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Can discharge be used to inversely correct precipitation? (hess-2024-375) 

Ashish Manoj J, Ralf Loritz, Hoshin Gupta, Erwin Zehe 

     

Dear Dr. Roger Moussa,                08.07.2025 

Attached, please ϐind the revised version of the manuscript “Can discharge be used to 

inversely correct precipitation?” co-authored with R. Loritz, H. Gupta and E. Zehe, to be 

considered for publication in Hydrology and Earth System Science. 

After carefully reviewing the two comments from Anonymous Reviewer 3 in the previous 

round, we have decided to implement both the changes suggested by the reviewer. We 

downloaded and pre-processed the observational EOBS gridded data for all the 

catchments included in our training dataset. Next, we repeated the entire analysis using 

this observational product as the new training target. Additionally, we removed mean 

precipitation (pmean) from the list of static attributes in this updated setup. Lastly, we 

have made other minor changes facilitated by a fresh reading.  

Our main ϐinding remains largely unchanged in the updated version. We observed that 

incorporating discharge information improved the performance of the LSTM network 

during the unseen testing period and resulted in more hydrologically consistent storm 

estimates in the out-of-sample catchments. Additionally, the forward modelling using 

traditional hydrological models once again produced higher mean NSE values for the 

runs based on inversely generated precipitation estimates. 

We would like to thank the Editor and Anonymous Reviewer 3 again for giving us another 

opportunity to revise our manuscript.  

Please get in touch with me if you need any additional information. 

Thank you very much for your consideration. 

Best regards, 

Ashish  

On behalf of Ralf, Hoshin and Erwin 

Email: ashish.jaseetha@kit.edu 
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Reviewer 3:  

The authors would like to thank Anonymous Reviewer 3 for carefully reviewing our 

manuscript and providing their critical yet helpful and detailed comments. We have 

followed the reviewer's suggestions concerning both the comments. The following 

responses have been prepared to address all the reviewers' comments point-by-point.  

We have responded (in black) to the reviewer's comment (in blue).  

General comments: 

Following a ϐirst round of review, this review comments on a second version of the paper 

by Manoj et al., which describes a method to estimate catchment-scale precipitation from 

streamϐlow records using a machine learning approach. We reiterate positive comments 

we made in our ϐirst review, including how signiϐicant the paper is to practical 

hydrological problems and the use of large datasets to validate the results. 

We feel that the detailed comments indicated in our ϐirst review have been addressed 

satisfactorily by the authors. As a result, we won’t mention them in this review. 

Unfortunately, the authors have brushed aside our two main comments, despite the fact 

that we offered simple alternatives, and answered them with cosmetic changes in their 

manuscript as explained below. We respect their opinion, but cannot approve the 

publication of their paper under these conditions. As a result, we recommend a major 

revision of the paper. 

The following sections clarify our position regarding the two fundamental points we 

raised in our ϐirst review. 

Comment #1: Our ϐirst fundamental criticism of the paper is that it aims to generate an 

improved ERA5-Land precipitation product (referred to as ERA5-P hereafter) using a 

statistical model, but trains this model to reproduce ERA5-P. When the training is 

completed, the model being imperfect will introduce errors in its prediction, hence 

producing a contaminated version of ERA5-P (ERA5-P plus residual errors from the 

statistical model). The whole premise of the paper is to suggest that this contaminated 

version is signiϐicantly superior to the original ERA5-P. In other words, the residual error 

of the statistical model contains valuable information, even though it is being minimised 

by the training algorithm. 
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What we said in our ϐirst review is that this is possible, but it would be due to chance 

because the authors expect to ϐind something valuable out of what the training algorithm 

discards. What is likely to happen is that this lucky outcome may be due to the author’s 

focus on selected rainfall metrics. Other metrics may show that the contaminated ERA5-

P is worse than the original ERA5-P, for example, rain event timing, long-term seasonality, 

sensitivity to warming climate conditions, zero rainfall simulations, etc… 

To summarise, what is lacking in the paper is a clear deϐinition of a reference 

precipitation dataset that all alternative rainfall products (ERA5-P and LSTM outputs) 

are measured against, and try to replicate. In our previous review, we suggested the use 

of E-OBS as a training target, because this dataset is often used as a reference in the paper. 

In their response to our comment, the authors objected that “while E-OBS is superior to 

ERA5 in regions with dense data, using ERA5 has advantages in data-scarce regions”. We 

agree with this statement, but believe that it relates to the applicability of the algorithm, 

which should not precede a thorough and logically robust testing in a controlled 

environment. 

Overall, we repeat our request for the selection of a reference observed rainfall 

precipitation dataset to be used as a training target for the LSTM and computation of all 

performance metrics in the paper. 

We have implemented the reviewer's suggestion by using the observational EOBS 

product as the target for our model runs. Since the original Caravan dataset (Kratzert et 

al., 2023) did not include the EOBS estimates for the training catchments; we 

preprocessed the data to derive the average precipitation estimate for each catchment. 

We then repeated our experiments using an ensemble network of three LSTM models 

(with different initialisation seeds) and report the mean results for both with_discharge 

and without_discharge runs. Our main ϐinding remains largely the same in the new 

updated version.  

In addition to looking at the gain over all the days, we also explored the performance gain 

over days with higher magnitude precipitation (shown in Figure 1). We could see that 

gains are considerably greater on days with higher recorded precipitation (increase in 

median NSE value of about 29% from 13% for days with more than 5 mm precipitation). 

This is logical because the discharge information is more effective in capturing extreme 

conditions. In contrast, the information gain is limited under average ϐlow conditions.  
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Figure 1 Comparison of performance gain for the with_discharge vs without_discharge models in 
NSE for different precipitation amounts. The ϐirst violin plot illustrates the average improvement 
across all days in the testing period. The second and third plots display the mean performance gains 
over the catchments, speciϐically focusing on days where precipitation exceeded 1 mm and 5 mm, 
respectively. 

For the continental analysis, we again calculated all the performance metrics and now 

compare both the with_discharge and without_discharge models to EOBS and ERA5 Land 

(Figure 2). The predictions from without_discharge model are also added for the out-of-

sample analysis (Figure 3). For the out-of-sample predictions, we again observe that the 

LSTM estimate overestimates the EOBS value (new training target) in three out of four 

catchments; the runoff coefϐicients (Table 1) and timing of the peaks again point to the 

overall reliability of the estimate. 

The forward hydrological model runs using HBV and CATFLOW were also repeated for 

the new estimate from the with_discharge model, and we again observed higher NSE 

values over the evaluation period compared to runs with ERA5 Land.  
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Figure 2 The spatial patterns of the different time series metrics (Appendix C) mean wet day 
precipitation (MWD) – mm/day, 95th percentile limit (R95P) – mm/day, and Spearman 
autocorrelation values (SL) over the study catchments for the  different precipitation estimates - 
ERA5 Land (top row): a) to c), with_discharge LSTM model (second row): (d) to (f), without_discharge 
LSTM model (third row): (g) to (i)  and E-OBS (bottom row): (j) to (l) from 2006 to 2020 (2015 for 
CAMELS-GB catchments).  
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Figure 3 Precipitation estimates for ϐlood events at four out-of-sample catchments: (a) Elsenz 
Schwarzbach, (b) Ernz, (c) Sueiro, and (d) Hoelzlebruck. The red line represents the observed daily 
streamϐlow, with a cross marking the day of the ϐlood event. The orange curve indicates the 
precipitation predicted by the with_discharge LSTM model, while the green curve shows the 
precipitation predicted by the without_discharge model. The blue line reϐlects the original gauge-
based EOBS time series, and the grey line represents the estimate from the ERA5 Land. 

 

Table 1 Event characteristics (storm volume and runoff coefϐicients) for the four out of sample 
catchments 

Event Characteristics 
Elsenz- 

Schwarbach 
Ernz Sueiro Hoelzlebruck 

Precipitation 

(mm) 

ERA5 Land 12.51 9.60 41.81 32.12 

with_discharge 32.79 42.75 58.53 50.85 

without_discharge 4.92 6.20 29.46 22.92 

E-OBS 20.07 51.72 29.50 44.90 

      Discharge 

         (mm) 
5.98 26.88 23.39 19.14 

Runoff 
Coefϐicient 

(-) 

ERA5 Land 0.48 2.80 0.56 0.60 

with_discharge 0.18 0.63 0.40 0.38 

without_discharge 1.21 4.34 0.79 0.84 

E-OBS 0.30 0.52 0.79 0.43 

 

 



Authors Response (hess-2024-375) 

7 
 

Overall, we repeat our request to remove mean catchment rainfall as a predictor in the 

paper. We believe this is extremely simple to do, as most computations have already been 

done by the authors. 

We appreciate the reviewer's detailed comments regarding the possible short comings of 

using mean catchment rainfall derived from ERA5-P as a predictor. Our initial choice to 

include static attributes was based on incorporating climatic indicators relevant to our 

catchments, and it made sense to include mean precipitation. Additionally, we were 

inϐluenced by other hydrological modelling studies (Gharari et al., 2021) that utilised 

average runoff information to enhance calibration for the traditional streamϐlow 

prediction problem. 

After considering the detailed concerns raised by the reviewer and the editor regarding 

the statistical modelling setup that used LSTM, we have decided to exclude pmean from 

the paper. We have re-run all our model simulations with the new setup, which does not 

include pmean as a predictor. The results align with previous studies (Heudorfer et al., 

2024; Li et al., 2022) that suggest the physiographic characteristics of static features may 

be irrelevant; what truly matters is the presence of unique identifying information. 

Comment #2: The second fundamental comment made in our previous review related to 

the use of the mean catchment rainfall derived from ERA5-P as a predictor in the authors’ 

statistical model. At the same time, ERA5-P is the training target of the author’s statistical 

model. As a result, ERA5-P derived data are parts of both predictors and predictands. 

This is a fundamental ϐlaw in statistical modelling, which cannot be accepted if aiming at 

publishing in a scientiϐic journal such as HESS. At the same time, the authors have 

maintained the use of this predictor in their revised manuscript. 

In their response, the authors ϐirst argued that this issue is relevant to real-time 

forecasting (“it is important to note that our end goal is different from an operational 

forecast”). We disagree with this view. The issue we are raising here relates to the 

problem of predicting output data while using part of this data as a predictor. This creates 

a risk of inϐlating model performance compared to a realistic use of the model, where the 

output data is not available, by deϐinition (otherwise, a prediction model would not be 

required). In addition, this conϐiguration prevents the model from being realistically 

used: mean catchment rainfall is one of the core data one would expect to extract from a 

rainfall product. If this data is required as part of the model inputs, we do not see much 

use of the LSTM rainfall product presented by the authors. 



Authors Response (hess-2024-375) 

8 
 

References 

Gharari, S., Gupta, H. V., Clark, M. P., Hrachowitz, M., Fenicia, F., Matgen, P., & Savenije, H. H. G. 
(2021). Understanding the Information Content in the Hierarchy of Model Development 
Decisions: Learning From Data. Water Resources Research, 57(6). 
https://doi.org/10.1029/2020WR027948 

Heudorfer, B., Gupta, H., & Loritz, R. (2024). Deep Learning Models in Hydrology Have Not Yet 
Achieved Entity Awareness. https://doi.org/10.22541/essoar.172927199.90156076/v1 

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, 
A., Klotz, D., Nevo, S., Shalev, G., & Matias, Y. (2023). Caravan - A global community dataset 
for large-sample hydrology. Scientiϔic Data, 10(1), 61. https://doi.org/10.1038/s41597-
023-01975-w 

Li, X., Khandelwal, A., Jia, X., Cutler, K., Ghosh, R., Renganathan, A., Xu, S., Tayal, K., Nieber, J., 
Duffy, C., Steinbach, M., & Kumar, V. (2022). Regionalization in a Global Hydrologic Deep 
Learning Model: From Physical Descriptors to Random Vectors. Water Resources Research, 
58(8). https://doi.org/10.1029/2021WR031794 

 


