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Abstract. This study investigates the influence of topography on the desaturation rates of groundwater-dependent wetlands in 

response to changes in recharge. We examined sixty60 catchments across northern Chile, which feature a wide variety of 

landforms. We categorized the landformsLandforms were categorized using geomorphon descriptors, identifying resulting in 10 

three distinct clusters: lowlandflat, transitionintermediatetransitional, and mountain settings. Using steady-state 3D 

groundwater models, we derived flow partitioning and seepage area extent for each catchment. Each cluster revealed exhibited 

consistent seepage areas evolution under varying wet-to-dry conditions. Our findings indicate that mountains exhibit have 

reduced seepage area compared to lowlands flats at equivalent hydraulic conductivity to recharge (K/R) ratios, but are less 

sensitive to recharge fluctuations, with slower rates of seepage area variationreduction. Statistical evidence 15 

demonstratesanalyses show that geomorphons-defined landforms correlate with desaturation indicators, enabling the 

prediction of catchment sensitivity to climate change based solely on a topographic analysisattributes.  

 

Short summary. This studye research demonstrates shows that the response of groundwater-dependent wetlands to recharge 

changes can be accurately predicted solely based on from landform properties alone, providing a practical and scalable 20 

approach for wetland vulnerability assessment. We reveal that mMountain catchments are less sensitive to recharge changes 

than lowland flat catchmentsones, - due to fewer but more persistent seepage areas. These results It offers critical insights for 

evaluating thesupport a scalable approach to assessing wetland vulnerability of catchments to climate change, with practical 

implications  impacts and has direct implications for water resource management and conservation planning inin diverse 

landscapes. 25 

 

2.1. Introduction 

Changes in precipitation regimes and increasing temperatures driven by climate change are anticipated to significantly affect 

both surface and subsurface water resources (Berghuijs et al., 2024; Konapala et al., 2020; Taylor et al., 2013). Extended 

drought periods and reduced recharge are expected to threaten the functioning of groundwater-dependent ecosystems (Kløve 30 
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et al., 2014; Rohde et al., 2024; Tetzlaff et al., 2024). These ecosystems rely on groundwater contributions to maintain their 

ecological structure and functional integrity, including processes that support biodiversity and key ecosystem services (Barron 

et al., 2014; Doody et al., 2017; Eamus & Froend, 2006). They encompass both terrestrial and aquatic environments, including 

wetlands, springs, rivers (riparian, aquatic, and hyporheic zones), lakes, grasslands, forests, as well as coastal and estuarine 

habitats (Eamus & Froend, 2006; Kløve et al., 2011). The extent to which groundwater-dependent ecosystems are vulnerable 35 

to climate-induced reductions in recharge depends not only on the hydrogeological properties of the underlying aquifer, but 

also on the role of landscape morphology in shaping groundwater flow and discharge patterns (Gleeson & Manning, 2008; 

Singha & Navarre‐Sitchler, 2022). Identifying the physical controls on groundwater emergence at the land surface is therefore 

essential to improve our ability to anticipate groundwater-dependent ecosystems responses to climate variability. 

Groundwater seepage occurs when the water table intersects the topography. Thus, landforms influence both its spatial 40 

distribution and temporal dynamics (Bresciani et al., 2014, 2016; Sophocleous, 2002). The interaction between groundwater 

and topography significantly impacts the resilience of groundwater-dependent wetlands to climate variability (Cuthbert et al., 

2019; Scanlon et al., 2023). Considering steady-state groundwater flow systems, the depth of the water table, and so the 

distribution of flow paths and groundwater seepage areas, are controlled by the groundwater recharge rate (𝑅), the topography 

and by the hydrodynamic properties of the aquifer through its hydraulic conductivity (𝐾), (Condon & Maxwell, 2015; Rath et 45 

al., 2023; Tóth, 1963; Zhang et al., 2022). An equivalence of effects between 𝑅 and 𝐾 has been demonstrated (Bresciani et al., 

2014; Haitjema & Mitchell‐Bruker, 2005; Jamieson & Freeze, 1982), allowing a convenient focus on the dimensionless 
𝐾

𝑅
 ratio 

and the topography. In non-anthropized contexts, Tthe groundwater table is typically near the surface in low-relief and/or 

humid regions, and deeper in rugged terrain and/or arid regions. However, the hydrogeological response and seepage dynamics 

to varying landscapes and topographic features are not straightforward and difficult to predict. 50 

Analytical solutions have been proposed to quantify the extent of groundwater seepage under varying 
𝐾

𝑅
 at the hillslope scale, 

using simplified groundwater flow equations (Bresciani et al., 2014, 2016). Marçais et al. (2017) conducted modeling 

experiments to estimate seepage extent and dynamics using a 2D representation of the equivalent hillslope. While these 

approaches are applicable in shallow aquifers, where flow predominantly follows the topography, they do not capture the 

complexity of 3D groundwater flow, especially under low water tables or steep reliefs. A few 3D numerical modeling 55 

experiments have been undertaken, mainly for sensitivity studies with conceptual surface and subsurface geometries (Carlier 

et al., 2019; Gauvain et al., 2021; Gleeson & Manning, 2008; Welch et al., 2012). There is a pressing need to better understand 

seepage the distribution and dynamics of groundwater seepage, particularly in light of the complex considering the intricate 

topographic characteristics nuances of real-world conditions landscapes and the 3D nature of groundwater flow. This Such 

knowledge is essential critical for to predicting the extent of groundwater seepage and the persistence of groundwater-its 60 

dependent wetlands under future climate scenarios. 

To address this knowledge gap, we designed a numerical experiment toOur study aims to model the partitioning of  3D 

groundwater flows and the their seepage extent of seepage across different landscapes, from lowland flat to high mountain 



3 

 

settings, considering variousunder varying 
𝐾

𝑅
 values. We applied this experiment on 60 catchments located in northern Chile, 

selected for their rich diversity of geomorphological contexts. Additionally, we aim to identify appropriate topographic 65 

indicators that explain the variety of hydrogeological responses and provide statistical means to extrapolate our findings to 

ungauged or data-scarce regions. By linking geomorphologickey topographic  patternscharacteristics of the catchments to 

groundwater seepage dynamics predicted by the model, we seekaim to improve the prediction of wetland desaturation 

risksensitivity under changing climate conditions. This approach supports the development of transferable frameworks for 

assessing the vulnerability of groundwater-dependent ecosystems  vulnerability across heterogeneous terrain and provide 70 

statistical means to regionalize our findings. behaviors, providing statistical means to extrapolate our results to other contexts. 

We developed a parsimonious 3D groundwater flow modeling approach, which we applied to sixty60 catchments along 1,800 

km of the northern Chile. This choice was motivated by the rich diversity of geomorphological contexts, allowing the 

exploration of a wide range of hydrogeological responses. 

 75 

3.2. Material and Methods 

3.1.2.1. Geomorphological context 

The study area is located in northern Chile between Santiago and the Peruvian border (~1,800 km long). The landforms 

diversity results from the specific tectonic and weathering processes involved in the Andes. This process resulted in the 

formation of a longitudinal valley called the Central Depression, which is bounded by two cordilleras, the Coastal Cordillera 80 

and the Principal Cordillera, both composed mainly of volcanic-sedimentary rocks (Hartley & Evenstar, 2010; Jordan et al., 

1983). The Coastal Cordillera forms an intermediate mountain range with an average elevation between 1,000 and 2,000 

m.a.s.l., while the Principal Andean Cordillera has maximum elevations close to 7,000 m.a.s.l. (Figure 1Figure 1a) (Armijo et 

al., 2015; Charrier et al., 2007). The Central Depression delineates a sedimentary basin rich in Quaternary alluvial deposits 

with variable thicknesses, ranging from about 250 m near Santiago (Yáñez et al., 2015) to almost 1,000 m in the northern 85 

regions of Chile (Hartley & Evenstar, 2010; Jordan et al., 2014; Nester & Jordan, 2011). Specifically, the Pre-Cordillera is a 

transition zone between the Central Depression and the Western Cordillera, with catchment characteristics that vary from 

nearly flat terrain to mountainous regions with steep slope gradients and typical mountain front geomorphology (Figure 

1Figure 1a). The diversity of these environments provides an excellent opportunity to explore a wide range of topographic 

settings, including flat catchments, mountain-front areas, incised mountain catchments, volcanoes, and high mountain peaks. 90 
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Figure 1: Methodological workflow for topographical classification and analysis. (a) Location and topographic map of the study 

area in northern Chile, with the boundaries of the 60 studied catchments highlighted in black. (b) Example of landform classification 

within a single catchment, including a landform map, the proportion of landform types, and an illustration of the principal landform 

categories defined by geomorphons (adapted from Jasiewicz & Stepinski, 2013). (c) Catchment categorization using Principal 95 
Component Analysis (PCA) for dimensionality reduction and clustering. The selected example catchment is plotted in the PCA 

space, illustrating its position relative to the first two principal components (PC1 and PC2) and to the whole dataset (grey dots). Red 

arrows represent the eigenvectors associated with different landform types, showing their contribution to the PCA axes. 
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3.2.2.2. Classification of catchment topographies 

We considered the catchment boundaries of the global catchment database HydroATLAS (Lehner & Grill, 2013). We chose 100 

to limit the size of the catchments to between 500 and 1,500 km2 by considering level 8 of HydroATLAS. To cover different 

geomorphological and tectonic settings, we selected sixty60 catchments within our study area (indicated by colored black 

boundaries in Figure 1Figure 1a). We extracted the topography from the SRTM (Shuttle Radar Topography Mission, 90 m 

resolution) digital elevation model (DEM) from the SRTM (Shuttle Radar Topography Mission, 90 m resolution).  

We used the geomorphons classification method proposed by Jasiewicz & Stepinski (2013) to categorize the topographies 105 

landform features within each catchments; e.g., flat, peak, ridge, shoulder, spur, slope, pit, valley, footslope, and hollow. into 

ten different landforms (Figure 1Figure 1b, note that ). Ggeomorphons-defined landforms are italicized throughout the text for 

improved readability). This methodology is based on elevation differences in eight directions relative to the reference cell. 

This operation is reproduced for each cell of the DEM, identifying a shape for each of these cells (Figure 1Figure 1b). Unlike 

the direct cell neighbor method (e.g., slope, curvature, or roughness), the geomorphons method allows to capturefor capturing 110 

landforms at larger scales by defining a search radius around the reference cell, the look-up distance in Jasiewicz & Stepinski 

(2013). Here we defined the search radiusit as a function of theequal to the  hillslope characteristic length: 

𝐿 =
1

2𝐷
→ 𝐿 =

1

2∗
𝑙

𝐴

, Equation (1) 

where 𝐿 is the catchment feature length, 𝑙 is the river network length, 𝐷 is the drainage density, and 𝐴 is the catchment area.  

The river network is defined using a surface flow accumulation routine available in the Whitebox tool Python package 

(Lindsay, 2016). Combining principal component analysis (PCA) and k-means clustering methods (Figure 1Figure 1c), we 115 

categorized the catchments by their dominant topographical landform features based on landform proportions (Figure 1Figure 

1b). PCA is a classical statistical method used to reduce the dataset dimensionality by transforming the original variables into 

a new set of uncorrelated variables, called principal components (PC), which capture the maximum variance in the data. The 

k-means clustering approach allows us to identify groups of catchments belonging to the cluster with the nearest mean within 

the new PC space (Figure 1Figure 1b and c). Here, we defined 3 main categoriesclusters of catchments typical of flat, 120 

intermediatetransitional, and mountain settings.  Python code and trained models are available on the repository (Marti et al., 

2025)(Marti et al., 2024). 

3.3.2.3. Numerical modelling of groundwater seepage areaextent 

A three-dimensional numerical groundwater flow model was developed for each catchment. The models were constructed and 

run using the MODFLOW-2005 software suite (Harbaugh, 2005) with the NWT solver (Niswonger et al., 2011), and managed 125 

through the Python-based interface FLOPY (Bakker et al., 2016). The diffusivity equation was solved under steady-state 

conditions for unconfined flow. 
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The horizontal discretization followed the DEM resolution, set at 90 meters (Figure 2Figure 2a), while the vertical 

discretization consisted of ten layers with exponentially increasing thickness (Figure 2Figure 2b). To limit boundary effects, 

Aa buffer zone extending the modellmodel domain by 20% around each catchment was added.expanded the modeled domain 130 

area by 20%, ensuring boundary A sensitivity analysis (Abhervé et al., 2023) of the extent of the buffer zone was performed 

to ensure that  conditions did notno impacts on the  seepage distribution was involvedidentified within the studied catchment 

(Figure 2Figure 2a). The model bottom mirrored the topography with a 100m-thick aquifer (Figure 2Figure 2b). Assuming a 

constant aquifer thickness minimized the potential effects of transmissivity changes on seepage distribution. The 100m 

thickness was chosen to realistically accommodate both flat sedimentary catchments and steep mountainous aquifers (Condon 135 

et al., 2020). The side and bottom boundaries of the buffer box were set as no-flow. For generality, effective recharge 𝑅 was 

uniformly set at the water table across both the catchment and its buffer, enabling the simulation of both inflow and outflow 

across the model boundaries. This setup allowed considering interbassin groundwater exchanges, which are particularly likely 

to occur under low water table conditions that way particularly be involved at low water table elevation(Fan, 2019)., and a A 

drain boundary condition (with a conductance equal to the product= of hydraulic conductivity with horizontal cell 140 

areaK*dx*dy divided by the cell mid-thickness) was set on the topography using the eponymous packages in MODFLOW to 

allow exfiltration of groundwater wherever the water table rises to intersect the land surface. This method ensures that 

discharge occurs naturally along the topography, mimicking surface-connected wetlands and springs without imposing fixed 

fluxes or predefined discharge zones.  

To solely focus on the effects of topography in the redistribution of groundwater seepage, we imposed homogeneous and 145 

isotropic hydraulic conductivity (K) across all modelled catchments. This simplification ensures that variability in seepage 

behavior arises solely from differences in landscape geometry and water table positions, rather than site-specific geological 

heterogeneity. Hydraulic conductivity (𝐾) was set to be homogeneous and isotropic. 

Various water table positions relative to the topography were derived by setting different values of the 
𝐾

𝑅
 ratio, ranging from 

100 for fully saturated conditions to 10,000 when all simulated catchments reached near full desaturation (i.e., when the 150 

normalized seepage area 𝑆𝐴
∗ =

𝑠𝑒𝑒𝑝𝑎𝑔𝑒 𝑎𝑟𝑒𝑎

𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎
 (𝑆𝐴

∗ ) < 1% reaches 1%).. 
𝐾

𝑅
 values were logarithmically spaced within this 

interval, and simulations were stopped if the catchment's seepage area fell below the 1% threshold (Figure 2Figure 2c). This 

allows us to consider a full range of conditions from humid to arid climates and low- to high-hydraulic conductivity settings. 

This modeling workflow resulted in a total of 1,793 simulations. 

For each catchment, we perform a power law fit on the relationship between seepage area extent and 
𝐾

𝑅
 further mentioned as 155 

the desaturation function ((2Equation 2a, and red curve in Figure 2Figure 2Figure 2c). This allows us to capitalize on the 

observed linear relation between log (𝑆𝐴
∗) and log (

𝐾

𝑅
):  
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𝑆𝐴
∗  = (1 + (

𝐾

𝑅

𝜆
)

2

)

𝑛

. Equation (2a) 

𝑑𝑆𝐴
∗ 

𝑑
𝐾
𝑅

=
2𝑛

𝜆2

𝐾

𝑅

𝑆𝐴
∗ 

1 + (

𝐾
𝑅
𝜆

)

2 
Equation (2b)  

𝑑𝑆𝐴
∗ 

𝑑
𝐾
𝑅

≈
2𝑛𝑆𝐴

∗

𝐾
𝑅

 𝑤ℎ𝑒𝑛 
𝐾

𝑅
≫ 𝜆  Equation (2c) 

The desaturation function is determined by the proportionality constant, 𝜆 , which can be associated with a desaturation 

threshold, i.e., the critical value of 
𝐾

𝑅
 above which the catchment begins to desaturate. The negative desaturation exponent, 𝑛, 

directly affects the rate of change in seepage extent as 
𝐾

𝑅
  increases, as shown in Equations 2b and 2c. It can be viewed as a 160 

measure of the sensitivity of the seepage area extent to a deepening of the water table: for a given pair of seepage area and 
𝐾

𝑅
, 

a lower 𝑛 indicates a higher sensitivity of the catchment to a decrease of the water level. We estimated 𝑛 considering seepage 

area extents lower than 20% of the catchment area, which are more representative of real-world conditions, i.e., by giving 

more weight in the fit to the higher 
𝐾

𝑅
 ratios. 
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Figure 2: Model settings for one example catchment: (a) Horizontal discretization and buffer zone beyond catchment limits, (b) AA’ 

cross-section including vertical discretization and an arbitrary water table intercepting the topography creating seepage areas (red 

dots), (c) Example of a results of normalized seepage area with respect to K/R (grey and blue dots) with the power law fit for Eq. 2a 

(dashed red curve). The blue dots represent the normalized seepage area < 20% where the fit is weighted is enhanced.[TO BE 

COMPLETED] 170 

2.4. Regionalization with Random forestRandom Forest methodalgorithm  

To predict the desaturation response metrics λ and n from topographic descriptors and regionalize our findings, we employed 

Random Forest regression using the scikit-learn library in Python (Pedregosa et al., 2011). The input features for the model 

were the first two principal components (PC1 and PC2) derived from the sixty60 catchments. Random Forest models were 

trained independently for λ and n. Model performance and robustness were assessed using a bootstrap resampling procedure 175 

with 5,000 iterations. In each iteration, 10 catchments were randomly selected as a test set, while the remaining 50 were used 

for training. The coefficient of determination (R²) was calculated on the test data for each iteration, and the resulting R² 

distribution was used to evaluate model reliability (see Supplementary Material S2 for Kernel Density Estimate of R² values). 

Hyperparameter tuning for each model was performed using GridSearchCV with 2-fold cross-validation within each training 

subset. The tested parameter grid included n_estimators ∈ {50, 200, 500, 1000} and max_depth ∈ {None, 2, 10, 20}. The best 180 

combination of hyperparameters was used to retrain the model on the full training set in each iteration. The final Random 

Forest model was defined as the one achieving the best trade-off in predictive accuracy for both λ and n, and it was applied to 
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predict desaturation metrics in sixty630-three additional catchments located in South Chile. [@Etienne, please add detail on 

the methodology you use and move the supplementary material dedicated to this to the results as suggested by the reviewer] 

 185 

We finally employed a Random Forest regression on the dataset to predict 𝜆 and 𝑛 based on topographic parameters (PC1 and 

PC2) for sixty-three catchments located both in the same study area and expanding further South inside Chile (Figure 4d and 

e). We defined PC1, PC2 and clusters for these new catchments using the originally trained PCA and k-means model (Figure 

4c). Regarding, training and testing of the Random Forest algorithm, we used the original sixty catchments dataset. This initial 

analysis involved 5,000 iterations of sampling with replacement, each using 10 test catchments, with the remaining 50 190 

catchments used for training. This resampling approach was adopted to assess the robustness of the estimations in the presence 

of random variations within the selected test and training data and was evaluated calculating the coefficient of determination 

(R2) within the tested data (see Supplementary Material S2 for Kernel Density Estimate (KDE) plot of R2 distribution). We 

defined the model used for predictions based on the best compromise to estimate both 𝜆 and 𝑛. Hyperparameters (number of 

trees and maximum depth) were tuned using cross-validation techniques. 195 

4.3. Results 

4.1.3.1. Typology of catchments topography 

We evaluate the proportion of main geomorphons on the sixty60-catchment dataset. The PCA analysis (Figure 1Figure 1Figure 

1c) resulted in a first component (PC1) explaining 75.4% of the total variance, and the first two components (PC1 and PC2) 

combined explaining 86.8% of the total variance. This result indicates a strong relation between the landforms description 200 

from geomorphons analysis in the catchments and the reduction into 2 dimensions. We found that PC1 mostly represents the 

differentiation between flat and slope landforms, with eigenvector magnitudes of -0.4 for the flat landform and 0.4 for the 

slope landform. Slope landform is associated with the peak, ridge, valley, hollow, spur, and pit forms, all showing similar 

eigenvectors magnitude on PC1. Regarding PC2, the footslope and shoulder forms are the main control with an eigenvector 

magnitude of respectively, 0.8 and 0.5. Flat and slope forms show eigenvectors magnitudes of -0.2 and 0.2 along the PC2 axis.  205 

To further support and illustrate this description, the catchments are grouped into three clusters, as a resultsresult of the k-

means clustering, (colored dots indisplayed with different colors in the subsequent Figures 3 and 4 Figure 1c and colored 

catchments contour on Figure 1a)..: The red cluster is highly influenced by thecharacterized by relatively flat landforms as 

lowland catchments would. Conversely, the blue cluster is strongly influenced by slope and associated landforms along PC1 

(ridge, valley, peak) representative of mountain catchments with incised valleys, and narrow valley bottoms. The green cluster 210 

exhibits more dispersion in the represented catchments. This cluster acts as a transition between the red and blue clusters. It 

contains catchments most influenced by footslope and shoulder forms. Positioned centrally between the two extreme clusters, 
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this cluster serves as a transition zone between flatter areas and mountain catchments, possibly including catchments showing 

both flat and mountainous characteristics, as observed at mountain fronts.  

To facilitate comprehension and illustration, the catchment categoriesclusters se clusters are referred to as lowland flat 215 

catchmentcluster for the red cluster, mountain cluster catchment for the blue cluster, and transitional cluster catchment for 

the green cluster thereafter.  

4.2.3.2. Seepage distribution evolution with increasing 
𝑲

𝑹
  

Figure 3Figure 3Figure 3a illustrates the evolution of seepage area, normalized by catchment area, as a function of 
𝐾

𝑅
 for all 

sixty60 catchments. Four specific catchments are highlighted with sharper lines for further discussion. As expected, lower 
𝐾

𝑅
 220 

values result in fully saturated catchments, while as 
𝐾

𝑅
 increases, all catchments progressively desaturate at varying rates. For 

instance, at a normalized seepage area of 20%, the corresponding 
𝐾

𝑅
 values range from 20 to 250. 

Similar to the distinct landform clusters, tThe desaturation behavior can be clearly differenciateddifferentiated for theof these  

3 clusters categoriesclusters of catchments (Figure 3a)is clearly defined (Figure 1), confirming that variations in seepage 

distribution are predominantly driven by topographical effects. The power law fit of seepage distribution (Equation 3a) for 225 

each of the sixty60 catchments results in 𝜆 values ranging from 2.05 to 37.03 and 𝑛n values ranging from -0.44 to -0.31. The 

fit shows minimal RMSE values between 0.01 and 0.08, indicating that seepage evolution with increasing 
𝐾

𝑅
 can be successfully 

parameterized with only two parameters, 𝜆 and 𝑛. 

Regarding the desaturation threshold, 𝜆, the mountain cluster catchments shows lower values than the lowland flat onescluster. 

The transitional catchments cluster demonstrates show intermediate behavior, reaching higher 𝜆 values than the mountain 230 

cluster catchments but lower than the lowland clusterflat ones. Regarding the desaturation exponent, 𝑛, within the low-

saturation domain (≤ 20%), the mountain cluster catchments exhibits slower desaturation rates, while the lowland clusterflats 

presents faster desaturation rates. The variability in desaturation slopes for the transitional catchments cluster is more 

pronounced, reflecting a mix of behaviors within this zone, yet it again shows intermediate behavior relative to the other two 

clusters. 235 
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Figure 3: (a) Normalized seepage area against 
𝑲

𝑹
 for the sixty60 catchments (colored lines with markers), including log-log plot on 

the upper-right corner. Four illustrative catchments are highlighted: mountain type M1 (blue diamond, (b)), lowland flat type FL2 

(red cross, (c)), transitory transitional type T3 (green triangle, (d)) and T4 (green cross, (e)). Details include the topographic map 
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overlayed by the seepage area extent at an arbitrary value of 20% (red mask) with corresponding 
𝑲

𝑹
 value followed along withby the 240 

landforms histogramdistribution statistics. 

4.3.3.3. Groundwater sSeepage patterns extent in four representative catchments  

Figure 3Figure 3 highlights four distinct catchments: M1, representative of the mountain clustercatchments; FL2, representing 

the lowland flat clustercatchments; and T3 and T4, showing the range of responses within the transitory transitional 

catchmentscluster. We present the seepage over recharge distribution overlayed on the topographic map and the landform 245 

proportions for each catchment (Figure 3Figure 3b, c, d, and e). 

For M1 (Figure 3Figure 3b), characterized by low 𝜆  and high 𝑛  values, it exhibits the typical seepage distribution of 

mountainous regions. At a normalized area of 0.2, seepage primarily congregates in topographic lows, such as river valleys, 

while ridges and peaks desaturate due to their significant elevation compared to the surrounding terrain. Conversely, FL2 

(Figure 3Figure 3c), with high 𝜆 and low 𝑛 values, suggests that the water table remains closer to the surface in lowland flat 250 

settings. 

 For T3 and T4, their landform proportions (Figure 3Figure 3d and e) reveal similar values for most forms, except for a higher 

proportion of shoulder and footslope forms in T4. This increased prevalence of shoulder landform in T4 is due to a prominent 

incised river valley in the eastern part of the catchment. 

Examining T3's seepage distribution, it initially aligns with the mountain cluster catchments with a low desaturation threshold 255 

(𝜆). Then, in the range of 1 < 
𝐾

𝑅
 < 10, a substantial change in the desaturation function slope is observed, with the distribution 

intersecting pattern converging toward the ones typical of that of the lowland clusterflat catchments for high 
𝐾

𝑅
 values, 

ultimately being the last catchment to reach a saturation level of <1%. This behavior can be explained by looking at the spatial 

distribution of seepage for T3 (Figure 3Figure 3d). A clear demarcation contrast exists between the flat western area and the 

mountainous settings to the east. At higher elevations, desaturation occurs at lower 
𝐾

𝑅
 values dominated by the steep landforms 260 

of the mountain settings and , resulting in a low desaturation threshold (𝜆). Subsequently, at a normalized area of 0.2, the 

catchment behaves like the lowland clusterdesaturation is mostly controlled by the western flat terrains, influenced by the 

western part of the catchment. 

Conversely, T4's seepage distribution exhibits an opposite pattern. It initially mirrors the lowland flat cluster with a higher λ 

value, ultimately resembling the mountain cluster characteristics, reaching saturation levels under 1% for similar 
𝐾

𝑅
 values. The 265 

seepage spatial distribution for T4 (Figure 3Figure 3e) shows that flat landforms at higher elevation zones in the western part 

of the catchment have already undergonecontrol the initiation of the desaturation and before being mostly controlled tend to 

develop exclusively within by the steep incised valley at lower elevations that tends to sustain the seepage extent. topographic 

lows, specifically at the bottom of the singular river channel. 
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4.4.3.4. Linking topographic features and desaturation behavior 270 

We computed the correlation matrix between the principal components (PC1 and PC2) and the desaturation parameters (𝜆 and 

𝑛) to assess the strength of the topographical control on desaturation behavior. Figure 4Figure 4a shows a strong anti-

correlation between 𝜆 and PC1, with a Spearman coefficient of r = -0.96 (p < 0.0001). Figure 4Figure 4b displays a strong 

linear correlation between 𝑛 and PC1, with r = 0.76 (p < 0.0001). No other significant correlations were identified (the entire 

correlation matrix is available in Supplementary Material S1). 275 
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Figure 4: Scatter plots for the original sixty60-catchment dataset (dots) with Spearman coefficient r, the equation and the coefficient 

of determination (R2) of a global fit (black line with 95% confidence interval) for (a) λ against PC1 and for (b) 𝒏 against PC1. 

Random Forest predictions for both parameters are overlayed on the original data (crossestriangles). (c) PCA plot, for the original 

(dots) and the prediction (crossestriangles) datasets. The percentage of variance in the original dataset explained by each component 280 
is displaiddisplayed on axis title. (d) and (e) Situation and topographic maps of the study area highlighting the one hundred and 

twenty-three123 catchments with a colored according to the defined catchment clusterscategoriesclusters (flat, transitional and 
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mountain). Each catchment is overlayed by a dot (original dalasetdataset) or a triangle (prediction dataset) which whose size depends 

on  𝝀  and the color for on 𝒏. 

The catchment categoriesclusters clusters are well distinguishable in Figure 4Figure 4a and 4b. In Figure 4Figure 4a, the 285 

inverse relationship between 𝜆 and PC1 is robustly quantified by fitting an exponential function (R² = 0.89), facilitating a 

quantitative correlation between 𝜆 and PC1, as illustrated in Figure 4Figure 4a. The mountain cluster is isolated with a low 

average and variance in 𝜆 values. The transitional cluster forms the elbow part of the exponential decay, while the lowland flat 

cluster is clearly identified with higher 𝜆 values. The variations in 𝜆 values are higher in the lowland flat and transitional 

clusters catchments compared to the mountain clusterones.  290 

Figure 4Figure 4b reveals a linear relationship between 𝑛 and PC1. The excellent good linear fit (R² = 0.72) allows for a 

straightforward quantification of the relationship between PC1 and the negative scaling exponent 𝑛 and, consequently, the 

appraisal of the desaturation rate based on landforms ((2Equations (2Equation 2)b and 2c).  The clusters catchment 

categoriesclusters are well identified, with the lowland flat cluster showing lower 𝑛 values than the mountain cluster.  

We finally employed a Random Forest regression on the dataset to predict 𝜆 and 𝑛 based on topographic parameters (PC1 and 295 

PC2) for sixty63-three catchments located both in the same study area and expanding further South inside Chile (Figure 

4Figure 4d and 4e). We defined PC1, PC2, and clusters for these new catchments using the originally trained PCA and k-

means models (Figure 4Figure 4c). We finally employed a Random Forest regression on the dataset to predict 𝜆 and 𝑛 based 

on topographic parameters (PC1 and PC2) for sixty-three catchments located both in the same study area and expanding further 

South inside Chile (Figure 4d and e). We defined PC1, PC2 and clusters for these new catchments using the originally trained 300 

PCA and k-means model (Figure 4c). Regarding, training and testing of the Random Forest algorithm, we used the original 

sixty catchments dataset. This initial analysis involved 5,000 iterations of sampling with replacement, each using 10 test 

catchments, with the remaining 50 catchments used for training. This resampling approach was adopted to assess the robustness 

of the estimations in the presence of random variations within the selected test and training data and was evaluated calculating 

the coefficient of determination (R2) within the tested data (see Supplementary Material S2 for Kernel Density Estimate (KDE) 305 

plot of R2 distribution). We defined the model used for predictions based on the best compromise to estimate both 𝜆 and 𝑛. 

Hyperparameters (number of trees and maximum depth) were tuned using cross-validation techniques. Predictions made for 𝜆 

(Figure 4Figure 4a) show good consistency with the original dataset both in terms of identifying clusters behaviors and in 

trend, following the originally defined exponential relation. Regarding 𝑛 (Figure 4Figure 4b), we observe a similar accuracy 

to represent clusters, while the general linear trend is less obvious. We observe for 𝑛, while following an increasing trend, 310 

diversified response between the clusters with the transitional cluster catchments exhibiting a greater rate of change in 𝑛 for 

an equivalent increment in PC1. Yet the  it is a better fit to original data. The spatial distribution of the predicted catchments 

observed on Figure 4Figure 4d and 4e, is a good match with the original data, both in terms of topographic characteristics and 

desaturation function parameters.   
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5.4. Discussion and perspectives 315 

Groundwater flow and storage regulate the resilience of wetlands to climate variationschangesvariability (Fan et al., 2019).  

Variations in topography and landforms across catchments lead to differences in wetland sensitivity to changing recharge by 

shaping distinct groundwater flow structures. In this study, we provide a quantitative assessment of the controls of landforms 

on the sensitivity of groundwater-dependent wetlands to aquifer desaturation (– expressed through variations in the 
𝐾

𝑅
 ratio -) 

across a total of sixty one hundred and twenty-three123  catchments along in Nothern Chile, covering spanning settings from 320 

lowlands flat to high mountains topographies. These feedback mechanisms were analyzed using a novel combination of three-

dimensional process-based groundwater modeling, geomorphons-based landforms characterizationclassification, and 

multivariate statistical analysis, and Random Forest predictions at the regional scale.. 

Moreover, the proposed methodology demonstrated strong robustness to outliers and atypical landscape configurations. For 

exampleinstance, the Andes Mountains in northern Chile includeencompass the “Altiplano” region,— characterized bywhich 325 

features extensive flat areasterrains within an otherwise mountainous setting. The method successfully identified such 

catchments and classified them as flat (Figure 4Figure 4d between 19 and 23°S), illustrating its ability to reliably capture 

dominant landform characteristics capacity to perform reliably across diverse geomorphological contexts. 

 

Our results demonstrate that the desaturation functions of catchments can be explained by the typologies in topographiyes 330 

derived from landform categorization. Building on previous works that focused on two-dimensional aquifer geometry, as first 

introduced by Haitjema and Mitchell-Brucker (2005) and further explored by Bresciani et al. (2014), we show that mountainous 

regions exhibit lower seepage extents, restricted to incised valleys, compared to lowland flat catchments at equivalent 
𝐾

𝑅
 ratios. 

However, we demonstrate that mountainous regions are less sensitive to changes in saturation, exhibiting slower desaturation 

rates. 335 

To disentangle the respective impacts of different landforms, we compared our results with those obtained from the analytical 

solution proposed by Bresciani et al. (2014) for a 1D hillslope, where one can easily assess the impacts of slope angle and the 

concavity/convexity of the hillslope (results in Supplementary Material S3). In agreement with our results, the steepness of the 

hillslope is the primary influence on seepage extent and its variation through changes in groundwater level. Steep slopes begin 

to desaturate at lower 
𝐾

𝑅
 values than gentler slopes. Additionally, for a given change in groundwater level, the rate of change 340 

in seepage extent is inversely correlated with slope angle. This aligns with the differences in the desaturation exponent, 𝑛, and 

the desaturation threshold, 𝜆, obtained for the mountain and lowland flat clusters. Mountain clusters have higher 𝑛 and 𝜆 

values, suggesting higher resilience to changes in 
𝐾

𝑅
. 

Furthermore, the analysis of the simple analytical solution demonstrates that hillslope shape (concave vs. convex) also affects 

the desaturation function, though to a lesser extent than slope. Concave slopes appear to have a lower 𝜆 but a higher 𝑛 than 345 

convex slopes. Similarities between concave and convex hillslopes can be found in the shoulder vs. footslope in our landform 



17 

 

classification. Shoulder and footslope is differentiated primarily along PC2, explaining a smaller proportion of the variance in 

the dataset analyzed here. However, no clear correlation between PC2, 𝑛, and 𝜆 was found, suggesting a minimal impact of 

shoulder and footslope landforms compared to the other ones. 

While the aim of the present work is to establish a comprehensive exploration of landform controls on seepage dynamics, 350 

several simplifications limit its direct application to specific real-catchment systems. Although the models are based on real 

topographies from the Chilean Andes, the experiment does not intend to capture actual complexity of hydrogeological systems, 

but rather to explore a wide enough range of natural landform geometries for comparative analysis. First, we assumed 

homogeneous and isotropic aquifer properties with a fixed aquifer thickness, thereby neglecting geological heterogeneities, 

anisotropy, and variability in the depth of the active groundwater flow system (Frisbee et al., 2017; McIntosh & Ferguson, 355 

2021), and consequently the seepage distribution, that can be involved in real landscape. While our use of the dimensionless 

𝐾

𝑅
K/R ratio offers a robust approach for analyzing desaturation responses, future research could benefit from exploring 

additional parameters that account for catchment geometry, relief, or flow system depth. Additionally, the model results 

presented here operate under steady-state conditions and exclude the potential impacts of seasonal recharge variability, 

vegetation feedbacks, or the role of the unsaturated zone near the land surface. Exploring such processes, especially under 360 

transient conditions and with heterogeneous parameters, represents a promising perspective for future research. 

6.5. Conclusion  

To conclude, our study demonstrates that catchment-scale topographic features, quantified through geomorphon-based 

landform classification, exert a first-order control on groundwater seepage dynamics under varying recharge conditions. By 

linking these landforms to a desaturation functions, we show that the sensitivity of groundwater seepage extent to climate 365 

variability can be predicted from topography alone. This insight enables the development of a robust and scalable framework 

for assessing hydroclimatic vulnerability, particularly relevant for data-scarce regions. The ability to regionalize desaturation 

behavior using simple statistical learning tools, such as Random Forests as presented here, opens up new opportunities for 

applying this approach to ungauged basins in other regions (Hrachowitz et al., 2013). As such, our findings offer not only a 

methodological advance, but also enabledemonstrate potential for its application to assess the vulnerability of regional scale 370 

groundwater-dependent wetlands and the ecosystem they support to climate change. 

 

Our results establish a robust statistical framework demonstrating a strong correlation between landforms, categorized by the 

dominant landforms (PC1), and hydrological parameters that assess the sensitivity of groundwater seepage to desaturation with 

changing recharge. This framework allows for predictions using straightforward statistical learning techniques. The Random 375 

Forest algorithm yields highly promising results for the sixty-three catchments estimated. This approach provides valuable 
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insights into assessing catchment vulnerability to climate change on a regional scale, even for ungauged basins (Hrachowitz 

et al., 2013). 
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