.06  41.86  5.92  8.55  4.52  

QbT1 0.74  1.36  0.32  0.44  0.24  

QbT3 2.25  4.05  0.96  1.33  0.71  

QbT7 5.33  9.26  2.26  3.13  1.65  

QbT15 11.85  18.83  4.87  6.85  3.51  

Q 1.23  2.84  0.41  0.56  0.31  

Table S10. The selected seasonal characteristic indices in diverse sub-periods in case D. 
Index Sub-period 1 Sub-period 2 Sub-period 3 Sub-period 4 Sub-period 5 

RX1day 16.48 6.37 18.10 10.97 8.94 

S1 138.07 55.04 174.26 114.68 88.14 

S3 414.97 163.94 523.64 343.95 263.96 

S7 967.72 381.99 1221.74 802.11 616.19 

QT1 0.08 0.00 0.29 0.03 0.01 

QT3 0.25 0.01 0.88 0.09 0.04 

QT7 0.59 0.03 2.10 0.21 0.07 

QT15 1.36 0.07 4.23 0.48 0.15 

QbT1 0.02 0.00 0.06 0.01 0.00 

QbT3 0.05 0.01 0.17 0.03 0.01 

QbT7 0.13 0.02 0.38 0.07 0.03 

QbT15 0.28 0.04 0.78 0.14 0.07 

Q 0.08 0.01 0.27 0.04 0.02 

S4 Test results of the EDCC framework on the MOPEX dataset 
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Figure S4. Comparative performance of traditional scheme  and recommended scheme on 
MOPEX dataset across 130 seasonal catchments. Asterisks indicate statistical significance of 
differences between approaches ( p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). 

S5 State variables and fluxes assessment in study cases 

The results of state variables and fluxes in case B, C, and D are shown in Fig S5 to Fig S16. 

 

 

Figure S5. Flux simulation results of experiments over the entire study period for case A. The 
figure shows the flux simulation results from Experiments 1 to 7, with different colors 
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representing different sub-periods. In Experiment 7, five separate calibrations were performed 
for five sub-periods, and the results were then aggregated to obtain the final simulation. 

 

Figure S6. States variables simulation results of experiments over the entire study period for 
case A. The figure shows the state variable simulation results from Experiments 1 to 7, with 
different colors representing different sub-periods. In Experiment 7, five separate calibrations 
were performed for five sub-periods, and the results were then aggregated to obtain the final 
simulation. 
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Figure S7. Fluxes simulation results of experiments over the entire study period for case B. 
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Figure S8. States variables simulation results of experiments over the entire study period for 
case B. 
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Figure S9. Fluxes simulation results of experiments over the entire study period for case C. 
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Figure S10. States variables simulation results of experiments over the entire study period for 
case C. 
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Figure S11. Fluxes simulation results of experiments over the entire study period for case D. 
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Figure S12. States variables simulation results of experiments over the entire study period for 
case D. 
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Figure S13. Flux mapping of study case B. The left image is the traditional scheme, the right 
image represents the recommended scheme. 

 

Figure S14. Flux mapping of study case C. The left image is the traditional scheme, the right 
image represents the recommended scheme. 
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Figure S15. Flux mapping of study case C period 3. The left image is the traditional scheme, 
the right image represents the recommended scheme. 

 

Figure S16. Flux mapping of study case D. The left image is the traditional scheme, the right 
image represents the recommended scheme. 

S6 Correlation between model parameters 

 

Figure S17. Correlation between model parameters in study case B.  

 

Figure S18. Correlation between model parameters in study case C.  
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Figure S19. Correlation between model parameters in study case D.  
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