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Abstract. This study investigates the influence of topography on the desaturation rates of groundwater-dependent wetlands in 

response to changes in recharge. We examined sixty catchments across northern Chile, which feature a wide variety of 

landforms. We categorized the landforms using geomorphon descriptors, identifying three distinct clusters: lowland, transition, 10 

and mountain settings. Using steady-state 3D groundwater models, we derived flow partitioning and seepage area extent for 

each catchment. Each cluster revealed consistent seepage areas evolution under varying wet-to-dry conditions. Our findings 

indicate that mountains exhibit reduced seepage area compared to lowlands at equivalent hydraulic conductivity to recharge 

(K/R) ratios but are less sensitive to recharge fluctuations with slower rates of seepage area variation. Statistical evidence 

demonstrates that geomorphons-defined landforms correlate with desaturation indicators, enabling the prediction of catchment 15 

sensitivity to climate change based solely on a topographic analysis.  

 

Short summary. The research demonstrates that the response of groundwater-dependent wetlands to recharge changes can be 

accurately predicted solely based on landform properties, providing a practical and scalable approach for wetland vulnerability 

assessment. We reveal that mountain catchments are less sensitive to recharge changes than lowland catchments - due to fewer 20 

but more persistent seepage areas. It offers critical insights for evaluating the vulnerability of catchments to climate change 

impacts and has direct implications for water resource management and conservation planning in diverse landscapes. 

1. Introduction 

Groundwater seepage occurs when the water table intersects the topography. Thus, landforms influence both its spatial 

distribution and temporal dynamics (Bresciani et al., 2014, 2016; Sophocleous, 2002). The interaction between groundwater 25 

and topography significantly impacts the resilience of groundwater-dependent wetlands to climate variability (Cuthbert et al., 

2019; Scanlon et al., 2023). Considering steady-state groundwater flow systems, the depth of the water table, and so the 

distribution of flow paths and groundwater seepage areas, are controlled by the recharge rate (𝑅𝑅), the topography and by the 

hydrodynamic properties of the aquifer through its hydraulic conductivity (𝐾𝐾), (Condon & Maxwell, 2015; Rath et al., 2023; 

Tóth, 1963; Zhang et al., 2022). An equivalence of effects between 𝑅𝑅 and 𝐾𝐾 has been demonstrated (Bresciani et al., 2014; 30 
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Haitjema & Mitchell‐Bruker, 2005; Jamieson & Freeze, 1982), allowing a convenient focus on the dimensionless 𝐾𝐾
𝑅𝑅

 ratio and 

the topography. The groundwater table is typically near the surface in low-relief and/or humid regions, and deeper in rugged 

terrain and/or arid regions. However, the hydrogeological response and seepage dynamics to varying landscapes and 

topographic features are not straightforward and difficult to predict. 

Analytical solutions have been proposed to quantify the extent of groundwater seepage under varying 𝐾𝐾
𝑅𝑅

 at the hillslope scale, 35 

using simplified groundwater flow equations (Bresciani et al., 2014, 2016). Marçais et al. (2017) conducted modeling 

experiments to estimate seepage extent and dynamics using a 2D representation of the equivalent hillslope. While these 

approaches are applicable in shallow aquifers, where flow predominantly follows the topography, they do not capture the 

complexity of 3D groundwater flow, especially under low water tables or steep reliefs. A few 3D numerical modeling 

experiments have been undertaken, mainly for sensitivity studies with conceptual surface and subsurface geometries (Carlier 40 

et al., 2019; Gauvain et al., 2021; Gleeson & Manning, 2008; Welch et al., 2012). There is a pressing need to understand 

seepage distribution and dynamics, considering the intricate topographic nuances of real-world conditions and the 3D nature 

of groundwater flow. This knowledge is essential to predict the extent of groundwater seepage and its dependent wetlands 

under future climate scenarios. 

Our study aims to model the partitioning of  3D groundwater flows and their seepage extent across different landscapes, from 45 

lowland to high mountains, considering various 𝐾𝐾
𝑅𝑅

 values. Additionally, we aim to identify appropriate topographic indicators 

that explain the variety of hydrogeological behaviors, providing statistical means to extrapolate our results to other contexts. 

We developed a parsimonious 3D groundwater flow modeling approach which we applied to sixty catchments along 1,800 km 

of the northern Chile. This choice was motivated by the rich diversity of geomorphological contexts allowing the exploration 

of a wide range of hydrogeological responses. 50 

2. Material and Methods 

2.1. Geomorphological context 

The study area is located in northern Chile between Santiago and the Peruvian border (~1,800 km long). The landforms 

diversity results from the specific tectonic and weathering processes involved in the Andes. This process resulted in the 

formation of a longitudinal valley called the Central Depression, which is bounded by two cordilleras, the Coastal Cordillera 55 

and the Principal Cordillera, both composed mainly of volcanic-sedimentary rocks (Hartley & Evenstar, 2010; Jordan et al., 

1983). The Coastal Cordillera forms an intermediate mountain range with an average elevation between 1,000 and 2,000 

m.a.s.l., while the Principal Andean Cordillera has maximum elevations close to 7,000 m.a.s.l. (Figure 1a) (Armijo et al., 2015; 

Charrier et al., 2007). The Central Depression delineates a sedimentary basin rich in Quaternary alluvial deposits with variable 

thicknesses, ranging from about 250 m near Santiago (Yáñez et al., 2015) to almost 1,000 m in the northern regions of Chile 60 
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(Hartley & Evenstar, 2010; Jordan et al., 2014; Nester & Jordan, 2011). Specifically, the Pre-Cordillera is a transition zone 

between the Central Depression and the Western Cordillera, with catchment characteristics that vary from nearly flat terrain 

to mountainous regions with steep slope gradients and typical mountain front geomorphology (Figure 1a). The diversity of 

these environments provides an excellent opportunity to explore a wide range of topographic settings, including flat 

catchments, mountain-front areas, incised mountain catchments, volcanoes, and high mountain peaks. 65 
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Figure 1: Methodological workflow for topographical classification and analysis. (a) Location and topographic map of the study 
area in northern Chile, with the boundaries of the 60 studied catchments highlighted in black. (b) Example of landform classification 
within a single catchment, including a landform map, the proportion of landform types, and an illustration of the principal landform 
categories defined by geomorphons (adapted from Jasiewicz & Stepinski, 2013). (c) Catchment categorization using Principal 70 
Component Analysis (PCA) for dimensionality reduction and clustering. The selected catchment is plotted in the PCA space, 
illustrating its position relative to the first two principal components (PC1 and PC2). Red arrows represent the eigenvectors 
associated with different landform types, showing their contribution to the PCA axes. 

2.2. Classification of catchment topographies 

We considered the catchment boundaries of the global catchment database HydroATLAS (Lehner & Grill, 2013). We chose 75 

to limit the size of the catchments to between 500 and 1,500 km2 by considering level 8 of HydroATLAS. To cover different 

geomorphological and tectonic settings, we selected sixty catchments within our study area (indicated by colored boundaries 

in Figure 1a). We extracted the topography from the digital elevation model (DEM) from the SRTM (Shuttle Radar 

Topography Mission, 90 m resolution).  

We used the geomorphons classification method proposed by Jasiewicz & Stepinski (2013) to categorize the topographies into 80 

ten different landforms (Figure 1b). Geomorphons-defined landforms are italicized throughout the text for improved 

readability. This methodology is based on elevation differences in eight directions relative to the reference cell. This operation 

is reproduced for each cell of the DEM, identifying a shape for each of these cells (Figure 1b). Unlike the direct cell neighbor 

method (e.g. slope, curvature, or roughness), the geomorphons method allows to capture landforms at larger scales by defining 

a search radius around the reference cell, the look-up distance in Jasiewicz & Stepinski (2013). Here we defined it as a function 85 

of the hillslope characteristic length: 

𝐿𝐿 = 1
2𝐷𝐷
→ 𝐿𝐿 = 1

2∗ 𝑙𝑙𝐴𝐴
, Equation 1 

where 𝐿𝐿 is the catchment feature length, 𝑙𝑙 is the river network length, 𝐷𝐷 is the drainage density and 𝐴𝐴 is the catchment area.  

The river network is defined using a surface flow accumulation routine available in the Whitebox tool Python package 

(Lindsay, 2016). Combining principal component analysis (PCA) and k-means clustering (Figure 1c), we categorized the 

catchments by their dominant topographical features based on landform proportions (Figure 1b). PCA is a classical statistical 90 

method used to reduce the dataset dimensionality by transforming the original variables into a new set of uncorrelated variables, 

called principal components (PC), which capture the maximum variance in the data. The k-means clustering approach allows 

us to identify groups of catchments belonging to the cluster with the nearest mean within the new PC space (Figure 1b and c). 

Python code and trained models are available on repository (Marti et al., 2024). 

2.3. Numerical modelling of seepage area 95 

A three-dimensional numerical groundwater flow model was developed for each catchment. The models were constructed and 

run using the MODFLOW-2005 software suite (Harbaugh, 2005) with the NWT solver (Niswonger et al., 2011), and managed 
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through the Python-based interface FLOPY (Bakker et al., 2016). The diffusivity equation was solved under steady-state 

conditions for unconfined flow. 

The horizontal discretization followed the DEM resolution, set at 90 meters (Figure 2a), while the vertical discretization 100 

consisted of ten layers with exponentially increasing thickness (Figure 2b). A buffer zone around each catchment expanded 

the modeled domain area by 20%, ensuring boundary conditions did not impact seepage distribution within the studied 

catchment (Figure 2a). The model bottom mirrored the topography with a 100m-thick aquifer (Figure 2b). Assuming a constant 

aquifer thickness minimized the potential effects of transmissivity changes on seepage distribution. The 100m thickness was 

chosen to realistically accommodate both flat sedimentary catchments and steep mountainous aquifers (Condon et al., 2020). 105 

The side and bottom boundaries of the buffer box were set as no-flow. For generality, effective recharge 𝑅𝑅 was uniformly set 

at the water table, and a drain was set on the topography using the eponymous packages in MODFLOW. Hydraulic conductivity 

(𝐾𝐾) was set to be homogeneous and isotropic. 

Various water table positions relative to the topography were derived by setting different values of the 𝐾𝐾
𝑅𝑅

 ratio, ranging from 

100 for fully saturated conditions to 10,000 when all simulated catchments reached near full desaturation 110 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 (𝑆𝑆𝐴𝐴∗ ) < 1%. 𝐾𝐾
𝑅𝑅

 values were logarithmically spaced within this interval, and simulations were stopped if the 

catchment's seepage area fell below the 1% threshold (Figure 2c). This modeling workflow resulted in a total of 1,793 

simulations. 

For each catchment, we perform a power law fit on the relationship between seepage area extent and 𝐾𝐾
𝑅𝑅

 further mentioned as 

the desaturation function (Equation 2a, and red curve in Figure 2c). This allows us to capitalize on the observed linear relation 115 

between log (𝑆𝑆𝐴𝐴∗) and log (𝐾𝐾
𝑅𝑅

):  

𝑆𝑆𝐴𝐴∗  = �1 + �
𝐾𝐾
𝑅𝑅
𝜆𝜆
�
2

�
𝑛𝑛

. Equation 2a 

𝑑𝑑𝑆𝑆𝐴𝐴∗ 

𝑑𝑑 𝐾𝐾𝑅𝑅
=

2𝑛𝑛
𝜆𝜆2
𝐾𝐾
𝑅𝑅

𝑆𝑆𝐴𝐴∗ 

1 + �
𝐾𝐾
𝑅𝑅
𝜆𝜆 �

2 
Equation 2b  
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𝑑𝑑𝑆𝑆𝐴𝐴∗ 

𝑑𝑑 𝐾𝐾𝑅𝑅
≈

2𝑛𝑛𝑆𝑆𝐴𝐴∗

𝐾𝐾
𝑅𝑅

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 
𝐾𝐾
𝑅𝑅
≫ 𝜆𝜆  Equation 2c 

The desaturation function is determined by the proportionality constant, 𝜆𝜆 , which can be associated with a desaturation 

threshold, i.e. the critical value of 𝐾𝐾
𝑅𝑅

 above which the catchment begins to desaturate. The negative desaturation exponent, 𝑛𝑛, 

directly affects the rate of change in seepage extent as 𝐾𝐾
𝑅𝑅

  increases, as shown in Equations 2b and 2c. It can be viewed as a 

measure of the sensitivity of the seepage area extent to a deepening of the water table: for a given pair of seepage area and 𝐾𝐾
𝑅𝑅

, 120 

a lower 𝑛𝑛 indicates a higher sensitivity of the catchment to a decrease of the water level. We estimated 𝑛𝑛 considering seepage 

area extents lower than 20% of the catchment area, which are more representative of real-world conditions i.e. by giving more 

weight in the fit to the higher 𝐾𝐾
𝑅𝑅

 ratios. 

 
Figure 2: Model settings for one example catchment: (a) Horizontal discretization and buffer zone beyond catchment limits, (b) AA’ 125 
cross-section including vertical discretization and an arbitrary water table intercepting the topography creating seepage areas (red 
dots), (c) Example of a results of normalized seepage area with respect to K/R (blue dots) with the power law fit for Eq. 2a (dashed 
red curve). 
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3. Results 

3.1. Typology of catchments topography 130 

We evaluate the proportion of main geomorphons on the sixty-catchment dataset. The PCA analysis (Figure 1c) resulted in a 

first component (PC1) explaining 75.4% of the total variance, and the first two components (PC1 and PC2) combined 

explaining 86.8% of the total variance. This result indicates a strong relation between the landforms description from 

geomorphons analysis in the catchments and the reduction into 2 dimensions. We found that PC1 mostly represents the 

differentiation between flat and slope landforms, with eigenvector magnitudes of -0.4 for the flat landform and 0.4 for the 135 

slope landform. Slope landform is associated with the peak, ridge, valley, hollow, spur, and pit forms, all showing similar 

eigenvectors magnitude on PC1. Regarding PC2 the footslope and shoulder forms are the main control with an eigenvector 

magnitude of respectively, 0.8 and 0.5. Flat and slope forms show eigenvectors magnitudes of -0.2 and 0.2 along the PC2 axis.  

To further support and illustrate this description, the catchments are grouped into three clusters (colored dots in Figure 1c and 

colored catchments contour on Figure 1a). The red cluster is highly influenced by the flat landform as lowland catchments 140 

would. Conversely, the blue cluster is strongly influenced by slope and associated landforms along PC1 (ridge, valley, peak) 

representative of mountain catchments with incised valleys, and narrow valley bottoms. The green cluster exhibits more 

dispersion in the represented catchments. This cluster acts as a transition between the red and blue clusters. It contains 

catchments most influenced by footslope and shoulder forms. Positioned centrally between the two extreme clusters, this 

cluster serves as a transition zone between flatter areas and mountain catchments, possibly including catchments showing both 145 

flat and mountainous characteristics, as observed at mountain fronts.  

To facilitate comprehension and illustration, these clusters are referred to as lowland cluster for the red cluster, mountain 

cluster for the blue cluster and transition cluster for the green cluster thereafter.  

3.2. Seepage distribution evolution with increasing 𝑲𝑲
𝑹𝑹

  

Figure 3a illustrates the evolution of seepage area, normalized by catchment area, as a function of 𝐾𝐾
𝑅𝑅

 for all sixty catchments. 150 

Four specific catchments are highlighted with sharper lines for further discussion. As expected, lower 𝐾𝐾
𝑅𝑅

 values result in fully 

saturated catchments, while as 𝐾𝐾
𝑅𝑅

 increases, all catchments progressively desaturate at varying rates. For instance, at a 

normalized seepage area of 20%, the corresponding 𝐾𝐾
𝑅𝑅

 values range from 20 to 250. 

Similar to the distinct landform clusters, the desaturation behavior of these clusters is clearly defined (Figure 1), confirming 

that variations in seepage distribution are predominantly driven by topographical effects. The power law fit of seepage 155 

distribution (Equation 3a) for each of the sixty catchments results in 𝜆𝜆 values ranging from 2.05 to 37.03 and n values ranging 
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from -0.44 to -0.31. The fit shows minimal RMSE values between 0.01 and 0.08, indicating that seepage evolution with 

increasing 𝐾𝐾
𝑅𝑅

 can be successfully parameterized with only two parameters, 𝜆𝜆 and 𝑛𝑛. 

Regarding the desaturation threshold, 𝜆𝜆, the mountain cluster shows lower values than the lowland cluster. The transition 

cluster demonstrates intermediate behavior, reaching higher 𝜆𝜆 values than the mountain cluster but lower than the lowland 160 

cluster. Regarding the desaturation exponent, 𝑛𝑛, within the low-saturation domain (≤20%), the mountain cluster exhibits slower 

desaturation rates, while the lowland cluster presents faster desaturation rates. The variability in desaturation slopes for the 

transition cluster is more pronounced, reflecting a mix of behaviors within this zone, yet it again shows intermediate behavior 

relative to the other two clusters. 
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 165 

Figure 3: (a) Normalized seepage area against 𝑲𝑲
𝑹𝑹

 for the sixty catchments (colored lines with markers), including log-log plot on the 
upper-right corner. Four illustrative catchments are highlighted: mountain type M1 (blue diamond, (b)), lowland type L2 (red cross, 
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(c)), transitory type T3 (green triangle, (d)) and T4 (green cross, (e)). Details include the topographic map overlayed by the seepage 
area at an arbitrary value of 20% (red mask) with corresponding 𝑲𝑲

𝑹𝑹
 value followed by the landforms histogram. 

3.3. Seepage patterns in representative catchments  170 

Figure 3 highlights four distinct catchments: M1, representative of the mountain cluster; L2, representing the lowland cluster; 

and T3 and T4, showing the range of responses within the transitory cluster. We present the seepage distribution over the 

topographic map and the landform proportions for each catchment (Figure 3b, c, d, and e). 

For M1 (Figure 3b), characterized by low 𝜆𝜆 and high 𝑛𝑛 values, it exhibits the typical seepage distribution of mountainous 

regions. At a normalized area of 0.2, seepage primarily congregates in topographic lows, such as river valleys, while ridges 175 

and peaks desaturate due to their significant elevation compared to the surrounding terrain. Conversely, L2 (Figure 3c), with 

high 𝜆𝜆 and low 𝑛𝑛 values, suggests that the water table remains closer to the surface in lowland settings. 

For T3 and T4, their landform proportions (Figure 3d and e) reveal similar values for most forms, except for a higher proportion 

of shoulder and footslope forms in T4. This increased prevalence of shoulder landform in T4 is due to a prominent incised 

river valley in the eastern part of the catchment. 180 

Examining T3's seepage distribution, it initially aligns with the mountain cluster with a low desaturation threshold (𝜆𝜆). Then, 

in the range of 1 < 𝐾𝐾
𝑅𝑅

 < 10, a substantial change in slope is observed, with the distribution intersecting that of the lowland cluster 

for high 𝐾𝐾
𝑅𝑅

 values, ultimately being the last catchment to reach a saturation level of <1%. This behavior can be explained by 

looking at the spatial distribution of seepage for T3 (Figure 3d). A clear demarcation exists between the flat western area and 

the mountainous settings to the east. At higher elevations, desaturation occurs at lower 𝐾𝐾
𝑅𝑅

 values, resulting in a low desaturation 185 

threshold (𝜆𝜆). Subsequently, at a normalized area of 0.2, the catchment behaves like the lowland cluster, influenced by the 

western part of the catchment. 

Conversely, T4's seepage distribution exhibits an opposite pattern. It initially mirrors the lowland cluster with a higher λ value, 

ultimately resembling the mountain cluster characteristics, reaching saturation levels under 1% for similar 𝐾𝐾
𝑅𝑅

 values. The 

seepage spatial distribution for T4 (Figure 3e) shows that higher elevation zones in the western part of the catchment have 190 

already undergone desaturation and tend to develop exclusively within topographic lows, specifically at the bottom of the 

singular river channel. 

3.4. Linking topographic features and desaturation behavior 

We computed the correlation matrix between the principal components (PC1 and PC2) and the desaturation parameters (𝜆𝜆 and 

𝑛𝑛) to assess the strength of the topographical control on desaturation behavior. Figure 4a shows a strong anti-correlation 195 

between 𝜆𝜆 and PC1, with a Spearman coefficient of r = -0.96 (p < 0.0001). Figure 4b displays a strong linear correlation 
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between 𝑛𝑛 and PC1, with r = 0.76 (p < 0.0001). No other significant correlations were identified (the entire correlation matrix 

is available in Supplementary Material S1). 

 
Figure 4: Scatter plots for the original sixty-catchment dataset (dots) with Spearman coefficient r, the equation and the coefficient 200 
of determination (R2) of a global fit (black line with 95% confidence interval) for (a) λ against PC1 and for (b) 𝒏𝒏 against PC1. 
Random Forest predictions for both parameters are overlayed on the original data (crosses). (c) PCA plot, for the original (dots) 
and the prediction (crosses) datasets. The percentage of variance in the original dataset explained by each component is displaid on 
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axis title. (d) and (e) Situation and topographic maps of the study area highlighting the one hundred and twenty-three catchments 
with a colored according to the defined clusters. Each catchment is overlayed by a dot (original dalaset) or a triangle (prediction 205 
dataset) which size depends on  𝝀𝝀  and the color for 𝒏𝒏. 

The clusters are well distinguishable in Figure 4a and 4b. In Figure 4a, the inverse relationship between 𝜆𝜆 and PC1 is robustly 

quantified by fitting an exponential function (R² = 0.89), facilitating a quantitative correlation between 𝜆𝜆 and PC1, as illustrated 

in Figure 4a. The mountain cluster is isolated with a low average and variance in 𝜆𝜆 values. The transition cluster forms the 

elbow part of the exponential decay, while the lowland cluster is clearly identified with higher 𝜆𝜆 values. The variations in 𝜆𝜆 210 

values are higher in the lowland and transition clusters compared to the mountain cluster.  

Figure 4b reveals a linear relationship between 𝑛𝑛 and PC1. The excellent linear fit (R² = 0.72) allows for a straightforward 

quantification of the relationship between PC1 and the negative scaling exponent 𝑛𝑛 and consequently the appraisal of the 

desaturation rate based on landforms (Equation 2b and c).  The clusters are well identified, with the lowland cluster showing 

lower 𝑛𝑛 values than the mountain cluster.  215 

We finally employed a Random Forest regression on the dataset to predict 𝜆𝜆 and 𝑛𝑛 based on topographic parameters (PC1 and 

PC2) for sixty-three catchments located both in the same study area and expanding further South inside Chile (Figure 4d and 

e). We defined PC1, PC2 and clusters for these new catchments using the originally trained PCA and k-means model (Figure 

4c). Regarding, training and testing of the Random Forest algorithm, we used the original sixty catchments dataset. This initial 

analysis involved 5,000 iterations of sampling with replacement, each using 10 test catchments, with the remaining 50 220 

catchments used for training. This resampling approach was adopted to assess the robustness of the estimations in the presence 

of random variations within the selected test and training data and was evaluated calculating the coefficient of determination 

(R2) within the tested data (see Supplementary Material S2 for Kernel Density Estimate (KDE) plot of R2 distribution). We 

defined the model used for predictions based on the best compromise to estimate both 𝜆𝜆 and 𝑛𝑛. Hyperparameters (number of 

trees and maximum depth) were tuned using cross-validation techniques. Predictions made for 𝜆𝜆 (Figure 4a) show good 225 

consistency with the original dataset both in terms of identifying clusters behaviors and in trend, following the originally 

defined exponential relation. Regarding 𝑛𝑛 (Figure 4b), we observe a similar accuracy to represent clusters, while the general 

linear trend is less obvious. We observe for 𝑛𝑛, while following an increasing trend, diversified response between the clusters 

with the transition cluster exhibiting a greater rate of change in 𝑛𝑛 for an equivalent increment in PC1. Yet it is a better fit to 

original data. The spatial distribution of the predicted catchments observed on Figure 4d and e, is a good match with the 230 

original data both in terms of topographic characteristics and desaturation function parameters.   

4. Discussion and perspectives 

Groundwater flow and storage regulate the resilience of wetlands to climate changes (Fan et al., 2019).  Variations in 

topography and landforms across catchments lead to differences in wetland sensitivity to changing recharge by shaping distinct 

groundwater flow structures. In this study, we provide a quantitative assessment of the controls of landforms on the sensitivity 235 
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of groundwater-dependent wetlands to aquifer desaturation (through variations in 𝐾𝐾
𝑅𝑅

) across sixty catchments along Nothern 

Chile, covering settings from lowlands to mountains. These feedback mechanisms were analyzed using a novel combination 

of three-dimensional process-based groundwater modeling, geomorphons-based landforms characterization, and multivariate 

statistical analysis at the regional scale. 

Our results demonstrate that the desaturation functions of catchments can be explained by the typologies in topographies 240 

derived from landform categorization. Building on previous works that focused on two-dimensional aquifer geometry, as first 

introduced by Haitjema and Mitchell-Brucker (2005) and further explored by Bresciani et al. (2014), we show that mountainous 

regions exhibit lower seepage extents, restricted to incised valleys, compared to lowland catchments at equivalent 𝐾𝐾
𝑅𝑅

 ratios. 

However, we demonstrate that mountainous regions are less sensitive to changes in saturation, exhibiting slower desaturation 

rates. 245 

To disentangle the respective impacts of different landforms, we compared our results with those obtained from the analytical 

solution proposed by Bresciani et al. (2014) for a 1D hillslope, where one can easily assess the impacts of slope angle and the 

concavity/convexity of the hillslope (results in Supplementary Material S3). In agreement with our results, the steepness of the 

hillslope is the primary influence on seepage extent and its variation through changes in groundwater level. Steep slopes begin 

to desaturate at lower 𝐾𝐾
𝑅𝑅

 values than gentler slopes. Additionally, for a given change in groundwater level, the rate of change 250 

in seepage extent is inversely correlated with slope angle. This aligns with the differences in the desaturation exponent, 𝑛𝑛, and 

the desaturation threshold, 𝜆𝜆, obtained for the mountain and lowland clusters. Mountain clusters have higher 𝑛𝑛 and 𝜆𝜆 values, 

suggesting higher resilience to changes in 𝐾𝐾
𝑅𝑅

. 

Furthermore, the analysis of the simple analytical solution demonstrates that hillslope shape (concave vs. convex) also affects 

the desaturation function, though to a lesser extent than slope. Concave slopes appear to have a lower 𝜆𝜆 but a higher 𝑛𝑛 than 255 

convex slopes. Similarities between concave and convex hillslopes can be found in the shoulder vs. footslope in our landform 

classification. Shoulder and footslope is differentiated primarily along PC2, explaining a smaller proportion of the variance in 

the dataset analyzed here. However, no clear correlation between PC2, 𝑛𝑛, and 𝜆𝜆 was found, suggesting a minimal impact of 

shoulder and footslope landforms compared to the other ones. 

Our results establish a robust statistical framework demonstrating a strong correlation between landforms, categorized by the 260 

dominant landforms (PC1), and hydrological parameters that assess the sensitivity of groundwater seepage to desaturation with 

changing recharge. This framework allows for predictions using straightforward statistical learning techniques. The Random 

Forest algorithm yields highly promising results for the sixty-three catchments estimated. This approach provides valuable 

insights into assessing catchment vulnerability to climate change on a regional scale, even for ungauged basins (Hrachowitz 

et al., 2013). 265 
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