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Abstract. This study explores the feasibility of using the information contained in observed streamflow discharge 

measurements to inversely correct catchment-average precipitation time series provided by reanalysis products. We explore 10 

this possibility by training LSTM models to inversely predict precipitation. The first model uses discharge as an input feature 

along with other meteorological factors, while the second model uses only the meteorological factors. Although the model 

provided with discharge information showed better mean performance, a detailed analysis of various time series measures 

across the continental scale revealed underestimation biases when compared with the original reanalysis product used for 

training. However, an out-of-sample test showed that the inversely estimated precipitation is better able to reproduce small-15 

scale, high-impact events that are poorly represented in the original reanalysis product. Further, using the inversely generated 

precipitation time series for classical hydrological “forward” modeling resulted in improved estimates for streamflow and soil 

moisture. Given the notable disconnect between reanalysis products and extreme events, particularly in data-scarce regions 

worldwide, our findings have implications for achieving better estimates of precipitation associated with high-impact events. 

1 Introduction 20 

The performance of hydrological models has traditionally been constrained by the availability and quality of observations 

covering various aspects of the water cycle. Among those, precipitation and streamflow observations are pivotal, as they 

represent cause-and-effect in the context of system dynamics. Long-term experimental data from well-studied research 

catchments, and data from operational monitoring networks, have thus long been the cornerstone of the hydrological sciences 

(Tetzlaff et al., 2017). The relevance of observed data and research observatories cannot be overemphasised, particularly due 25 

to the invalidity of stationarity assumptions (Milly et al., 2008) in the face of anthropogenic climate change and its impacts on 

water-related hazards and availability. 

As the availability and quality of observations crucially constrain the “realism” of a hydrological model and thus the accuracy 

of predictions, data scarcity impedes accurate modelling and inference of hydrological processes. Global reanalysis products 

(Muñoz-Sabater et al., 2021; ONOGI et al., 2007; Rienecker et al., 2011) can potentially, if of sufficient quality, complement 30 

the few existing ground-based observations by offering a valuable alternative when exhaustive local observations are not 

available. Further, they play a pivotal role in hydro-climatic research (Alexopoulos et al., 2023; Gu et al., 2023), by providing 

a consistent, long-term view of the state of the global climate system via the assimilation of measurements and monitoring 

data into numerical weather models.  

While previous studies (Essou et al., 2016; Tarek et al., 2020) have already shown the value of using reanalysis data as 35 

estimates for meteorological forcing data in regions with little or sparse ground-based weather station data, serious concerns 

about their quality remain when used in the context of hydrological modelling. The main issues include (Tarek et al., 2020) (i) 

regional variations in data quality and (ii) limited representation of local hydro-meteorological processes, with both of these 

impacting/biasing model structures and simulated states and fluxes. Systematic biases are also critical obstacles to the broader 
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applicability of such products (Clerc-Schwarzenbach et al., 2024). In the case of ERA5-Land, a component of the Copernicus 40 

Climate Change Service (C3S) provided by the European Centre for Medium Weather Forecasting (Muñoz-Sabater et al., 

2021), there is a tendency to significantly overestimate potential evapotranspiration (Clerc-Schwarzenbach et al., 2024; 

Kratzert et al., 2023; Xu et al., 2024). Deficiencies have also been documented in the representation of convective storms 

(Essou et al., 2016; Taszarek et al., 2021) with subsequent underestimation of precipitation magnitudes and intensities (Manoj 

J et al., 2024).  45 

It is important to stress that “true” precipitation estimates are per default unknown at the catchment scale. We obtain estimates 

of them (with considerable uncertainty) by either interpolating data from stations in or surrounding the catchment or averaging 

gridded data from reanalysis/remote sensing products to the catchment scale. Such precipitation uncertainty is rarely 

considered when quantifying model output uncertainty; while studies are usually conducted to show how differences in 

simulated discharge can be as a consequence of changing precipitation input, they rarely look at how much improvement of 50 

the model performance would be possible by using different but plausible precipitation (Bárdossy et al., 2022, 2020). 

Because precipitation forcings data plays a crucial role in rainfall-runoff modelling, several methods (Yumnam et al., 2022) 

have been suggested for correcting precipitation data. These range from the use of storm multipliers (Sun and Bertrand-

Krajewski, 2013) to station-wise correction of data using a gauge-based precipitation network (Cornes et al., 2018). However, 

gauge-based methods require a sufficient number of weather stations (Agarwal et al., 2020), which is often not the case for 55 

most regions around the world. As seen from previous experience, the observation network is too sparse even in data rich 

regions, and the majority of high-impact rainstorms are simply not observed it is usually the rainstorm events occurring in 

poorly observed areas that lead to high impacts (Borga et al., 2008). This is particularly true for flash floods in response to 

convective storm activity (Manoj J et al., 2024; Meyer et al., 2022; Villinger et al., 2022) and well related to the classical 

“Predictions in Ungauged Basins ‐ PUB problem” (Sivapalan et al., 2003). To overcome this problem, and in line with 60 

Kirchner's (20098) work on “doing hydrology backwards”, this paper explores options for inverse estimation of precipitation 

using the information contained in observed streamflow. The goal is to determine whether inverse estimation at the catchment 

scale can refine precipitation estimates from reanalysis products, ensuring they are hydrologically consistent, especially for 

extreme events. 

 65 

While the classical “forward rainfall-runoff generation problem” has received considerable attention over various decades 

(Montanari et al., 2013; Sivapalan et al., 2003), a smaller subset of studies (Brocca et al., 2013; Kirchner, 2009; Kretzschmar 

et al., 2014; Krier et al., 2012; Teuling et al., 2010) has investigated the feasibility of tackling the inverse problem more 

efficiently. Kirchner (Kirchner, 2009) reported an early and successful attempt to infer catchment average rainfall and 

evaporation time series from streamflow fluctuations and inspired several investigations examining the advantages and 70 

limitations of doing ‘hydrology backwards’ in diverse catchments (Krier et al., 2012; Teuling et al., 2010). Although these 

studies have established a robust mathematical foundation for addressing the inverse hydrological problem, they were limited 

to smaller, well-monitored research catchments. This raises questions about the applicability of this approach to larger 

catchments as well as to smaller, non-experimental ones.  

Note that inversions of the catchment water balance are inherently ill-posed, making it near impossible to find a unique solution 75 

(Bishop, 2006). Adopting the concept of micro- and macro-states from statistical mechanics (Zehe and Blöschl, 2004), we 

argue that the exact micro-state, i.e. the “true” space-time pattern of precipitation in the catchment, is neither uniquely 

identifiable nor observable. YetHowever, we conjecture that streamflow data can reduce the uncertainty associated with this 

process, because it provides valuable information on antecedent precipitationthe catchment-average precipitation can be 

inversely identified based on the corresponding streamflow response. As streamflow remains a non-linear convolution of the 80 
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catchment-average effective precipitation, we propose that machine learning is well suited to this problem. Deep learning has 

recently revolutionised almost all fields of the natural sciences and engineering, showing great promise in solving a wide range 

of inverse problems, especially those related to imaging (Ongie et al., 2020). It has also been argued that such models can 

provide meaningful and general benchmarks for hypothesis testing (Klotz et al., 2022; Nearing and Gupta, 2015) and afford 

powerful avenues for generalisation using large datasets (Loritz et al., 2024b).  85 

The overall objective of this study is to ‘do hydrology backwards’ using a regional-scale long short-term memory (LSTM) 

network model trained on large-scale hydrological datasets using the ERA5 Land precipitation product (Muñoz-Sabater et al., 

2021) as a target. While ERA5 Land has well-documented issues in representing the driving precipitation estimates for specific 

event scales (Essou et al., 2016; Manoj J et al., 2024), recent studies (Bandhauer et al., 2022; Goteti and Famiglietti, 2024) 

have shown that they hold considerable promise to tackle the “Predictions in Ungauged Basins ‐ PUB problem”. The 90 

underlying research question is, “How much information about the catchment-average effective precipitation is effectively 

encoded in the variability of the streamflow time series observed at the outlet?” To answer this question, we first investigate 

whether the approach can accurately replicate the spatial gradients characteristics of the original forcing reanalysis dataset (by 

looking at various time series measures)  across European catchments for an unseen testing period. We then examine how the 

inverse model performs when moving to much smaller (50-200 km2: Table 2) out-of-sample catchments. Here, we compare 95 

(using the event runoff coefficients) LSTM-based inverse estimates during flood events  to the original reanalysis product 

(ERA5 Land) and rain gauge-based observational estimates over the same region (E-OBS: Cornes et al., 2018). Finally, we 

use the HBV conceptual hydrological model (Bergström and Forsman, 1973) and the spatially-distributed, process-based 

CATFLOW model (Zehe et al., 2001) to assess the quality of the precipitation estimates for forward modelling of streamflow 

and soil moisture dynamics, respectively. 100 

2 Data and Methods  

2.1 Model Configuration 

LSTMs (Hochreiter, 1998) are a special type of recurrent neural network that makes use of cell states and so-called 

‘gates’ to control the information flow through the network. The LSTM model used in this study extends upon the work of 

(Kratzert et al., (2018) and (Acuña Espinoza et al., (2024). The LSTM architecture, which is commonly used for streamflow 105 

simulation in hydrology (Kratzert et al., 2018) , uses a sequence of meteorological variables, such as 

precipitation and temperature as dynamic inputs, along with catchment attributes as static features, to predict the corresponding 

streamflow. In our setting, to establish an inverse model, we use the same general model architecture as in previous studies 

(Acuña Espinoza et al., 2024; Loritz et al., 2024b). The key difference is that future streamflow is now used along with other 

dynamic and static data as inputs (Table A1 in Appendix A) in order to estimate the precipitation forcings of the catchments. 110 

To account for the time lag between precipitation and discharge response observed at the catchment outlet, the model was 

provided with a 7-day lead time series for discharge. We explored ranges of hyperparameter settings on a smaller subset of the 

training dataset to establish relatively stable hyperparameter configurations (Fig. S1 in Supplementary Information), finally 

setting them according to (Acuña Espinoza et al., 2024) with a reduced number (5) of training epochs. Table S1 A2 in the 

Supplementary information Appendix A indicates the values used for the LSTM network hyperparameters. Mean squared error 115 

was used as the training loss function. The codes for model building and training can be found online (Manoj J, 2025a) (Manoj 

J, 2024a). The LSTM was trained as a regional model (single network trained on all available catchments) based on the openly 

available datasets detailed in the next section (Section 2.2).  

For forward hydrological modelling  using the inversely-generated precipitation timeseries estimates, we use two hydrological 

models (Appendix B) - the lumped conceptual HBV model (Hydrologiska Byråns Vattenbalansavdelning:  Bergström and 120 

Forsman, 1973) and the spatially distributed process-based CATFLOW model (Zehe et al., 2001). The HBV model (Seibert, 

2005) used in this paper requires precipitation (ERA5 Land/LSTM simulated), potential evapotranspiration, and air 
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temperature (ERA5 Land) as inputs. We follow the recommendations of Clerc-Schwarzenbach et al. (2024), similar to that of 

Loritz et al (2024), for the calculation of potential evapotranspiration, and use the temperature-based Hargreaves formula 

detailed by Adam et al. (2006). For the CATFLOW model, we utilise the catchments, hillslope structures and soil/plant 125 

parameters from Manoj J et al (2024).  

2.2 Data sets  

This study utilized the Caravan dataset (Kratzert et al., 2023) to investigate our hypothesis regarding the inverse 

identifiably identifiability of precipitation from information about discharge dynamics. We trained our model on European 

catchments from the GRDC-Caravan (Färber et al., 2023) community extension and the original Caravan dataset, which 130 

includes catchments from CAMELS-GB (Coxon et al., 2020). The Caravan dataset uses the ERA5 Land (Muñoz-Sabater et 

al., 2021) as meteorological forcing, while the catchment attributes include data from HydroATLAS (Linke et al., 2019). The 

discharge data is tapped from relevant state and national authorities and is accessible as open datasets. Figure S2 in the 

Supplementary information depicts the study catchments (1804 in total) in the training dataset. The LSTM model was trained 

to predict daily ERA5 Land precipitation time series from discharge data along with meteorological forcings (temperature, 135 

surface net solar radiation and surface net thermal radiation – all from ERA5 Land) and five catchment static attributes (area, 

p_mean, ele_mt_sav, frac_snow, pet_mm_syr: Kratzert et al., 2023).  

We chose a training period of around 25 years between 01 October 1980 to 30 September 2005. Following the best practices 

in data-based modelling, the model was tested on an unseen testing period between 2006 and 2020 (2015 for CAMELS-GB 

catchments due to data unavailability). To investigate its generalizability across scales, we also tested the model on four 140 

catchments (Fig. S3 & S4) that were not included in the original training set (Section 2.3.2). For the out-of-sample test, we 

made use of data from the Caravan Spain (Casado Rodríguez, 2023) and Caravan Switzerland (Höge et al., 2023) extensions, 

in addition to data from local data providers in Germany (Landesanstalt für Umwelt, Messungen und Naturschutz Baden‐

Württemberg—LUBW) and Luxembourg (Nijzink et al., 2024). The observational E-OBS precipitation product (v27.0 - 

Cornes et al., 2018), which uses the station network of the European Climate Assessment & Dataset (ECA&D) project, was 145 

used as another benchmark for the evaluation of model performance. To validate the inversely generated precipitation (Section 

2.3.3) during forward modeling, we conducted hydrological model simulations in the Elsenz Schwarzbach and Lippe 

catchments (Fig. S5). Table 1 provides an overview of the datasets used in this study, detailing their spatial and temporal 

resolutions, as well as their sources. 

Table 1 Brief overview of the datasets used in this study, including their spatial and temporal resolution. 150 

Dataset Type & Source 
Spatial 

Resolution 
Temporal 
Resolution 

Details 

Caravan 
Hydrometeorological 

dataset (Kratzert et al., 
2023) 

Catchment scale Daily 
Open community dataset that includes 
catchment forcing data and attributes along 
with streamflow. 

GRDC-
Caravan 

Hydrometeorological 
dataset (Färber et al., 

2023) 

Catchment scale Daily 
Community extension to the Caravan 
dataset, incorporating data from the Global 
Runoff Data Centre (GRDC). 

ERA5 - 
LAND 

Reanalysis product 
(Muñoz-Sabater et al., 

2021) 

0.1º x 0.1º 
Hourly 

(aggregated 
to daily) 

Reanalysis product produced by replaying 
the land component of ERA5 climate 
reanalysis 

E-OBS 
Gridded observational 
precipitation product 
(Cornes et al., 2018) 

0.1º x 0.1º Daily 

Interpolated observational precipitation 
product utilizing the station network from 
the European Climate Assessment & 
Dataset (ECA&D) project. 
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Caravan 
Spain 

Hydrometeorological 
dataset (Casado 

Rodríguez, 2023) 

Catchment scale Daily 
Community extension to the Caravan 
dataset, incorporating data from Spain. 

Caravan 
Switzerland 

Hydrometeorological 
dataset (Höge et al., 2023 

Catchment scale Daily 
Community extension to the Caravan 
dataset, incorporating data from CAMELS-
CH catchments. 

Caravan 
Germany 

Hydrometeorological 
dataset  

(Dolich et al., 2025) 

Catchment scale Daily 
Community extension to the Caravan 
dataset, incorporating data from CAMELS-
DE catchments. 

MERRA-2 Reanalysis product 
(Gelaro et al., 2017) 

0.625º x 0.5º 
Hourly 

(aggregated 
to daily) 

Global atmospheric reanalysis by NASA 
Global Modeling and Assimilation Office 
(GMAO) using the Goddard Earth 
Observing System Model (GEOS) 

GLDAS-2.2 Reanalysis product  
(Li et al., 2019) 

0.25º x 0.25º Daily 

NASA Global Land Data Assimilation 
System model outputs with data 
assimilation for the Gravity Recovery and 
Climate Experiment (GRACE-DA) 

 

2.3 Experimental Design  

 

Figure 1 Schematic representation of our methodological approach. Each rectangular panel indicates different stages of our 
workflow. Initially, we train two LSTM models to predict catchment average precipitation through inverse experiments (Section 155 
2.3.1). The trained model with discharge data (with_discharge) is then utilized for a continental-scale analysis before being used for 
out-of-sample testing (Section 2.3.2). Finally, a validation exercise for the inversely generated precipitation is conducted using 
various hydrological models (Section 2.3.3). 

2.3.1 Exploring information about precipitation in streamflow  

To shed light on the value of discharge for inversely predicting precipitation, we conducted a virtual experiment (Fig. 160 

1) in which two LSTM models (Fig. 1Tables A1 and A2 in Appendix A) were trained using the same catchments and training 

period. The first model (without_discharge) used only meteorological time series (air temperature, solar and thermal radiation) 
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and static attributes (area, p_mean, ele_mt_sav, frac_snow, pet_mm_syr: Kratzert et al., 2023), while the second model 

(with_discharge) included lagged discharge as an additional input variable. Both models were trained to predict daily 

catchment average precipitation sums (ERA5 Land). Therefore, we only deal with spatially averaged timeseries for 165 

precipitation, assuming that these values represent the effective precipitation over the entire catchment. 

We then used the trained regional-scale model (with_discharge) to predict the precipitation time series inversely for 

all the test catchments over the unseen testing period and evaluated (Appendix C)  those  using the mean wet day precipitation 

(MWD) – mm/day, 95th percentile limit (R95P) – mm/day, and Spearman autocorrelation values (SL) wet day mean, 95th 

percentile and Spearman rank autocorrelation (one day lag) for each catchment, and then compared them to the values from 170 

ERA5 Land (used for training the model) and E-OBS (observational product) at the continental scale.  

2.3.2 Out of sample precipitation inversions and their quality 

We further tested the feasibility of knowledge transfer to out-of-sample catchments and used the same regional-scale 

model (with_discharge) to inversely predict the intensity of driving rainstorms for selected flood events in four hydro-

climatically diverse and much smaller catchments (not included in the original training dataset). These catchments (Table 21 175 

& Fig. S3-S4) were chosen based on the severity of the flooding and on the apparent inability of ERA5 Land forcings to 

accurately represent the storms that triggered the flood events. 

Table 1 2 Attributes for the four catchments used for out-of-sample testing. 

Catchment Country 
Area 
(km2) 

Mean 
precipitation 

(mm/day) 

Mean potential 
evapotranspiration 

(mm/year) 

Mean 
elevation 

(m) 

Elsenz- 
Schwarzbach 

Germany 196.5 2.51 812.85 246.7 

Ernz Luxembourg 69.3 2.31 724.04 345.5 

Sueiro Spain 132.5 3.31 873 381 

Hoelzlebruck Germany 47.1 4.14 658 980 

 

2.3.3 The potential of inverted precipitation for forward modelling  180 

To evaluate the value of generated precipitation data for forward modeling of streamflow, we calibrated the HBV conceptual 

hydrological model (Hydrologiska Byråns Vattenbalansavdelning:Bergström and Forsman, 1973) over the Elsenz 

Schwarzbach (Manoj J et al., 2024)  and Lippe (camelsde_DEA11130: Loritz et al., 2024a) catchments (Fig S5 in 

Supplementary) using both the original ERA5 Land and the with_discharge LSTM-generated precipitation timeseries and 

compared the evaluation period performance of both model versions (Table B1 in Appendix B). For both runs, the model was 185 

calibrated using a training period from 01 January 2000 to 31 December 2010, while the models were evaluated between 01 

January 2011 to 31 December 2016. The HBV model (Appendix B) used in this paper requires precipitation (ERA5 

Land/LSTM simulated), potential evapotranspiration, and air temperature as inputs. We follow the recommendations of Clerc-

Schwarzenbach et al. (2024), similar to that of Loritz et al (2024), for the calculation of potential evapotranspiration, and use 

the temperature-based Hargreaves formula detailed by Adam et al. (2006).  190 

Complementary to streamflow modelling, the performance of a hydrological model can also be judged by how well it replicates 

the catchment dynamics of a region. Soil moisture is a key variable controlling the partitioning of net radiation into sensible 

and latent heat (Seneviratne et al., 2010) or overland flow during a rainstorm (Zehe and Blöschl, 2004). We thus used each 

precipitation estimate (with_discharge LSTM and ERA5 Land) to run the process-based hillslope scale model CATFLOW 
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(Appendix B), using a setup from Manoj J et al. (2024) used for uncalibrated predictions of local floods in 2016. Here, we 195 

focused on one of the headwater sub-catchments (Catchment W32 in Fig. S55) within the Elsenz Schwarzbach. (Fig. S3). The 

model simulated (Table B1) the period from 01 January 2008 to 31 December 2015 using each of the ERA5 Land and 

with_discharge LSTM precipitation estimates, and the corresponding spatially averaged soil moisture states were compared 

against several soil moisture reanalysis products (Table 1: due to the unavailability of observed data). These include a) ERA5 

Land: Muñoz-Sabater et al., 2021) b) GLDAS (NASA Global Land Data Assimilation System, GLDAS-2.2 GRACE DA: Li 200 

et al., 2019) and c) MERRA (Modern-Era Retrospective analysis for Research and Applications version 2 – tavg1_2d_lnd_Nx: 

(Gelaro et al., 2017) Global Modeling And Assimilation Office, 2015).  

 

 

3 Results  205 

3.1 The information contained in streamflow about precipitation 

 

Figure 2 Violin plot displaying the pairwise differences (with_discharge vs without_discharge models) in NSE for the study 
catchments. 

 210 
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Figure 2A shows a violin plot displaying the pairwise difference comparison of mean performance of the LSTM in the mean 

performance of the two LSTM models (Figure A1 in Appendix A) over the catchments in the test dataset. Each point denotes 

the difference in NSE (Appendix C) for individual catchments while making predictions using the with_discharge model 215 

compared to the without_discharge model. A marked shift towards higher positive differences indicates that estimates of 

precipitation to the original ERA5 product. These results reveal that the streamflow response contains useful information about 

the underlying causes of precipitation. tThe model “with_discharge” outperformshas higher NSE values than the model  the 

model “without_discharge”. This holds true  not only on average but also with respect to the best-performing catchments 

(n=1606 in total). The median NSE metric value ( Nash and Sutcliffe, 1970) for the regional LSTM model across the 1804 220 

study catchments is about 20% higher when discharge is used as an additional predictor than when it is not.  Further, the 

distribution of performance for the model with_discharge is unimodal with moderate skewness, whereas the distribution for 

the model without_discharge displays a bimodal distribution with heavy tails. Figure 2B shows the empirical cumulative 

probability plots, which reveal a steeper curve for the without_discharge model, indicating a lower variance in performances, 

in contrast with the flatter curve for the with_discharge model, which indicates a higher variance. Further, the with_discharge 225 

curve is clearly shifted towards a consistently higher performance across all quantiles. However, it is also observed that in a 

few outlier cases (n=59), discharge information has worsened the performance – likely due to the poor quality of streamflow 

data in these catchments. 
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3.2 Unraveling the Continental Scale Characteristics 

 230 

Figure 3 The spatial patterns of the different time series metrics (Appendix C) mean wet day precipitation (MWD) – mm/day, 95th 
percentile limit (R95P) – mm/day, and Spearman autocorrelation values (SL) (wet day mean, 95th percentile and Spearman 
autocorrelation values) over the study catchments for the three different sources ERA5 Land (top row): a) to c), with_discharge 
LSTM model (middle row): (d) to (f) and E-OBS (bottom row): (g) to (i) from 2006 to 2020 (2015 for CAMELS-GB catchments).  

To examine the characteristics of the simulated time series from the with_discharge model over the testing period in detail, we 235 

computed three timeseries measures (Appendix C) (mean  on wet day precipitation (MWD) – mm/day, 95th percentile limit 

(R95P) – mm/days, and Spearman autocorrelation values (SL)) across all the catchments, and show the results in Fig. 3.  

The continental-scale analysis reveals distinct patterns for the major European climatic regions. Similar to the ERA5 Land and 

E-OBS products, the LSTM model (middle row) preserves spatial gradients for the wet day (daily precipitation >1 mm) mean 

precipitation. The spatial patterns for the mean wet day precipitation (Fig 3a-g: MWD) obtained using the with_discharge 240 

LSTM model are well aligned to the ones from ERA5 Land and EOBS. Higher daily average values are observed towards the 

Alps, the Carpathian Mountain ranges, and the coast of Norway, consistent with the climatology of these regions. However, 

the model systematically underestimates absolute values, as evident from the scatterplot shown in Fig. 4.  

A comparison with the total daily means (including both rainy and non-rainy days; Fig. S6 in Supplementary4) shows that this 

underestimation is particularly severe while considering only rainy days (daily precipitation >1 mm). For the 95th percentile 245 
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of wet days (R95P), we again see a robust representation of the spatial differences, along with an underestimation of the 

magnitudes (Fig. 3b-h). The Spearman autocorrelation coefficient values (with one day lag:SL: Fig 3ci-ih) indicate that while 

the model underestimates the mean and 95th percentile limits, it overestimates the lag coefficient (which indicates the 

persistence in the precipitation time series) compared to the ERA5 Land time series. In addition, we also see that the ERA5 

Land largely matches with the precipitation field's characteristics (wet day mean and 95th percentile limit) as in the 250 

observational E-OBS product.  

The higher autocorrelation values for both with_dischargeLSTM and ERA5 Land may arise from model products 

incorporating catchment persistence, unlike the gridded observational E-OBS data. In the case of the with_discharge LSTM 

model, the even higher values are likely due to the inclusion of highly auto correlated streamflow data, which adds redundancy 

or a longer memory. 255 

 

Figure 4 Scatterplots for the three timeseries measures a) mean wet day precipitation (MWD) – mm/day, b) 95th percentile limit 
(R95P) – mm/day, and c) Spearman autocorrelation values (SL) (wet day mean, 95th percentile and spearman lag) between ERA5 
Land and with_discharge  LSTM Simulated. Each point represents a single catchment within the dataset. A 1:1 line (shown as a red 
dotted line in Fig) indicates overestimation/underestimation bias.  260 
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3.3 Out of sample predictions 

 265 

Figure 5 Precipitation estimates for flood events at the four out of sample catchments: (a) – Elsenz Schwarzbach, (b) – Ernz, (c) – 
Sueiro, (d) – Hoelzlebruck. The red line indicates the observed daily streamflow (with the day of the flood indicated by a cross). The 
orange curve denotes the precipitation amount predicted by the with_discharge LSTM model, while the blue line depicts the original 
ERA5 Land time series, and the green line indicates the estimate from the gauge based E-OBS product.   

Figure 5 shows predicted event precipitation values over time for the four out-of-sample catchments. Again, we compare the 270 

inversely modelled values (with_discharge) to the original ERA5 Land (used for training) and the gauge-based E-OBS product. 

Table 32 lists the peak storm precipitation values reported by the different products along with the recorded flood values (both 

normalised to the catchment area in mm/day). Also shown are the storm runoff coefficients for the respective events based on 

the different precipitation estimates and discharge data.  

Figure 5A represents the summer flood in June 2016 in the Elsenz Schwarzbach catchment in Germany. This annual flood 275 

event was triggered by a series of convective rainfall events caused by persistent atmospheric conditions in Germany during 

the summer of 2016. Localised rainfall totals exceeded 100 mm in some catchments (Bronstert et al., 2018), triggering 

widespread flash floods. Our previous work (Manoj J et al., 2024) indicated that ERA5 Land could not accurately replicate the 

characteristics of the convective storm that caused this annual flood event over the Elsenz Schwarzbach catchment. A 

comparison of with_discharge LSTM-simulated precipitation values revealed closer estimates closer  to those reported in the 280 

observational E-OBS product. When considering comparing with the E-OBS as the ground truth, the relative underestimation 

error in precipitation reduced from around 100% (ERA5 Land) to 40% (with_dischargeLSTM). The runoff coefficient for the 

event also decreased from 35% (ERA5 Land) to around 23% (with_dischargeLSTM), which is consistent with estimates from 

Manoj et al. (2024).  

Next, the LSTM with_discharge model was used to estimate precipitation for another convective episode over the Ernz 285 

Catchment in Luxembourg (Fig. 5B) in the summer of 2018. There was a noticeable improvement in the precipitation time 

series for both timing and peak storm values compared to ERA5 Land. While ERA5 Land completely missed this storm, the 
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with_dischargeLSTM model was able to represent the sharp rise and descent of the curve. However, the runoff coefficients 

and peak storm values (Table 2) indicate that the with_discharge LSTM model underestimates the true precipitation amount. 

In the third catchment (Sueiro: camelses_1414 from Caravan Spain extension), the with_discharge LSTM estimate for storm 290 

forcing was higher than ERA5 Land and E-OBS (Fig. 5C). The corresponding runoff coefficients underline the reliability of 

the storm prediction from with_discharge LSTM (0.37) compared to E-OBS (1.05).  

In the Hoelzlebruck catchment (camelsch_4003 from Caravan Switzerland extension), two consecutive events occurred in 

October 2014. ERA5 Land was better than the with_discharge LSTM model in capturing the initial event magnitude, while 

the with_dischargeLSTM model had better timing accuracy for the events. For the second event, which was the annual flood 295 

event, the with_dischargeLSTM model, which incorporated streamflow information, was again able to reduce the relative 

errors in precipitation magnitudes (Fig. 5D) 

Table 2 3 Event characteristics for the four out of sample catchments 

Event Characteristics 
Elsenz- 

Schwarbach 
Ernz Sueiro Hoelzlebruck 

Precipitation 

(mm/day) 

ERA5 Land 10.62 9.15 39.8 28.55 

with_dischargeLSTM 16.45 23.49 64.83 44.68 

E-OBS 20.03 49.43 22.54 42.33 

      Discharge 

       (mm/day) 
3.75 27.12 23.68 20.85 

Runoff 
Coefficient 

(-) 

ERA5 Land 0.35 2.96 .60 0.73 

with_dischargeLSTM 0.23 1.15 .37 0.47 

E-OBS 0.19 0.55 1.05 0.49 

 

To determine if the out-of-sample catchment performance could be solely attributed to discharge information, we utilized the 300 

without_discharge model (which only received meteorological forcings) to inversely predict the forcing precipitation for the 

2016 flood event in the Elsenz Schwarzbach. Figure 6 shows that the without_discharge model was unable to capture the 

driving storm dynamics as effectively as the with_discharge model and, therefore, could not accurately rectify the estimates 

from ERA5 Land.  
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 305 

Figure 6 Precipitation estimates for the flood event on June 8, 2016, at the Elsenz Schwarzbach. The red line represents the observed 
daily streamflow, with a cross marking the day of the flood. The orange curve illustrates the precipitation amount predicted by the 
with_discharge LSTM model, while the dotted red line represents the without_discharge model. The blue line depicts the original 
ERA5 Land time series, and the green line shows the estimate from the gauge-based E-OBS product. 

 3.4 Forward Hydrological Modelling 310 

The precipitation estimates generated by the with_discharge LSTM model were then used to run two classical hydrological 

models (HBV and CATFLOW: Table B1) in a forward manner. To address the question of performance in differently sized 

basins, we run the conceptual HBV model in two catchments (Fig. S5) - Elsenz Schwarzbach (Fig. 7: 196.5 km2) and Lippe 

(Fig. 8: 3366.3 km2).  

Figure 76 illustrates that the HBV model, which utilized the inverted precipitation estimates, performed slightly better (NSE 315 

= 0.64) during the evaluation period over Elsenz Schwarzbach compared to the model driven by the ERA5 Land (NSE = 0.57). 

To gain a better understanding of the differences between the models, we visually examined the results for three individual 

flood events, as shown in Fig. 76A-C. 
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 320 

Figure 7 Observed and simulated runoff (using the HBV model) at the Elsenz Schwarzbach catchment. The blue line denotes the 
streamflow simulated using the ERA5 Land precipitation product, while the red curve depicts the simulations using the inversely-
estimate precipitation obtained using the regional with_discharge LSTM model. Moreover, three rainfall-runoff events are 
highlighted and displayed separately. 
 325 

During the winter flood of December 2012 (23 Dec 2012, Fig. 76A), the model driven by ERA5 Land significantly 

underestimated both the peak and the volume of the flood event. When using with_discharge LSTM-simulated precipitation, 

the relative peak error decreased by nearly 25%. Similarly, the model runs using with_discharge LSTM precipitation more 

accurately captured the pre-event conditions (18 Dec 2012) and the post-event conditions (28 Dec 2012). This aligns with 

findings from other studies (Berghuijs et al., 2019; Manoj J et al., 2023) that emphasize the importance of initial conditions 330 

for floods across Europe.  

In the winter of 2015 (Fig. 76B), the model using with_dischargeLSTM precipitation once again demonstrated better 

performance (albeit with overestimation errors). During the convective summer storm event in 2016 (Fig. 76C), neither model 

run successfully captured the flashy runoff response. Although the model that utilized ERA5 Land input predicted an earlier 

flood event in May 2016 with an overestimation bias, it did not accurately depict the dynamics of the annual flood event 335 

occurring a few days later. In contrast, the model with LSTM-generated precipitation (with_discharge) generally performed 

better in capturing both the magnitude and timing of the smaller storm peaks as well as the annual flood event on June 8, 2016.  
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Figure 8 Observed and simulated runoff (using the HBV model) at the Lippe catchment. The blue line denotes the streamflow 340 
simulated using the ERA5 Land precipitation product, while the red curve depicts the simulations using the inversely-estimate 
precipitation obtained using the with_discharge LSTM model. Moreover, two rainfall-runoff events are highlighted and displayed 
separately. 
 

For the larger Lippe catchment, we again saw comparable mean performance for both the runs (Fig. 8). For the winter flood 345 

of 2011 (Fig. 8A), the HBV model, which used inversely generated precipitation, closely matched the observed streamflow 

dynamics, whereas the ERA5 Land run exhibited significant overestimation errors. The inversely generated precipitation 

estimates again improved HBV model performance for replicating the discharge dynamics during the floods in December 2012 

and February 2013 (Fig. 8B). 

 350 

ToTo understand the evolution of soil moisture dynamics while using the with_discharge  LSTM-based precipitation estimates 

in physically based models, we conducted a hillslope-scale CATFLOW model simulation (Loritz et al., 2017; Manoj J et al., 

2024) in one of the headwater catchments in Elsenz Schwarzbach (ERA5 Land vs with_discharge LSTM). The pairwise 

correlation values, as shown in Fig. 97, indicate that the use of the LSTM-based precipitation estimates does not lead to a loss 

of information regarding soil moisture dynamics in the region. In fact, we observe a slight increase in correlation when 355 

comparing the inversely derived precipitation estimates (referred to as CATFLOW_lstm) to MERRA and GLDAS (Table 1), 

in contrast with the correlation obtained for the run with ERA5 Land (referred to as CATFLOW_era5). As expected, the 

correlation value for the ERA5 Land run is slightly higher when assessed against soil moisture from the same ERA5 Land 

dataset, which may be attributed to model biases arising from using the same dataset for both precipitation and soil moisture. 
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 360 

Figure 9 Correlation matrix plot illustrating the pairwise correlations between the different soil moisture estimates - a) GLDAS 
(NASA Global Land Data Assimilation System, GLDAS-2.2 GRACE DA: Li et al., 2019), b) MERRA (Modern-Era Retrospective 
analysis for Research and Applications version 2 – tavg1_2d_lnd_Nx: Global Modeling And Assimilation Office, 2015), c) ERA5 
Land: (Muñoz-Sabater et al., 2021), d) CATFLOW_lstm: model run using inversely estimated precipitation estimate from the LSTM 
model and e) CATFLOW_ERA5: model run using precipitation estimate from ERA5 Land product. 365 

4 Discussion  

4.1 Better Improved precipitation estimation using discharge  

Overall, our study reiterates that streamflow data can be exploited to obtain useful information about the nature of 

catchment-scale effective precipitation: we can thus invert the cause using the effect as input to an LSTM. This is in line with, 

and steps beyond, previous studies (Brocca et al., 2013; Kirchner, 2009; Kretzschmar et al., 2014; Krier et al., 2012; Teuling 370 

et al., 2010) that explored the possibility of doing hydrology backwards using experimental catchments. Here, we successfully 

expanded this idea to large samples, cutting across the wide range of hydro-climatic conditions that characterise Europe. We 

found a largely ‘normal’ distribution of performance, with a few outliers, the latter indicating possible poor quality of discharge 

data.  

Although ERA5 Land precipitation has known uncertainties, it provides continuous global spatial and temporal coverage, 375 

making it a useful training dataset. Our goal was not to generate a fully independent dataset but to improve the ERA5 Land 

precipitation estimates using the additional streamflow information. Reanalysis data, by definition, are a mix of observations 

and past short-range weather forecasts rerun with modern weather forecasting models. Different data assimilation methods are 

then employed (Li et al., 2019). The inversion technique could be used as another final layer of post-processing (using the 

LSTM in this case) for the model outputs to ensure that the final product is more consistent with the variabilities observed in 380 

the discharge record.  

One limitation of our approach is that the LSTM model tends to underestimate the timeseries measures (MWD and R95P) at 

the continental scale. The LSTM’s architecture is known to have a theoretical saturation limit, leading to the underestimation 
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of some of the peak storm events. This so called ‘saturation problem’ (Baste et al., 2025; Chen and Chang, 1996) implies that 

irrespective of the input series, the predicted values can never exceed a theoretical limit (which is established during the training 385 

phase). Furthermore, the LSTM model looks for recurrence in patterns and mean conditions. This means that it can indeed 

account for consistent baseflow dynamics (as also indicated by analysis over the larger Lippe catchment, Figure 8). In extreme 

floods (Merz et al., 2021), the relative contributions of each component can vary significantly, depending on various factors 

such as the antecedent conditions of the catchment area. The model likely struggles to learn this variability while attempting 

to invert and obtain the driving precipitation values. Given the non-linear nature of the inverse problem, there are always 390 

multiple possible solutions. Since the model is trained to minimize the mean squared error (Gupta et al., 2009), it may also 

tend to consistently predict lower values (on peaks) to effectively reduce the average error during training. 

It is also important to acknowledge that ‘true’ precipitation estimates don’t exist at the catchment scale. We obtain estimates 

of forcing precipitation at such scales (with considerable uncertainty) by interpolating station data (e.g. E-OBS) or averaging 

gridded data from reanalysis/remote sensing products (e.g. ERA5 Land). Studies evaluating daily precipitation from EOBS 395 

and ERA5 over Europe (Bandhauer et al., 2022) have shown that while E-OBS is superior to ERA5 in regions with dense data, 

using ERA5 has advantages in data-scarce regions. The same was true for out of sample analysis (Fig. 5). For the Sueiro 

catchment (camelses_1414), the closest observational station is located more than 60 km away (Fig. S4), this explains why the 

EOBS performs rather poorly in representing the driving forcings for the summer flood event (Fig. 5C). 

The performance comparison using the rain gauge based EOBS product  was intended to provide insight into the feasibility of 400 

different precipitation estimates from a hydrological perspective.  While we acknowledge the existence of even better regional 

products (e.g., HYRAS – German Weather Service) for some of the study catchments, we believe that these various products 

should not be viewed as independent of one another. Instead, they contain complementary information as they represent the 

same physical truth i.e. precipitation occurring over a catchment, albeit with different uncertainties and errors. 

The spatially averaged NSE performance metric of 0.61 indicates that 61% of the variance of catchment-averaged effective 405 

rainfall is explained by the model over the unseen evaluation period. Note that an NSE value of 0 signifies a model that 

performs no better than using the long-term average while increasing values indicate progressively better performance. 

Interestingly, the LSTM model systematically underestimates rainfall values, which is consistent with findings from other 

studies (Wang et al., 2024). In part, this could be attributed to the use of mean squared error as the loss function during training 

(Gupta et al., 2009). Also, in most cases, only a part of the event runoff comes from the direct runoff, while the rest is baseflow 410 

and is hence not directly related to the event precipitation. Hence, this consistent underestimation also seems physically 

plausible. However, more research has to be carried out to disentangle the impact of such catchment losses and the interplay 

between various factors involved in total runoff production on the inversion problem.  

Our main goal was to see if we could leverage the potential of streamflow data for a better representation of flooding and other 

high-impact short-time-scale events in the reanalysis product. Hence, we used the same regional-scale model to inversely 415 

predict the forcing storm precipitation values for flood events in four hydroclimatically diverse catchments. Moreover, inverted 

precipitation could significantly enhance paleo-hydrological studies by using reconstructed streamflow data from 

dendrochronology to infer paleo-precipitation (Razavi et al., 2015). 

Initially introduced to model the land surface components of global climate models (MANABE, 1969), land surface models 

are, today, commonly utilised in studies examining energy and water balance processes and assessing land-atmosphere 420 

feedback effects. The development of these models (Blyth et al., 2021) has been influenced by collaboration between climatic, 

hydrological, agricultural, and ecosystem communities, intercomparison projects and relevant technical integrations. 

Furthermore, such modelled and reanalysis products have delivered commendable outcomes when capturing climate and 

weather extremes on regional scales. However, they remain largely unusable for estimating the impacts of smaller scale 
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hydrological events (Seneviratne et al., 2021). This is primarily due to the mischaracterization of precipitation forcings for 425 

such spatial scales in these models. Novel data-driven approaches, as shown in this study, have the potential to better 

meteorological products by bridging the gap between the precipitation and discharge modelling worlds.  

4.2 Catchment as a functional unit  

In the introduction, we argued that the catchment scale is crucial for improving our understanding of the factors that drive the 

water cycle and representing them more accurately in reanalysis products. Our findings across the four catchments highlight 430 

the benefit of using streamflow variations to rectify precipitation estimates. By leveraging the generalisation capabilities of the 

data-driven LSTM model, we successfully transferred knowledge across different scales (Notably, only about 9% of the 

catchments in our training dataset had areas smaller than 100 km²), indicating important implications for addressing the ever-

evolving challenge of predictions in ungauged basins (PUB: Hrachowitz et al., 2013) 

 Although this approach can only be applied after the event has taken place, it has implications for generating coherent long-435 

term statistical records for catchment forcings, which could be used for the design of small- to medium-purpose water resource 

projects. Employing daily precipitation sums from products like ERA5 Land and EOBS should ideally be a last resort for 

reproducing small-scale hydrological events, however, the scarcity of real-world data and the rarity of these events may 

sometimes necessitate a modelling decision to incorporate these coarser estimates. Using the streamflow fluctuations, it would 

be possible to identify localised rainfall cells or snowfall events that are poorly captured by traditional rain gauges 440 

(Kretzschmar et al., 2014). The approach also has potential for evaluating long-term rainfall estimates from Global Circulation 

Models for specific catchments using information about hydrological conditions (Fujihara et al., 2008).  

While the LSTM-based precipitation estimates improved the representation of most events, there were still instances where 

the original ERA5 Land provided better accuracy for peak flood magnitudes (Fig. 5); this highlights the need for a blended 

approach that incorporates additional information rather than completely replacing one product with another. In regions around 445 

the world, the wealth of streamflow information remains underutilised in this aspect. For Germany alone (Loritz et al., 2024a), 

there are more than 1500 streamflow gauges, which represent a significantly higher representative area compared to 

precipitation stations.   

The forward exercise using the HBV model showed that the precipitation estimates after inversion enhanced mean performance 

for streamflow simulation and helped improve the modelling of extreme individual floods. The ability to match the hydrograph 450 

differed between the different seasons. Compared to the storage-controlled winter floods (Dunne and Kirkby, 1978) , summer 

floods in these regions are usually driven by Hortonian flow (Horton, 1932) in response to high-intensity rainfall during 

convective storms. Previous studies (Kirchner, 2009; Krier et al., 2012) have discussed such storage-controlled dynamics and 

their impact on the inversion problem.  

Previous experiences at the event scale (Beauchamp et al., 2013; Zehe and Blöschl, 2004) have also shown that inferring the 455 

antecedent soil moisture conditions remains a key challenge for accurate and reliable flood simulations. By utilising the 

process-based CATFLOW model for soil moisture simulations in a small headwater catchment, we achieved high correlation 

values using the inverse precipitation estimate. This suggests that the approach can help represent the catchment's overall water 

dynamics and has the potential for reliable flood design estimations at the event scale, particularly in data-scarce regions. 

4.3 Limitations and Outlook 460 

It is important to stress that, as for any data-driven study, the results of our work are contingent on the quality of the training 

dataset. While we are aware of better regional products for individual countries, ERA5 Land provides consistent global 

coverage, and a permissive data sharing policy makes it one of the obvious choices for a continental scale modelling exercise. 

To evaluate the applicability of the commonly used LSTM network architecture, we decided to use the same architecture 
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previously employed in hydrological studies instead of creating an experimental design with modified individual layers and 465 

training functions for inverse modelling. It is evident that exploring the impacts of different loss functions and deep learning 

model architectures like transformers would help advance the methodology discussed in this paper. This approach could also 

shed light on best-suited algorithms for the problem but is beyond the scope of the present work. The choice of Mean Squared 

Error (MSE) as the training function and Nash Sutcliffe Efficiency (NSE) as a performance metric is motivated by its success 

and applications in the forward problem (streamflow prediction), but this adds its own biases to the modelling exercise. In the 470 

present work, we tried to overcome this issue by relying less on the evaluation measure (NSE) and placing greater emphasis 

on the hydrological feasibility of the predictions (using the runoff coefficient). Additionally, we tried to complement this by 

calculating various other time series metrics commonly used in hydrometeorological studies. The four events for out-of-sample 

tests across various catchments were chosen based on the severity of the floods and ERA5 Land's inability to capture the 

characteristics of the driving storms. The choice of the hydrological models and calibration period also adds uncertainty to the 475 

forward simulations.  

Our approach opens up many perspectives for future research. Transfer learning to data-scarce regions could help address the 

challenge of highly uncertain precipitation estimates in smaller catchments without precipitation gauges, improving 

hydrological modeling and the representation of extreme events such as convective storms, which are crucial for designing 

flood defense measures. Additionally, the inversion technique could serve as a final post-processing layer for gridded 480 

reanalysis products, ensuring better consistency with discharge variability and enabling machine learning approaches to 

estimate spatial precipitation fields conditioned on discharge data (Bárdossy et al., 2022, 2020). Moreover, this methodology 

could be applied to reconstruct past floods by leveraging historical hydrological records, storm water level markings, and 

observational flood data (Bronstert et al., 2018; Seidel et al., 2009), providing valuable insights into the driving storms behind 

some of the devastating past flood events. The workflow could also be expanded for the generation of new precipitation 485 

products, merging multiple different precipitation sources alongside the streamflow inversion.   

5 Conclusions  

Our main hypothesis was supported by the findings, which demonstrated that discharge has unused potential and can be 

inversely assimilated to adjust precipitation estimates derived from reanalysis products, while machine learning models are 

key to expanding this effort to large data sets spanning the scale of entire continents. The continental-scale analysis revealed 490 

that while the spatial gradients are well represented across Europecharacteristics for the various time series attributes are well 

represented at the continental scale, there remain significant underestimation biases compared to the original reanalysis 

product. Insights from the out-of-sample catchments provided valuable information about the applicability of our method for 

estimating flood forcings and the generalizability of the model. Additionally, we have shown that the inversely estimated 

precipitation estimates LSTM-based inverted precipitation estimates can improve forward modelling of both streamflow and 495 

soil moisture dynamics, illustrating how the information gained can be integrated into existing modelling strategies. 

 

Appendix A: LSTM configurations 

Table A1 details the static and dynamic inputs used for setting up the with_discharge and without_discharge LSTM models. 

The hyperparameter settings for both models are shown in Table A2, while Figure A1 provides the comparison results for both 500 

runs.  
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Table A1 Model configurations for the LSTM model runs. 

 
 505 
 
 
 

Table A2 Hyperparameter settings for the LSTM models 

Hyperparameter LSTM Network 

Hidden Layer 1 

Hidden cells 64 

Batch size 256 

Sequence length 365 

Epochs 5 

Drop out 0.4 

Learning rate 0.001 

Optimizer Adam 

 510 
 

Model 
Inputs 

Output 
Static Attributes  Dynamic Attributes 

with_discharge 

area (area of catchment – km2) 

p_mean (mean daily 

precipitation – mm/day) 

ele_mt_sav (spatial mean 

elevation – m above sea level) 

frac_snow (fraction of 

precipitation falling as snow) 

pet_mm_syr (potential 

evapotranspiration annual mean 

- mm) 

temperature_2m_mean  

(daily mean temperature - ℃) 

surface_net_solar_radiation_mean 

(shortwave radiation – Wm-2) 

surface_net_thermal_radiation_mean 

(Net thermal radiation at the surface - 

Wm-2) 

qobs_lead (lead streamflow 7 days – 

mm/day) 

 

total_precipitation_sum 

(precipitation daily sums 

– mm/day) 

without_discharge 

area (area of catchment – km2) 

p_mean (mean daily 

precipitation – mm/day) 

ele_mt_sav (spatial mean 

elevation – m above sea level) 

frac_snow (fraction of 

precipitation falling as snow) 

pet_mm_syr (potential 

evapotranspiration annual mean 

- mm) 

temperature_2m_mean  

(daily mean temperature - ℃) 

surface_net_solar_radiation_mean 

(shortwave radiation – Wm-2) 

surface_net_thermal_radiation_mean 

(Net thermal radiation at the surface - 

Wm-2) 

 

total_precipitation_sum 

(precipitation daily sums 

– mm/day) 
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Figure A1 Comparison of the mean performance of the two regional scale LSTM models (with_discharge and without_discharge). 
(a) Top panel depicts violin plots with included boxplots showing the distribution of performance (quantified by comparing the 515 
LSTM model simulated precipitation series to the original ERA5 Land timeseries over the testing period: NSE) (b) Bottom panel 
displays cumulative distribution plots for the performance of the two models.   

Appendix B: Hydrological Modelling  

 
Hydrologiska Byråns Vattenbalansavdelning (HBV): The HBV model (Bergström and Forsman, 1973) is a so-called 520 

conceptual hydrological model that is used to simulate rainfall-runoff processes at the catchment scale. It makes use of different 

catchment water stores (storage elements, also referred to as buckets). Each storage element represents a certain compartment 

of a catchment (e.g. groundwater, surface water bodies, soil zone). The main input requirements include precipitation, 

temperature and potential evapotranspiration. The model has several empirical parameters that need to be calibrated during the 

model training phase. A more detailed description of the model architecture and set up can be found in the studies by (Seibert, 525 

(2005) and Loritz et al. (2024a). 

 

CATFLOW: The physically based model CATFLOW for catchment water and solute dynamics was developed as part of the 

detailed process studies carried out from 1991 – 1996 in the Weiherbach catchment in South-West Germany (Zehe et al., 
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2001). The basic modeling unit is a 2-D hillslope, discretized by curvilinear orthogonal coordinates in the vertical and 530 

downslope directions. Soil water dynamics within the hillslopes are characterized using the potential based form of the 2D 

Darcy–Richards equation. Overland flow is simulated using the diffusion wave approximation of the Saint‐Venant equation 

and explicit upstreaming, in combination with the Gauckler‐Manning‐Strickler formula. A detailed model description with the 

workflow required for setting up the model can be found  in  Manoj J et al. (2024). 

 535 
Table B1 Validation test cases for the hydrological models 

 

Appendix C: Performance Metrics 

Nash-Sutcliffe Efficiency (NSE) - First proposed by  Nash and Sutcliffe (1970), the Nash–Sutcliffe efficiency (NSE) is one 

of the most widely used similarity measures in hydrology for calibration, model comparison, and verification. It measures how 540 

well the simulated timeseries (𝑦௦௜௠) matches the observed values (𝑦௢௕௦).  

𝑁𝑆𝐸 = 1 −
∑(𝑦௢௕௦ − 𝑦௦௜௠)ଶ

∑(𝑦௢௕௦ − 𝑦ത௢௕௦)ଶ
 Eqn. C1 

Values closer to 1 indicate excellent model performance (D. N. Moriasi et al., 2007), while NSE values near or below 0 suggest 

that the model, in fact, performs worse than simply using the mean of the observed values. 

 

Model 
 

HBV (Bergström and Forsman, 1973) 
 

 
CATFLOW (Zehe et al., 2001) 

 

Catchment 
(Figure S5) 

 
Elsenz Schwarzbach  
(Manoj J et al., 2024) 

 

 
Lippe  

(Loritz et al., 2024a) 

 
Headwater catchment W32 in Elsenz 
Schwarzbach (Manoj J et al., 2024) 

Area (km2) 196.5  3366.3 5.6 

Scenario 

Using original 
ERA5 Land 
precipitation 

Using inversely 
generated 

precipitation 
(with_discharge) 

 

Using original 
ERA5 Land 
precipitation 

Using inversely 
generated 

precipitation 
(with_discharge) 

Using original 
ERA5 Land 
precipitation 

Using inversely 
generated 

precipitation 
(with_discharge) 

Forcings 

ERA5 Land 
precipitation, 

potential 
evapotranspira

tion 
(Hargreaves), 

air 
temperature 

(ERA5 Land) 

Inversely 
generated 

precipitation, 
potential 

evapotranspiratio
n (Hargreaves), 
air temperature 
(ERA5 Land) 

ERA5 Land 
precipitation, 

potential 
evapotranspira

tion 
(Hargreaves), 

air 
temperature 

(ERA5 Land) 

Inversely 
generated 

precipitation, 
potential 

evapotranspiratio
n (Hargreaves), 
air temperature 
(ERA5 Land) 

ERA5 Land 
precipitation, 

potential 
evapotranspiratio
n (ERA5 Land), 

plant and soil 
parameters from 

Manoj J et al. 
(2024) 

 

Inversely 
generated 

precipitation, 
potential 

evapotranspiratio
n (ERA5 Land), 

plant and soil 
parameters from 

Manoj J et al. 
(2024) 

Calibration 
period 

01.01.2000 – 31.12.2010 01.01.1990 – 31.12.2010 Uncalibrated predictions 

 
Validation 

period  
01.01.2011 – 31.12.2016 01.01.2011 – 31.12.2020 01.01.2008 – 31.12.2015 

 
Outputs 

compared 
Streamflow Streamflow Soil moisture 

 
NSE 

 
0.57 0.64 0.637 0.644 0.70 – 0.82 0.67-0.88 
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Mean Wet Day Precipitation (MWD: mm/day) – The Expert Team on Climate Change Detection and Indices (ETCCDI  - 545 

World Climate Research program; 2021) recommends evaluating the intensity of precipitation on wet days (defined as a day 

with a minimum of 1 mm precipitation) to understand systematic over or underestimation of precipitation amounts. This metric 

(Simple Daily Intensity Index as per ETCCDI) is reported as the mean daily precipitation on days where precipitation > 1 mm. 

Let 𝑃௜  be the daily precipitation amount on wet days, (𝑃௜ > 1𝑚𝑚). If N represents the total number of wet days, then: 

𝑀𝑊𝐷 =
∑ 𝑃௜

ே
௜ୀଵ

𝑁
  Eqn. C2 

 550 

95th Percentile Precipitation (R95P: mm/day) – This metric denotes the daily precipitation value at which 95% of all daily 

values (again only considering rainy days) are lower (top 5% events). This helps to assess the ability to capture extreme 

precipitation events. Let 𝑃௜  be the daily precipitation amount on wet days, (𝑃௜ > 1𝑚𝑚). 

𝑅95𝑃 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ({𝑃௜|𝑃௜ > 1𝑚𝑚}, 95)  Eqn. C3 

 

Spearman Rank Autocorrelation (SL) - The Spearman Rank Autocorrelation measures the monotonic relationship between 555 

daily precipitation values and their values on the preceding day (1-day lag). It is computed using the ranked values of the 

precipitation time series. For a precipitation timeseries (with total 𝑛 observations) 𝑃 =  {𝑃ଵ, 𝑃ଶ, … , 𝑃௡}  with 𝑅(𝑃௜)  and 

𝑅(𝑃௜ାଵ) being the ranks of the precipitation values at times 𝑡 and 𝑡 + 1, 

𝑆𝐿 = 1 − 
6 ∑ ൫𝑅(𝑃௧ାଵ) − 𝑅(𝑃௧)൯

ଶ
 ௡ିଵ

௧ୀଵ  

𝑛(𝑛ଶ − 1)
  Eqn. C4 

 

This measure helps analyse persistence in precipitation patterns and whether the temporal structure of precipitation events are 560 

preserved.  

 

Code Availability 

The codes used to conduct the LSTM analysis in this study are based on the publicly available HY2DL python library 

(https://github.com/KIT-HYD/Hy2DL)  and can be accessed at https://doi.org/10.5281/zenodo.15051718 (Manoj J, 2025a). 565 

The code used to run the HBV models is available at https://doi.org/10.5281/zenodo.15051981 (Manoj J, 2025b). The 

CATFLOW model and the setup used to run the experiment in this study are archived at 

https://doi.org/10.5281/zenodo.10958813 (Manoj J, 2024) .https://doi.org/10.5281/zenodo.14161112 (Manoj J, 2024). 

Data Availability 

The Caravan dataset and related community extensions are publicly available at https://doi.org/10.5281/zenodo.10968468 570 

(Kratzert et al., 2023) and https://github.com/kratzert/Caravan/discussions/10.  We acknowledge the E-OBS dataset from the 

Copernicus Climate Change Service (C3S, https://surfobs.climate.copernicus.eu) and the data providers in the ECA&D project 

(https://www.ecad.eu).  The datasets generated as part of this publication can be found at 

https://doi.org/10.5281/zenodo.15051718 (Manoj J, 2025a) and https://doi.org/10.5281/zenodo.15051981 (Manoj J, 

2025b)https://doi.org/10.5281/zenodo.14161112 (Manoj J, 2024). 575 



24 
 

Author Contribution  

AMJ designed the study and carried out all analysis and model simulations. Funding was acquired by EZ. The initial draft was 

prepared by AMJ, with all authors contributing to review and editing. RL, HG and EZ jointly supervised the work. All authors 

have read and agreed to the current version of the paper. 

Competing interests 580 

At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth System Sciences. 

Acknowledgements 

The authors acknowledge support by the federal state of Baden-Württemberg through bwHPC (High Performance Computing 

Cluster). AMJ would like to thank Mr Eduardo Acuña Espinoza for helpful discussions regarding the HY2DL python library 

for deep learning methods. 585 

Financial Support 

AMJ would like to thank the German Research Foundation (DFG) for financial support (Implementation of an InfraStructure 

for dAta-BasEd Learning in environmental sciences: ISABEL - 496155047).  

 

References 590 

Acuña Espinoza, E., Loritz, R., Álvarez Chaves, M., Bäuerle, N., Ehret, U., 2024. To bucket or not to bucket? Analyzing the 

performance and interpretability of hybrid hydrological models with dynamic parameterization. Hydrol. Earth Syst. Sci. 

28, 2705–2719. https://doi.org/10.5194/hess-28-2705-2024 

Agarwal, A., Marwan, N., Maheswaran, R., Ozturk, U., Kurths, J., Merz, B., 2020. Optimal design of hydrometric station 

networks based on complex network analysis. Hydrol. Earth Syst. Sci. 24, 2235–2251. https://doi.org/10.5194/hess-24-595 

2235-2020 

Alexopoulos, M.J., Müller-Thomy, H., Nistahl, P., Šraj, M., Bezak, N., 2023. Validation of precipitation reanalysis products 

for rainfall-runoff modelling in Slovenia. Hydrol. Earth Syst. Sci. 27, 2559–2578. https://doi.org/10.5194/hess-27-2559-

2023 

Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O.E., Frei, C., 2022. Evaluation 600 

of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in 

European regions. Int. J. Climatol. 42, 727–747. https://doi.org/10.1002/joc.7269 

Bárdossy, A., Anwar, F., Seidel, J., 2020. Hydrological Modelling in Data Sparse Environment: Inverse Modelling of a 

Historical Flood Event. Water (Switzerland) 12. https://doi.org/10.3390/w12113242 

Bárdossy, A., Kilsby, C., Birkinshaw, S., Wang, N., Anwar, F., 2022. Is Precipitation Responsible for the Most Hydrological 605 

Model Uncertainty? Front. Water 4, 1–17. https://doi.org/10.3389/frwa.2022.836554 

Baste, S., Klotz, D., Espinoza, E.A., Bardossy, A., Loritz, R., 2025. Unveiling the Limits of Deep Learning Models in 

Hydrological Extrapolation Tasks. EGUsphere 2025, 1–24. https://doi.org/10.5194/egusphere-2025-425 

Beauchamp, J., Leconte, R., Trudel, M., Brissette, F., 2013. Estimation of the summer-fall PMP and PMF of a northern 

watershed under a changed climate. Water Resour. Res. 49, 3852–3862. https://doi.org/10.1002/wrcr.20336 610 

Berghuijs, W.R., Harrigan, S., Molnar, P., Slater, L.J., Kirchner, J.W., 2019. The Relative Importance of Different Flood-



25 
 

Generating Mechanisms Across Europe. Water Resour. Res. 55, 4582–4593. https://doi.org/10.1029/2019WR024841 

Bergström, S., Forsman, A., 1973. Development of a Conceptual Deterministic Rainfall-Runoff Model. Nord. Hydrol. 4, 147–

170. https://doi.org/10.2166/nh.1973.0012 

Bishop, C.M., 2006. Pattern recognition and machine learning. New York : Springer, [2006] ©2006. 615 

Borga, M., Gaume, E., Creutin, J.D., Marchi, L., 2008. Surveying flash floods: gauging the ungauged extremes. Hydrol. 

Process. 22, 3883–3885. https://doi.org/10.1002/hyp.7111 

Brocca, L., Moramarco, T., Melone, F., Wagner, W., 2013. A new method for rainfall estimation through soil moisture 

observations. Geophys. Res. Lett. 40, 853–858. https://doi.org/10.1002/grl.50173 

Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M., Heistermann, M., Köhn-Reich, L., López-Tarazón, 620 

J.A., Moran, T., Ozturk, U., Reinhardt-Imjela, C., Wendi, D., 2018. Forensic hydro-meteorological analysis of an 

extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany. Sci. Total Environ. 630, 977–991. 

https://doi.org/10.1016/j.scitotenv.2018.02.241 

Casado Rodríguez, J., 2023. CAMELS-ES: Catchment Attributes and Meteorology for Large-Sample Studies – Spain. 

https://doi.org/10.5281/zenodo.8428374 625 

Chen, C.T., Chang, W. Der, 1996. A feedforward neural network with function shape autotuning. Neural Networks 9, 627–

641. https://doi.org/10.1016/0893-6080(96)00006-8 

Clerc-Schwarzenbach, F.M., Selleri, G., Neri, M., Toth, E., van Meerveld, I., Seibert, J., 2024. HESS Opinions: A few camels 

or a whole caravan? https://doi.org/10.5194/egusphere-2024-864 

Cornes, R.C., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D., 2018. An Ensemble Version of the E-OBS 630 

Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 123, 9391–9409. 

https://doi.org/10.1029/2017JD028200 

Coxon, G., Addor, N., Bloomfield, J.P., Freer, J., Fry, M., Hannaford, J., Howden, N.J.K., Lane, R., Lewis, M., Robinson, 

E.L., Wagener, T., Woods, R., 2020. CAMELS-GB: hydrometeorological time series and landscape attributes for 671 

catchments in Great Britain. Earth Syst. Sci. Data 12, 2459–2483. https://doi.org/10.5194/essd-12-2459-2020 635 

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, T. L. Veith, 2007. Model Evaluation Guidelines 

for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 50, 885–900. 

https://doi.org/10.13031/2013.23153 

Dolich, A., Maharjan, A., Mälicke, M., Manoj J, A., Loritz, R., 2025. Caravan-DE: Caravan extension Germany - German 

dataset for large-sample hydrology. https://doi.org/10.5281/zenodo.14755229 640 

Dunne, T., Kirkby, M.J., 1978. Field studies of hillslope flow processes 227–293. 

Essou, G.R.C., Sabarly, F., Lucas-Picher, P., Brissette, F., Poulin, A., 2016. Can precipitation and temperature from 

meteorological reanalyses be used for hydrological modeling? J. Hydrometeorol. 17, 1929–1950. 

https://doi.org/10.1175/JHM-D-15-0138.1 

Färber, C., Plessow, H., Kratzert, F., Addor, N., Shalev, G., Looser, U., 2023. GRDC-Caravan: extending the original dataset 645 

with data from the Global Runoff Data Centre. https://doi.org/10.5281/zenodo.10074416 

Fujihara, Y., Simonovic, S.P., Topaloǧlu, F., Tanaka, K., Watanabe, T., 2008. An inverse-modelling approach to assess the 

impacts of climate change in the Seyhan River basin, Turkey. Hydrol. Sci. J. 53, 1121–1136. 

https://doi.org/10.1623/hysj.53.6.1121 

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., 650 

Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., 

Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., 

Schubert, S.D., Sienkiewicz, M., Zhao, B., 2017. The Modern-Era Retrospective Analysis for Research and 

Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1 



26 
 

Global Modeling And Assimilation Office, 2015. MERRA-2 tavg1_2d_lnd_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, 655 

Assimilation, Land Surface Diagnostics V5.12.4. https://doi.org/10.5067/RKPHT8KC1Y1T 

Goteti, G., Famiglietti, J., 2024. Extent of gross underestimation of precipitation in India. Hydrol. Earth Syst. Sci. 28, 3435–

3455. https://doi.org/10.5194/hess-28-3435-2024 

Gu, L., Yin, J., Wang, S., Chen, J., Qin, H., Yan, X., He, S., Zhao, T., 2023. How well do the multi-satellite and atmospheric 

reanalysis products perform in hydrological modelling. J. Hydrol. 617, 128920. 660 

https://doi.org/10.1016/j.jhydrol.2022.128920 

Gupta, H. V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance 

criteria: Implications for improving hydrological modelling. J. Hydrol. 377, 80–91. 

https://doi.org/10.1016/j.jhydrol.2009.08.003 

Hochreiter, S., 1998. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. Int. J. 665 

Uncertainty, Fuzziness Knowledge-Based Syst. 06, 107–116. https://doi.org/10.1142/S0218488598000094 

Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton, P., Schwanbeck, J., Floriancic, M.G., Viviroli, D., Wilhelm, 

S., Sikorska-Senoner, A.E., Addor, N., Brunner, M., Pool, S., Zappa, M., Fenicia, F., 2023. Catchment attributes and 

hydro-meteorological time series for large-sample studies across hydrologic Switzerland (CAMELS-CH) 1–20. 

Horton, R.E., 1932. The role of infiltration in the hydrology cycle. Trans. Am. Geophys. Union 446–460. 670 

Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., 

Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H. V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, 

S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., Cudennec, C., 

2013. A decade of Predictions in Ungauged Basins (PUB)-a review. Hydrol. Sci. J. 58, 1198–1255. 

https://doi.org/10.1080/02626667.2013.803183 675 

Kirchner, J.W., 2009. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and 

doing hydrology backward. Water Resour. Res. 45, 1–34. https://doi.org/10.1029/2008WR006912 

Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., Nearing, G., 2022. 

Uncertainty estimation with deep learning for rainfall-runoff modeling. Hydrol. Earth Syst. Sci. 26, 1673–1693. 

https://doi.org/10.5194/hess-26-1673-2022 680 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M., 2018. Rainfall-runoff modelling using Long Short-Term 

Memory (LSTM) networks. Hydrol. Earth Syst. Sci 22, 6005–6022. https://doi.org/10.5194/hess-22-6005-2018 

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., 

Shalev, G., Matias, Y., 2023. Caravan - A global community dataset for large-sample hydrology. Sci. Data 10, 61. 

https://doi.org/10.1038/s41597-023-01975-w 685 

Kretzschmar, A., Tych, W., Chappell, N.A., 2014. Reversing hydrology: Estimation of sub-hourly rainfall time-series from 

streamflow. Environ. Model. Softw. 60, 290–301. https://doi.org/10.1016/j.envsoft.2014.06.017 

Krier, R., Matgen, P., Goergen, K., Pfister, L., Hoffmann, L., Kirchner, J.W., Uhlenbrook, S., Savenije, H.H.G., 2012. Inferring 

catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg. 

Water Resour. Res. 48, 1–15. https://doi.org/10.1029/2011WR010657 690 

Li, B., Rodell, M., Kumar, S., Beaudoing, H.K., Getirana, A., Zaitchik, B.F., de Goncalves, L.G., Cossetin, C., Bhanja, S., 

Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I.B., Daira, D., Bila, 

M., de Lannoy, G., Mocko, D., Steele-Dunne, S.C., Save, H., Bettadpur, S., 2019. Global GRACE Data Assimilation 

for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 55, 7564–7586. 

https://doi.org/10.1029/2018WR024618 695 

Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., 

Moidu, H., Tan, F., Thieme, M., 2019. Global hydro-environmental sub-basin and river reach characteristics at high 



27 
 

spatial resolution. Sci. Data 6, 283. https://doi.org/10.1038/s41597-019-0300-6 

Loritz, R., Dolich, A., Acuña Espinoza, E., Ebeling, P., Guse, B., Götte, J., Hassler, S.K., Hauffe, C., Heidbüchel, I., Kiesel, 

J., Mälicke, M., Müller-Thomy, H., Stölzle, M., Tarasova, L., 2024a. CAMELS-DE: hydro-meteorological time series 700 

and attributes for 1555 catchments in Germany. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/essd-2024-318 

Loritz, R., Hassler, S.K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J., Zehe, E., 2017. Picturing and modeling 

catchments by representative hillslopes. Hydrol. Earth Syst. Sci. 21, 1225–1249. https://doi.org/10.5194/hess-21-1225-

2017 

Loritz, R., Wu, C.H., Klotz, D., Gauch, M., Kratzert, F., Bassiouni, M., 2024b. Generalizing Tree–Level Sap Flow Across the 705 

European Continent. Geophys. Res. Lett. 51. https://doi.org/10.1029/2023GL107350 

Manoj J, A., 2025a. lstm_backward. https://doi.org/10.5281/zenodo.15051718 

Manoj J, A., 2025b. Ash-Manoj/Hy2DL_Caravan: Conceptual models for Manoj J et al. (2024). 

https://doi.org/10.5281/zenodo.15051981 

Manoj J, A., 2024. Simulation results of Manoj J et al (2023, in review). https://doi.org/10.5281/zenodo.10958813 710 

Manoj J, A., Loritz, R., Villinger, F., Mälicke, M., Koopaeidar, M., Göppert, H., Zehe, E., 2024. Toward Flash Flood Modeling 

Using Gradient Resolving Representative Hillslopes. Water Resour. Res. 60. https://doi.org/10.1029/2023WR036420 

Manoj J, A., Pérez Ciria, T., Chiogna, G., Salzmann, N., Agarwal, A., 2023. Characterising the coincidence of soil moisture – 

precipitation extremes as a possible precursor to European floods. J. Hydrol. 620, 129445. 

https://doi.org/10.1016/j.jhydrol.2023.129445 715 

Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J.C.J.H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., 

Macdonald, E., 2021. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609. 

https://doi.org/10.1038/s43017-021-00195-3 

Meyer, J., Neuper, M., Mathias, L., Zehe, E., Pfister, L., 2022. Atmospheric conditions favouring extreme precipitation and 

flash floods in temperate regions of Europe. Hydrol. Earth Syst. Sci. 26, 6163–6183. https://doi.org/10.5194/hess-26-720 

6163-2022 

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., Stouffer, R.J., 2008. 

Climate change: Stationarity is dead: Whither water management? Science (80-. ). 319, 573–574. 

https://doi.org/10.1126/science.1151915 

Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., 725 

Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., 

Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D.A., Srinivasan, V., Harman, 

C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., Belyaev, V., 2013. “Panta Rhei-

Everything Flows”: Change in hydrology and society-The IAHS Scientific Decade 2013-2022. Hydrol. Sci. J. 58, 1256–

1275. https://doi.org/10.1080/02626667.2013.809088 730 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 

Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G., Piles, M., Rodríguez-Fernández, N.J., Zsoter, E., Buontempo, 

C., Thépaut, J.-N., 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. 

Data 13, 4349–4383. https://doi.org/10.5194/essd-13-4349-2021 

Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through conceptual models. Part I - a discussion of principles. J. 735 

Hydrol. 27, 282–290. 

Nearing, G.S., Gupta, H. V., 2015. The quantity and quality of information in hydrologic models. Water Resour. Res. 51, 524–

538. https://doi.org/10.1002/2014WR015895 

Nijzink, J., Loritz, R., Gourdol, L., Zoccatelli, D., Iffly, J.F., Pfister, L., 2024. CAMELS-LUX: Highly Resolved Hydro-

Meteorological and Atmospheric Data for Physiographically Characterized Catchments around Luxembourg. 740 



28 
 

https://doi.org/10.5281/zenodo.13846620 

Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R., 2020. Deep Learning Techniques for Inverse 

Problems in Imaging. IEEE J. Sel. Areas Inf. Theory 1, 39–56. https://doi.org/10.1109/jsait.2020.2991563 

ONOGI, K., TSUTSUI, J., KOIDE, H., SAKAMOTO, M., KOBAYASHI, S., HATSUSHIKA, H., MATSUMOTO, T., 

YAMAZAKI, N., KAMAHORI, H., TAKAHASHI, K., KADOKURA, S., WADA, K., KATO, K., OYAMA, R., OSE, 745 

T., MANNOJI, N., TAIRA, R., 2007. The JRA-25 Reanalysis. J. Meteorol. Soc. Japan. Ser. II 85, 369–432. 

https://doi.org/10.2151/jmsj.85.369 

Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., 

Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., 

Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R., Ruddick, A.G., Sienkiewicz, 750 

M., Woollen, J., 2011. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 

24, 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1 

Seibert, J., 2005. HBV light. HBV Light version 2 User’s Man. 

Seidel, J., Imbery, F., Dostal, P., Sudhaus, D., B̈urger, K., 2009. Potential of historical meteorological and hydrological data 

for the reconstruction of historical flood events-the example of the 1882 flood in southwest Germany. Nat. Hazards Earth 755 

Syst. Sci. 9, 175–183. https://doi.org/10.5194/nhess-9-175-2009 

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J., 2010. Investigating 

soil moisture–climate interactions in a changing climate: A review. Earth-Science Rev. 99, 125–161. 

https://doi.org/10.1016/j.earscirev.2010.02.004 

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J.J., Mendiondo, 760 

E.M., O’Connell, P.E., Oki, T., Pomeroy, J.W., Schertzer, D., Uhlenbrook, S., Zehe, E., 2003. IAHS Decade on 

Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrol. 

Sci. J. 48, 857–880. https://doi.org/10.1623/hysj.48.6.857.51421 

Sun, S., Bertrand-Krajewski, J.L., 2013. Separately accounting for uncertainties in rainfall and runoff: Calibration of event-

based conceptual hydrological models in small urban catchments using Bayesian method. Water Resour. Res. 49, 5381–765 

5394. https://doi.org/10.1002/wrcr.20444 

Tarek, M., Brissette, F.P., Arsenault, R., 2020. Evaluation of the ERA5 reanalysis as a potential reference dataset for 

hydrological modelling over North America. Hydrol. Earth Syst. Sci. 24, 2527–2544. https://doi.org/10.5194/hess-24-

2527-2020 

Taszarek, M., Allen, J.T., Marchio, M., Brooks, H.E., 2021. Global climatology and trends in convective environments from 770 

ERA5 and rawinsonde data. npj Clim. Atmos. Sci. 4, 1–11. https://doi.org/10.1038/s41612-021-00190-x 

Tetzlaff, D., Carey, S.K., McNamara, J.P., Laudon, H., Soulsby, C., 2017. The essential value of long‐term experimental data 

for hydrology and water management. Water Resour. Res. 53, 2598–2604. https://doi.org/10.1002/2017WR020838 

Teuling, A.J., Lehner, I., Kirchner, J.W., Seneviratne, S.I., 2010. Catchments as simple dynamical systems: Experience from 

a Swiss prealpine catchment. Water Resour. Res. 46, 1–15. https://doi.org/10.1029/2009WR008777 775 

Villinger, F., Loritz, R., Zehe, E., 2022. Torrents in small rural Catchments and the Potential of physics-based Models for their 

Simulation. Hydrol. und Wasserbewirtschaftung 66, 284–285. 

World Climate Research program (WCRP), 2021. Expert Team on Climate Change Detection and Indices (ETCCDI) [WWW 

Document]. URL https://www.wcrp-climate.org/etccdi (accessed 3.7.25). 

Xu, C., Wang, W., Hu, Y., Liu, Y., 2024. Evaluation of ERA5, ERA5-Land, GLDAS-2.1, and GLEAM potential 780 

evapotranspiration data over mainland China. J. Hydrol. Reg. Stud. 51, 101651. 

https://doi.org/10.1016/j.ejrh.2023.101651 

Yumnam, K., Kumar Guntu, R., Rathinasamy, M., Agarwal, A., 2022. Quantile-based Bayesian Model Averaging approach 



29 
 

towards merging of precipitation products. J. Hydrol. 604, 127206. https://doi.org/10.1016/j.jhydrol.2021.127206 

Zehe, E., Blöschl, G., 2004. Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions. 785 

Water Resour. Res. 40. https://doi.org/10.1029/2003WR002869 

Zehe, E., Maurer, T., Ihringer, J., Plate, E., 2001. Modelling water flow and mass transport in a Loess catchment. Phys. Chem. 

Earth, Part B 26, 487–507. https://doi.org/10.1016/S0378-3774(99)00083-9 

 


