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Can discharge be used to inversely correct precipitation? (hess-2024-375) 

Ashish Manoj J, Ralf Loritz, Hoshin Gupta, Erwin Zehe 

The authors would like to thank Anonymous Reviewer 3 for going through our 

manuscript and giving their critical comments and suggestions. The following responses 

have been prepared to address all the reviewers' comments point-by-point.  We have 

responded (in black) to the reviewer's comment (in blue).  

General comments: 

The paper by Manoj et al. describes a method to estimate catchment scale precipitation 

from streamϐlow records using a machine learning approach. The paper is well-written, 

and its objective is highly signiϐicant in the context of hydrological sciences, where 

precipitation data remain scarce and critical to improve water resources modelling. 

Using streamϐlow as a predictor to estimate rainfall is not new, but it makes perfect sense 

as streamϐlow reϐlects recent rainfall history. The LSTM model is perfectly justiϐied for 

this task, considering the high level of performance reached by this type of machine 

learning approach. We particularly appreciated exploring a large sample of catchments, 

which reinforces the author’s conclusions. We were also impressed with the ϐinal 

validation exercise using different hydrological models. 

Overall, this paper contains many valuable elements and a tremendous amount of work. 

However, it suffers from two fundamental ϐlaws requiring a major revision before its 

acceptance for publication: 

We thank the reviewer for highlighting the work's signiϐicance and summarizing the main 

strengths. We propose to make the following changes to address the well justiϐied 

concerns raised by the reviewer. 

Comment #1: The fundamental aim of the paper stated in the introduction is to generate 

better precipitation estimates compared to currently available reanalysis products such 

as ERA5-Land. The authors are clear about the issues of reanalysis products in various 

parts of the manuscript. For example, related to a particular ϐlood event, they indicate: 

“Our previous work (Manoj J et al., 2024) indicated that ERA5 Land could not accurately 

replicate the characteristics of the convective storm that caused this annual ϐlood event” 

(line 240). Consequently, we do not see the point in training an LSTM using ERA5-Land 
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precipitation as a target. The best we can expect from this approach is to generate rainfall 

series identical to ERA5-Land precipitation, which is known to be problematic. 

We agree that the ERA5 Land has issues representing the driving precipitation estimates 

for speciϐic event scales (Essou et al., 2016; Manoj J et al., 2024). As stated in the 

beginning of our abstract, our aim was to see whether the inverse data assimilation using 

streamϐlow information could be used to overcome at least some of these well 

documented deϐiciencies.  

a) Our approach, utilizing a regional LSTM model trained on much larger 

catchments, demonstrated effectiveness in adjusting the underestimated 

precipitation values for these events at smaller (out of sample) scales. Notably, 

only about 9% of the catchments in our training dataset had areas smaller than 

100 km². We could show that discharge response encodes sufϐicient information 

about the driving precipitation to correct ERA5 Land in the right direction. 

b) Reanalysis data, by deϐinition, are a mix of observations and past short-range 

weather forecasts rerun with modern weather forecasting models (ECMWF, 

2023). Different data assimilation methods are used for this. Our idea was that the 

inversion technique could be used as another ϐinal layer of post-processing (using 

the LSTM in this case) for the model outputs to ensure that the ϐinal product is 

more consistent with the variabilities observed in the discharge record.  

Furthermore, any performance comparison between LSTM outputs (trained on ERA5-

Land precip) and original ERA5-Land precip using an independent dataset as a reference 

(E-OBS in this case) are logically ϐlawed: the LSTM was not trained to reproduce anything 

else than ERA5, so any perceived “improvement” between its outputs and ERA5-Land 

precip when simulating an independent dataset (E-OBS in this case) is due to chance. 

Fortunately, the solution to this problem is simple: instead of ERA5-Land, the authors 

could set the LSTM training target to rainfall observation (i.e. E-OBS). The comparison 

between LSTM and ERA5-Land would become meaningful and clarify if precipitation 

estimation can be improved compared to using ERA5-land. 

We would like to clarify that our goal was to enhance the ERA5 Land estimates by 

incorporating streamϐlow information along with only other meteorological forcings 



Response to Reviewer 3 (hess-2024-375) 
 

3 
 

from ERA5 Land, rather than generating a new precipitation product that uses again 

another precipitation as input.  

c) It is important to emphasize that "true" precipitation estimates are only available 

at observational stations and not at the catchment scale. The performance 

comparison using EOBS and the runoff coefϐicient was intended to provide insight 

into the feasibility of different precipitation estimates from a hydrological 

perspective. While we acknowledge the existence of even better regional products 

(e.g., HYRAS – German Weather Service) for some of the study catchments, we 

believe that these various products should not be viewed as independent of one 

another. Instead, they contain complementary information as they represent the 

same physical truth i.e. precipitation occurring over a catchment, albeit with 

different uncertainties and errors. 

d) Studies evaluating daily precipitation from EOBS and ERA5 over Europe 

(Bandhauer et al., 2022) have shown that while E-OBS is superior to ERA5 in 

regions with dense data, using ERA5 has advantages in data scarce regions. This 

was also seen in the out of sample analysis. For the Sueiro catchment 

(camelses_1414), the closest observational station is located more than 60 km 

away (Figure 1 in this document), this explains why the EOBS performs rather 

poorly in representing the driving forcings for the summer ϐlood event (Figure 5C 

in original draft). Additionally, the runoff coefϐicient estimate for E-OBS was 

around 1.05, which indicates a hydrologically infeasible value (Table 2 in the 

original draft) when compared to the estimates from ERA5 Land and LSTM. 

Compared to purely interpolated products like EOBS, reanalysis products are 

usually released and updated more frequently. This again points to the value of 

reanalysis products like ERA5 for tackling the prediction in ungauged basin (PUB 

- Hrachowitz et al., 2013) problem. 

e) While our workϐlow could indeed be extended in multiple directions to generate 

more coherent precipitation products, we feel this is currently beyond the scope 

of our initial study, which aimed to explore whether discharge had sufϐicient 

information to help in tackling the inverse problem over a large sample space.  

We will clarify these points and restructure the Introduction and Discussion sections to 

highlight them more effectively. 
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Figure 1 Spatial maps showing the proximity of observational stations (used for deriving the EOBS 
gridded product) to the four out of sample catchments considered in the present study.  

Comment #2: When training their LSTM, the author used the mean catchment rainfall as 

a predictor (Pmean, see line 138). In other words, they use some of the predictand data 

as a static predictor. This is a major ϐlaw in a regression setup: it gives the LSTM model a 

distinct advantage over an operational situation where, obviously, the mean catchment 

rainfall is not known. Here again, the solution to this issue is straightforward: remove this 

predictor from the list of static predictors. 

While we used the LSTM model in the commonly used streamϐlow prediction 

(regression) mode, it is important to note that our end goal is different from an 

operational forecast. The model takes in future streamϐlow as a predictor, which implies 

that the real-time forecast implications of our methodology are limited. The approach 

could be seen as a data assimilation post-processing step to ensure that the ϐinal 

precipitation estimates are more consistent with the variabilities observed in the 

discharge record. We would like to highlight that hydrological modellers have previously 
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constrained their models (Gharari et al., 2021) using average annual runoff to improve 

calibration for the classical streamϐlow prediction problem.  

To address the reviewer’s comment regarding the removal of p_mean from the list of 

static attributes due to concerns about data leakage, we retrained and tested the regional 

scale LSTM model, removing p_mean while keeping all other conditions the same. 

 

Figure 2 Empirical Cumulative Distribution Function (ECDF) of NSE values, comparing model 
performance in runs with and without p_mean. 

The ECDF plot (Figure 2) indicate that the model performance remains fairly consistent 

for the two runs. We believe that this can be attributed to two main reasons: 

A. Our training dataset had a large number of catchments (1804) cutting across 

various hydroclimatically diverse regions over Europe, ensuring that our model 

could learn robust dependencies from the meteorological (dynamic) forcings 

itself. 

B. Recent research (Heudorfer et al., 2024; Li et al., 2022) on Entity Aware (EA) deep 

learning models (models that are provided with static features- predominantly in 

the form of physiographic proxies, next to dynamic forcing features) have 

suggested that the information in static features is not being effectively leveraged. 
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Li et al. (2022) demonstrated that an LSTM model using randomly initialized 

numbers as static features outperformed a model that used actual physiographic 

static features, as long as the number of random static features was greater than 

the number of physiographic static features. This indicates that the speciϐic 

physiographic characteristics of the static features may be irrelevant; what truly 

matters is the presence of unique identifying information. Heudorfer et al. (2024) 

report that while static features serve as unique catchment identiϐiers, resulting 

in excellent in-sample performance when confronted with out-of-sample data, 

the model is unable to generalize from static features and instead relies almost 

exclusively on meteorological data for prediction.  

Aside from these two fundamental problems, we also have a few general comments: 

Comment #3: some aspects of the method lack clarity. We got a bit lost in all the cases 

considered by the authors at the end of the manuscript. We suggest clarifying several 

elements using summary tables in the method section (and not later in the paper): 

o the list of all LSTM conϐigurations tested with their inputs (including 

lagged inputs) and their outputs, 

o the list of all performance metrics, 

o the list of all test cases including the number of catchments, the forcings (if 

using hydrological models) and the outputs tested. 

We will include tables in the Data and Methods section that detail all the datasets used, 

as well as the various model runs and test cases. To enhance readability, we also plan to 

provide information about the LSTM conϐigurations and the different hydrological 

models in a new appendix section. 

Comment #3: The LSTM model was trained on mean squared error, emphasising large 

rainfall values. We recommend testing other conϐigurations where training is done on 

transformed values, e.g. square roots and log transform, to check if certain rainfall 

metrics can be improved further. 
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We appreciate the reviewer’s suggestion that testing additional functions could enhance 

some of the rainfall metrics. However, since the primary focus of our study was on 

accurately representing heavy precipitation events that lead to ϐloods, we chose to use 

the mean square error training function because it was the simplest and most commonly 

used. We will include this information and suggest exploring other conϐigurations as part 

of future research in this direction. 

Detailed comments 

Comment #4: Line 68, “we conjecture that the catchment-average precipitation can be 

inversely identiϐied”: this problem is still numerically ill-posed due to catchment 

memory. We suggest rephrasing to “we conjecture that streamϐlow data can reduce the 

uncertainty associated with this process by providing valuable information on recent 

rainfall history”. 

We will rephrase this line as suggested by the reviewer.  

Comment #5: Line 115, “The Caravan dataset uses the ERA5 Land as meteorological 

forcing”: it would be useful to remind that this is far from satisfactory as ERA5 is known 

to have important limitations when simulating rainfall. 

This information will be added to the revised draft. 

Comment #6: Line 185, “model “with_discharge” outperforms the model 

“without_discharge” not only on average but also concerning the best-performing 

catchments.”: It would also be useful to show the distribution of pairwise NSE differences. 

This would answer the question: “How many catchments reach better NSE when using 

streamϐlow predictors?”. 
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Figure 3 Violin plot displaying the pairwise differences (with_discharge vs without_discharge 
models) in NSE for the study catchments. 

We agree with the reviewer’s suggestion that displaying the distribution of pairwise NSE 

differences would better clarify our main results. Therefore, we will include pairwise NSE 

difference plots (Figure 3 in this document) in the main manuscript and move the 

distribution and ecdf plots (originally Figure 2 in the manuscript) to a new Appendix 

section dedicated to the LSTM models. 

Comment #7: Figure 3: This map is a bit confusing because for LSTM and ERA5-Land, the 

data generated by the authors is in the form of points (i.e. catchment average), not 

surfaces. Please update the map accordingly. 

Although we only have average information for the catchment area, these averages are 

derived from grid points that encompass the entire area. We believe that representing 

them as point data at the catchment outlets would not accurately reϐlect the fact that the 

information represents the whole catchment area.  
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Comment #8, Line 204 “preserves spatial gradients”: what do the authors mean by 

“preserve”? Please clarify. It is hard to assess spatial patterns from maps as small as 

Figure 3. We suggest an additional metric and a ϐigure to clarify this point. 

We agree that it is indeed hard to assess the spatial gradients without additional metrics. 

Since evaluating such spatial gradients is not the main focus of the present study, we will 

remove this sentence from the revised draft. 

Comment #9, source code: please list software requirements in the source code. This 

includes the list of software packages required and their versions. If the authors are using 

Anaconda, it can be done by adding to their repository a conda environment 

conϐiguration ϐile, also referred as “yml” ϐile (conda contributors, 2025), which lists all 

Python package and their version. 

A dependencies ϐile detailing all the software packages and their versions will be added 

to the GitHub repository.  
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