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Abstract. This study explores the feasibility of using the information contained in observed streamflow discharge 

measurements to inversely correct catchment-average precipitation time series provided by reanalysis products. We explore 10 

this possibility by training LSTM models to predict precipitation. The first model uses discharge as an input feature along with 

other meteorological factors, while the second model uses only the meteorological factors. Although the model provided with 

discharge information showed better mean performance, a detailed analysis of various time series measures across the 

continental scale revealed underestimation biases when compared with the original reanalysis product used for training. 

However, an out-of-sample test showed that the inversely estimated precipitation is better able to reproduce small-scale, high-15 

impact events that are poorly represented in the original reanalysis product. Further, using the inversely generated precipitation 

time series for classical hydrological “forward” modeling resulted in improved estimates for streamflow and soil moisture. 

Given the notable disconnect between reanalysis products and extreme events, particularly in data-scarce regions worldwide, 

our findings have implications for achieving better estimates of precipitation associated with high-impact events. 

1 Introduction 20 

The performance of hydrological models has traditionally been constrained by the availability and quality of observations 

covering various aspects of the water cycle. Among those, precipitation and streamflow observations are pivotal, as they 

represent cause-and-effect in the context of system dynamics. Long-term experimental data from well-studied research 

catchments, and data from operational monitoring networks, have thus long been the cornerstone of the hydrological sciences 

(Tetzlaff et al., 2017). The relevance of observed data and research observatories cannot be overemphasised, particularly due 25 

to the invalidity of stationarity assumptions (Milly et al., 2008) in the face of anthropogenic climate change and its impacts on 

water-related hazards and availability. 

As the availability and quality of observations crucially constrain the “realism” of a hydrological model and thus the accuracy 

of predictions, data scarcity impedes accurate modelling and inference of hydrological processes. Global reanalysis products 

(Muñoz-Sabater et al., 2021; ONOGI et al., 2007; Rienecker et al., 2011) can potentially, if of sufficient quality, complement 30 
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the few existing ground-based observations by offering a valuable alternative when exhaustive local observations are not 

available. Further, they play a pivotal role in hydro-climatic research (Alexopoulos et al., 2023; Gu et al., 2023), by providing 

a consistent, long-term view of the state of the global climate system via the assimilation of measurements and monitoring 

data into numerical weather models.  

While previous studies (Essou et al., 2016; Tarek et al., 2020) have already shown the value of using reanalysis data as 35 

estimates for meteorological forcing data in regions with little or sparse ground-based weather station data, serious concerns 

about their quality remain when used in the context of hydrological modelling. The main issues include (Tarek et al., 2020) (i) 

regional variations in data quality and (ii) limited representation of local hydro-meteorological processes, with both of these 

impacting/biasing model structures and simulated states and fluxes. Systematic biases are also critical obstacles to the broader 

applicability of such products (Clerc-schwarzenbach et al., 2024). In the case of ERA5-Land, a component of the Copernicus 40 

Climate Change Service (C3S) provided by the European Centre for Medium Weather Forecasting (Muñoz-Sabater et al., 

2021), there is a tendency to significantly overestimate potential evapotranspiration (Clerc-schwarzenbach et al., 2024; 

Kratzert et al., 2023; Xu et al., 2024). Deficiencies have also been documented in the representation of convective storms 

(Essou et al., 2016; Taszarek et al., 2021) with subsequent underestimation of precipitation magnitudes and intensities (Manoj 

J et al., 2024).  45 

Because precipitation forcings data plays a crucial role in rainfall-runoff modelling, several methods (Yumnam et al., 2022) 

have been suggested for correcting precipitation data. These range from the use of storm multipliers (Sun and Bertrand-

Krajewski, 2013) to station-wise correction of data using a gauge-based precipitation network (Cornes et al., 2018). However, 

gauge-based methods require a sufficient number of weather stations (Agarwal et al., 2020), which is often not the case for 

most regions around the world. As seen from previous experience, it is usually the rainstorm events occurring in poorly 50 

observed areas that lead to high impacts (Borga et al., 2008). This is particularly true for flash floods in response to convective 

storm activity (Manoj J et al., 2024; Meyer et al., 2022; Villinger et al., 2022) and well related to the classical “Predictions in 

Ungauged Basins ‐ PUB problem” (Sivapalan et al., 2003). To overcome this problem, and in line with Kirchner's (2008) work 

on “doing hydrology backwards”, this paper explores options for inverse estimation of precipitation using the information 

contained in observed streamflow.  55 

While the classical “forward rainfall-runoff generation problem” has received considerable attention over various decades 

(Montanari et al., 2013; Sivapalan et al., 2003), a smaller subset of studies (Brocca et al., 2013; Kirchner, 2009; Kretzschmar 

et al., 2014; Krier et al., 2012; Teuling et al., 2010) has investigated the feasibility of tackling the inverse problem more 

efficiently. Kirchner (Kirchner, 2009) reported an early and successful attempt to infer catchment average rainfall and 

evaporation time series from streamflow fluctuations and inspired several investigations examining the advantages and 60 

limitations of doing ‘hydrology backwards’ in diverse catchments (Krier et al., 2012; Teuling et al., 2010). Although these 

studies have established a robust mathematical foundation for addressing the inverse hydrological problem, they were limited 
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to smaller, well-monitored research catchments. This raises questions about the applicability of this approach to larger 

catchments as well as to smaller, non-experimental ones.  

Note that inversions of the catchment water balance are inherently ill-posed, making it near impossible to find a unique solution 65 

(Bishop, 2006). Adopting the concept of micro- and macro-states from statistical mechanics (Zehe and Blöschl, 2004), we 

argue that the exact micro-state, i.e. the “true” space-time pattern of precipitation in the catchment, is neither uniquely 

identifiable nor observable. However, we conjecture that the catchment-average precipitation can be inversely identified based 

on the corresponding streamflow response. As streamflow remains a non-linear convolution of the catchment-average effective 

precipitation, we propose that machine learning is well suited to this problem. Deep learning has recently revolutionised almost 70 

all fields of the natural sciences and engineering, showing great promise in solving a wide range of inverse problems, especially 

those related to imaging (Ongie et al., 2020). It has also been argued that such models can provide meaningful and general 

benchmarks for hypothesis testing (Klotz et al., 2022; Nearing and Gupta, 2015) and afford powerful avenues for generalisation 

using large datasets (Ralf Loritz et al., 2024).  

The overall objective of this study is to ‘do hydrology backwards’ using a regional-scale long short-term memory (LSTM) 75 

network model trained on large-scale hydrological datasets using the ERA5 Land precipitation product (Muñoz-Sabater et al., 

2021) as a target. The underlying research question is, “How much information about the catchment-average effective 

precipitation is effectively encoded in the variability of the streamflow time series observed at the outlet?” To answer this 

question, we first investigate whether the approach can accurately replicate the spatial gradients of the original forcing 

reanalysis dataset across European catchments for an unseen testing period. We then examine how the inverse model performs 80 

when moving to much smaller (50-200 km2) out-of-sample catchments. Here, we compare LSTM-based inverse estimates 

during flood events to the original reanalysis product (ERA5 Land) and rain gauge-based observational estimates over the 

same region (E-OBS: Cornes et al., 2018). Finally, we use the HBV conceptual hydrological model (BERGSTRÖM And 

FORSMAN, 1973) and the spatially-distributed, process-based CATFLOW model (Zehe et al., 2001) to assess the quality of 

the precipitation estimates for forward modelling of streamflow and soil moisture dynamics, respectively. 85 

2 Data and Methods  

2.1 Model Configuration 

LSTMs (Hochreiter, 1998) are a special type of recurrent neural network that makes use of cell states and so-called 

‘gates’ to control the information flow through the network. The LSTM model used in this study extends upon the work of 

(Kratzert et al., 2018) and (Espinoza et al., 2024). The LSTM architecture, which is commonly used for streamflow simulation 90 

in hydrology (Kratzert et al., 2018), uses a sequence of meteorological variables, such as precipitation and temperature as 

dynamic inputs, along with catchment attributes as static features, to predict the corresponding streamflow. In our setting, to 

establish an inverse model, we use the same general model architecture as in previous studies (Espinoza et al., 2024; Ralf 

https://doi.org/10.5194/hess-2024-375
Preprint. Discussion started: 18 December 2024
c© Author(s) 2024. CC BY 4.0 License.



4 
 

Loritz et al., 2024). The key difference is that future streamflow is now used along with other dynamic and static data as inputs 

in order to estimate the precipitation forcings of the catchments. To account for the time lag between precipitation and 95 

discharge response observed at the catchment outlet, the model was provided with a 7-day lead time series for discharge. We 

explored ranges of hyperparameter settings on a smaller subset of the training dataset to establish relatively stable 

hyperparameter configurations (Fig. S1 in Supplementary Information), finally setting them according to (Espinoza et al., 

2024) with a reduced number (5) of training epochs. Table S1 in the Supplementary information indicates the values used for 

the LSTM network hyperparameters. Mean squared error was used as the training loss function. The codes for model building 100 

and training can be found online (Manoj J, 2024). The LSTM was trained as a regional model (single network trained on all 

available catchments) based on the openly available datasets detailed in the next section (Section 2.2).  

For forward hydrological modelling using the inversely-generated precipitation timeseries estimates, we use two hydrological 

models - the lumped conceptual HBV model (Hydrologiska Byråns Vattenbalansavdelning: BERGSTRÖM and FORSMAN, 

1973) and the spatially distributed process-based CATFLOW model (Zehe et al., 2001). The HBV model (Seibert, 2005) used 105 

in this paper requires precipitation (ERA5 Land/LSTM simulated), potential evapotranspiration, and air temperature (ERA5 

Land) as inputs. We follow the recommendations of Clerc-Schwarzenbach et al. (2024), similar to that of Loritz et al (2024), 

for the calculation of potential evapotranspiration, and use the temperature-based Hargreaves formula detailed by Adam et al. 

(2006). For the CATFLOW model, we utilise the catchments, hillslope structures and soil/plant parameters from Manoj J et al 

(2024).  110 

2.2 Data sets  

This study utilized the Caravan dataset (Kratzert et al., 2023) to investigate our hypothesis regarding the inverse 

identifiably of precipitation from information about discharge dynamics. We trained our model on European catchments from 

the GRDC-Caravan (Färber et al., 2023) community extension and the original Caravan dataset, which includes catchments 

from CAMELS-GB (Coxon et al., 2020). The Caravan dataset uses the ERA5 Land (Muñoz-Sabater et al., 2021) as 115 

meteorological forcing, while the catchment attributes include data from HydroATLAS (Linke et al., 2019). The discharge 

data is tapped from relevant state and national authorities and is accessible as open datasets. Figure S2 in the Supplementary 

information depicts the study catchments (1804 in total) in the training dataset. The LSTM model was trained to predict daily 

ERA5 Land precipitation time series from discharge data along with meteorological forcings (temperature, surface net solar 

radiation and surface net thermal radiation – all from ERA5 Land) and five catchment static attributes (area, p_mean, 120 

ele_mt_sav, frac_snow, pet_mm_syr: Kratzert et al., 2023).  

We chose a training period of around 25 years between 01 October 1980 to 30 September 2005. Following the best practices 

in data-based modelling, the model was tested on an unseen testing period between 2006 and 2020 (2015 for CAMELS-GB 

catchments due to data unavailability). To investigate its generalizability across scales, we also tested the model on four 

catchments (Fig. S3) that were not included in the original training set (Section 2.3.2). For the out-of-sample test, we made 125 
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use of data from the Caravan Spain (Casado Rodríguez, 2023) and Caravan Switzerland (Höge et al., 2023) extensions, in 

addition to data from local data providers in Germany (Landesanstalt für Umwelt, Messungen und Naturschutz Baden‐

Württemberg—LUBW) and Luxembourg (Nijzink et al., 2024). The observational E-OBS precipitation product (v27.0 - 

Cornes et al., 2018), which uses the station network of the European Climate Assessment & Dataset (ECA&D) project, was 

used as another benchmark for the evaluation of model performance. 130 

2.3 Experimental Design  

 

Figure 1 Schematic representation of our methodological approach. 

2.3.1 Exploring information about precipitation in streamflow  

To shed light on the value of discharge for inversely predicting precipitation, we conducted a virtual experiment in 135 

which two LSTM models (Fig. 1) were trained using the same catchments and training period. The first model 

(without_discharge) used only meteorological time series (air temperature, solar and thermal radiation) and static attributes 

(area, p_mean, ele_mt_sav, frac_snow, pet_mm_syr: Kratzert et al., 2023), while the second model (with_discharge) included 

lagged discharge as an additional input variable. Both models were trained to predict daily catchment average precipitation 
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sums (ERA5 Land). Therefore, we only deal with spatially averaged timeseries for precipitation, assuming that these values 140 

represent the effective precipitation over the entire catchment. 

We then used the trained regional-scale model (with_discharge) to predict the precipitation time series inversely for 

all the test catchments over the unseen testing period and evaluated those using the wet day mean, 95th percentile and Spearman 

rank autocorrelation (one day lag) for each catchment, and then compared them to the values from ERA5 Land (used for 

training the model) and E-OBS (observational product) at the continental scale.  145 

2.3.2 Out of sample precipitation inversions and their quality 

We further tested the feasibility of knowledge transfer to out-of-sample catchments and used the same regional-scale 

model to inversely predict the intensity of driving rainstorms for selected flood events in four hydro-climatically diverse and 

much smaller catchments (not included in the original training dataset). These catchments (Table 1 & Fig. S3) were chosen 

based on the severity of the flooding and on the apparent inability of ERA5 Land forcings to accurately represent the storms 150 

that triggered the flood events. 

Table 1 Attributes for the four catchments used for out-of-sample testing. 

Catchment Country 
Area 
(km2) 

Mean 
precipitation 

(mm/day) 

Mean potential 
evapotranspiration 

(mm/year) 

Mean 
elevation 

(m) 

Elsenz- 
Schwarzbach 

Germany 196.5 2.51 812.85 246.7 

Ernz Luxembourg 69.3 2.31 724.04 345.5 

Sueiro Spain 132.5 3.31 873 381 

Hoelzlebruck Germany 47.1 4.14 658 980 

 

2.3.3 The potential of inverted precipitation for forward modelling  

To evaluate the value of generated precipitation data for forward modeling of streamflow, we calibrated the HBV 155 

conceptual hydrological model (Hydrologiska Byråns Vattenbalansavdelning: BERGSTRÖM and FORSMAN, 1973) over the 

Elsenz Schwarzbach catchment using both the original ERA5 Land and the LSTM-generated precipitation timeseries and 

compared the evaluation period performance of both model versions. For both runs, the model was calibrated using a training 

period from 01 January 2000 to 31 December 2010, while the models were evaluated between 01 January 2011 to 31 December 

2016.  160 
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Complementary to streamflow modelling, the performance of a hydrological model can also be judged by how well it replicates 

the catchment dynamics of a region. Soil moisture is a key variable controlling the partitioning of net radiation into sensible 

and latent heat (Seneviratne et al., 2010) or overland flow during a rainstorm (Zehe and Blöschl, 2004). We thus used each 

precipitation estimate (LSTM and ERA5 Land) to run the process-based hillslope scale model CATFLOW, using a setup from 165 

Manoj J et al. (2024) used for predictions of local floods in 2016. Here, we focused on one of the headwater sub-catchments 

(Catchment W32 in Fig. S5) within the Elsenz Schwarzbach (Fig. S3). The model simulated the period from 01 January 2008 

to 31 December 2015 using each of the ERA5 Land and LSTM precipitation estimates, and the corresponding spatially 

averaged soil moisture states were compared against several soil moisture reanalysis products (due to the unavailability of 

observed data). These include a) ERA5 Land: Muñoz-Sabater et al., 2021) b) GLDAS (NASA Global Land Data Assimilation 170 

System, GLDAS-2.2 GRACE DA: Li et al., 2019) and c) MERRA (Modern-Era Retrospective analysis for Research and 

Applications version 2 – tavg1_2d_lnd_Nx: Global Modeling And Assimilation Office, 2015).  
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3 Results  

3.1 The information contained in streamflow about precipitation 

 175 

Figure 2 Comparison of the mean performance of the two regional scale LSTM models (with_discharge and without_discharge). (a) 
Figure 2A depicts violin plots with included boxplots showing the distribution of performance (quantified by comparing the LSTM 
model simulated precipitation series to the original ERA5 Land timeseries over the testing period: NSE) (b) Figure 2B displays 
cumulative distribution plots for the performance of the two models.   

 180 
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Figure 2A shows a comparison of mean performance of the LSTM estimates of precipitation to the original ERA5 product. 

These results reveal that the streamflow response contains useful information about the underlying causes of precipitation. The 

model “with_discharge” outperforms the model “without_discharge” not only on average but also with respect to the best-185 

performing catchments. The median NSE metric value (Nash and Sutcliffe, 1970) for the regional LSTM model across the 

1804 study catchments is about 20% higher when discharge is used as an additional predictor than when it is not. Further, the 

distribution of performance for the model with_discharge is unimodal with moderate skewness, whereas the distribution for 

the model without_discharge displays a bimodal distribution with heavy tails. Figure 2B shows the empirical cumulative 

probability plots, which reveal a steeper curve for the without_discharge model, indicating a lower variance in performances, 190 

in contrast with the flatter curve for the with_discharge model, which indicates a higher variance. Further, the with_discharge 

curve is clearly shifted towards a consistently higher performance across all quantiles. However, it is also observed that in a 

few outlier cases, discharge information has worsened the performance – likely due to the poor quality of streamflow data in 

these catchments. 

3.2 Unraveling the Continental Scale Characteristics 195 

 

Figure 3 The spatial patterns of the different time series metrics (wet day mean, 95th percentile and Spearman autocorrelation 
values) over the study catchments for the three different sources ERA5 Land (top row): a) to c), LSTM model (middle row): (d) to 
(f) and E-OBS (bottom row): (g) to (i) from 2006 to 2020 (2015 for CAMELS-GB catchments).  
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To examine the characteristics of the simulated time series over the testing period in detail, we computed three timeseries 200 

measures (mean on wet days, 95th percentile limits, and Spearman autocorrelation values) across all the catchments, and show 

the results in Fig. 3.  

The continental-scale analysis reveals distinct patterns for the major European climatic regions. Similar to the ERA5 Land and 

E-OBS products, the LSTM model (middle row) preserves spatial gradients for the wet day (daily precipitation >1 mm) mean 

precipitation. Higher daily average values are observed towards the Alps, the Carpathian Mountain ranges, and the coast of 205 

Norway, consistent with the climatology of these regions. However, the model systematically underestimates absolute values, 

as evident from the scatterplot shown in Fig. 4.  

A comparison with the total daily means (including both rainy and non-rainy days; Fig. S4) shows that this underestimation is 

particularly severe while considering only rainy days. For the 95th percentile of wet days, we again see a robust representation 

of the spatial differences, along with an underestimation of the magnitudes (Fig. 3b-h). The Spearman autocorrelation 210 

coefficient values (with one day lag: Fig 3i-h) indicate that while the model underestimates the mean and 95th percentile limits, 

it overestimates the lag coefficient (which indicates the persistence in the precipitation time series) compared to the ERA5 

Land time series. In addition, we also see that the ERA5 Land largely matches with the precipitation field's characteristics (wet 

day mean and 95th percentile limit) as in the observational E-OBS product.  

The higher autocorrelation values for both LSTM and ERA5 Land may arise from model products incorporating catchment 215 

persistence, unlike the gridded observational E-OBS data. In the case of the LSTM model, the even higher values are likely 

due to the inclusion of highly auto correlated streamflow data, which adds redundancy or a longer memory. 

 

Figure 4 Scatterplots for the three timeseries measures (wet day mean, 95th percentile and spearman lag) between ERA5 Land and 
LSTM Simulated. Each point represents a single catchment within the dataset. A 1:1 line (shown as a red dotted line in Fig) indicates 220 
overestimation/underestimation bias.  
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3.3 Out of sample predictions 225 

 

Figure 5 Precipitation estimates for flood events at the four out of sample catchments: (a) – Elsenz Schwarzbach, (b) – Ernz, (c) – 
Sueiro, (d) – Hoelzlebruck. The red line indicates the observed daily streamflow (with the day of the flood indicated by a cross). The 
orange curve denotes the precipitation amount predicted by the with_discharge LSTM model, while the blue line depicts the original 
ERA5 Land time series, and the green line indicates the estimate from the gauge based E-OBS product.   230 

Figure 5 shows predicted event precipitation values over time for the four out-of-sample catchments. Again, we compare the 

inversely modelled values to the original ERA5 Land (used for training) and the gauge-based E-OBS product. Table 2 lists the 

peak storm precipitation values reported by the different products along with the recorded flood values (both normalised to the 

catchment area in mm/day). Also shown are the storm runoff coefficients for the respective events based on the different 

precipitation estimates and discharge data.  235 

Figure 5A represents the summer flood in June 2016 in the Elsenz Schwarzbach catchment in Germany. This annual flood 

event was triggered by a series of convective rainfall events caused by persistent atmospheric conditions in Germany during 

the summer of 2016. Localised rainfall totals exceeded 100 mm in some catchments (Bronstert et al., 2018), triggering 

widespread flash floods. Our previous work (Manoj J et al., 2024) indicated that ERA5 Land could not accurately replicate the 
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characteristics of the convective storm that caused this annual flood event over the Elsenz Schwarzbach catchment. A 240 

comparison of LSTM-simulated precipitation values revealed closer estimates to those reported in the observational E-OBS 

product. When considering the E-OBS as the ground truth, the relative underestimation error in precipitation reduced from 

around 100% (ERA5 Land) to 40% (LSTM). The runoff coefficient for the event also decreased from 35% (ERA5 Land) to 

around 23% (LSTM), which is consistent with estimates from Manoj et al. (2024).  

Next, the LSTM model was used to estimate precipitation for another convective episode over the Ernz Catchment in 245 

Luxembourg (Fig. 5B) in the summer of 2018. There was a noticeable improvement in the precipitation time series for both 

timing and peak storm values compared to ERA5 Land. While ERA5 Land completely missed this storm, the LSTM model 

was able to represent the sharp rise and descent of the curve. However, the runoff coefficients and peak storm values (Table 

2) indicate that the LSTM model underestimates the true precipitation amount. In the third catchment (Sueiro: camelses_1414 

from Caravan Spain extension), the LSTM estimate for storm forcing was higher than ERA5 Land and E-OBS (Fig. 5C). The 250 

corresponding runoff coefficients underline the reliability of the storm prediction from LSTM (0.37) compared to E-OBS 

(1.05).  

In the Hoelzlebruck catchment (camelsch_4003 from Caravan Switzerland extension), two consecutive events occurred in 

October 2014. ERA5 Land was better than the LSTM model in capturing the initial event magnitude, while the LSTM model 

had better timing accuracy for the events. For the second event, which was the annual flood event, the LSTM model, which 255 

incorporated streamflow information, was again able to reduce the relative errors in precipitation magnitudes (Fig. 5D) 

Table 2 Event characteristics for the four out of sample catchments 

Event Characteristics 
Elsenz- 

Schwarbach 
Ernz Sueiro Hoelzlebruck 

Precipitation 

(mm/day) 

ERA5 
Land 

10.62 9.15 39.8 28.55 

LSTM 16.45 23.49 64.83 44.68 

E-OBS 20.03 49.43 22.54 42.33 

Discharge 

(mm/day) 
3.75 27.12 23.68 20.85 

Runoff 
Coefficient 

(-) 

ERA5 
Land 

0.35 2.96 .60 0.73 

LSTM 0.23 1.15 .37 0.47 

E-OBS 0.19 0.55 1.05 0.49 

 

 

 260 
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3.4 Forward Hydrological Modelling 

The precipitation estimates generated by the LSTM model were then used to run two classical hydrological models (HBV and 

CATFLOW) in a forward manner. Figure 6 illustrates that the HBV model, which utilized the inverted precipitation estimates, 

performed slightly better (NSE = 0.64) during the evaluation period compared to the model driven by the ERA5 Land (NSE = 

0.57). To gain a better understanding of the differences between the models, we visually examined the results for three 265 

individual flood events, as shown in Fig. 6A-C. 

 

 

 

Figure 6 Observed and simulated runoff (using the HBV model) at the Elsenz Schwarzbach catchment. The blue line denotes the 270 
streamflow simulated using the ERA5 Land precipitation product, while the red curve depicts the simulations using the inversely-
estimate precipitation obtained using the regional LSTM model. Moreover, three rainfall-runoff events are highlighted and 
displayed separately. 
 

 275 
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During the winter flood of December 2012 (23 Dec 2012, Fig. 6A), the model driven by ERA5 Land significantly 

underestimated both the peak and the volume of the flood event. When using LSTM-simulated precipitation, the relative peak 

error decreased by nearly 25%. Similarly, the model runs using LSTM precipitation more accurately captured the pre-event 280 

conditions (18 Dec 2012) and the post-event conditions (28 Dec 2012). This aligns with findings from other studies (Berghuijs 

et al., 2019; Manoj J et al., 2023) that emphasize the importance of initial conditions for floods across Europe.  

In the winter of 2015 (Fig. 6B), the model using LSTM precipitation once again demonstrated better performance (albeit with 

overestimation errors). During the convective summer storm event in 2016 (Fig. 6C), neither model run successfully captured 

the flashy runoff response. Although the model that utilized ERA5 Land input predicted an earlier flood event in May 2016 285 

with an overestimation bias, it did not accurately depict the dynamics of the annual flood event occurring a few days later. In 

contrast, the model with LSTM-generated precipitation generally performed better in capturing both the magnitude and timing 

of the smaller storm peaks as well as the annual flood event on June 8, 2016.  

To understand the evolution of soil moisture dynamics while using the LSTM-based precipitation estimates, we conducted a 

hillslope-scale CATFLOW model simulation (Loritz et al., 2017; Manoj J et al., 2024) in one of the headwater catchments in 290 

Elsenz Schwarzbach (ERA5 Land vs LSTM). The pairwise correlation values, as shown in Fig. 7, indicate that the use of the 

LSTM-based precipitation estimates does not lead to a loss of information regarding soil moisture dynamics in the region. In 

fact, we observe a slight increase in correlation when comparing the inversely derived precipitation estimates (referred to as 

CATFLOW_lstm) to MERRA and GLDAS, in contrast with the correlation obtained for the run with ERA5 Land (referred to 

as CATFLOW_era5). As expected, the correlation value for the ERA5 Land run is slightly higher when assessed against soil 295 

moisture from the same ERA5 Land dataset, which may be attributed to model biases arising from using the same dataset for 

both precipitation and soil moisture. 
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Figure 7 Correlation matrix plot illustrating the pairwise correlations between the different soil moisture estimates - a) GLDAS 
(NASA Global Land Data Assimilation System, GLDAS-2.2 GRACE DA: Li et al., 2019), b) MERRA (Modern-Era Retrospective 300 
analysis for Research and Applications version 2 – tavg1_2d_lnd_Nx: Global Modeling And Assimilation Office, 2015), c) ERA5 
Land: (Muñoz-Sabater et al., 2021), d) CATFLOW_lstm: model run using inversely estimated precipitation estimate from the LSTM 
model and e) CATFLOW_ERA5: model run using precipitation estimate from ERA5 Land product. 

4 Discussion  

4.1 Better precipitation estimation using discharge  305 

Overall, our study reiterates that streamflow data can be exploited to obtain useful information about the nature of catchment-

scale effective precipitation: we can thus invert the cause using the effect as input to an LSTM. This is in line with, and steps 

beyond, previous studies (Brocca et al., 2013; Kirchner, 2009; Kretzschmar et al., 2014; Krier et al., 2012; Teuling et al., 2010) 

that explored the possibility of doing hydrology backwards using experimental catchments. Here, we successfully expanded 

this idea to large samples, cutting across the wide range of hydro-climatic conditions that characterise Europe. We found a 310 

largely ‘normal’ distribution of performance, with a few outliers, the latter indicating possible poor quality of discharge data.  
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The spatially averaged NSE performance metric of 0.61 indicates that 61% of the variance of catchment-averaged effective 

rainfall is explained by the model over the unseen evaluation period. Note that an NSE value of 0 signifies a model that 

performs no better than using the long-term average while increasing values indicate progressively better performance. 

Interestingly, the LSTM model systematically underestimates rainfall values, which is consistent with findings from other 315 

studies (Wang et al., 2024). In part, this could be attributed to the use of mean squared error as the loss function during training 

(Gupta et al., 2009). Also, in most cases, only a part of the event runoff comes from the direct runoff, while the rest is baseflow 

and is hence not directly related to the event precipitation. Hence, this consistent underestimation also seems physically 

plausible. However, more research has to be carried out to disentangle the impact of such catchment losses and the interplay 

between various factors involved in total runoff production on the inversion problem.  320 

Our main goal was to see if we could leverage the potential of streamflow data for a better representation of flooding and other 

high-impact short-time-scale events in the reanalysis product. Hence, we used the same regional-scale model to inversely 

predict the forcing storm precipitation values for flood events in four hydroclimatically diverse catchments. Moreover, inverted 

precipitation could significantly enhance paleo-hydrological studies by using reconstructed streamflow data from 

dendrochronology to infer paleo-precipitation (Razavi et al., 2015). 325 

Initially introduced to model the land surface components of global climate models (MANABE, 1969), land surface models 

are, today, commonly utilised in studies examining energy and water balance processes and assessing land-atmosphere 

feedback effects. The development of these models (Blyth et al., 2021) has been influenced by collaboration between climatic, 

hydrological, agricultural, and ecosystem communities, intercomparison projects and relevant technical integrations. 

Furthermore, such modelled and reanalysis products have delivered commendable outcomes when capturing climate and 330 

weather extremes on regional scales. However, they remain largely unusable for estimating the impacts of smaller scale 

hydrological events (Seneviratne et al., 2021). This is primarily due to the mischaracterization of precipitation forcings for 

such spatial scales in these models. Novel data-driven approaches, as shown in this study, have the potential to better 

meteorological products by bridging the gap between the precipitation and discharge modelling worlds.  

4.2 Catchment as a functional unit  335 

In the introduction, we argued that the catchment scale is crucial for improving our understanding of the factors that drive the 

water cycle and representing them more accurately in reanalysis products. Our findings across the four catchments highlight 

the benefit of using streamflow variations to rectify precipitation estimates. By leveraging the generalisation capabilities of the 

data-driven LSTM model, we successfully transferred knowledge across different scales, indicating important implications for 

addressing the ever-evolving challenge of predictions in ungauged basins (PUB: Hrachowitz et al., 2013) 340 

 Although this approach can only be applied after the event has taken place, it has implications for generating coherent long-

term statistical records for catchment forcings, which could be used for the design of small- to medium-purpose water resource 

projects. Using the streamflow fluctuations, it would be possible to identify localised rainfall cells or snowfall events that are 
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poorly captured by traditional rain gauges (Kretzschmar et al., 2014). The approach also has potential for evaluating long-term 

rainfall estimates from Global Circulation Models for specific catchments using information about hydrological conditions 345 

(Fujihara et al., 2008).  

While the LSTM-based precipitation estimates improved the representation of most events, there were still instances where 

the original ERA5 Land provided better accuracy for peak flood magnitudes; this highlights the need for a blended approach 

that incorporates additional information rather than completely replacing one product with another. In regions around the 

world, the wealth of streamflow information remains underutilised in this aspect. For Germany alone (R Loritz et al., 2024), 350 

there are more than 1500 streamflow gauges, which represent a significantly higher representative area compared to 

precipitation stations.   

The forward exercise using the HBV model showed that the precipitation estimates after inversion enhanced mean performance 

for streamflow simulation and helped improve the modelling of extreme individual floods. The ability to match the hydrograph 

differed between the different seasons. Compared to the storage-controlled winter floods (Dunne and Kirkby, 1978) , summer 355 

floods in these regions are usually driven by Hortonian flow (Horton, 1932) in response to high-intensity rainfall during 

convective storms. Previous studies (Kirchner, 2009; Krier et al., 2012) have discussed such storage-controlled dynamics and 

their impact on the inversion problem.  

Previous experiences at the event scale (Beauchamp et al., 2013; Zehe and Blöschl, 2004) have also shown that inferring the 

antecedent soil moisture conditions remains a key challenge for accurate and reliable flood simulations. By utilising the 360 

process-based CATFLOW model for soil moisture simulations in a small headwater catchment, we achieved high correlation 

values using the inverse precipitation estimate. This suggests that the approach can help represent the catchment's overall water 

dynamics and has the potential for reliable flood design estimations at the event scale, particularly in data-scarce regions. 

4.3 Limitations 

It is important to stress that, as for any data-driven study, the results of our work are contingent on the quality of the training 365 

dataset. While we are aware of better regional products for individual countries, ERA5 Land provides consistent global 

coverage, and a permissive data sharing policy makes it one of the obvious choices for a continental scale modelling exercise. 

To evaluate the applicability of the commonly used LSTM network architecture, we decided to use the same architecture 

previously employed in hydrological studies instead of creating an experimental design with modified individual layers and 

training functions for inverse modelling. It is evident that exploring the impacts of different loss functions and deep learning 370 

model architectures like transformers would help advance the methodology discussed in this paper. This approach could also 

shed light on best-suited algorithms for the problem but is beyond the scope of the present work. The choice of Mean Squared 

Error (MSE) as the training function and Nash Sutcliffe Efficiency (NSE) as a performance metric is motivated by its success 

and applications in the forward problem (streamflow prediction), but this adds its own biases to the modelling exercise. 

Additionally, we tried to complement this by calculating various other time series metrics commonly used in 375 
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hydrometeorological studies. The four events for out-of-sample tests across various catchments were chosen based on the 

severity of the floods and ERA5 Land's inability to capture the characteristics of the driving storms. The choice of the 

hydrological models and calibration period also adds uncertainty to the forward simulations.  

5 Conclusions  

Our main hypothesis was supported by the findings, which demonstrated that discharge has unused potential and can be 380 

inversely assimilated to adjust precipitation estimates derived from reanalysis products, while machine learning models are 

key to expanding this effort to large data sets spanning the scale of entire continents. The continental-scale analysis revealed 

that while the spatial gradients are well represented across Europe for the various time series attributes, there remain significant 

underestimation biases compared to the original reanalysis product. Insights from the out-of-sample catchments provided 

valuable information about the applicability of our method for estimating flood forcings and the generalizability of the model. 385 

Additionally, we have shown that LSTM-based inverted precipitation estimates can improve forward modelling of both 

streamflow and soil moisture dynamics, illustrating how the information gained can be integrated into existing modelling 

strategies. 
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