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Abstract. This study investigates the influence of topography on the desaturation rates of groundwater-dependent wetlands in
response to changes in recharge. We examined sixty60 catchments across northern Chile, which feature a wide variety of
landforms. We-categerized-the-tandformsLandforms were categorized using geomorphon descriptors, identifyring-resulting in
three distinct clusters: lowlandflat, transitionintermediatetransitional, and mountain settings. Using steady-state 3D

groundwater models, we derived flow partitioning and seepage area extent for each catchment. Each cluster revealed-exhibited

consistent seepage areas evolution under varying wet-to-dry conditions. Our findings indicate that mountains exhibit-have
reduced seepage area compared to tewlands-flats at equivalent hydraulic conductivity to recharge (K/R) ratios, but are less
sensitive to recharge fluctuations, with slower rates of seepage area variationreduction. Statistical evidenee
demenstratesanalyses show that geomorphons-defined landforms correlate with desaturation indicators, enabling the

prediction of catchment sensitivity to climate change based solely on a topographic arabysisattributes.

Short summary. This studyeresearch demenstrates-shows that the response of groundwater-dependent wetlands to recharge

changes can be aceurately—predicted selehybased—en-from landform properties_alone;—providing—a—practical-and-scalable

approach-forwetlandvulnerability-assessment. We-reveal-that-mMountain catchments are less sensitive to recharge changes
than lewland-flat eatchmentsones,— due to fewer but more persistent seepage areas. These results H-effers-criticalinsightsfor

evaluating-thesupport a scalable approach to assessing wetland vulnerability ef-catehments-to climate change, with practical

implications -impacts—and-has-directimphications—for water resource management and conservation planning inin diverse
landscapes.

2-1. Introduction

Changes in precipitation regimes and increasing temperatures driven by climate change are anticipated to significantly affect

both surface and subsurface water resources (Berghuijs et al., 2024; Konapala et al., 2020; Taylor et al., 2013). Extended

drought periods and reduced recharge are expected to threaten the functioning of groundwater-dependent ecosystems (Klgve
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et al., 2014; Rohde et al., 2024; Tetzlaff et al., 2024). These ecosystems rely on groundwater contributions to maintain their

ecological structure and functional integrity, including processes that support biodiversity and key ecosystem services (Barron

et al., 2014; Doody et al., 2017; Eamus & Froend, 2006). They encompass both terrestrial and aquatic environments, including

wetlands, springs, rivers (riparian, aguatic, and hyporheic zones), lakes, grasslands, forests, as well as coastal and estuarine

habitats (Eamus & Froend, 2006; Klgve et al., 2011). The extent to which groundwater-dependent ecosystems are vulnerable

to climate-induced reductions in recharge depends not only on the hydrogeological properties of the underlying aquifer, but

also on the role of landscape morphology in shaping groundwater flow and discharge patterns (Gleeson & Manning, 2008;

Singha & Navarre-Sitchler, 2022). Identifying the physical controls on groundwater emergence at the land surface is therefore

essential to improve our ability to anticipate groundwater-dependent ecosystems responses to climate variability.

Groundwater seepage occurs when the water table intersects the topography. Thus, landforms influence both its spatial
distribution and temporal dynamics (Bresciani et al., 2014, 2016; Sophocleous, 2002). The interaction between groundwater
and topography significantly impacts the resilience of groundwater-dependent wetlands to climate variability (Cuthbert et al.,
2019; Scanlon et al., 2023). Considering steady-state groundwater flow systems, the depth of the water table, and se-the
distribution of flow paths and groundwater seepage areas, are controlled by the groundwater recharge rate (R), the topography
and by the hydrodynamic properties of the aquifer through its hydraulic conductivity (K), (Condon & Maxwell, 2015; Rath et
al., 2023; Téth, 1963; Zhang et al., 2022). An equivalence of effects between R and K has been demonstrated (Bresciani et al.,

2014; Haitjema & Mitchell-Bruker, 2005; Jamieson & Freeze, 1982), allowing a convenient focus on the dimensionless % ratio

and the topography. In non-anthropized contexts, Fthe groundwater table is typically near the surface in low-relief and/or

humid regions, and deeper in rugged terrain and/or arid regions. However, the hydrogeological response and seepage dynamics

to varying landscapes and topographic features are not straightforward and difficult to predict.
Analytical solutions have been proposed to quantify the extent of groundwater seepage under varying %at the hillslope scale,

using simplified groundwater flow equations (Bresciani et al., 2014, 2016). Marcais et al. (2017) conducted modeling
experiments to estimate seepage extent and dynamics using a 2D representation of the equivalent hillslope. While these
approaches are applicable in shallow aquifers, where flow predominantly follows the topography, they do not capture the
complexity of 3D groundwater flow, especially under low water tables or steep reliefs. A few 3D numerical modeling
experiments have been undertaken, mainly for sensitivity studies with conceptual surface and subsurface geometries (Carlier
et al., 2019; Gauvain et al., 2021; Gleeson & Manning, 2008; Welch et al., 2012). There is a pressing need to better understand
seepage-the distribution and dynamics_of groundwater seepage, particularly in light of the complex eensidering-the-intricate
topographic characteristics nruanees-of real-world cenditions-landscapes and the 3D nature of groundwater flow. Fhis-Such
knowledge is essential-critical for to-predicting the extent of greundwater-seepage and the persistence of groundwater-its

dependent wetlands under future climate scenarios.
To address this knowledge gap, we designed a numerical experiment toOurstudy-aims-te model the partitioning of- 3D

groundwater flows and the their-seepage-extent of seepage across different landscapes, from lewdand-flat to high mountain
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settings, eensidering-variousunder varying %values. We applied this experiment on 60 catchments located in northern Chile,

selected for their rich diversity of geomorphological contexts.

groundwater seepage dynamics predicted by the model, we seekaim to improve the prediction of wetland desaturation

risksensitivity under changing climate conditions. This approach supports the development of transferable frameworks for

assessing the vulnerability of groundwater-dependent ecosystems —vulnerabiity—across heterogeneous terrain and provide

statistical means to regionalize our findings. behawvi

3.2. Material and Methods

3421 Geomorphological context

The study area is located in northern Chile between Santiago and the Peruvian border—(=1.800-km-leng). The landforms
diversity results from the specific tectonic and weathering processes involved in the Andes. This process resulted in the
formation of a longitudinal valley called the Central Depression, which is bounded by two cordilleras, the Coastal Cordillera
and the Principal Cordillera, both composed mainly of volcanic-sedimentary rocks (Hartley & Evenstar, 2010; Jordan et al.,
1983). The Coastal Cordillera forms an intermediate mountain range with an average elevation between 1,000 and 2,000
m.a.s.l., while the Principal Andean Cordillera has maximum elevations close to 7,000 m.a.s.l. (Figure 1Figure-1a) (Armijo et
al., 2015; Charrier et al., 2007). The Central Depression delineates a sedimentary basin rich in Quaternary alluvial deposits
with variable thicknesses, ranging from about 250 m near Santiago (Yafiez et al., 2015) to almost 1,000 m in the northern
regions of Chile (Hartley & Evenstar, 2010; Jordan et al., 2014; Nester & Jordan, 2011). Specifically, the Pre-Cordillera is a
transition zone between the Central Depression and the Western Cordillera, with catchment characteristics that vary from
nearly flat terrain to mountainous regions with steep slope gradients and typical mountain front geomorphology (Figure
1Figure-1a). The diversity of these environments provides an excellent opportunity to explore a wide range of topographic

settings, including flat catchments, mountain-front areas, incised mountain catchments, volcanoes, and high mountain peaks.
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Figure 1: Methodological workflow for topographical classification and analysis. (a) Location and topographic map of the study
area in northern Chile, with the boundaries of the 60 studied catchments highlighted in black. (b) Example of landform classification
within a single catchment, including a landform map, the proportion of landform types, and an illustration of the principal landform
categories defined by geomorphons (adapted from Jasiewicz & Stepinski, 2013). (c) Catchment categorization using Principal
Component Analysis (PCA) for dimensionality reduction and clustering. The selected-example catchment is plotted in the PCA
space, illustrating its position relative to the first two principal components (PC1 and PC2) and te-the whole dataset (grey dots). Red
arrows represent the eigenvectors associated with different landform types, showing their contribution to the PCA axes.
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3:22.2. Classification of catchment topographies

We considered the catchment boundaries of the global catchment database HydroATLAS (Lehner & Grill, 2013). We chose
to limit the size of the catchments to between 500 and 1,500 km? by considering level 8 of HydroATLAS. To cover different
geomorphological and tectonic settings, we selected sixty60 catchments within our study area (indicated by eelered-black

boundaries in Figure 1Figure-1a). We extracted the topography from the SRTM (Shuttle Radar Topography Mission, 90 m
resolution) digital elevation model (DEM)-from-the-SRTM-(Shuttle-Radar Fopoegraphy-Mission,-90-m-reselution).

We used the geomorphons classification method proposed by Jasiewicz & Stepinski (2013) to categorize the topegraphies
landform features within each catchments; e.qg., flat, peak, ridge, shoulder, spur, slope, pit, valley, footslope, and hollow. inte
ten-differentlandforms-(Figure 1Figure-1b, note that }-Ggeomorphons-defined landforms are italicized throughout the text for

improved readability). This methodology is based on elevation differences in eight directions relative to the reference cell.

This operation is reproduced for each cell of the DEM, identifying a shape for each of these cells (Figure 1Figure-1h). Unlike
the direct cell neighbor method (e.g., slope, curvature, or roughness), the geomorphons method allows te-capturefor capturing
landforms at larger scales by defining a search radius around the reference cell, the look-up distance in Jasiewicz & Stepinski
(2013). Here we defined the search radiusi as-afunetion-of-theequal to the -hillslope characteristic length:

1 1 ]
L_E_)L_g’ Equation-(1)

where L is the catchment feature length, [ is the river network length, D is the drainage density, and A is the catchment area.

The river network is defined using a surface flow accumulation routine available in the Whitebox tool Python package
(Lindsay, 2016). Combining principal component analysis (PCA) and k-means clustering_methods (Figure 1Figure-1c), we
categorized the catchments by their dominant tepegraphical-landform features based-on-landform-propertions-(Figure 1rigure

1b). PCA is a classical statistical method used to reduce the dataset dimensionality by transforming the original variables into

a new set of uncorrelated variables, called principal components (PC), which capture the maximum variance in the data. The
k-means clustering approach allows us to identify groups of catchments belonging to the cluster with the nearest mean within
the new PC space (Figure 1Figure—tb-and-c). Here, we defined 3 main eategeriesclusters of catchments typical of flat,

ntermediatetransitional, and mountain settings. Python code and trained models are available on the repository-(Marti et al.,

2025)(Marti-etal,2024).

33:2.3. Numerical modelling of groundwater seepage areaextent

A three-dimensional numerical groundwater flow model was developed for each catchment. The models were constructed and
run using the MODFLOW-2005 software suite (Harbaugh, 2005) with the NWT solver (Niswonger et al., 2011), and managed
through the Python-based interface FLOPY (Bakker et al., 2016). The diffusivity equation was solved under steady-state

conditions for unconfined flow.
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The horizontal discretization followed the DEM resolution, set at 90 meters (Figure 2Figure—2a), while the vertical
discretization consisted of ten layers with exponentially increasing thickness (Figure 2Figure2b). To limit boundary effects,
Aa buffer zone extending the medeltmodel domain by 20% around each catchment was added.expanded-the-medeled-domain
area-by-20%;-ensuring-boundary A sensitivity analysis (Abhervé et al., 2023)_of the extent of the buffer zone was performed
to ensure that -cenditions-did-netno impacts on the- seepage distribution was invelvedidentified within the studied catchment

(Figure 2Figure-2a). The model bottom mirrored the topography with a 100m-thick aquifer (Figure 2Figure-2b). Assuming a
constant aquifer thickness minimized the potential effects of transmissivity changes on seepage distribution. The 100m
thickness was chosen to realistically accommodate both flat sedimentary catchments and steep mountainous aquifers (Condon
et al., 2020). The side and bottom boundaries of the buffer box were set as no-flow. For generality, effective recharge R was

uniformly set at the water table across both the catchment and its buffer, enabling the simulation of both inflow and outflow

across the model boundaries. This setup allowed considering interbassin groundwater exchanges, which are particularly likely

to occur under low water table conditions tha

drain_boundary condition (with a conductance equal to the product= of hydraulic conductivity with horizontal cell

areakZdx*dy divided by the cell mid-thickness) was set on the topography using the eponymous packages in MODFLOW to

allow exfiltration of groundwater wherever the water table rises to intersect the land surface. This method ensures that

discharge occurs naturally along the topography, mimicking surface-connected wetlands and springs without imposing fixed

fluxes or predefined discharge zones.

To solely focus on the effects of topography in the redistribution of groundwater seepage, we imposed homogeneous and

isotropic_hydraulic conductivity (K) across all modelled catchments. This simplification ensures that variability in seepage

behavior arises solely from differences in landscape geometry and water table positions, rather than site-specific geological
heterogeneity. Hydrauhc-conductivity-(K)}-was-set-to-be-homogeneous-and-isotropic:

Various water table positions relative to the topography were derived by setting different values of the % ratio, ranging from

100 for fully saturated conditions to 10,000 when all simulated catchments reached near full desaturation (i.e., when the

seepage area

- N . K . . - .
normalized seepage area S; = S )<31%reaches 1%).- = values were logarithmically spaced within this

catchment area

interval, and simulations were stopped if the catchment's seepage area fell below the 1% threshold (Figure 2Figure-2c). This

allows us to consider a full range of conditions from humid to arid climates and low- to high-hydraulic conductivity settings.

This modeling workflow resulted in a total of 1,793 simulations.
For each catchment, we perform a power law fit on the relationship between seepage area extent and %further mentioned as
the desaturation function ((2Eguation-2a, and red curve in Figure 2Figure 2Figure-2c). This allows us to capitalize on the

observed linear relation between log (S;) and log (%):



160

K 2
Sa =1+ (f) : Equation-(2a)

2
d% AR K Equation-(2b)
1+ &
A
ds;  2nS; K |
~ when —> A Equation-(2c)
K K R
i1 ®

The desaturation function is determined by the proportionality constant, A, which can be associated with a desaturation

threshold, i.e., the critical value of % above which the catchment begins to desaturate. The negative desaturation exponent, n,
directly affects the rate of change in seepage extent as% increases, as shown in Equations 2b and 2c. It can be viewed as a

measure of the sensitivity of the seepage area extent to a deepening of the water table: for a given pair of seepage area and %

a lower n indicates a higher sensitivity of the catchment to a decrease of the water level. We estimated n considering seepage

area extents lower than 20% of the catchment area, which are more representative of real-world conditions, i.e., by giving

more weight in the fit to the higher % ratios.
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Figure 2: Model settings for one example catchment: (a) Horizontal discretization and buffer zone beyond catchment limits, (b) AA’
cross-section including vertical discretization and an arbitrary water table intercepting the topography creating seepage areas (red
dots), (c) Example of a-results of normalized seepage area with respect to K/R (grey and blue dots) with the power law fit for Eq. 2a
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2.4. Regionalization with RandemforestRandom Forest methodalgorithm

To predict the desaturation response metrics A and n from topographic descriptors and regionalize our findings, we employed

Random Forest regression using the scikit-learn library in Python (Pedregosa et al., 2011). The input features for the model
were the first two principal components (PC1 and PC2) derived from the sixty60 catchments. Random Forest models were

trained independently for A and n. Model performance and robustness were assessed using a bootstrap resampling procedure

with 5,000 iterations. In each iteration, 10 catchments were randomly selected as a test set, while the remaining 50 were used

for training. The coefficient of determination (R?) was calculated on the test data for each iteration, and the resulting R2

distribution was used to evaluate model reliability (see Supplementary Material S2 for Kernel Density Estimate of R2 values).

Hyperparameter tuning for each model was performed using GridSearchCV with 2-fold cross-validation within each training

subset. The tested parameter grid included n_estimators € {50, 200, 500, 1000} and max_depth € {None, 2, 10, 20}. The best

combination of hyperparameters was used to retrain the model on the full training set in each iteration. The final Random

Forest model was defined as the one achieving the best trade-off in predictive accuracy for both A and n, and it was applied to
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4.3. Results

4.13.1. Typology of catchments topography

We evaluate the proportion of main geomorphons on the sixty60-catchment dataset. The PCA analysis (Figure 1Figure 1Figure
4c) resulted in a first component (PC1) explaining 75.4% of the total variance, and the first two components (PC1 and PC2)
200 combined explaining 86.8% of the total variance. This result indicates a strong relation between the landforms description
from geomorphons analysis in the catchments and the reduction into 2 dimensions. We found that PC1 mostly represents the
differentiation between flat and slope landforms, with eigenvector magnitudes of -0.4 for the flat landform and 0.4 for the
slope landform. Slope landform is associated with the peak, ridge, valley, hollow, spur, and pit forms, all showing similar
eigenvectors magnitude on PC1. Regarding PC2, the footslope and shoulder forms are the main control with an eigenvector
205 magnitude of respectively, 0.8 and 0.5. Flat and slope forms show eigenvectors magnitudes of -0.2 and 0.2 along the PC2 axis.
To further support and illustrate this description, the catchments are grouped into three clusters, as a resultsresult of the k-
means clustering, {celored-dets-indisplayed with different colors in the subsequent Figures 3 and 4-Figure-le-and-colored

catchments-contour-on-Figure-1a)..: The red cluster is highly-influenced-by-thecharacterized by relatively flat landforms-as
lowdand-catchments-would. Conversely, the blue cluster is strongly influenced by slope and associated landforms along PC1

210 (ridge, valley, peak) representative of mountain catchments with incised valleys; and narrow valley bottoms. The green cluster

exhibits more dispersion in the represented catchments. This cluster acts as a transition between the red and blue clusters. It

contains catchments most influenced by footslope and shoulder forms. Positioned centrally between the two extreme clusters,

9
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this cluster serves as a transition zone between flatter areas and mountain catchments, possibly including catchments showing
both flat and mountainous characteristics, as observed at mountain fronts.

To facilitate comprehension and illustration, the_catchment eategeriesclusters se—clusters-are referred to as lewland-flat
catchmenteluster for the red cluster, mountain eluster-catchment for the blue cluster, and transitional eluster-catchment for

the green cluster thereafter.

4.2.3.2. Seepage distribution evolution with increasing %

Figure 3Figure 3Figure-3a illustrates the evolution of seepage area, normalized by catchment area, as a function of % for all
sixty60 catchments. Four specific catchments are highlighted with sharper lines for further discussion. As expected, lower %
values result in fully saturated catchments, while as % increases, all catchments progressively desaturate at varying rates. For

instance, at a normalized seepage area of 20%, the corresponding %values range from 20 to 250.

Similarto-the distinct-landform-clusters,tThe desaturation behavior can be clearly differenciateddifferentiated for theefthese
3 clusters—eategoriesclusters of catchments (Figure 3a)is—clearhy—defined(Figure—1), confirming that variations in seepage
distribution are predominantly driven by topographical effects. The power law fit of seepage distribution (Equation 3a) for

each of the sixty60 catchments results in A values ranging from 2.05 to 37.03 and n# values ranging from -0.44 to -0.31. The
fit shows minimal RMSE values between 0.01 and 0.08, indicating that seepage evolution with increasing % can be successfully

parameterized with only two parameters, 1 and n.

Regarding the desaturation threshold, A, the mountain eluster-catchments shows lower values than the lewland-flat oneseluster.
The transitional catchments-eluster demenstrates-show intermediate behavior, reaching higher A values than the mountain
cluster—catchments but lower than the lewdand-clusterflat ones. Regarding the desaturation exponent; n, within the low-
saturation domain (< 20%), the mountain eluster-catchments exhibits slower desaturation rates, while the lewland-clusterflats
presents faster desaturation rates. The variability in desaturation slopes for the transitional catchments—cluster is more
pronounced, reflecting a mix of behaviors within this zone, yet it again shows intermediate behavior relative to the other two
clusters.

10
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Figure 3: (a) Normalized seepage area against % for the sixty60 catchments (colored lines with markers), including log-log plot on

the upper-right corner. Four illustrative catchments are highlighted: mountain type M1 (blue diamond, (b)), {ewland-flat type FL2
(red cross, (c)), transitery-transitional type T3 (green triangle, (d)) and T4 (green cross, (e)). Details include the topographic map
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overlayed by the seepage area-extent at an arbitrary value of 20% (red mask) with corresponding % value fellewed-along withby the
landforms histegramdistribution statistics.

4:3.3.3. Groundwater sSeepage patterns-extent in four representative catchments

Figure 3Figure-3 highlights four distinct catchments: M1, representative of the mountain elustercatchments; FL2, representing
the lowdand—flat clustercatchments; and T3 and T4, showing the range of responses within the transitory-transitional

catchmentsetuster. We present the seepage_over recharge distribution overlayed on the topographic map and the landform
proportions for each catchment (Figure 3Figure-3b, ¢, d, and e).

For M1 (Figure 3Figure-3b), characterized by low A and high n values, it exhibits the typical seepage distribution of
mountainous regions. At a normalized area of 0.2, seepage primarily congregates in topographic lows, such as river valleys,
while ridges and peaks desaturate due to their significant elevation compared to the surrounding terrain. Conversely, FL2
(Figure 3Figure-3c), with high A and low n values, suggests that the water table remains closer to the surface in lowland-flat
settings.

_For T3 and T4, their landform proportions (Figure 3Figure-3d and €) reveal similar values for most forms, except for a higher
proportion of shoulder and footslope forms in T4. This increased prevalence of shoulder landform in T4 is due to a prominent
incised river valley in the eastern part of the catchment.

Examining T3's seepage distribution, it initially aligns with the mountain eluster-catchments with a low desaturation threshold

(A). Then, in the range of 1 < % < 10, a substantial change in the desaturation function stepe-is observed, with the distribution

interseeting—pattern converging toward the ones typical of that-ef-the lewland-clusterflat catchments for high %values,

ultimately being the last catchment to reach a saturation level of <1%. This behavior can be explained by looking at the spatial

distribution of seepage for T3 (Figure 3Figure-3d). A clear demareation-contrast exists between the flat western area and the

mountainous settings to the east. At higher elevations, desaturation occurs at lower % values_ dominated by the steep landforms

of the mountain settings and- resulting in a low desaturation threshold (4). Subsequently, at a normalized area of 0.2, the
catchment behaves-tike-the-lowland-clusterdesaturation is mostly controlled by the western flat terrains—afluenced-by-the
western-part-of-the-catchment.

Conversely, T4's seepage distribution exhibits an opposite pattern. It initially mirrors the tewlane-flat cluster with a higher A

value, ultimately resembling the mountain cluster characteristics, reaching saturation levels under 1% for similar % values. The
seepage spatial distribution for T4 (Figure 3Figure-3e) shows that flat landforms at higher elevation zones in the western part
of the catchment have-already-undergenecontrol the initiation of the desaturation and-before being mostly controlled tenrd-te

develop-exclusivelhy-within-by the steep incised valley at lower elevations that tends to sustain the seepage extent. tepegraphic
lows, ificall f the singular ri L

12
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4:4.3.4. Linking topographic features and desaturation behavior

We computed the correlation matrix between the principal components (PC1 and PC2) and the desaturation parameters (1 and
n) to assess the strength of the topographical control on desaturation behavior. Figure 4Figure-4a shows a strong anti-
correlation between A and PC1, with a Spearman coefficient of r = -0.96 (p < 0.0001). Figure 4Figure-4b displays a strong
linear correlation between n and PC1, with r = 0.76 (p < 0.0001). No other significant correlations were identified (the entire

correlation matrix is available in Supplementary Material S1).

13
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Figure 4: Scatter plots for the original sixty60-catchment dataset (dots) with Spearman coefficient r, the equation and the coefficient
of determination (R?) of a global fit (black line with 95% confidence interval) for (a) A against PC1 and for (b) n against PC1.
Random Forest predictions for both parameters are overlayed on the original data (eressestriangles). (c) PCA plot, for the original
280 (dots) and the prediction (cressestriangles) datasets. The percentage of variance in the original dataset explained by each component
is displaiddisplayed on axis title. (d) and (e) Situation and topographic maps of the study area highlighting the ene-hundred-and
twenty-threel23 catchments with a colored according to the defined catchment elusterseategeriesclusters (flat, transitional and
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mountain). Each catchment is overlayed by a dot (original dalasetdataset) or a triangle (prediction dataset) which-whose size depends
on- A and the-color foeron n.

The catchment eategoriesclusters elusters-are well distinguishable in Figure 4Figure-4a and 4b. In Figure 4Figure-4a, the
inverse relationship between A and PC1 is robustly quantified by fitting an exponential function (R? = 0.89), facilitating a

quantitative correlation between A and PC1, as illustrated in Figure 4Figure-4a. The mountain cluster is isolated with a low
average and variance in A values. The transitional cluster forms the elbow part of the exponential decay, while the fewland-flat
cluster is clearly identified with higher A values. The variations in A values are higher in the lowland-flat and transitional
elusters-catchments compared to the mountain elusterones.

Figure 4Figure-4b reveals a linear relationship between n and PC1. The exeeHent-good linear fit (R? = 0.72) allows for a
straightforward quantification of the relationship between PC1 and the negative scaling exponent n and, consequently, the
appraisal of the desaturation rate based on landforms ((2Equations(2Equation—2}b and 2c). The elusters—catchment

categoriesclusters are well identified, with the lewdand-flat cluster showing lower n values than the mountain cluster.

We finally employed a Random Forest regression on the dataset to predict A and n_based on topographic parameters (PC1 and

PC2) for sixty63-three catchments located both in the same study area and expanding further South inside Chile (Figure
4Eigure-4d and 4e). We defined PC1, PC2, and clusters for these new catchments using the originally trained PCA and k-

(Figure 4Figure-4a) show good consistency with the original dataset both in terms of identifying clusters behaviors and in

trend, following the originally defined exponential relation. Regarding n (Figure 4Figure-4b), we observe a similar accuracy
to represent clusters, while the general linear trend is less obvious. We observe for n, while following an increasing trend,
diversified response between the clusters with the transitional eluster-catchments exhibiting a greater rate of change in n for
an equivalent increment in PC1. Yet the -it-is-a-betterfit-to-original-data—TFhe-spatial distribution of the predicted catchments
observed on Figure 4Figure-4d and 4e, is a good match with the original data, both in terms of topographic characteristics and

desaturation function parameters.
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5.4. Discussion and perspectives

Groundwater flow and storage regulate the resilience of wetlands to climate variationsehangesvariability (Fan et al., 2019).
Variations in topography and landforms across catchments lead to differences in wetland sensitivity to changing recharge by
shaping distinct groundwater flow structures. In this study, we provide a quantitative assessment of the controls of landforms

on the sensitivity of groundwater-dependent wetlands to aquifer desaturation {— expressed through variations in m% ratio -}

across a total of sixty-one-hundred-and-twenty-threel23- catchments along-in Nethern-Chile, eovering-spanning settings from
lewdands-flat to high mountains topographies. These feedback mechanisms were analyzed using a novel combination of three-

dimensional process-based groundwater modeling, geomorphons-based landforms echaracterizationclassification, and

multivariate statistical analysis, and Random Forest predictions at the regional scale.-

Moreover, the proposed methodology demonstrated strong robustness to outliers and atypical landscape configurations. For
exampleinstance, the Andes Mountains in northern Chile icludeencompass the “Altiplano” region,— characterized-bywhich
features extensive flat areasterrains within an otherwise mountainous setting. The method successfully identified such

catchments and classified them as flat (Figure 4Figure-4d between 19 and 23°S), illustrating its ability to reliably capture
dominant landform characteristics capacity-to-performreliably-across diverse geomorphological contexts.

Our results demonstrate that the desaturation functions of catchments can be explained by the typologies in topographiyes
derived from landform categorization. Building on previous works that focused on two-dimensional aquifer geometry, as first
introduced by Haitjema and Mitchell-Brucker (2005) and further explored by Bresciani et al. (2014), we show that mountainous
regions exhibit lower seepage extents, restricted to incised valleys, compared to lewdand-flat catchments at equivalent % ratios.
However, we demonstrate that mountainous regions are less sensitive to changes in saturation, exhibiting slower desaturation
rates.

To disentangle the respective impacts of different landforms, we compared our results with those obtained from the analytical
solution proposed by Bresciani et al. (2014) for a 1D hillslope, where one can easily assess the impacts of slope angle and the
concavity/convexity of the hillslope (results in Supplementary Material S3). In agreement with our results, the steepness of the
hillslope is the primary influence on seepage extent and its variation through changes in groundwater level. Steep slopes begin
to desaturate at lower g values than gentler slopes. Additionally, for a given change in groundwater level, the rate of change
in seepage extent is inversely correlated with slope angle. This aligns with the differences in the desaturation exponent, n, and
the desaturation threshold, 4, obtained for the mountain and lewland-flat clusters. Mountain clusters have higher n and A
values, suggesting higher resilience to changes in %-

Furthermore, the analysis of the simple analytical solution demonstrates that hillslope shape (concave vs. convex) also affects
the desaturation function, though to a lesser extent than slope. Concave slopes appear to have a lower A but a higher n than

convex slopes. Similarities between concave and convex hillslopes can be found in the shoulder vs. footslope in our landform

16



350

355

360

365

370

classification. Shoulder and footslope is differentiated primarily along PC2, explaining a smaller proportion of the variance in
the dataset analyzed here. However, no clear correlation between PC2, n, and A was found, suggesting a minimal impact of
shoulder and footslope landforms compared to the other ones.

While the aim of the present work is to establish a comprehensive exploration of landform controls on seepage dynamics,

several simplifications limit its direct application to specific real-catchment systems. Although the models are based on real

topographies from the Chilean Andes, the experiment does not intend to capture actual complexity of hydrogeological systems,

but rather to explore a wide enough range of natural landform geometries for comparative analysis. First, we assumed

homogeneous and isotropic aquifer properties with a fixed aquifer thickness, thereby neglecting geological heterogeneities,

anisotropy, and variability in the depth of the active groundwater flow system (Frisbee et al., 2017; Mclntosh & Ferguson,

2021), and consequently the seepage distribution, that can be involved in real landscape. While our use of the dimensionless

%K.LR ratio offers a robust approach for analyzing desaturation responses, future research could benefit from exploring

additional parameters that account for catchment geometry, relief, or flow system depth. Additionally, the model results

presented here operate under steady-state conditions and exclude the potential impacts of seasonal recharge variability,

vegetation feedbacks, or the role of the unsaturated zone near the land surface. Exploring such processes, especially under

transient conditions and with heterogeneous parameters, represents a promising perspective for future research.

6-5. Conclusion

To conclude, our study demonstrates that catchment-scale topographic features, quantified through geomorphon-based

landform classification, exert a first-order control on groundwater seepage dynamics under varying recharge conditions. By

linking these landforms to a desaturation functions, we show that the sensitivity of groundwater seepage extent to climate

variability can be predicted from topography alone. This insight enables the development of a robust and scalable framework

for assessing hydroclimatic vulnerability, particularly relevant for data-scarce regions. The ability to regionalize desaturation

behavior using simple statistical learning tools, such as Random Forests as presented here, opens up new opportunities for

applying this approach to ungauged basins in other regions (Hrachowitz et al., 2013). As such, our findings offer not only a
methodological advance; but also enabledemonstrate potential for-its-apphcation-to assess the vulnerability of regional-scale
groundwater-dependent wetlands and the ecosystem they support to climate change.
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