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Abstract. This study investigates the influence of topography on the desaturation rates of groundwater-dependent wetlands in 

response to changes in recharge. We examined 60 catchments across northern Chile, which feature a wide variety of landforms. 

Landforms were categorized using geomorphon descriptors, resulting in three distinct clusters: flat, transitional, and mountain 10 

settings. Using steady-state 3D groundwater models, we derived flow partitioning and seepage area extent for each catchment. 

Each cluster exhibited consistent seepage areas evolution under varying wet-to-dry conditions. Our findings indicate that 

mountains have reduced seepage area compared to flats at equivalent hydraulic conductivity to recharge (K/R) ratios, but are 

less sensitive to recharge fluctuations, with slower rates of seepage area reduction. Statistical analyses show that geomorphon-

defined landforms correlate with desaturation indicators, enabling the prediction of catchment sensitivity to climate change 15 

based solely on topographic attributes.  

 

Short summary. This study shows that the response of groundwater-dependent wetlands to recharge changes can be predicted 

from landform properties alone. Mountain catchments are less sensitive to recharge changes than flat ones, due to fewer but 

more persistent seepage areas. These results support a scalable approach to assessing wetland vulnerability to climate change, 20 

with practical implications for water resource management and conservation planning in diverse landscapes. 

1. Introduction 

Changes in precipitation regimes and increasing temperatures driven by climate change are anticipated to significantly affect 

both surface and subsurface water resources (Berghuijs et al., 2024; Konapala et al., 2020; Taylor et al., 2013). Extended 

drought periods and reduced recharge are expected to threaten the functioning of groundwater-dependent ecosystems (Kløve 25 

et al., 2014; Rohde et al., 2024; Tetzlaff et al., 2024). These ecosystems rely on groundwater contributions to maintain their 

ecological structure and functional integrity, including processes that support biodiversity and key ecosystem services (Barron 

et al., 2014; Doody et al., 2017; Eamus & Froend, 2006). They encompass both terrestrial and aquatic environments, including 

wetlands, springs, rivers (riparian, aquatic, and hyporheic zones), lakes, grasslands, forests, as well as coastal and estuarine 

habitats (Eamus & Froend, 2006; Kløve et al., 2011). The extent to which groundwater-dependent ecosystems are vulnerable 30 
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to climate-induced reductions in recharge depends not only on the hydrogeological properties of the underlying aquifer, but 

also on the role of landscape morphology in shaping groundwater flow and discharge patterns (Gleeson & Manning, 2008; 

Singha & Navarre‐Sitchler, 2022). Identifying the physical controls on groundwater emergence at the land surface is therefore 

essential to improve our ability to anticipate groundwater-dependent ecosystems responses to climate variability. 

Groundwater seepage occurs when the water table intersects the topography. Thus, landforms influence both its spatial 35 

distribution and temporal dynamics (Bresciani et al., 2014, 2016; Sophocleous, 2002). The interaction between groundwater 

and topography significantly impacts the resilience of groundwater-dependent wetlands to climate variability (Cuthbert et al., 

2019; Scanlon et al., 2023). Considering steady-state groundwater flow systems, the depth of the water table, and the 

distribution of flow paths and groundwater seepage areas, are controlled by the groundwater recharge rate (𝑅𝑅), the topography 

and by the hydrodynamic properties of the aquifer through its hydraulic conductivity (𝐾𝐾), (Condon & Maxwell, 2015; Rath et 40 

al., 2023; Tóth, 1963; Zhang et al., 2022). An equivalence of effects between 𝑅𝑅 and 𝐾𝐾 has been demonstrated (Bresciani et al., 

2014; Haitjema & Mitchell‐Bruker, 2005; Jamieson & Freeze, 1982), allowing a convenient focus on the dimensionless 𝐾𝐾
𝑅𝑅

 ratio 

and the topography. In non-anthropized contexts, the groundwater table is typically near the surface in low-relief and/or humid 

regions, and deeper in rugged terrain and/or arid regions. However, the hydrogeological response and seepage dynamics to 

varying landscapes and topographic features are not straightforward and difficult to predict. 45 

Analytical solutions have been proposed to quantify the extent of groundwater seepage under varying 𝐾𝐾
𝑅𝑅

 at the hillslope scale, 

using simplified groundwater flow equations (Bresciani et al., 2014, 2016). Marçais et al. (2017) conducted modeling 

experiments to estimate seepage extent and dynamics using a 2D representation of the equivalent hillslope. While these 

approaches are applicable in shallow aquifers, where flow predominantly follows the topography, they do not capture the 

complexity of 3D groundwater flow, especially under low water tables or steep reliefs. A few 3D numerical modeling 50 

experiments have been undertaken, mainly for sensitivity studies with conceptual surface and subsurface geometries (Carlier 

et al., 2019; Gauvain et al., 2021; Gleeson & Manning, 2008; Welch et al., 2012). There is a pressing need to better understand 

the distribution and dynamics of groundwater seepage, particularly in light of the complex topographic characteristics of real-

world landscapes and the 3D nature of groundwater flow. Such knowledge is critical for predicting the extent of seepage and 

the persistence of groundwater-dependent wetlands under future climate scenarios. 55 

To address this knowledge gap, we designed a numerical experiment to model the partitioning of 3D groundwater flow and 

the extent of seepage across different landscapes, from flat to high mountain settings, under varying 𝐾𝐾
𝑅𝑅

 values. We applied this 

experiment on 60 catchments located in northern Chile, selected for their rich diversity of geomorphological contexts. By 

linking key topographic characteristics of the catchments to groundwater seepage dynamics predicted by the model, we aim 

to improve the prediction of wetland desaturation sensitivity under changing climate conditions. This approach supports the 60 

development of transferable frameworks for assessing the vulnerability of groundwater-dependent ecosystems across 

heterogeneous terrain and provide statistical means to regionalize our findings.  
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2. Material and Methods 

2.1. Geomorphological context 

The study area is located in northern Chile between Santiago and the Peruvian border. The landforms diversity results from 65 

the specific tectonic and weathering processes involved in the Andes. This process resulted in the formation of a longitudinal 

valley called the Central Depression, which is bounded by two cordilleras, the Coastal Cordillera and the Principal Cordillera, 

both composed mainly of volcanic-sedimentary rocks (Hartley & Evenstar, 2010; Jordan et al., 1983). The Coastal Cordillera 

forms an intermediate mountain range with an average elevation between 1,000 and 2,000 m.a.s.l., while the Principal Andean 

Cordillera has maximum elevations close to 7,000 m.a.s.l. (Figure 1a) (Armijo et al., 2015; Charrier et al., 2007). The Central 70 

Depression delineates a sedimentary basin rich in Quaternary alluvial deposits with variable thicknesses, ranging from about 

250 m near Santiago (Yáñez et al., 2015) to almost 1,000 m in the northern regions of Chile (Hartley & Evenstar, 2010; Jordan 

et al., 2014; Nester & Jordan, 2011). Specifically, the Pre-Cordillera is a transition zone between the Central Depression and 

the Western Cordillera, with catchment characteristics that vary from nearly flat terrain to mountainous regions with steep 

slope gradients and typical mountain front geomorphology (Figure 1a). The diversity of these environments provides an 75 

excellent opportunity to explore a wide range of topographic settings, including flat catchments, mountain-front areas, incised 

mountain catchments, volcanoes, and high mountain peaks. 

2.2. Classification of catchment topographies 

We considered the catchment boundaries of the global catchment database HydroATLAS (Lehner & Grill, 2013). We chose 

to limit the size of the catchments to between 500 and 1,500 km2 by considering level 8 of HydroATLAS. To cover different 80 

geomorphological and tectonic settings, we selected 60 catchments within our study area (indicated by black boundaries in 

Figure 1a). We extracted the topography from the SRTM (Shuttle Radar Topography Mission, 90 m resolution) digital 

elevation model (DEM). 

We used the geomorphons classification method proposed by Jasiewicz & Stepinski (2013) to categorize the landform features 

within each catchment; e.g., flat, peak, ridge, shoulder, spur, slope, pit, valley, footslope, and hollow. (Figure 1b, note that 85 

geomorphons-defined landforms are italicized throughout the text for improved readability). This methodology is based on 

elevation differences in eight directions relative to the reference cell. This operation is reproduced for each cell of the DEM, 

identifying a shape for each of these cells (Figure 1b). Unlike the direct cell neighbor method (e.g., slope, curvature, or 

roughness), the geomorphons method allows for capturing landforms at larger scales by defining a search radius around the 

reference cell, the look-up distance in Jasiewicz & Stepinski (2013). Here we defined the search radius equal to the hillslope 90 

characteristic length: 

𝐿𝐿 = 1
2𝐷𝐷
→ 𝐿𝐿 = 1

2∗ 𝑙𝑙𝐴𝐴
, (1) 
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where 𝐿𝐿 is the catchment feature length, 𝑙𝑙 is the river network length, 𝐷𝐷 is the drainage density, and 𝐴𝐴 is the catchment area.  

The river network is defined using a surface flow accumulation routine available in the Whitebox tool Python package 

(Lindsay, 2016). Combining principal component analysis (PCA) and k-means clustering methods (Figure 1c), we categorized 

the catchments by their dominant landform features (Figure 1b). PCA is a classical statistical method used to reduce the dataset 95 

dimensionality by transforming the original variables into a new set of uncorrelated variables, called principal components 

(PC), which capture the maximum variance in the data. The k-means clustering approach allows us to identify groups of 

catchments belonging to the cluster with the nearest mean within the new PC space (Figure 1c). Here, we defined 3 main 

clusters of catchments typical of flat, transitional, and mountain settings.  Python code and trained models are available on the 

repository (Marti et al., 2025). 100 

2.3. Numerical modeling of groundwater seepage extent 

A three-dimensional numerical groundwater flow model was developed for each catchment. The models were constructed and 

run using the MODFLOW-2005 software suite (Harbaugh, 2005) with the NWT solver (Niswonger et al., 2011), and managed 

through the Python-based interface FLOPY (Bakker et al., 2016). The diffusivity equation was solved under steady-state 

conditions for unconfined flow. 105 

The horizontal discretization followed the DEM resolution, set at 90 meters (Figure 2a), while the vertical discretization 

consisted of ten layers with exponentially increasing thickness (Figure 2b). To limit boundary effects, a buffer zone extending 

the model domain by 20% around each catchment was added. A sensitivity analysis (Abhervé et al., 2023) of the extent of the 

buffer zone was performed to ensure that no impact on the seepage distribution was identified within the studied catchment 

(Figure 2a). The model bottom mirrored the topography with a 100m-thick aquifer (Figure 2b). Assuming a constant aquifer 110 

thickness minimized the potential effects of transmissivity changes on seepage distribution. The 100m thickness was chosen 

to realistically accommodate both flat sedimentary catchments and steep mountainous aquifers (Condon et al., 2020). The side 

and bottom boundaries of the buffer box were set as no-flow. For generality, effective recharge 𝑅𝑅 was uniformly set at the 

water table across both the catchment and its buffer, enabling the simulation of both inflow and outflow across the model 

boundaries. This setup allowed considering interbasin groundwater exchanges, which are particularly likely to occur under 115 

low water table conditions (Fan, 2019). A drain boundary condition (with a conductance equal to the product of hydraulic 

conductivity with horizontal cell area divided by the cell mid-thickness) was set on the topography using the eponymous 

packages in MODFLOW to allow exfiltration of groundwater wherever the water table rises to intersect the land surface. This 

method ensures that discharge occurs naturally along the topography, mimicking surface-connected wetlands and springs 

without imposing fixed fluxes or predefined discharge zones.  120 

To solely focus on the effects of topography in the redistribution of groundwater seepage, we imposed homogeneous and 

isotropic hydraulic conductivity (K) across all modelled catchments. This simplification ensures that variability in seepage 

behavior arises solely from differences in landscape geometry and water table positions, rather than site-specific geological 
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heterogeneity. Various water table positions relative to the topography were derived by setting different values of the 𝐾𝐾
𝑅𝑅

 ratio, 

ranging from 100 for fully saturated conditions to 10,000 when all simulated catchments reached near full desaturation (i.e., 125 

when the normalized seepage area 𝑆𝑆𝐴𝐴∗ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

reaches 1%). 𝐾𝐾
𝑅𝑅

 values were logarithmically spaced within this interval, 

and simulations were stopped if the catchment's seepage area fell below the 1% threshold (Figure 2c). This allows us to consider 

a full range of conditions from humid to arid climates and low- to high-hydraulic conductivity settings. This modeling 

workflow resulted in a total of 1,793 simulations. 

For each catchment, we perform a power law fit on the relationship between seepage area extent and 𝐾𝐾
𝑅𝑅

 further mentioned as 130 

the desaturation function (Eq. 2a, and red curve in Figure 2c). This allows us to capitalize on the observed linear relation 

between log (𝑆𝑆𝐴𝐴∗) and log (𝐾𝐾
𝑅𝑅

):  

𝑆𝑆𝐴𝐴∗  = �1 + �
𝐾𝐾
𝑅𝑅
𝜆𝜆
�

2

�

𝑛𝑛

 (2a) 

𝑑𝑑𝑆𝑆𝐴𝐴∗ 

𝑑𝑑 𝐾𝐾𝑅𝑅
=

2𝑛𝑛
𝜆𝜆2
𝐾𝐾
𝑅𝑅

𝑆𝑆𝐴𝐴∗ 

1 + �
𝐾𝐾
𝑅𝑅
𝜆𝜆 �

2 
(2b)  

𝑑𝑑𝑆𝑆𝐴𝐴∗ 

𝑑𝑑 𝐾𝐾𝑅𝑅
≈

2𝑛𝑛𝑆𝑆𝐴𝐴∗

𝐾𝐾
𝑅𝑅

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 
𝐾𝐾
𝑅𝑅
≫ 𝜆𝜆  (2c) 

The desaturation function is determined by the proportionality constant, 𝜆𝜆 , which can be associated with a desaturation 

threshold, i.e., the critical value of 𝐾𝐾
𝑅𝑅

 above which the catchment begins to desaturate. The negative desaturation exponent, 𝑛𝑛, 

directly affects the rate of change in seepage extent as 𝐾𝐾
𝑅𝑅

  increases, as shown in Eqs. 2b and 2c. It can be viewed as a measure 135 

of the sensitivity of the seepage area extent to a deepening of the water table: for a given pair of seepage area and 𝐾𝐾
𝑅𝑅

, a lower 𝑛𝑛 

indicates a higher sensitivity of the catchment to a decrease of the water level. We estimated 𝑛𝑛 considering seepage area extents 

lower than 20% of the catchment area, which are more representative of real-world conditions, i.e., by giving more weight in 

the fit to the higher 𝐾𝐾
𝑅𝑅

 ratios. 
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2.4. Regionalization with Random Forest algorithm  140 

To predict the desaturation response metrics λ and n from topographic descriptors and regionalize our findings, we employed 

Random Forest regression using the scikit-learn library in Python (Pedregosa et al., 2011). The input features for the model 

were the first two principal components (PC1 and PC2) derived from the 60 catchments. Random Forest models were trained 

independently for λ and n. Model performance and robustness were assessed using a bootstrap resampling procedure with 

5,000 iterations. In each iteration, 10 catchments were randomly selected as a test set, while the remaining 50 were used for 145 

training. The coefficient of determination (R²) was calculated on the test data for each iteration, and the resulting R² distribution 

was used to evaluate model reliability (see Supplementary Material S2 for Kernel Density Estimate of R² values). 

Hyperparameter tuning for each model was performed using GridSearchCV with 2-fold cross-validation within each training 

subset. The tested parameter grid included n_estimators ∈ {50, 200, 500, 1000} and max_depth ∈ {None, 2, 10, 20}. The best 

combination of hyperparameters was used to retrain the model on the full training set in each iteration. The final Random 150 

Forest model was defined as the one achieving the best trade-off in predictive accuracy for both λ and n, and it was applied to 

predict desaturation metrics in 63 additional catchments located in South Chile.  

3. Results 

3.1. Typology of catchments topography 

We evaluate the proportion of main geomorphons on the 60-catchment dataset. The PCA analysis (Figure 1c) resulted in a 155 

first component (PC1) explaining 75.4% of the total variance, and the first two components (PC1 and PC2) combined 

explaining 86.8% of the total variance. This result indicates a strong relation between the landforms description from 

geomorphons analysis in the catchments and the reduction into 2 dimensions. We found that PC1 mostly represents the 

differentiation between flat and slope landforms, with eigenvector magnitudes of -0.4 for the flat landform and 0.4 for the 

slope landform. Slope landform is associated with the peak, ridge, valley, hollow, spur, and pit forms, all showing similar 160 

eigenvectors magnitude on PC1. Regarding PC2, the footslope and shoulder forms are the main control with an eigenvector 

magnitude of respectively, 0.8 and 0.5. Flat and slope forms show eigenvectors magnitudes of -0.2 and 0.2 along the PC2 axis.  

To further support and illustrate this description, the catchments are grouped into three clusters, as a result of the k-means 

clustering, displayed with different colors in the subsequent Figures 3 and 4. The red cluster is characterized by relatively flat 

landforms. Conversely, the blue cluster is strongly influenced by slope and associated landforms along PC1 (ridge, valley, 165 

peak) representative of mountain catchments with incised valleys and narrow valley bottoms. The green cluster exhibits more 

dispersion in the represented catchments. This cluster acts as a transition between the red and blue clusters. It contains 

catchments most influenced by footslope and shoulder forms. Positioned centrally between the two extreme clusters, this 
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cluster serves as a transition zone between flatter areas and mountain catchments, possibly including catchments showing both 

flat and mountainous characteristics, as observed at mountain fronts.  170 

To facilitate comprehension and illustration, the catchment clusters are referred to as flat catchment for the red cluster, 

mountain catchment for the blue cluster, and transitional catchment for the green cluster thereafter.  

3.2. Seepage distribution evolution with increasing 𝑲𝑲
𝑹𝑹

  

Figure 3a illustrates the evolution of seepage area, normalized by catchment area, as a function of 𝐾𝐾
𝑅𝑅

 for all 60 catchments. Four 

specific catchments are highlighted with sharper lines for further discussion. As expected, lower 𝐾𝐾
𝑅𝑅

 values result in fully 175 

saturated catchments, while as 𝐾𝐾
𝑅𝑅

 increases, all catchments progressively desaturate at varying rates. For instance, at a 

normalized seepage area of 20%, the corresponding 𝐾𝐾
𝑅𝑅

 values range from 20 to 250. 

The desaturation behavior can be clearly differentiated for the 3 clusters of catchments (Figure 3a), confirming that variations 

in seepage distribution are predominantly driven by topographical effects. The power law fit of seepage distribution (Eq. 2a) 

for each of the 60 catchments results in 𝜆𝜆 values ranging from 2.05 to 37.03 and 𝑛𝑛 values ranging from -0.44 to -0.31. The fit 180 

shows minimal RMSE values between 0.01 and 0.08, indicating that seepage evolution with increasing 𝐾𝐾
𝑅𝑅

 can be successfully 

parameterized with only two parameters, 𝜆𝜆 and 𝑛𝑛. 

Regarding the desaturation threshold, 𝜆𝜆, the mountain catchments show lower values than the flat ones. The transitional 

catchments show intermediate behavior, reaching higher 𝜆𝜆 values than the mountain catchments but lower than the flat ones. 

Regarding the desaturation exponent 𝑛𝑛, within the low-saturation domain (≤ 20%), the mountain catchments exhibit slower 185 

desaturation rates, while the flats present faster desaturation rates. The variability in desaturation slopes for the transitional 

catchments is more pronounced, reflecting a mix of behaviors within this zone, yet it again shows intermediate behavior 

relative to the other two clusters. 

3.3. Groundwater seepage extent in four representative catchments  

Figure 3 highlights four distinct catchments: M1, representative of the mountain catchments; F2, representing the flat 190 

catchments; and T3 and T4, showing the range of responses within the transitional catchments. We present the seepage over 

recharge distribution overlayed on the topographic map and the landform proportions for each catchment (Figure 3b, c, d, and 

e). 

For M1 (Figure 3b), characterized by low 𝜆𝜆 and high 𝑛𝑛 values, it exhibits the typical seepage distribution of mountainous 

regions. At a normalized area of 0.2, seepage primarily congregates in topographic lows, such as river valleys, while ridges 195 

and peaks desaturate due to their significant elevation compared to the surrounding terrain. Conversely, F2 (Figure 3c), with 

high 𝜆𝜆 and low 𝑛𝑛 values, suggests that the water table remains closer to the surface in flat settings. For T3 and T4, their 
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landform proportions (Figure 3d and e) reveal similar values for most forms, except for a higher proportion of shoulder and 

footslope forms in T4. This increased prevalence of shoulder landform in T4 is due to a prominent incised river valley in the 

eastern part of the catchment. 200 

Examining T3's seepage distribution, it initially aligns with the mountain catchments with a low desaturation threshold (𝜆𝜆). 

Then, in the range of 1 < 𝐾𝐾
𝑅𝑅

 < 10, a substantial change in the desaturation function is observed, with the distribution pattern 

converging toward the ones typical of the flat catchments for high 𝐾𝐾
𝑅𝑅

 values, ultimately being the last catchment to reach a 

saturation level of <1%. This behavior can be explained by looking at the spatial distribution of seepage for T3 (Figure 3d). A 

clear contrast exists between the flat western area and the mountainous settings to the east. At higher elevations, desaturation 205 

occurs at lower 𝐾𝐾
𝑅𝑅

 values dominated by the steep landforms of the mountain settings and resulting in a low desaturation 

threshold (𝜆𝜆). Subsequently, at a normalized area of 0.2, the catchment desaturation is mostly controlled by the western flat 

terrains. 

Conversely, T4's seepage distribution exhibits an opposite pattern. It initially mirrors the flat cluster with a higher λ value, 

ultimately resembling the mountain cluster characteristics, reaching saturation levels under 1% for similar 𝐾𝐾
𝑅𝑅

 values. The 210 

seepage spatial distribution for T4 (Figure 3e) shows that flat landforms at higher elevation zones in the western part of the 

catchment control the initiation of the desaturation before being mostly controlled by the steep incised valley at lower 

elevations that tends to sustain the seepage extent.  

3.4. Linking topographic features and desaturation behavior 

We computed the correlation matrix between the principal components (PC1 and PC2) and the desaturation parameters (𝜆𝜆 and 215 

𝑛𝑛) to assess the strength of the topographical control on desaturation behavior. Figure 4a shows a strong anti-correlation 

between 𝜆𝜆 and PC1, with a Spearman coefficient of r = -0.96 (p < 0.0001). Figure 4b displays a strong linear correlation 

between 𝑛𝑛 and PC1, with r = 0.76 (p < 0.0001). No other significant correlations were identified (the entire correlation matrix 

is available in Supplementary Material S1). 

The catchment clusters are well distinguishable in Figure 4a and 4b. In Figure 4a, the inverse relationship between 𝜆𝜆 and PC1 220 

is robustly quantified by fitting an exponential function (R² = 0.89), facilitating a quantitative correlation between 𝜆𝜆 and PC1, 

as illustrated in Figure 4a. The mountain cluster is isolated with a low average and variance in 𝜆𝜆 values. The transitional cluster 

forms the elbow part of the exponential decay, while the flat cluster is clearly identified with higher 𝜆𝜆 values. The variations 

in 𝜆𝜆 values are higher in the flat and transitional catchments compared to the mountain ones.  

Figure 4b reveals a linear relationship between 𝑛𝑛 and PC1. The good linear fit (R² = 0.72) allows for a straightforward 225 

quantification of the relationship between PC1 and the negative scaling exponent 𝑛𝑛 and, consequently, the appraisal of the 

desaturation rate based on landforms (Eqs. 2b and 2c).  The catchment clusters are well identified, with the flat cluster showing 

lower 𝑛𝑛 values than the mountain cluster.  
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We finally employed a Random Forest regression on the dataset to predict 𝜆𝜆 and 𝑛𝑛 based on topographic parameters (PC1 and 

PC2) for 63 catchments located both in the same study area and expanding further South inside Chile (Figure 4d and 4e). We 230 

defined PC1, PC2, and clusters for these new catchments using the originally trained PCA and k-means models (Figure 4c). 

Predictions made for 𝜆𝜆 (Figure 4a) show good consistency with the original dataset both in terms of identifying clusters 

behaviors and in trend, following the originally defined exponential relation. Regarding 𝑛𝑛 (Figure 4b), we observe a similar 

accuracy to represent clusters, while the general linear trend is less obvious. We observe for 𝑛𝑛, while following an increasing 

trend, diversified response between the clusters with the transitional catchments exhibiting a greater rate of change in 𝑛𝑛 for an 235 

equivalent increment in PC1. Yet the spatial distribution of the predicted catchments observed on Figure 4d and 4e, is a good 

match with the original data, both in terms of topographic characteristics and desaturation function parameters.   

4. Discussion and perspectives 

Groundwater flow and storage regulate the resilience of wetlands to climate variability (Fan et al., 2019). Variations in 

topography and landforms across catchments lead to differences in wetland sensitivity to changing recharge by shaping distinct 240 

groundwater flow structures. In this study, we provide a quantitative assessment of the controls of landforms on the sensitivity 

of groundwater-dependent wetlands to aquifer desaturation – expressed through variations in the 𝐾𝐾
𝑅𝑅

 ratio - across a total of 123 

catchments in Chile, spanning settings from flat to high mountain topographies. These feedback mechanisms were analyzed 

using a novel combination of three-dimensional process-based groundwater modeling, geomorphon-based landform 

classification, multivariate statistical analysis, and Random Forest predictions at the regional scale. 245 

Moreover, the proposed methodology demonstrated strong robustness to outliers and atypical landscape configurations. For 

instance, the Andes Mountains in northern Chile encompass the “Altiplano” region, which features extensive flat terrains 

within an otherwise mountainous setting. The method successfully identified such catchments and classified them as flat 

(Figure 4d between 19 and 23°S), illustrating its ability to reliably capture dominant landform characteristics across diverse 

geomorphological contexts. 250 

Our results demonstrate that the desaturation functions of catchments can be explained by the typologies in topography derived 

from landform categorization. Building on previous works that focused on two-dimensional aquifer geometry, as first 

introduced by Haitjema and Mitchell-Brucker (2005) and further explored by Bresciani et al. (2014), we show that mountainous 

regions exhibit lower seepage extents, restricted to incised valleys, compared to flat catchments at equivalent 𝐾𝐾
𝑅𝑅

 ratios. 

However, we demonstrate that mountainous regions are less sensitive to changes in saturation, exhibiting slower desaturation 255 

rates. 

To disentangle the respective impacts of different landforms, we compared our results with those obtained from the analytical 

solution proposed by Bresciani et al. (2014) for a 1D hillslope, where one can easily assess the impacts of slope angle and the 

concavity/convexity of the hillslope (results in Supplementary Material S3). In agreement with our results, the steepness of the 
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hillslope is the primary influence on seepage extent and its variation through changes in groundwater level. Steep slopes begin 260 

to desaturate at lower 𝐾𝐾
𝑅𝑅

 values than gentler slopes. Additionally, for a given change in groundwater level, the rate of change 

in seepage extent is inversely correlated with slope angle. This aligns with the differences in the desaturation exponent, 𝑛𝑛, and 

the desaturation threshold, 𝜆𝜆, obtained for the mountain and flat clusters. Mountain clusters have higher 𝑛𝑛 and 𝜆𝜆 values, 

suggesting higher resilience to changes in 𝐾𝐾
𝑅𝑅

. 

Furthermore, the analysis of the simple analytical solution demonstrates that hillslope shape (concave vs. convex) also affects 265 

the desaturation function, though to a lesser extent than slope. Concave slopes appear to have a lower 𝜆𝜆 but a higher 𝑛𝑛 than 

convex slopes. Similarities between concave and convex hillslopes can be found in the shoulder vs. footslope in our landform 

classification. Shoulder and footslope is differentiated primarily along PC2, explaining a smaller proportion of the variance in 

the dataset analyzed here. However, no clear correlation between PC2, 𝑛𝑛, and 𝜆𝜆 was found, suggesting a minimal impact of 

shoulder and footslope landforms compared to the other ones. 270 

While the aim of the present work is to establish a comprehensive exploration of landform controls on seepage dynamics, 

several simplifications limit its direct application to specific real-catchment systems. Although the models are based on real 

topographies from the Chilean Andes, the experiment does not intend to capture actual complexity of hydrogeological systems, 

but rather to explore a wide enough range of natural landform geometries for comparative analysis. First, we assumed 

homogeneous and isotropic aquifer properties with a fixed aquifer thickness, thereby neglecting geological heterogeneities, 275 

anisotropy, and variability in the depth of the active groundwater flow system (Frisbee et al., 2017; McIntosh & Ferguson, 

2021), and consequently the seepage distribution, that can be involved in real landscape. While our use of the dimensionless 
𝐾𝐾
𝑅𝑅

 ratio offers a robust approach for analyzing desaturation responses, future research could benefit from exploring additional 

parameters that account for catchment geometry, relief, or flow system depth. Additionally, the model results presented here 

operate under steady-state conditions and exclude the potential impacts of seasonal recharge variability, vegetation feedbacks, 280 

or the role of the unsaturated zone near the land surface. Exploring such processes, especially under transient conditions and 

with heterogeneous parameters, represents a promising perspective for future research. 

5. Conclusion  

To conclude, our study demonstrates that catchment-scale topographic features, quantified through geomorphon-based 

landform classification, exert a first-order control on groundwater seepage dynamics under varying recharge conditions. By 285 

linking these landforms to a desaturation function, we show that the sensitivity of groundwater seepage extent to climate 

variability can be predicted from topography alone. This insight enables the development of a robust and scalable framework 

for assessing hydroclimatic vulnerability, particularly relevant for data-scarce regions. The ability to regionalize desaturation 

behavior using simple statistical learning tools, such as Random Forest as presented here, opens up new opportunities for 

applying this approach to ungauged basins in other regions (Hrachowitz et al., 2013). As such, our findings offer not only a 290 
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methodological advance but also demonstrate potential to assess the vulnerability of groundwater-dependent wetlands and the 

ecosystem they support to climate change. 
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Figure 1: Methodological workflow for topographical classification and analysis. (a) Location and topographic map of the study 
area in northern Chile, with the boundaries of the 60 studied catchments highlighted in black. (b) Example of landform classification 
within a single catchment, including a landform map, the proportion of landform types, and an illustration of the principal landform 450 
categories defined by geomorphons (adapted from Jasiewicz & Stepinski, 2013). (c) Catchment categorization using Principal 
Component Analysis (PCA) for dimensionality reduction and clustering. The example catchment is plotted in the PCA space, 
illustrating its position relative to the first two principal components (PC1 and PC2) and the whole dataset (grey dots). Red arrows 
represent the eigenvectors associated with different landform types, showing their contribution to the PCA axes. 
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 455 

Figure 2: Model settings for one example catchment: (a) Horizontal discretization and buffer zone beyond catchment limits, (b) AA’ 
cross-section including vertical discretization and an arbitrary water table intercepting the topography creating seepage areas (red 
dots), (c) Example of results of normalized seepage area with respect to K/R (grey and blue dots) with the power law fit for Eq. 2a 
(dashed red curve). The blue dots represent the normalized seepage area < 20% where the fit weight is enhanced. 
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 460 

Figure 3: (a) Normalized seepage area against 𝑲𝑲
𝑹𝑹

 for the 60 catchments (colored lines with markers), including log-log plot on the 
upper-right corner. Four illustrative catchments are highlighted: mountain type M1 (blue diamond, (b)), flat type F2 (red cross, (c)), 
transitional type T3 (green triangle, (d)) and T4 (green cross, (e)). Details include the topographic map overlaid by the seepage extent 
at an arbitrary value of 20% (red mask) with corresponding 𝑲𝑲

𝑹𝑹
 value along with the landforms distribution statistics. 
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 465 

Figure 4: Scatter plots for the original 60-catchment dataset (dots) with Spearman coefficient r, the equation and the coefficient of 
determination (R2) of a global fit (black line with 95% confidence interval) for (a) λ against PC1 and for (b) 𝒏𝒏 against PC1. Random 
Forest predictions for both parameters are superimposed on the original data (triangles). (c) PCA plot, for the original (dots) and 
the prediction (triangles) datasets. The percentage of variance in the original dataset explained by each component is displayed on 
axis title. (d) and (e) Situation and topographic maps of the study area highlighting the 123 catchments with a coloured according to 470 
the defined catchment clusters (flat, transitional and mountain). Each catchment is marked by a dot (original dataset) or a triangle 
(prediction dataset) whose size depends on 𝝀𝝀  and color on 𝒏𝒏. 
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