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S1: Correlation matrix between topographical parameters and seepage 12 

distribution parameters 13 

 14 

Figure S1 Correlation matrix between topographical parameters (PC1 and PC2) and seepage distribution parameters (λ and 15 
n) obtained from the curve fit. The diagonal part represents the distribution of each parameter associated with its name. The 16 
upper part indicates the correlation coefficient (r) between two variables, with stars indicating the strength of the correlation 17 
on a scale from 0 to 3 (for 3 stars p-value<0.001). The lower part represents the scatter plot between the two corresponding 18 
variables using the clusters color scheme. The X-axis is associated with both the scatter plots and the histogram distribution, 19 
while the Y-Axis is only associated with the scatter plots. 20 
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S2: Kernel Density Estimate 22 

For the prediction of lambda, we obtained an R2 mean value of 0.835 within a 95% confidence 23 

interval defined as [0.832-0.838] and a median value of 0.858. As for n, we obtained an R2 24 

mean value of 0.584 within a 95% confidence interval defined as [0.575-0.593] and a median 25 

value of 0.658. 26 

 27 

Figure S2 Kernel Density Estimate (KDE) plot depicting the coefficient of determination (R2) for parameter estimations of  28 
𝜆 and 𝑛 using a Random Forest algorithm. Each R2 value corresponds to one of 5000 resampling (with replacements) iterations 29 
involving 10 basins, serving as test data within a 60-basin dataset, while 50 basins were utilized for training. The sampling 30 
procedure was conducted to assess the estimation's robustness in the presence of random variations. 31 
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S3: Framework for 2D analytical solutions and sensitivity analysis of solution 33 

parameters 34 

 35 

Figure S3 Illustration of the 2D hillslope model employed to define the analytical solution, based on Bresciani et al. (2014). 36 

 37 

Bresciani et al. (2014) devised an analytical approach based on the Dupuit-Forchheimer 38 

assumption to estimate seepage length in hillslopes. This particular hillslope scenario is 39 

depicted in Figure S3, where d [L] represents the depth to the impervious base beneath the 40 

streambed, L [L] denotes the hillslope length, LS [L] the seepage length, K [LT−1] the hydraulic 41 

conductivity, R [LT−1] the available recharge rate, and s [-] the topographic slope.  42 

In this 2D hillslope framework, the model top (ZT) is represented as a constant slope 43 

topography: 44 

𝑍𝑇(𝑥) = 𝑠𝑥  45 
with s [-] the topographic slope. 46 

 47 
For this case the ratio between seepage length and hillslope length is defined, by mass 48 

balance, as:  49 

𝐿𝑆

𝐿
=

1 −
𝑠𝐾𝑑
𝑅𝐿

1 +
𝑠2𝐾

𝑅

 50 

 51 



To delve deeper into the geomorphological impact and introduce complexity beyond the 52 

constant slope framework, Bresciani et al. (2014) introduced variable slope topography, 53 

including the concave case:  54 

𝑍𝑇𝑐𝑜𝑛𝑐𝑎𝑣𝑒(𝑥) = 𝑠𝑥 +
1

2
𝑏𝑥2 55 

Or convex case: 56 

𝑍𝑇𝑐𝑜𝑛𝑣𝑒𝑥(𝑥) = 𝑠𝑥 −
1

2
𝑏𝑥2 57 

With b [-] the curvature degree.  58 

Here, we expand this work with the Dupuit solution seepage length estimation from the three 59 

different cases. For comparison purpose, we introduce a constraint on topography borders 60 

as: 61 

𝑍𝑇(𝑥 = 0) = 𝑍𝑇𝑐𝑜𝑛𝑐𝑎𝑣𝑒(𝑥 = 0) = 𝑍𝑇𝑐𝑜𝑛𝑣𝑒𝑥(𝑥 = 0) 62 
And: 63 

𝑍𝑇(𝑥 = 𝐿) = 𝑍𝑇𝑐𝑜𝑛𝑐𝑎𝑣𝑒(𝑥 = 𝐿) = 𝑍𝑇𝑐𝑜𝑛𝑣𝑒𝑥(𝑥 = 𝐿) 64 
  65 

To take this constraint into account, we need to accommodate the expression of the concave 66 

and convex topography: 67 

⟹ 𝑍𝑇𝑐𝑜𝑛𝑐𝑎𝑣𝑒(𝑥) =
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⟹ 𝑍𝑇𝑐𝑜𝑛𝑣𝑒𝑥(𝑥) =
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 70 

Resolving the same mass balance as for the linear case, for the concave and convex cases, the 71 

seepage length (LS/L) is determined as the real roots of the following 3rd degree polynomials: 72 

For concave case: 73 
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For convex case:  76 
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 78 

In this study, our primary focus was on the LS/L ratio in comparison to the K/R ratio. To 79 

comprehensively investigate the analytical solution, we conducted a sensitivity analysis on 80 

the slope parameter, which serves as the most significant indicator of topography in this 81 

specific case. For this analysis, the hillslope length (L) was set to 1000m, and the depth to 82 

impervious base (d) was maintained at d=100m to respect the ratio d/L=0.1 and to consider 83 

the Dupuit Forchheimer condition (d/L < 0.2) (Bresciani et al., 2014; Haitjema & Mitchell-84 

Bruker, 2005). We considered a range of slope values, spanning [0.02, 0.05, 0.1, 0.15, 0.2, 85 

0.25, 0.3, 0.4].  86 

To further explore the effects of these cases, we conducted a sensitivity study on the 87 

curvature degree. For this analysis, we maintained a fixed slope (s=0.2), and the curvature 88 

degree multiplied by the hillslope length (bL) was varied in the range [0.01, 0.05, 0.1, 0.15, 89 

0.2] for the concave case and in the opposite range [-0.01, -0.05, -0.1, -0.15, -0.2] for the 90 

convex case. 91 



 92 

Figure S4 (a) Left upper panel: Topography of the hillslope ZT, with each color corresponding to a different slope value.  Left 93 
lower panel: Seepage length ratio LS/L plotted against the ratio R/K for each hillslope case presented on the left upper panel 94 
using the same color palette. (b) Right upper panel: Topography of the hillslope ZT, with each color corresponding to a different 95 
curvature degree value. Dashed lines represent concave cases, and solid lines represent convex cases. The linear case is 96 
represented by a solid red line.  Right lower panel: Seepage length ratio LS/L plotted against the ratio R/K for each hillslope 97 
case presented on the right upper panel, using the same color palette and line patterns. 98 

 99 

Figure S4 presents the results of the sensitivity study with the slope (s) for the left panel and 100 

curvature degree (bL) on the right panel. The lower panel of Figure S4 presents the ratio LS/L 101 

for the various topography described on the upper panel plotted against the ratio K/R. 102 

Regarding the varying slope (s) on the left panel of Figure S4, the results show that slope 103 

incrementation exhibits a linear effect, with gentler slopes remaining fully saturated for a 104 

higher number of K/R and reaching LS/L =0 for the highest value of K/R. In contrast, steeper 105 

slopes desaturate at lower K/R and intercept LS/L =0 for the smallest value of K/R. The right 106 

panel of Figure S4 displays the results for the concave and convex cases. In terms of seepage 107 



length, we observed distinct behaviors between concave and convex topography, with more 108 

pronounced effects as the degree of curvature increased. In the convex hillslope case, 109 

remains fully saturated for a higher K/R, but the desaturation rate become quicker, leading 110 

to full desaturation (LS/L=0) before the linear case. Conversely, desaturation occurred earlier 111 

in the concave hillslope cases (lower K/R), but with a slower rate, indicating that they reached 112 

total desaturation (LS/L=0) beyond the linear case. 113 

Overall, we noticed that the curvature degree has a secondary influence on the seepage 114 

length compared to the slope value (Figure S4 left versus right panel). Nevertheless, there is 115 

a noteworthy effect of the curvature degree on the desaturation rate of the hillslope. 116 
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