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Can discharge be used to inversely correct precipitation?
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Abstract. This study explores the feasibility of using the information contained in observed streamflow measurements to
inversely correct catchment-average precipitation time series provided by reanalysis products. We explore this possibility by
training LSTM models to inversely predict precipitation. The first model uses discharge as an input feature along with other
meteorological factors, while the second model uses only the meteorological factors. Although the model provided with
discharge information showed better mean performance, a detailed analysis of various time series measures across the
continental scale revealed underestimation biases when compared with the original reanalysis product used for training.
However, an out-of-sample test showed that the inversely estimated precipitation is better able to reproduce small-scale, high-
impact events that are poorly represented in the original reanalysis product. Further, using the inversely generated precipitation
time series for classical hydrological “forward” modeling resulted in improved estimates for streamflow and soil moisture.
Given the notable disconnect between reanalysis products and extreme events, particularly in data-scarce regions worldwide,

our findings have implications for achieving better estimates of precipitation associated with high-impact events.

1 Introduction

The performance of hydrological models has traditionally been constrained by the availability and quality of observations
covering various aspects of the water cycle. Among those, precipitation and streamflow observations are pivotal, as they
represent cause-and-effect in the context of system dynamics. Long-term experimental data from well-studied research
catchments, and data from operational monitoring networks, have thus long been the cornerstone of the hydrological sciences
(Tetzlaff et al., 2017). The relevance of observed data and research observatories cannot be overemphasised, particularly due
to the invalidity of stationarity assumptions (Milly et al., 2008) in the face of anthropogenic climate change and its impacts on

water-related hazards and availability.

As the availability and quality of observations crucially constrain the “realism” of a hydrological model and thus the accuracy
of predictions, data scarcity impedes accurate modelling and inference of hydrological processes. Global reanalysis products
(Mufioz-Sabater et al., 2021; ONOGI et al., 2007; Rienecker et al., 2011) can potentially, if of sufficient quality, complement
the few existing ground-based observations by offering a valuable alternative when exhaustive local observations are not
available. Further, they play a pivotal role in hydro-climatic research (Alexopoulos et al., 2023; Gu et al., 2023), by providing
a consistent, long-term view of the state of the global climate system via the assimilation of measurements and monitoring

data into numerical weather models.

While previous studies (Essou et al., 2016; Tarek et al., 2020) have already shown the value of using reanalysis data as
estimates for meteorological forcing data in regions with little or sparse ground-based weather station data, serious concerns
about their quality remain when used in the context of hydrological modelling. The main issues include (Tarek et al., 2020) (i)
regional variations in data quality and (ii) limited representation of local hydro-meteorological processes, with both of these

impacting/biasing model structures and simulated states and fluxes. Systematic biases are also critical obstacles to the broader
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applicability of such products (Clerc-Schwarzenbach et al., 2024). In the case of ERA5-Land, a component of the Copernicus
Climate Change Service (C3S) provided by the European Centre for Medium Weather Forecasting (Mufioz-Sabater et al.,
2021), there is a tendency to significantly overestimate potential evapotranspiration (Clerc-Schwarzenbach et al., 2024;
Kratzert et al., 2023; Xu et al., 2024). Deficiencies have also been documented in the representation of convective storms
(Essou et al., 2016; Taszarek et al., 2021) with subsequent underestimation of precipitation magnitudes and intensities (Manoj

Jetal., 2024).

It is important to stress that “true” precipitation estimates are per default unknown at the catchment scale. We obtain estimates
of them (with considerable uncertainty) by either interpolating data from stations in or surrounding the catchment or averaging
gridded data from reanalysis/remote sensing products to the catchment scale. Such precipitation uncertainty is rarely
considered when quantifying model output uncertainty; while studies are usually conducted to show how differences in
simulated discharge can be as a consequence of changing precipitation input, they rarely look at how much improvement of

the model performance would be possible by using different but plausible precipitation (Bardossy et al., 2022, 2020).

Because precipitation forcing data plays a crucial role in rainfall-runoff modelling, several methods (Yumnam et al., 2022)
have been suggested for correcting precipitation data. These range from the use of storm multipliers (Sun and Bertrand-
Krajewski, 2013) to station-wise correction of data using a gauge-based precipitation network (Cornes et al., 2018). However,
gauge-based methods require a sufficient number of weather stations (Agarwal et al., 2020), which is often not the case for
most regions around the world. As seen from previous experience, the observation network is too sparse even in data rich
regions, and the majority of high-impact rainstorms are simply not observed (Borga et al., 2008). This is particularly true for
flash floods in response to convective storm activity (Manoj J et al., 2024; Meyer et al., 2022; Villinger et al., 2022) and well
related to the classical “Predictions in Ungauged Basins - PUB problem” (Sivapalan et al., 2003). To overcome this problem,
and in line with Kirchner's (2009) work on “doing hydrology backwards”, this paper explores options for inverse estimation
of precipitation using the information contained in observed streamflow. The goal is to determine whether inverse estimation
at the catchment scale can refine precipitation estimates from reanalysis products, ensuring they are hydrologically consistent,

especially for extreme events.

While the classical “forward rainfall-runoff generation problem” has received considerable attention over various decades
(Montanari et al., 2013; Sivapalan et al., 2003), a smaller subset of studies (Brocca et al., 2013; Kirchner, 2009; Kretzschmar
et al., 2014; Krier et al., 2012; Teuling et al., 2010) has investigated the feasibility of tackling the inverse problem efficiently.
Kirchner (2009) reported an early and successful attempt to infer catchment average rainfall and evaporation time series from
streamflow fluctuations and inspired several investigations examining the advantages and limitations of doing ‘hydrology
backwards’ in diverse catchments (Krier et al., 2012; Teuling et al., 2010). Although these studies have established a robust
mathematical foundation for addressing the inverse hydrological problem, they were limited to smaller, well-monitored
research catchments. This raises questions about the applicability of this approach to larger catchments as well as to smaller,

non-experimental ones.

Note that inversions of the catchment water balance are inherently ill-posed, making it near impossible to find a unique solution
(Bishop, 2006). Adopting the concept of micro- and macro-states from statistical mechanics (Zehe and Bldschl, 2004), we
argue that the exact micro-state, i.e. the “true” space-time pattern of precipitation in the catchment, is neither uniquely
identifiable nor observable. Yet, we conjecture that streamflow data can reduce the uncertainty associated with this process,
because it provides valuable information on antecedent precipitation. As streamflow remains a non-linear convolution of the
catchment-average precipitation, we propose that machine learning is well suited to this problem. Deep learning has recently
revolutionised almost all fields of the natural sciences and engineering, showing great promise in solving a wide range of

inverse problems, especially those related to imaging (Ongie et al., 2020). It has also been argued that such models can provide
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meaningful and general benchmarks for hypothesis testing (Klotz et al., 2022; Nearing and Gupta, 2015) and afford powerful

avenues for generalisation using large datasets (Loritz et al., 2024b).

The overall objective of this study is to ‘do hydrology backwards’ using a regional-scale long short-term memory (LSTM)
network model trained on large-scale hydrological datasets using the ERA5 Land precipitation product (Mufioz-Sabater et al.,
2021) as a target. While ERAS5 Land has well-documented issues in representing the driving precipitation estimates for specific
event scales (Essou et al., 2016; Manoj J et al., 2024), recent studies (Bandhauer et al., 2022; Goteti and Famiglietti, 2024)
have shown that they hold considerable promise to tackle the “Predictions in Ungauged Basins - PUB problem”. The
underlying research question is, “How much information about the catchment-average precipitation is effectively encoded in
the variability of the streamflow time series observed at the outlet?”” To answer this question, we first investigate whether the
approach can accurately replicate the spatial characteristics of the original forcing reanalysis dataset (by looking at various
time series measures) across European catchments for an unseen testing period. We then examine how the inverse model
performs when moving to much smaller (50-200 km?: Table 2) out-of-sample catchments. Here, we compare (using the event
runoff coefficients) LSTM-based inverse estimates during flood events to the original reanalysis product (ERAS Land) and
rain gauge-based observational estimates over the same region (E-OBS: Cornes et al., 2018). Finally, we use the HBV
conceptual hydrological model (Bergstrom and Forsman, 1973) and the spatially-distributed, process-based CATFLOW model
(Zehe et al., 2001) to assess the quality of the precipitation estimates for forward modelling of streamflow and soil moisture
dynamics, respectively.

2 Data and Methods
2.1 Model Configuration

LSTMs (Hochreiter, 1998) are a special type of recurrent neural network that makes use of cell states and so-called ‘gates’ to
control the information flow through the network. The LSTM model used in this study extends upon the work of Kratzert et
al. (2018) and Acuia Espinoza et al. (2024). The LSTM architecture, which is commonly used for streamflow simulation in
hydrology (Kratzert et al., 2018) uses a sequence of meteorological variables, such as precipitation and temperature as dynamic
inputs, along with catchment attributes as static features, to predict the corresponding streamflow. In our setting, to establish
an inverse model, we use the same general model architecture as in previous studies (Acufia Espinoza et al., 2024; Loritz et
al., 2024b). The key difference is that future streamflow is now used along with other dynamic and static data as inputs (Table
Al in Appendix A) in order to estimate the precipitation forcings of the catchments. To account for the time lag between
precipitation and discharge response observed at the catchment outlet, the model was provided with a 7-day lead time series
for discharge. We explored ranges of hyperparameter settings on a smaller subset of the training dataset to establish relatively
stable hyperparameter configurations (Fig. S1 in Supplementary Information), finally setting them according to (Acuifia
Espinoza et al., 2024) with a reduced number (5) of training epochs. Table A2 in Appendix A indicates the values used for
the LSTM network hyperparameters. Mean squared error was used as the training loss function. The codes for model building
and training can be found online (Manoj J, 2025a) . The LSTM was trained as a regional model (single network trained on all
available catchments) based on the openly available datasets detailed in the next section (Section 2.2). For forward hydrological
modelling using the inversely-generated precipitation timeseries estimates, we use two hydrological models (Appendix B) -
the lumped conceptual HBV model (Hydrologiska Byréns Vattenbalansavdelning: Bergstrom and Forsman, 1973) and the
spatially distributed process-based CATFLOW model (Zehe et al., 2001).

2.2 Data sets

This study utilized the Caravan dataset (Kratzert et al., 2023) to investigate our hypothesis regarding the inverse
identifiability of precipitation from information about discharge dynamics. We trained our model on European catchments

from the GRDC-Caravan (Farber et al., 2023) community extension and the original Caravan dataset, which includes
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catchments from CAMELS-GB (Coxon et al., 2020). The Caravan dataset uses the ERAS Land (Mufioz-Sabater et al., 2021)
as meteorological forcing, while the catchment attributes include data from HydroATLAS (Linke et al., 2019). The discharge
data is tapped from relevant state and national authorities and is accessible as open datasets. Figure S2 in the Supplementary

information depicts the study catchments (1804 in total) in the training dataset.

We chose a training period of around 25 years between 01 October 1980 to 30 September 2005. Following the best practices
in data-based modelling, the model was tested on an unseen testing period between 2006 and 2020 (2015 for CAMELS-GB
catchments due to data unavailability). To investigate its generalizability across scales, we also tested the model on four
catchments (Fig. S3 & S4) that were not included in the original training set (Section 2.3.2). For the out-of-sample test, we
made use of data from the Caravan Spain (Casado Rodriguez, 2023) and Caravan Switzerland (Hoge et al., 2023) extensions,
in addition to data from local data providers in Germany (Landesanstalt fir Umwelt, Messungen und Naturschutz Baden-
Wiirttemberg—LUBW) and Luxembourg (Nijzink et al., 2024). The observational E-OBS precipitation product (v27.0 -
Cornes et al., 2018), which uses the station network of the European Climate Assessment & Dataset (ECA&D) project, was
used as another benchmark for the evaluation of model performance. To validate the inversely generated precipitation (Section
2.3.3) during forward modeling, we conducted hydrological model simulations in the Elsenz Schwarzbach and Lippe
catchments (Fig. S5). Table 1 provides an overview of the datasets used in this study, detailing their spatial and temporal

resolutions, as well as their sources.

Table 1 Brief overview of the datasets used in this study, including their spatial and temporal resolution.

Spatial Temporal

Dataset Type & Source Resolution Resolution Details
Hydrometeorological Open community dataset that includes
Caravan dataset (Kratzert et al., Catchment scale Daily catchment forcing data and attributes along
2023) with streamflow.
GRDC- Hydrometeorological Community extension to the Caravan
dataset (Firber et al Catchment scale Daily dataset, incorporating data from the Global
Caravan 2
2023) Runoff Data Centre (GRDC).
ERAS - Reanalysis product . . Hourly Reanalysis product produced by replfiying
LAND (Mufioz-Sabater et al., 0.1°x 0.1 (aggregated the land component of ERAS climate
2021) to daily) reanalysis
) ) Interpolated observational precipitation
E-OBS Grldﬁiefi observatlonal 0.1°x 0.1° Dail product utilizing the station network from
precipitation product ) ) Y the European Climate Assessment &
(Cornes etal., 2018) Dataset (ECA&D) project.
Caravan Hydrometeorological Catchment scale Dail Community extension to the Caravan
Spain dataset (Casado Y dataset, incorporating data from Spain.
Rodriguez, 2023)
Caravan ) Community extension to the Caravan
. d Hydrometeorological Catchment scale Daily dataset, incorporating data from CAMELS-
Switzerland  gataset (Hoge et al., 2023 CH catchments.
Caravan Hydrometeorological . Commupity extepsion to the Caravan
Germany dataset Catchment scale Daily dataset, incorporating data from CAMELS-
(Dolich et al., 2025) DE catchments.
Global atmospheric reanalysis by NASA
i Hourly Global Modeling and Assimilation Office
MERRA-2 Reanalysis product 0.625°x0.5°  (aggregated :
(Gelaro et al., 2017) 0 daily) (GMAO) using the Goddard Earth
y Observing System Model (GEOS)
NASA Global Land Data Assimilation
GLDAS-2.2 Reanalysis product 0.25° x 0.25° Daily System model outputs with data

(Lietal., 2019)

assimilation for the Gravity Recovery and
Climate Experiment (GRACE-DA)




140 2.3 Experimental Design

145

150

155

160

Inverse experiments

s

Static
atlriputes

[

Mean (wet days) 95" percentile Spearman lag

|

Precipitation

gs

Sueiro

Forcin,

Hoelzlebruck
Ernz

Meteorological

Precipitation (mmvday)

Hydrological Modelling

Elsenz Schwarzbach HBV CATFLOW

Static
attri‘putes

Forcings
|

Precipitation
Precipitation (mm/day)

Meteorological

; Time
Discharge

Figure 1 Schematic representation of our methodological approach. Each rectangular panel indicates different stages of our
workflow. Initially, we train two LSTM models to predict catchment average precipitation through inverse experiments (Section
2.3.1). The trained model with discharge data (with_discharge) is then utilized for a continental-scale analysis before being used for
out-of-sample testing (Section 2.3.2). Finally, a validation exercise for the inversely generated precipitation is conducted using
various hydrological models (Section 2.3.3).

2.3.1 Exploring information about precipitation in streamflow

To shed light on the value of discharge for inversely predicting precipitation, we conducted a virtual experiment (Fig.
1) in which two LSTM models (Tables Al and A2 in Appendix A) were trained using the same catchments and training period.
The first model (without_discharge) used only meteorological time series (air temperature, solar and thermal radiation) and
static attributes (area, p_mean, ele mt sav, frac snow, pet mm_syr: Kratzert et al., 2023), while the second model
(with_discharge) included lagged discharge as an additional input variable. Both models were trained to predict daily
catchment average precipitation sums (ERAS Land). Therefore, we only deal with spatially averaged timeseries for

precipitation, assuming that these values represent the effective precipitation over the entire catchment.

We then used the trained regional-scale model (with_discharge) to predict the precipitation time series inversely for
all the test catchments over the unseen testing period and evaluated (Appendix C) those using the mean wet day precipitation
(MWD) — mm/day, 95th percentile limit (R95P) — mm/day, and Spearman autocorrelation values (SL) for each catchment, and
then compared them to the values from ERAS5 Land (used for training the model) and E-OBS (observational product) at the

continental scale.

2.3.2 Out of sample precipitation inversions and their quality

We further tested the feasibility of knowledge transfer to out-of-sample catchments and used the same regional-scale

model (with_discharge) to inversely predict the intensity of driving rainstorms for selected flood events in four hydro-

5
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climatically diverse and much smaller catchments (not included in the original training dataset). These catchments (Table 2 &
Fig. S3-S4) were chosen based on the severity of the flooding and on the apparent inability of ERAS Land forcings to accurately

represent the storms that triggered the flood events.

Table 2 Attributes for the four catchments used for out-of-sample testing.

Mean Mean potential Mean
Area R . .
Catchment Country 5 precipitation evapotranspiration elevation
(km”)
(mm/day) (mm/year) (m)
Elsenz-
Schwarzbach Germany 196.5 2.51 812.85 246.7
Ernz Luxembourg 69.3 2.31 724.04 345.5
Sueiro Spain 132.5 3.31 873 381
Hoelzlebruck Germany 47.1 4.14 658 980

2.3.3 The potential of inverted precipitation for forward modelling

To evaluate the value of generated precipitation data for forward modeling of streamflow, we calibrated the HBV conceptual
hydrological model (Bergstrom and Forsman, 1973) over the Elsenz Schwarzbach (Manoj J et al.,, 2024) and Lippe
(camelsde DEA11130: Loritz et al., 2024a) catchments (Fig S5 in Supplementary) using both the original ERAS5 Land and the
with_discharge LSTM-generated precipitation timeseries and compared the evaluation period performance of both model
versions (Table Bl in Appendix B). The HBV model (Appendix B) used in this paper requires precipitation (ERAS
Land/LSTM simulated), potential evapotranspiration, and air temperature as inputs. We follow the recommendations of Clerc-
Schwarzenbach et al. (2024), similar to that of Loritz et al (2024), for the calculation of potential evapotranspiration, and use

the temperature-based Hargreaves formula detailed by Adam et al. (2006).

Complementary to streamflow modelling, the performance of a hydrological model can also be judged by how well it replicates
the catchment dynamics of a region. Soil moisture is a key variable controlling the partitioning of net radiation into sensible
and latent heat (Seneviratne et al., 2010) or overland flow during a rainstorm (Zehe and Bldschl, 2004). We thus used each
precipitation estimate (with_discharge LSTM and ERAS Land) to run the process-based hillslope scale model CATFLOW
(Appendix B), using a setup from Manoj J et al. (2024) used for uncalibrated predictions of local floods. Here, we focused on
one of the headwater sub-catchments (Catchment W32 in Fig. S5) within the Elsenz Schwarzbach. The model simulated (Table
B1) the period from 01 January 2008 to 31 December 2015 using each of the ERAS Land and with discharge LSTM
precipitation estimates, and the corresponding spatially averaged soil moisture states were compared against several soil
moisture reanalysis products (Table 1: due to the unavailability of observed data). These include a) ERAS Land: Muifioz-
Sabater et al., 2021) b) GLDAS (NASA Global Land Data Assimilation System, GLDAS-2.2 GRACE DA: Li et al., 2019)
and ¢) MERRA (Modern-Era Retrospective analysis for Research and Applications version 2 — tavgl 2d Ind Nx: Gelaro et
al., 2017)



3 Results

3.1 The information contained in streamflow about precipitation
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Figure 2 Violin plot displaying the pairwise differences (with_discharge vs without discharge models) in NSE for the study
195  catchments.

Figure 2 shows a violin plot displaying the pairwise difference in the mean performance of the two LSTM models (Figure A1l
in Appendix A) over the catchments in the test dataset. Each point denotes the difference in NSE (Appendix C) for individual
catchments while making predictions using the with_discharge model compared to the without_discharge model. A marked
shift towards higher positive differences indicates that the model “with_discharge” has higher NSE values than the model
200 “without discharge”. This holds true not only on average but also with respect to the best-performing catchments (n=1606 in
total). The median NSE metric value ( Nash and Sutcliffe, 1970) for the regional LSTM model across the study catchments is
about 20% higher when discharge is used as an additional predictor than when it is not. However, it is also observed that in a
few cases (n=59), discharge information has worsened the performance — likely due to the poor quality of streamflow data in

these catchments.
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3.2 Unraveling the Continental Scale Characteristics

ERAS5 Land

LSTM

E-OBS

2 4 6 8 10 5 10 15 20 02 03 04 05 06 0.7
Mean Wet Day Precipitation 95th percentile limit Spearman autocorrelation
(MWD - mm/day) (R95P — mm/day) (SL)

Figure 3 The spatial patterns of the different time series metrics (Appendix C) mean wet day precipitation (MWD) — mm/day, 95th
percentile limit (R95P) — mm/day, and Spearman autocorrelation values (SL) over the study catchments for the three different
sources ERAS Land (top row): a) to c), with_discharge LSTM model (middle row): (d) to (f) and E-OBS (bottom row): (g) to (i) from
2006 to 2020 (2015 for CAMELS-GB catchments).

To examine the characteristics of the simulated time series from the with_discharge model over the testing period in detail, we
computed three timeseries measures (Appendix C) mean wet day precipitation (MWD) — mm/day, 95th percentile limit (R95P)

— mm/day, and Spearman autocorrelation values (SL) across all the catchments, and show the results in Fig. 3.

The continental-scale analysis reveals distinct patterns for the major European climatic regions. The spatial patterns for the
mean wet day precipitation (Fig 3a-g: MWD) obtained using the with_discharge LSTM model are well aligned to the ones
from ERAS Land and EOBS. Higher daily average values are observed towards the Alps, the Carpathian Mountain ranges,
and the coast of Norway, consistent with the climatology of these regions. However, the model systematically underestimates

absolute values, as evident from the scatterplot shown in Fig. 4.

A comparison with the total daily means (including both rainy and non-rainy days; Fig. S6 in Supplementary) shows that this
underestimation is particularly severe while considering only rainy days (daily precipitation >1 mm). For the 95th percentile

of wet days (R95P), we again see a robust representation of the spatial differences, along with an underestimation of the

8
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magnitudes (Fig. 3b-h). The Spearman autocorrelation coefficient values (SL: Fig 3c-i) indicate that while the model
underestimates the mean and 95th percentile limits, it overestimates the lag coefficient (which indicates the persistence in the
precipitation time series) compared to the ERAS Land time series. In addition, we also see that the ERAS Land largely matches

with the precipitation field's characteristics (wet day mean and 95th percentile limit) as in the observational E-OBS product.

The higher autocorrelation values for both with_discharge and ERAS Land may arise from model products incorporating
catchment persistence, unlike the gridded observational E-OBS data. In the case of the with_discharge LSTM model, the even
higher values are likely due to the inclusion of highly auto correlated streamflow data, which adds redundancy or a longer

memory.

Mean Wel Day Precipitation (MWD - mm/day)

95th percentile imil (R951 — mm/day)

Spearman autocorrelation (SL)
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Figure 4 Scatterplots for the three timeseries measures a) mean wet day precipitation (MWD) — mm/day, b) 95th percentile limit
(R95P) — mm/day, and c) Spearman autocorrelation values (SL) between ERAS Land and with_discharge LSTM Simulated. Each
point represents a single catchment within the dataset. A 1:1 line (shown as a red dotted line in Fig) indicates
overestimation/underestimation bias.
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3.3 Out of sample predictions
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Figure 5 Precipitation estimates for flood events at the four out of sample catchments: (a) — Elsenz Schwarzbach, (b) — Ernz, (c¢) —
Sueiro, (d) — Hoelzlebruck. The red line indicates the observed daily streamflow (with the day of the flood indicated by a cross). The
orange curve denotes the precipitation amount predicted by the with_discharge LSTM model, while the blue line depicts the original
ERAS Land time series, and the green line indicates the estimate from the gauge based E-OBS product.

Figure 5 shows predicted event precipitation values over time for the four out-of-sample catchments. Again, we compare the
inversely modelled values (with_discharge) to the original ERAS5 Land (used for training) and the gauge-based E-OBS product.
Table 3 lists the peak storm precipitation values reported by the different products along with the recorded flood values (both
normalised to the catchment area in mm/day). Also shown are the storm runoff coefficients for the respective events based on

the different precipitation estimates and discharge data.

Figure 5A represents the summer flood in June 2016 in the Elsenz Schwarzbach catchment in Germany. This annual flood
event was triggered by a series of convective rainfall events caused by persistent atmospheric conditions in Germany during
the summer of 2016. Localised rainfall totals exceeded 100 mm in some catchments (Bronstert et al., 2018), triggering
widespread flash floods. Our previous work (Manoj J et al., 2024) indicated that ERAS5 Land could not accurately replicate the
characteristics of the convective storm that caused this annual flood event over the Elsenz Schwarzbach catchment. A
comparison of with_discharge LSTM-simulated precipitation values revealed estimates closer to those reported in the
observational E-OBS product. When comparing with the E-OBS, the relative underestimation error in precipitation reduced
from around 100% (ERAS5 Land) to 40% (with_discharge). The runoff coefficient for the event also decreased from 35%
(ERAS Land) to around 23% (with_discharge), which is consistent with estimates from Manoj et al. (2024).

Next, the with_discharge model was used to estimate precipitation for another convective episode over the Ernz Catchment in
Luxembourg (Fig. 5B) in the summer of 2018. There was a noticeable improvement in the precipitation time series for both
timing and peak storm values compared to ERAS Land. While ERAS Land completely missed this storm, the with_discharge

model was able to represent the sharp rise and descent of the curve. However, the runoff coefficients and peak storm values

10
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(Table 2) indicate that the with_discharge LSTM model underestimates the true precipitation amount. In the third catchment
(Sueiro: camelses_1414 from Caravan Spain extension), the with_discharge estimate for storm forcing was higher than ERAS
Land and E-OBS (Fig. 5C). The corresponding runoff coefficients underline the reliability of the storm prediction from
with_discharge (0.37) compared to E-OBS (1.05).

In the Hoelzlebruck catchment (camelsch_4003 from Caravan Switzerland extension), two consecutive events occurred in
October 2014. ERAS Land was better than the with_discharge LSTM model in capturing the initial event magnitude, while
the with_discharge model had better timing accuracy for the events. For the second event, which was the annual flood event,

the with_discharge model, which incorporated streamflow information, was again able to reduce the relative errors in
precipitation magnitudes (Fig. 5D)

Table 3 Event characteristics for the four out of sample catchments

Event Characteristics Scllf::;:‘llf;ch Ernz Sueiro Hoelzlebruck
P ERAS Land 10.62 9.15 39.8 28.55
recipitation
(mm/day) with_discharge 16.45 23.49 64.83 44.68
mm/day
E-OBS 20.03 49.43 22.54 42.33
Discharge
3.75 27.12 23.68 20.85
(mm/day)
Runoff ERAS Land 0.35 2.96 .60 0.73
Coefficient with_discharge 0.23 1.15 37 0.47
©) E-OBS 0.19 0.55 1.05 0.49

To determine if the out-of-sample catchment performance could be solely attributed to discharge information, we utilized the
without_discharge model (which only received meteorological forcings) to inversely predict the forcing precipitation for the
2016 flood event in the Elsenz Schwarzbach. Figure 6 shows that the without discharge model was unable to capture the

driving storm dynamics as effectively as the with_discharge model and, therefore, could not accurately rectify the estimates

from ERAS Land.
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Figure 6 Precipitation estimates for the flood event on June 8, 2016, at the Elsenz Schwarzbach. The red line represents the observed
daily streamflow, with a cross marking the day of the flood. The orange curve illustrates the precipitation amount predicted by the
with_discharge LSTM model, while the dotted red line represents the without_discharge model. The blue line depicts the original
ERAS Land time series, and the green line shows the estimate from the gauge-based E-OBS product.

3.4 Forward Hydrological Modelling

The precipitation estimates generated by the with _discharge LSTM model were then used to run classical hydrological models
(HBV and CATFLOW: Table B1) in a forward manner. To address the question of performance in differently sized basins,
we run the conceptual HBV model in two catchments (Fig. S5) - Elsenz Schwarzbach (Fig. 7: 196.5 km?) and Lippe (Fig. 8:
3366.3 km?).

Figure 7 illustrates that the HBV model, which utilized the inverted precipitation estimates, performed slightly better (NSE =
0.64) during the evaluation period over Elsenz Schwarzbach compared to the model driven by the ERAS5 Land (NSE = 0.57).
To gain a better understanding of the differences between the models, we visually examined the results for three individual

flood events, as shown in Fig. 7A-C.
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Figure 7 Observed and simulated runoff (using the HBV model) at the Elsenz Schwarzbach catchment. The blue line denotes the
streamflow simulated using the ERAS Land precipitation product, while the red curve depicts the simulations using the inversely-
estimate precipitation obtained using the with_discharge LSTM model. Moreover, three rainfall-runoff events are highlighted and
displayed separately.

During the winter flood of December 2012 (23 Dec 2012, Fig. 7A), the model driven by ERAS5 Land significantly
underestimated both the peak and the volume of the flood event. When using with_discharge -simulated precipitation, the
relative peak error decreased by nearly 25%. Similarly, the model runs using with_discharge precipitation more accurately
captured the pre-event conditions (18 Dec 2012) and the post-event conditions (28 Dec 2012). This aligns with findings from
other studies (Berghuijs et al., 2019; Manoj J et al., 2023) that emphasize the importance of initial conditions for floods across
Europe.

In the winter of 2015 (Fig. 7B), the model using with_discharge precipitation once again demonstrated better performance
(albeit with overestimation errors). During the convective summer storm event in 2016 (Fig. 7C), neither model run
successfully captured the flashy runoff response. Although the model that utilized ERAS5 Land input predicted an earlier flood
event in May 2016 with an overestimation bias, it did not accurately depict the dynamics of the annual flood event occurring
a few days later. In contrast, the model with LSTM-generated precipitation (with_discharge) generally performed better in

capturing both the magnitude and timing of the smaller storm peaks as well as the annual flood event on June 8, 2016.
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Figure 8 Observed and simulated runoff (using the HBV model) at the Lippe catchment. The blue line denotes the streamflow
simulated using the ERAS Land precipitation product, while the red curve depicts the simulations using the inversely-estimate
precipitation obtained using the with_discharge LSTM model. Moreover, two rainfall-runoff events are highlighted and displayed
separately.

For the larger Lippe catchment, we again saw comparable mean performance for both the runs (Fig. 8). For the winter flood
of 2011 (Fig. 8A), the HBV model, which used inversely generated precipitation, closely matched the observed streamflow
dynamics, whereas the ERA5 Land run exhibited significant overestimation errors. The inversely generated precipitation
estimates again improved HBV model performance for replicating the discharge dynamics during the floods in December 2012
and February 2013 (Fig. 8B).

To understand the evolution of soil moisture dynamics while using the with_discharge LSTM-based precipitation estimates
in physically based models, we conducted a hillslope-scale CATFLOW model simulation (Loritz et al., 2017; Manoj J et al.,
2024) in one of the headwater catchments in Elsenz Schwarzbach (ERAS5 Land vs with_discharge LSTM). The pairwise
correlation values, as shown in Fig. 9, indicate that the use of the LSTM-based precipitation estimates does not lead to a loss
of information regarding soil moisture dynamics in the region. In fact, we observe a slight increase in correlation when
comparing the inversely derived precipitation estimates (referred to as CATFLOW _Istm) to MERRA and GLDAS (Table 1),
in contrast with the correlation obtained for the run with ERAS5 Land (referred to as CATFLOW _era5). As expected, the
correlation value for the ERAS Land run is slightly higher when assessed against soil moisture from the same ERAS Land

dataset, which may be attributed to model biases arising from using the same dataset for both precipitation and soil moisture.
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Figure 9 Correlation matrix plot illustrating the pairwise correlations between the different soil moisture estimates - GLDAS (NASA
Global Land Data Assimilation System, GLDAS-2.2 GRACE DA: Li et al., 2019), MERRA (Modern-Era Retrospective analysis for
Research and Applications version 2 — tavgl_2d_Ind_Nx: Global Modeling And Assimilation Office, 2015), ERAS Land: (Muiioz-
Sabater et al., 2021), CATFLOW_Istm: model run using inversely estimated precipitation estimate from the LSTM model and
CATFLOW_ERAS: model run using precipitation estimate from ERAS Land product.

4 Discussion
4.1 Improved precipitation estimation using discharge

Overall, our study reiterates that streamflow data can be exploited to obtain useful information about the nature of
catchment-scale effective precipitation: we can thus invert the cause using the effect as input to an LSTM. This is in line with,
and steps beyond, previous studies (Brocca et al., 2013; Kirchner, 2009; Kretzschmar et al., 2014; Krier et al., 2012; Teuling
et al., 2010) that explored the possibility of doing hydrology backwards using experimental catchments. Here, we successfully
expanded this idea to large samples, cutting across the wide range of hydro-climatic conditions that characterise Europe. We
found a largely ‘normal’ distribution of performance, with a few outliers, the latter indicating possible poor quality of discharge

data.

Although ERAS Land precipitation has known uncertainties, it provides continuous global spatial and temporal coverage,
making it a useful training dataset. Our goal was not to generate a fully independent dataset but to improve the ERAS Land
precipitation estimates using the additional streamflow information. Reanalysis data, by definition, are a mix of observations
and past short-range weather forecasts rerun with modern weather forecasting models. Different data assimilation methods are
then employed (Li et al., 2019). The inversion technique could be used as another final layer of post-processing (using the
LSTM in this case) for the model outputs to ensure that the final product is more consistent with the variabilities observed in

the discharge record.

One limitation of our approach is that the LSTM model tends to underestimate the timeseries measures (MWD and R95P) at

the continental scale. The LSTM’s architecture is known to have a theoretical saturation limit, leading to the underestimation
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of some of the peak storm events. This so called ‘saturation problem’ (Baste et al., 2025; Chen and Chang, 1996) implies that
irrespective of the input series, the predicted values can never exceed a theoretical limit (which is established during the training
phase). Furthermore, the LSTM model looks for recurrence in patterns and mean conditions. This means that it can indeed
account for consistent baseflow dynamics (as also indicated by analysis over the larger Lippe catchment, Figure 8). In extreme
floods (Merz et al., 2021), the relative contributions of each component can vary significantly, depending on various factors
such as the antecedent conditions of the catchment area. The model likely struggles to learn this variability while attempting
to invert and obtain the driving precipitation values. Given the non-linear nature of the inverse problem, there are always
multiple possible solutions. Since the model is trained to minimize the mean squared error (Gupta et al., 2009), it may also

tend to consistently predict lower values (on peaks) to effectively reduce the average error during training.

It is also important to acknowledge that ‘true’ precipitation estimates don’t exist at the catchment scale. We obtain estimates
of forcing precipitation at such scales (with considerable uncertainty) by interpolating station data (e.g. E-OBS) or averaging
gridded data from reanalysis/remote sensing products (e.g. ERAS Land). Studies evaluating daily precipitation from EOBS
and ERAS over Europe (Bandhauer et al., 2022) have shown that while E-OBS is superior to ERAS in regions with dense data,
using ERAS has advantages in data-scarce regions. The same was true for out of sample analysis (Fig. 5). For the Sueiro
catchment (camelses_1414), the closest observational station is located more than 60 km away (Fig. S4), this explains why the

EOBS performs rather poorly in representing the driving forcings for the summer flood event (Fig. 5C).

The performance comparison using the rain gauge based EOBS product was intended to provide insight into the feasibility of
different precipitation estimates from a hydrological perspective. While we acknowledge the existence of even better regional
products (e.g., HYRAS — German Weather Service) for some of the study catchments, we believe that these various products
should not be viewed as independent of one another. Instead, they contain complementary information as they represent the

same physical truth i.e. precipitation occurring over a catchment, albeit with different uncertainties and errors.

4.2 Catchment as a functional unit

In the introduction, we argued that the catchment scale is crucial for improving our understanding of the factors that drive the
water cycle and representing them more accurately in reanalysis products. Our findings across the four catchments highlight
the benefit of using streamflow variations to rectify precipitation estimates. By leveraging the generalisation capabilities of the
data-driven LSTM model, we successfully transferred knowledge across different scales (Notably, only about 9% of the
catchments in our training dataset had areas smaller than 100 km?), indicating important implications for addressing the ever-
evolving challenge of predictions in ungauged basins (PUB: Hrachowitz et al., 2013)

Although this approach can only be applied after the event has taken place, it has implications for generating coherent long-
term statistical records for catchment forcings, which could be used for the design of small- to medium-purpose water resource
projects. Employing daily precipitation sums from products like ERAS Land and EOBS should ideally be a last resort for
reproducing small-scale hydrological events, however, the scarcity of real-world data and the rarity of these events may
sometimes necessitate a modelling decision to incorporate these coarser estimates. Using the streamflow fluctuations, it would
be possible to identify localised rainfall cells or snowfall events that are poorly captured by traditional rain gauges
(Kretzschmar et al., 2014). The approach also has potential for evaluating long-term rainfall estimates from Global Circulation
Models for specific catchments using information about hydrological conditions (Fujihara et al., 2008).

While the LSTM-based precipitation estimates improved the representation of most events, there were still instances where
the original ERAS Land provided better accuracy for peak flood magnitudes (Fig. 5); this highlights the need for a blended
approach that incorporates additional information rather than completely replacing one product with another. In regions around

the world, the wealth of streamflow information remains underutilised in this aspect. For Germany alone (Loritz et al., 2024a),
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there are more than 1500 streamflow gauges, which represent a significantly higher representative area compared to

precipitation stations.

The forward exercise using the HBV model showed that the precipitation estimates after inversion enhanced mean performance
for streamflow simulation and helped improve the modelling of extreme individual floods. The ability to match the hydrograph
differed between the different seasons. Compared to the storage-controlled winter floods (Dunne and Kirkby, 1978) , summer
floods in these regions are usually driven by Hortonian flow (Horton, 1932) in response to high-intensity rainfall during
convective storms. Previous studies (Kirchner, 2009; Krier et al., 2012) have discussed such storage-controlled dynamics and

their impact on the inversion problem.

Previous experiences at the event scale (Beauchamp et al., 2013; Zehe and Bloschl, 2004) have also shown that inferring the
antecedent soil moisture conditions remains a key challenge for accurate and reliable flood simulations. By utilising the
process-based CATFLOW model for soil moisture simulations in a small headwater catchment, we achieved high correlation
values using the inverse precipitation estimate. This suggests that the approach can help represent the catchment's overall water

dynamics and has the potential for reliable flood design estimations at the event scale, particularly in data-scarce regions.

4.3 Limitations and Outlook

It is important to stress that, as for any data-driven study, the results of our work are contingent on the quality of the training
dataset. While we are aware of better regional products for individual countries, ERAS Land provides consistent global
coverage, and a permissive data sharing policy makes it one of the obvious choices for a continental scale modelling exercise.
To evaluate the applicability of the commonly used LSTM network architecture, we decided to use the same architecture
previously employed in hydrological studies instead of creating an experimental design with modified individual layers and
training functions for inverse modelling. It is evident that exploring the impacts of different loss functions and deep learning
model architectures like transformers would help advance the methodology discussed in this paper. This approach could also
shed light on best-suited algorithms for the problem but is beyond the scope of the present work. The choice of Mean Squared
Error (MSE) as the training function and Nash Sutcliffe Efficiency (NSE) as a performance metric is motivated by its success
and applications in the forward problem (streamflow prediction), but this adds its own biases to the modelling exercise. In the
present work, we tried to overcome this issue by relying less on the evaluation measure (NSE) and placing greater emphasis
on the hydrological feasibility of the predictions (using the runoff coefficient). Additionally, we tried to complement this by
calculating various other time series metrics commonly used in hydrometeorological studies. The four events for out-of-sample
tests across various catchments were chosen based on the severity of the floods and ERAS Land's inability to capture the
characteristics of the driving storms. The choice of the hydrological models and calibration period also adds uncertainty to the

forward simulations.

Our approach opens up many perspectives for future research. Transfer learning to data-scarce regions could help address the
challenge of highly uncertain precipitation estimates in smaller catchments without precipitation gauges, improving
hydrological modeling and the representation of extreme events such as convective storms, which are crucial for designing
flood defense measures. Additionally, the inversion technique could serve as a final post-processing layer for gridded
reanalysis products, ensuring better consistency with discharge variability and enabling machine learning approaches to
estimate spatial precipitation fields conditioned on discharge data (Bardossy et al., 2022, 2020). Moreover, this methodology
could be applied to reconstruct past floods by leveraging historical hydrological records, storm water level markings, and
observational flood data (Bronstert et al., 2018; Seidel et al., 2009), providing valuable insights into the driving storms behind
some of the devastating past flood events. The workflow could also be expanded for the generation of new precipitation

products, merging multiple different precipitation sources alongside the streamflow inversion.
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435 5 Conclusions

Our main hypothesis was supported by the findings, which demonstrated that discharge has unused potential and can be
inversely assimilated to adjust precipitation estimates derived from reanalysis products, while machine learning models are
key to expanding this effort to large data sets spanning the scale of entire continents. The continental-scale analysis revealed
that while the characteristics for the various time series attributes are well represented at the continental scale, there remain
440 significant underestimation biases compared to the original reanalysis product. Insights from the out-of-sample catchments
provided valuable information about the applicability of our method for estimating flood forcings and the generalizability of
the model. Additionally, we have shown that the inversely estimated precipitation estimates can improve forward modelling
of both streamflow and soil moisture dynamics, illustrating how the information gained can be integrated into existing

modelling strategies.

445 Appendix A: LSTM configurations

Table A1 details the static and dynamic inputs used for setting up the with _discharge and without discharge LSTM models.

The hyperparameter settings for both models are shown in Table A2, while Figure A1 provides the comparison results for both

runs.
450 Table A1 Model configurations for the LSTM model runs.
Inputs
Model Output
Static Attributes Dynamic Attributes
area (area of catchment — km?) temperature_2m_mean
p_mean (mean daily (daily mean temperature - °C)
precipitation — mm/day) surface_net_solar_radiation_mean
ele_mt _sav (spatial mean (shortwave radiation — Wm2)
total precipitation_sum
elevation — m above sea level) surface net_thermal radiation_mean S )
with_discharge ) o (precipitation daily sums
frac_snow (fraction of (Net thermal radiation at the surface -
o A — mm/day)
precipitation falling as snow) Wm?)
pet_mm_syr (potential qobs_lead (lead streamflow 7 days —
evapotranspiration annual mean mm/day)
- mm)
area (area of catchment — km?)
p_mean (mean daily temperature_2m_mean
precipitation — mm/day) (daily mean temperature - °C)
ele_mt_sav (spatial mean surface_net_solar_radiation_mean
] o fotal_precipitation_sum
elevation — m above sea level) (shortwave radiation — Wm2) o )
without _discharge ) (precipitation daily sums
frac_snow (fraction of surface net_thermal radiation_mean
. . L — mm/day)
precipitation falling as snow) (Net thermal radiation at the surface -
pet_mm_syr (potential Wm?)

evapotranspiration annual mean

- mm)
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455
Table A2 Hyperparameter settings for the LSTM models

Hyperparameter LSTM Network
Hidden Layer 1
Hidden cells 64
Batch size 256
Sequence length 365
Epochs 5
Drop out 0.4
Learning rate 0.001
Optimizer Adam
Lo Distribution of NSE Fuith = 0.61, Ruitriour = 0.42
(a)
0.8-

0.6

NSE

0.4-

0.2

0.0

With Discharge Without Discharge
ECDF of NSE with and without Discharge

1.0
(b)

0.8

0.6-

=== With Discharge
—— Without Discharge

ECDF

0.4-

0.2

0.0-

0.0 0.2 0.4 0.6 0.8 1.0
NSE

460

Figure A1 Comparison of the mean performance of the two regional scale LSTM models (with_discharge and without_discharge).
(a) Top panel depicts violin plots with included boxplots showing the distribution of performance (quantified by comparing the
LSTM model simulated precipitation series to the original ERAS Land timeseries over the testing period: NSE) (b) Bottom panel
displays cumulative distribution plots for the performance of the two models.
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Appendix B: Hydrological Modelling

Hydrologiska Byrans Vattenbalansavdelning (HBV): The HBV model (Bergstrom and Forsman, 1973) is a so-called
conceptual hydrological model that is used to simulate rainfall-runoff processes at the catchment scale. It makes use of different

catchment water stores (storage elements, also referred to as buckets). Each storage element represents a certain compartment

470 of a catchment (e.g. groundwater, surface water bodies, soil zone). The main input requirements include precipitation,
temperature and potential evapotranspiration. The model has several empirical parameters that need to be calibrated during the
model training phase. A more detailed description of the model architecture and set up can be found in the studies by Seibert
(2005) and Loritz et al. (2024a).

475 CATFLOW: The physically based model CATFLOW for catchment water and solute dynamics was developed as part of the
detailed process studies carried out from 1991 — 1996 in the Weiherbach catchment in South-West Germany (Zehe et al.,
2001). The basic modeling unit is a 2-D hillslope, discretized by curvilinear orthogonal coordinates in the vertical and
downslope directions. Soil water dynamics within the hillslopes are characterized using the potential based form of the 2D
Darcy—Richards equation. Overland flow is simulated using the diffusion wave approximation of the Saint-Venant equation

480 and explicit upstreaming, in combination with the Gauckler-Manning-Strickler formula. A detailed model description with the
workflow required for setting up the model can be found in Manoj J et al. (2024).

Table B1 Validation test cases for the hydrological models
Model HBV (Bergstrom and Forsman, 1973) CATFLOW (Zehe et al., 2001)
Catchment Elsenz Schwarzbach Lippe Headwater catchment W32 in Elsenz
(Figure S5) (Manoj J et al., 2024) (Loritz et al., 2024a) Schwarzbach (Manoj J et al., 2024)
Area (km?) 196.5 3366.3 5.6
Using original ~ Using inversely =~ Using original ~ Using inversely Using original Using inversely
ERAS Land generated ERAS5 Land generated ERAS5 Land generated
Scenario precipitation precipitation precipitation precipitation precipitation precipitation
(with_discharge) (with_discharge) (with_discharge)
ERA5 Land Inversely ERAS Land Inversely ERAS5 Land Inversely
precipitation, generated precipitation, generated precipitation, generated
potential precipitation, potential precipitation, potential precipitation,
evapotranspira potential evapotranspira potential evapotranspiratio potential
Forcings tion evapotranspiratio tion evapotranspiratio n (ERAS Land), evapotranspiratio
g (Hargreaves), n (Hargreaves), (Hargreaves), n (Hargreaves), plant and soil n (ERAS Land),
air air temperature air air temperature parameters from plant and soil
temperature (ERAS Land) temperature (ERAS Land) Manoj J et al. parameters from
(ERAS Land) (ERAS Land) (2024) Manoj J et al.
(2024)
Call)‘;’rriz;"’“ 01.01.2000 — 31.12.2010 01.01.1990 — 31.12.2010 Uncalibrated predictions
Validation 01.01.2011 —31.12.2016 01.01.2011 —31.12.2020 01.01.2008 —31.12.2015
period
Outputs Streamflow Streamflow Soil moisture
compared
NSE 0.57 0.64 0.637 0.644 0.70-0.82 0.67-0.88
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Appendix C: Performance Metrics

Nash-Sutcliffe Efficiency (NSE) - First proposed by Nash and Sutcliffe (1970), the Nash—Sutcliffe efficiency (NSE) is one
of the most widely used similarity measures in hydrology for calibration, model comparison, and verification. It measures how

well the simulated timeseries (yg;,,) matches the observed values (y,s).

—_— . 2
NSE = 1 — Z(yobs ystm) Eqn. Cl1

Z(yobs - }_’obs)z

Values closer to 1 indicate excellent model performance (D. N. Moriasi et al., 2007), while NSE values near or below 0 suggest

that the model, in fact, performs worse than simply using the mean of the observed values.

Mean Wet Day Precipitation (MWD: mm/day) — The Expert Team on Climate Change Detection and Indices (ETCCDI -
World Climate Research program; 2021) recommends evaluating the intensity of precipitation on wet days (defined as a day
with a minimum of 1 mm precipitation) to understand systematic over or underestimation of precipitation amounts. This metric
(Simple Daily Intensity Index as per ETCCDI) is reported as the mean daily precipitation on days where precipitation > 1 mm.

Let P; be the daily precipitation amount on wet days, (P; > 1mm). If N represents the total number of wet days, then:

N

MWD = i:Tlp" Eqn. C2

95th Percentile Precipitation (R95P: mm/day) — This metric denotes the daily precipitation value at which 95% of all daily
values (again only considering rainy days) are lower (top 5% events). This helps to assess the ability to capture extreme

precipitation events. Let P; be the daily precipitation amount on wet days, (P, > 1mm).

RI95P = Percentile ({P;|P; > 1mm},95) Eqn. C3

Spearman Rank Autocorrelation (SL) - The Spearman Rank Autocorrelation measures the monotonic relationship between
daily precipitation values and their values on the preceding day (1-day lag). It is computed using the ranked values of the
precipitation time series. For a precipitation timeseries (with total nobservations) P = {Py,P,, ..., B,} with R(P;) and

R(P; 1) being the ranks of the precipitation values at times t and t + 1,

6 X1 (R(Peit) — R(P)) Eqn. C4

SL=1- =T

This measure helps analyse persistence in precipitation patterns and whether the temporal structure of precipitation events are

preserved.

Code Availability

The codes used to conduct the LSTM analysis in this study are based on the publicly available HY?DL python library
(https://github.com/KIT-HYD/Hy2DL) and can be accessed at https://doi.org/10.5281/zenodo.15051718 (Manoj J, 2025a).
The code used to run the HBV models is available at https://doi.org/10.5281/zenodo.15051981 (Manoj J, 2025b). The

CATFLOW model and the setup wused to run the experiment in this study are archived at
https://doi.org/10.5281/zenodo.10958813 (Manoj J, 2024) .
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Data Availability

The Caravan dataset and related community extensions are publicly available at https:/doi.org/10.5281/zenodo.10968468

(Kratzert et al., 2023) and https:/github.com/kratzert/Caravan/discussions/10. We acknowledge the E-OBS dataset from the

Copernicus Climate Change Service (C38, https://surfobs.climate.copernicus.eu) and the data providers in the ECA&D project

(https://www.ecad.eu). The datasets generated as part of this publication can be found at

https://doi.org/10.5281/zenodo.15051718 (Manoj J, 2025a) and https://doi.org/10.5281/zenodo.15051981 (Manoj J, 2025b).
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