
1 

 

Characterising evapotranspiration signatures for improved 

behavioural insights 
Hansini Gardiya Weligamage1, Keirnan Fowler1, Margarita Saft2, Tim Peterson3, Dongryeol Ryu1, and 

Murray C Peel1 

1Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, 3052, Australia 5 
2Institute of Applied Geosciences, Technische Universität Berlin, 10587 Berlin, Deutschland, Germany 
3Department of Civil Engineering, Monash University, Clayton, Victoria, 3168, Australia 

  

Correspondence to: Hansini Gardiya Weligamage (h.gardiyaweligamage@unimelb.edu.au) 

Abstract. Hydrological signatures are statistical metrics useful to quantify and infer behaviours of hydrological processes, 10 

but there has been limited use of signatures for non-streamflow variables, such as actual evapotranspiration (AET). AET 

signatures can assist in tasks such as evaluating remotely sensed products, diagnosing deficiencies in hydrological models, and 

improving understanding of hydrological processes, such as the role of AET in driving hydrological drought. This study 

proposes eight AET signatures defined at various temporal scales from daily to annual. We demonstrate the value of AET 

signatures by using them to assess two remotely sensed AET (AETRS) products against flux tower AET (AETFluxtower) at 15 

seventeen FluxNET sites in Australia. The two AETRS products are Moderate Resolution Imaging Spectroradiometer (MODIS, 

16A2GFv06.1), and CSIRO MODIS Reflectance-based Scaling Evapotranspiration (CMRSET). Annually, median AETRS 

closely matches AETFluxtower, except in less-arid regions. However, signatures reveal RSAET largely underestimates the 

variability of flux tower data at both annual and monthly scales. Other monthly indices are better matched, such as indices of 

water stress and AET asynchronicity with potential evapotranspiration. However, some metrics are better matched in one 20 

product than the other, such as the strength and timing of seasonal fluctuations, with MODIS exhibiting a phase shift. Overall, 

the signatures reveal that regionally-developed CMRSET outperformed globally-developed MOD16A2GFv061. This study, 

the first to systematically define AET signatures, offers a way of assessing various aspects of AET dynamics across temporal 

scales. Furthermore, the case study highlights specific deficiencies in AETRS and may assist in selecting appropriate AETRS, 

including for modelling studies. 25 

1 Introduction 

Hydrological signatures are statistical metrics used to quantify hydrological behaviours in catchments and can be used to 

compare hydrological behaviour across space (Addor et al., 2018; McMillan, 2021) and to assess the behavioural fidelity of 

hydrological model simulations against observations (Gupta et al., 2008). Over the past decade or so, there has been rapid 

advancement in the application of hydrological signatures, primarily calculated based on streamflow data and related to such 30 

categories as flow magnitude, duration, frequency, timing, and rate of change (Olden & Poff, 2003). In modelling, the use of 

signatures contrasts with commonly used aggregate metrics (e.g., Nash Sutcliffe Efficiency (NSE) or Kling Gupta Efficiency 
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(KGE)), which condense the information of coherence/discrepancy between two timeseries down to a single number.  In 

contrast, signatures retain more detailed information on different (and ideally independent) aspects of the flow regime and may 

be used to quantify model performance to each separate aspect. Likewise, the associated hydrological processes responsible 35 

for each aspect can be separately characterised. In practice, signatures have been widely used in modelling studies (Araki et 

al., 2022; Kiraz et al., 2023; McMillan, 2021; Westerberg et al., 2011) , while their linking to specific hydrological processes 

remains an open research question, with a key challenge being the interactions among different processes to produce emergent 

patterns in observed data (McMillan, 2020).  

Although there has been a wide range of hydrological signatures defined for streamflow (McMillan, 2021; Olden & Poff, 2003; 40 

Safeeq & Hunsaker, 2016), signatures directly calculated based on other hydrological processes are rare, with some notable 

exception of studies that used the soil moisture and groundwater signatures (e.g., Araki et al., 2022; Heudorfer et al., 2019). 

Therefore, in this study, we are concerned with signatures of actual evapotranspiration (AET), which have not previously been 

researched to our knowledge. This lack of attention to AET signatures is surprising given the importance of AET in the overall 

water cycle, comprising around 60% of the global terrestrial hydrological cycle (Abbott et al., 2019; Teluguntla et al., 2013). 45 

While there is literature investigating and quantifying AET in different study areas, examining at different spatial scales such 

as in-situ level (e.g., Rungee et al., 2019), grid level (i.e., remote sensing, e.g., Zhang et al.,  2010), catchment level (e.g., 

Avanzi et al., 2020), and regional level (e.g., Gardiya Weligamage et al., 2023), systematic and comprehensive studies focusing 

on AET signatures remain elusive. Moreover, some studies have used streamflow-based signatures such as total runoff ratio 

(e.g., McMillan et al., 2014; Safeeq & Hunsaker, 2016), streamflow seasonality (e.g., Wrede et al., 2015), and diurnal cycles 50 

in streamflow (e.g., Schwab et al., 2016; Wondzell et al., 2010) to examine AET processes, although these signatures are only 

indirectly related to those AET processes. Furthermore, McMillan (2020) confirms that none of these streamflow-based 

signatures have investigated AET processes at shorter temporal scales, such as event scale.  

We envisage at least three potential uses for AET signatures, namely 1) assessing the quality of remotely sensed AET products, 

2) diagnosing deficiencies in hydrological models, and 3) improving understanding of hydrological processes. Assessment of 55 

the quality of remotely sensed AET products is important as these products are widely used across many research areas due to 

their ability to provide mostly continuous spatiotemporal data, unlike flux tower measurements (Yan et al., 2018; Zhang et al., 

2016). However, their capacity to accurately predict various aspects of AET behaviour is often minimally assessed when 

incorporating them into a modelling study, and AET signatures can provide a more informative assessment. Secondly, AET 

signatures can be employed to diagnose deficiencies in hydrological models, as the poor representation of AET could 60 

significantly impact streamflow predictions, particularly under changing climatic conditions such as climate change or 

multiyear droughts (Araki et al., 2022; Koster & Suarez, 2001; Peterson & Fulton, 2019). Thirdly, as noted by McMillan 

(2020), signatures permit extraction of “meaningful information about watershed processes”, and it is often possible to define 

signatures to specifically provide information about a process of interest.  This is particularly relevant since AET is the second 

largest water balance component globally (after precipitation). Moreover, recent studies suggest that AET is a contributing 65 
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cause to changes in rainfall-runoff relationship for the same streamflow under multiyear drought at both annual and seasonal 

scales (Gardiya Weligamage et al., 2023; Peterson et al., 2021).  

Highlighting the importance of using AET signatures, in this paper, we define a set of AET signatures and demonstrate their 

use in one of the three specific contexts listed above, namely the evaluation of remotely sensed products of AET. We define 

distinct AET signatures for various temporal scales to best capture AET characteristics relevant to each timescale. Using AET 70 

signatures, two remotely sensed products are evaluated against flux tower data at several sites covering different climatic 

regions in Australia. 

2 Material and Methods 

Given that the primary purpose of this paper is to introduce a set of signatures for actual evapotranspiration, we begin this 

section by describing and defining the signatures themselves. This is followed by descriptions relevant to the case study, 75 

including the study area, data, and specific methods to utilise the signatures in this case. 

2.1 Proposed set of signatures 

We propose eight signatures to quantify AET behaviour. We do not consider this an exhaustive list but seek a set that is 

reasonably representative of the variety of characteristics inherent to AET dynamics as a good starting point for future research. 

As with streamflow signatures, the metrics cover a wide range of timescales, and different metrics require different temporal 80 

aggregations of AET information (specifically daily, monthly, or annual) tailored to the metric in question.  

At the annual scale, we select two signatures, namely, the long-term median (𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙)  and interannual variability, 

expressed as the coefficient of variation of annual AET (𝐶𝑉𝑎𝑛𝑛𝑢𝑎𝑙). We adopt CV rather than absolute variability measures 

(e.g., variance, standard deviation, or interquartile range) deliberately following streamflow signature studies such as (Clausen 

& Biggs, 2000), as it facilitates the comparison of variability across sites with different means.  85 

To quantify seasonal variations, we adopt two signatures: a measure of periodicity (𝑃12𝑚𝑜𝑛𝑡ℎ) and a measure of the timing of 

the seasonal peak (𝑇𝑆𝑃) in AET. The 𝑃12𝑚𝑜𝑛𝑡ℎ  in this study quantifies the tendency for AET variation to recur with the 

seasonal cycle, i.e., with a period of 12 months, and as such, is calculated as the lag-12 autocorrelation of monthly AET.  This 

will be unity in cases where the timeseries data varies with a perfectly repeating seasonal cycle. The 𝑇𝑆𝑃 is determined from 

monthly timestep data by examining the median AET for each of the 12 calendar months and identifying the month with the 90 

maximum median AET. Note that the selection of median over mean AET is intended to minimize the influence of extreme 

values. 

At the monthly scale, the monthly variability is quantified using the monthly CV (𝐶𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦). Moreover, we define two 

signatures related to water stress, with the idea that the absence of water stress leads to AET perfectly mimicking potential 

evapotranspiration (PET). When AET deviates from PET, it marks a deficit in water availability, which may be temporary 95 

(e.g., seasonal) or prolonged (as would be seen in arid environments). Both these water stress indices assume that the user has 
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access to a timeseries of estimated PET. The first such water stress metric, the water stress (𝑊𝑆) is defined as the difference 

between average monthly PET and average monthly AET, divided by the average monthly PET. Thus, higher values of this 

water stress signature indicate less rainfall and/or high PET. Initial testing revealed this metric to be very sensitive to aridity, 

since it is obvious that AET will be much less than PET in arid areas. In non-arid areas, there might arise temporary (seasonal) 100 

water deficits that are not well characterised by the first water stress metric; thus, a subsequent metric was defined to these 

temporary fluctuations in water stress. This second water stress signature is purely based on the asynchronicity between 

normalised PET and AET, and thus is referred to as ‘AET asynchronicity to PET’ (𝐴𝐴𝑃). This latter signature can be thought 

of as quantifying the area between the normalised curves. It is calculated as follows. PET and AET monthly timeseries are first 

normalised by dividing them by their mean monthly PET and AET values respectively. Then, the numerator is calculated by 105 

integrating the absolute difference between normalised monthly PET and AET (∫(|𝑛𝑜𝑟𝑚𝑃𝐸𝑇𝑚𝑜𝑛𝑡ℎ − 𝑛𝑜𝑟𝑚𝐴𝐸𝑇𝑚𝑜𝑛𝑡ℎ|) 𝑑𝑡). 

The denominator of the metric is then calculated by summing the maximum value among normalised PET and AET at each 

monthly time step (∫ max(𝑛𝑜𝑟𝑚𝑃𝐸𝑇𝑚𝑜𝑛𝑡ℎ ,  𝑛𝑜𝑟𝑚𝐴𝐸𝑇𝑚𝑜𝑛𝑡ℎ) 𝑑𝑡). The rationale behind calculating the absolute difference 

between values is that a difference between the curves is indicative of asynchronicity, regardless of which of the curves happens 

to be greater at the given point in time. 110 

In addition to annual, seasonal and monthly dynamics, the event scale is also important, even though it is assessable only for 

certain data types (e.g., flux tower data; simulations from daily timestep models) and not others (e.g., remotely sensed 

information provided on timesteps greater than a day). To assess AET dynamics at the event scale, we explored several options 

to quantify AET responsiveness to a rainfall event – in other words, the degree to which a rainfall event causes a jump in AET. 

However, the difficulty of such a metric is that rainfall events may not only influence AET on the given day but also influence 115 

AET in the following days. If so, a standard correlation measure would be insufficient, but a lagged correlation is difficult to 

define since we do not know the lag a priori (and it may change over time). Seeking a generalisable metric, we select rainfall 

events greater than a threshold and identified the maximum daily AET value after the given rainfall event, up to a certain 

window duration (in days) after that event. We then apply a standard linear correlation equation to the anomalies of these 

ordered pairs of numbers (i.e., rainfall anomaly versus maximum AET anomaly in the window after the rainfall event). Since 120 

this formulation is different from commonly used correlation metrics, we call it simply the ‘Index of AET responsiveness to a 

rainfall event’ (𝑅). For the purposes of the demonstration, we subjectively set the rainfall threshold and window duration 

parameters as 5 mm/day and 10 days, respectively. It is noted that this window size is also sensitive to the gap between selected 

rainfall events. If two rainfall events exceeding 5mm/day occurred within the 10-day window period, the window size is 

restricted to the days between the two rainfall events, and the maximum AET value was chosen from that restricted window. 125 

Table 1 summarises the proposed eight signatures. 

2.2 Study Area 

Relative to global averages, Australia is a dry continent with annual average precipitation below 450 mm/year (Isaac et al., 

2017). However, the coastal areas from southeast Australia to northern Australia receive comparatively higher precipitation, 
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exceeding 1000 mm/year in many areas. This study focuses on seventeen OzFlux sites in Australia (Figure 1). OzFlux, a part 130 

of the international FluxNET program, is a micrometeorological monitoring network in Australia and New Zealand equipped  

 

Table 1: AET signatures 

Temporal scale Signature Mathematical formulation 

Annual 1. Long-term Median 

(𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙) 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝐴𝐸𝑇 

2.Interannual Variability 

(𝐶𝑉𝑎𝑛𝑛𝑢𝑎𝑙) 
𝐶𝑉𝑎𝑛𝑛𝑢𝑎𝑙 =

𝜎𝐴𝐸𝑇𝑎𝑛𝑛𝑢𝑎𝑙

𝐴𝐸𝑇̅̅ ̅̅ ̅̅
𝑎𝑛𝑛𝑢𝑎𝑙

 

Seasonal 

(calculated using 

monthly timestep 

data) 

3. Periodicity 

(𝑃12𝑚𝑜𝑛𝑡ℎ)  

𝐿𝑎𝑔 12 𝑎𝑢𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝐴𝐸𝑇  

4. Timing of Seasonal Peak 

(𝑇𝑆𝑃)  

𝑚𝑜𝑛𝑡ℎ 𝑤𝑖𝑡ℎ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝐴𝐸𝑇 

Monthly 5. Monthly Variability 

(𝐶𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦) 
𝐶𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =  

𝜎𝐴𝐸𝑇𝑚𝑜𝑛𝑡ℎ

𝐴𝐸𝑇̅̅ ̅̅ ̅̅
𝑚𝑜𝑛𝑡ℎ

 

6. Water Stress 

(𝑊𝑆) 

 

𝑊𝑆 =
𝑃𝐸𝑇̅̅ ̅̅ ̅̅

𝑚𝑜𝑛𝑡ℎ − 𝐴𝐸𝑇̅̅ ̅̅ ̅̅
𝑚𝑜𝑛𝑡ℎ

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
𝑚𝑜𝑛𝑡ℎ

 
 

7. aAET asynchronicity to PET 
(𝐴𝐴𝑃)  

𝐴𝐴𝑃 =  
∫(|𝑛𝑜𝑟𝑚𝑃𝐸𝑇𝑚𝑜𝑛𝑡ℎ − 𝑛𝑜𝑟𝑚𝐴𝐸𝑇𝑚𝑜𝑛𝑡ℎ|) 𝑑𝑡

∫ max(𝑛𝑜𝑟𝑚𝑃𝐸𝑇𝑚𝑜𝑛𝑡ℎ , 𝑛𝑜𝑟𝑚𝐴𝐸𝑇𝑚𝑜𝑛𝑡ℎ) 𝑑𝑡
 

 

Event-scale 8. Index of AET responsiveness 

to a rainfall event 

(𝑅) 

 

𝑅 =  
∑ 𝑃𝑎𝑛𝑜𝑚𝑒𝑣𝑒𝑛𝑡

∗ 𝐴𝐸𝑇𝑎𝑛𝑜𝑚𝑒𝑣𝑒𝑛𝑡

√∑ 𝑃𝑎𝑛𝑜𝑚
2 ∑ 𝐴𝐸𝑇𝑎𝑛𝑜𝑚

2

 

where,  

𝑃𝑎𝑛𝑜𝑚𝑒𝑣𝑒𝑛𝑡
= 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖 − 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝐴𝐸𝑇𝑎𝑛𝑜𝑚𝑒𝑣𝑒𝑛𝑡
=  𝐴𝐸𝑇𝑖+𝑗 −  𝐴𝐸𝑇𝑖+𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

i is the position of the rainfall event, and j is the day with 

maximum AET after the rainfall event, 0 ≤ 𝑗 ≤ 10 
aNote that the trapezoidal integration was conducted. 

with eddy covariance measurement, providing information on carbon, energy, and water exchange. The seventeen sites 

constitute the majority of flux towers in Australia; while seven other active flux towers exist, they were excluded due to 135 

insufficient coverage (i.e., < 7 years) and considerable percentages of negative and unavailable data. The selected study sites 

cover a wide range of climate and ecosystem regions in Australia, as summarised in Table 2. The time period of data availability 

varies at each site (typically 7-20 years). Hence, different periods of data coverage are adopted in this study to perform the 

analysis at each site. 
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Figure 1: Locations of selected OzFlux sites in this study. 145 

Table 2: Summary of OzFlux sites 

Site Lon. Lat. Data 

coveragea 

Köppen 

Climateb 

Eco-regionb Arid-

ityc 

Data source 

Calperum 140.587 -34.003 Jul-10 to 

Feb-24 

Arid desert 

cold 

Mediterranean 

woodlands 

4.99 (Meyer et al., 

2024) 

Great Western 

Woodland 

120.654 ‐30.191 Jan-13 to 

Jan-24 

Arid desert 

hot 

Mediterranean 

woodlands 

4.80 (Macfarlane et 

al., 2024) 

Sturt Plains 133.350 ‐17.150 Aug-08 to 

Feb-24 

Arid steppe 

hot 

Tropical 

grasslands 

3.18 (Beringer, 

Hutley, et al., 

2024e) 
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Yanco 146.290 ‐34.987 Jan-13 to 

Feb-24 

Arid steppe 

cold 

Temperate 

grasslands 

3.14 (Beringer, 

Walker, et al., 

2024) 

Ridgefield 116.966 -32.506 Jan-16 to 

Feb-24 

Temperate dry, 

hot summer 

Mediterranean 

forests 

woodlands 

and shrub 

2.95 (Beringer, 

Lardner, et al., 

2024) 

Gingin 115.713 ‐31.376 Oct-11 to 

Feb-24 

 

Temperate, 

dry, hot 

summer 

Mediterranean 

woodlands 

2.29 (Silberstein et 

al., 2024) 

Dry River 132.370 ‐15.258 Oct-09 to 

Feb-24 

Tropical 

savanna 

Tropical 

savannas 

2.20 (Beringer, 

Hutley, et al., 

2024b) 

Daly 

Uncleared 

131.388 ‐14.159 Jan-08 to 

Dec-23 

Tropical 

savanna 

Tropical 

savannas 

1.75 (Beringer, 

Hutley, et al., 

2024a) 

Cumberland 

Plains 

150.723 ‐33.615 Jan-14 to 

Dec-23 

Temperate, no 

dry season, 

hot summer 

Temperate 

woodlands 

1.57 (Pendall et al., 

2024) 

Samford 152.877 -27.388 Jun-10 to 

Dec-17 

Temperate no 

dry season, 

hot summer 

Temperate 

broadleaf and 

mixed forest 

1.36 (Grace et al., 

2024) 

Wombat State 

Forest 

144.094 ‐37.422 Jan-10 to 

May-21 

 

Temperate, no 

dry season, 

warm summer 

Temperate 

broadleaf 

forest 

1.20 (Arndt et al., 

2024) 

Howard 

Springs 

131.152 -12.495 Jan-02 to 

Aug-22 

Tropical 

savanna 

Tropical 

savannas 

1.17 (Beringer, 

Hutley, et al., 

2024c) 

Litchfield 130.794 -13.179 Jun-15 to 

Dec-23 

 

Tropical 

savanna 

Tropical 

savannas 

1.17 (Beringer, 

Hutley, et al., 

2024d) 

Robson Creek 145.630 -17.117 Aug-13 to 

Dec-23 

 

Temperate, 

dry winter, hot 

summer 

Tropical and 

sub-tropical 

moist 

broadleaf 

forests 

0.98 (Liddell & 

Weigand, 

2024c) 

Tumbarumba 148.151 -35.656 Jan-02 to 

Dec-22 

 

Temperate no 

dry season, 

warm summer 

Temperate 

broadleaf and 

mixed forest 

0.89 (Stol & 

Kitchen, 2024) 

Cow Bay 145.427 -16.238 Jan-09 to 

Jul-23 

 

Tropical 

rainforest 

Tropical and 

sub-tropical 

moist 

broadleaf 

forests 

0.55 (Liddell & 

Weigand, 

2024b) 

Cape 

Tribulation 

145.446 -16.103 Jan-10 to 

Nov-18 

Tropical 

rainforest 

Tropical and 

sub-tropical 

moist 

broadleaf 

forests 

0.42 (Liddell & 

Weigand, 

2024a) 

aThis study used version 1 of the year 2024 (2024_V1) of flux tower data from TERN data portal. 

https://doi.org/10.5194/hess-2024-373
Preprint. Discussion started: 17 January 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

b Guerschman et al. (2022). 
cAridity refers to the aridity index defined as the ratio of potential evapotranspiration (PET) to precipitation (P). 

 

2.3 Data 

2.3.1 OzFlux eddy covariance evapotranspiration data 

AET data, version 1 of the year 2024 (2024_V1), were obtained from OzFlux towers through the Terrestrial Ecosystem 150 

Research Network (TERN) data portal (https://portal.tern.org.au/, last accessed on 30/04/2024) at daily, monthly, and annual 

time scales. To minimize variability among sites due to different processing steps, the data providers consistently apply 

PyFluxPro (v3.4.17) to implement a standardized method to process data, as described in (Isaac et al., 2017). Level 6 flux 

tower data, adopted here, undergoes quality control, gap filling, and partitioning of the net ecosystem exchange of carbon 

(NEE) data into gross primary production (GPP) and ecosystem respiration (ER). We conducted further data quality checks of 155 

the daily AET data and filtered out negative daily AET values. The maximum percentage of negative daily AET values among 

seventeen study sites was less than 2.3%. 

2.3.2 Remotely sensed evapotranspiration data 

Remotely sensed AET (AETRS) products are popular due to the relative rarity of flux towers and because they provide spatially 

distributed data, in contrast to flux tower data, which are near-point scale. Here, we present an example of the application of 160 

AET signatures to examine two AETRS products to assess their ability to capture different aspects of AET behaviours at various 

temporal scales. The two AETRS products are 1) Pixel resolution 500 m, gap filled, 8 days composites of version 6.1 of 

Moderate Resolution Imaging Spectroradiometer (MOD16A2GF.061) from Running et al. (2021), referred to as ‘MODIS 

AET’ hereafter, and 2) 30 m high-resolution, monthly composites of CSIRO MODIS Reflectance-based Scaling 

Evapotranspiration (CMRSET) from McVicar et al. (2022). The MODIS AET product is one of the most widely used global 165 

AET datasets in hydrological and biogeochemical studies (e.g., Baker et al., 2021; Gaona et al., 2022; Salazar-Martínez et al., 

2022), while CMRSET is an Australian regional product tested and used extensively over the corresponding region (e.g., 

Doody et al., 2023; Guerschman et al., 2022; Xu et al., 2022). In both cases, we extracted AET timeseries from pixels that 

contain the flux tower sites. The 8-day composites of MODIS AET data were aggregated into monthly data through weighted 

temporal averaging. 170 

2.3.3 Potential evapotranspiration data 

As water stress and AET asynchronicity to PET require a timeseries of PET, they were quantified using monthly Morton’s wet 

environment potential evapotranspiration (Morton, 1983) from the SILO (Scientific Information for Land Owners) database 

(https://www.longpaddock.qld.gov.au/silo/). 
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2.4 Method 175 

To characterise the performance of AETRS products, the signatures described in Section 2.1 are calculated separately for flux 

towers AET (AETFluxtower) and AETRS. Then, we investigated the deviation of AETRS signatures from AETFluxtower signatures. 

As mentioned above, different periods have been considered at each flux tower site depending on their data coverage. For each 

site, the flux tower period of record determined the period of comparison between flux tower and remotely sensed information. 

Finally, the traditional efficiency metrics such as NSE, KGE, and components of KGE were calculated using monthly MODIS 180 

and CMRSET AET at each flux tower site in order to assess predictive skills and the challenges associated with using these 

traditional metrics compared to AET signatures. 

3 Results 

The AET signature results are presented in the four main categories based on the temporal scales in the order of 1) annual, 2) 

seasonal, 3) monthly, and 4) event-scale. To allow better contextualisation of AET signature results, we first present some 185 

example monthly timeseries plots of AETFluxtower, AETRS, SILO rainfall, and PET at six flux towers (Figure 2). These timeseries 

plots highlight some aspects of AET that can be observed through visual inspections, such as AET variability, periodicity, and 

asynchronicity between AET and PET, which can subsequently be considered in AET signature results. 

3.1 Annual AET signatures 

Figure 3a shows an increase in the long-term median  (𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙) values with decreasing aridity index, as expected. For 190 

example, less arid sites (shown in blues), such as Cape Tribulation and Cow Bay, have higher 𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙 , while more arid 

sites (shown in reds), such as Calperum and Great Western Woodland have lower 𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙 . The comparison of signatures 

between flux tower and RS products shows that AETRS products tend to underestimate 𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙 , except for less arid flux 

sites (i.e., aridity index <1 as in Table 2), such as Robson Creek, Cow Bay, and Cape Tribulation. Readers should bear in mind 

the difference in the spatial footprint of data (i.e., support), which is typically on the order of 102-104 meters in the case of 195 

remotely sensed data (depending on the source, except high-resolution AET products developed based on AET sources such 

as Landsat and Sentinel-2), and approximately one order of magnitude smaller for flux towers (Chu et al., 2021; Finnigan, 

2008). While some AET signatures may be relatively insensitive to this difference in the spatial footprint of data, it is 

reasonable to expect that the long-term average or median values may be sensitive to the position of the flux tower in the 

landscape, and thus, some variation in Figure 3a may be directly attributable to this.  200 

Figure 3b shows a higher coefficient of variation of annual AET  (𝐶𝑉𝑎𝑛𝑛𝑢𝑎𝑙) at arid flux tower sites such as Calperum, Sturt 

Plains, and Yanco, whereas other sites show lower 𝐶𝑉𝑎𝑛𝑛𝑢𝑎𝑙  within the range of 0-0.2. 𝐶𝑉𝑎𝑛𝑛𝑢𝑎𝑙  is lower in both MODIS and 

CMRSET AET compared to flux towers at almost all flux towers, and the scatter is high, implying the representation of year-

to-year variability is poor in MODIS and CMRSET compared to the actual inter-annual variability as seen in flux tower data.  
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 205 

Figure 2: Monthly timeseries plots of flux tower and remotely sensed AET, rainfall and PET at six example flux tower sites. 

3.2 Seasonal AET signatures 

Figure 4a shows periodicity (P12month) via the lag-12 autocorrelation. No clear relationship is observed in P12month with aridity. 

For example, weaker P12month values are observed at both the more arid flux tower sites (e.g., Great Western Woodlands, 

Yanco) and less arid flux tower sites (e.g., Cape Tribulation). This result may reflect hydroclimatic factors since strongly 210 

seasonal climates can occur in both arid and temperate environments. Remotely sensed data performs more poorly in this 

metric than in any other. The P12month of CMRSET monthly AET shows significant scatter but minimal bias. However, MODIS 

monthly AET shows stronger periodic behaviour than ground measurements at most of the flux tower sites. 

Figure 4b compares the timing of seasonal peaks (𝑇𝑆𝑃) between AETRS and AETFluxtower estimates. Here, CMRSET tends to 

show the same timing (7 out of 17 flux towers) or closer timing (e.g., one month offset - 6 out of 17 flux towers) of TSP as 215 
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flux towers at many flux tower sites, whereas those calculated using MODIS AET are significantly offset with flux tower TSP. 

This confirms that CMRSET tends to capture flux tower AET seasonal peaks more closely than MODIS AET. The MODIS 

results for these two metrics suggest that strongly periodic remote sensing estimates do not necessarily align well with the TSP 

in ground measurements (i.e., AETFluxtower). 

220 
Figure 3: Comparison of annual AET signatures; a) Long-term median AET, b) Coefficient of variation (CV) of annual AET, 

between remotely sensed AET (MODIS and CMRSET AET) and flux tower AET. (Note that the flux towers are ordered by aridity 

index – from Cape Tribulation (Lowest aridity) to Calperum (Highest aridity)). 

Figure 4: Comparison of seasonal AET signatures, a) Periodicity of AET (Lag-12 auto-correlation), b) Timing of seasonal peak, 225 
between remotely sensed AET (MODIS and CMRSET AET) and flux tower AET. Note that Figure 4b values take integer values 

only (i.e., either one calendar month or the next), leading to several points overlying the same plotting position; to make every point 

visible we subject each point to a jitter (i.e., a unique offset within the same grid cell). 
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3.3 Monthly AET signatures 

Figure 5 quantifies and compares monthly AET signatures using AETFluxtower and AETRS. Figure 5a shows a lower 𝐶𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦  at 230 

less arid flux towers such as Cape Tribulation, Cow Bay, and Robson Creek, with most other flux towers grouping tightly 

between CV values of 0.3 and 0.6, while Sturt Plains is a clear outlier at 0.9. 𝐶𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦  from CMRSET and MODIS AET do 

not show much overall bias relative to AETFluxtower, yet the match with observed is very poor, with considerable scatter due to 

overestimation and underestimation of 𝐶𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦 , depending on site.  

Regarding water stress (𝑊𝑆), Figure 5b shows how 𝑊𝑆 increases with aridity, as expected. WS from CMRSET and MODIS 235 

AET is moderately well predicted except for wet flux towers, which are underestimated. It is possible that this is due to errors 

or biases in PET (recall that Morton’s Wet Environment PET was used), which may be less of an issue when PET is clearly 

greater than AET, whereas in cases where they are similar PET errors may be more important. Figure 5c shows the AET 

asynchronicity to PET (𝐴𝐴𝑃) that incorporates differences in phases between AET and PET timeseries. Results show that 

both AETFluxtower and AETRS are asynchronous with PET (i.e., APP > 0) for all the sites. However, at wetter sites, AET is more 240 

synchronous with PET showing smaller APP values (i.e., smaller APP indicates closer synchronicity to PET), perhaps 

suggesting few temporal gaps in water availability, but increasing with aridity index (except at Calperum and Great Western 

Woodlands sites). Furthermore, the results show separation between remotely sensed products, with MODIS showing more 

AAP while CMRSET showing lower AAP compared to flux tower AAP for sites exhibiting higher than average asynchronicity. 

3.4 Event-scale AET signatures 245 

Figure 6 shows the index of AET responsiveness to a rainfall event (𝑅). Recall that such information is unavailable for RS 

data due to its longer timestep. The 𝑅 of zero indicates no correlation between rainfall event and the subsequent AET, and 

Figure 6 shows no discernible correlation between the magnitude of a rainfall event (i.e., > 5mm/day in this example) and the 

subsequent AET on either the rain day or thereafter (i.e., maximum of 10 days window in this example) at the majority of the 

flux tower sites, and even a slightly negative correlation, perhaps suggesting that rain days might be followed by cloudy 250 

weather that suppresses AET. 

3.5 Traditional efficiency metrics 

Figure 7 shows a range of commonly used efficiency metrics such as NSE, KGE, and the sub-components of KGE, namely, 

the ratio of standard deviations (α), the ratio of means (β), and the Pearson correlation coefficient (r), calculated using monthly 

MODIS and CMRSET AET with flux tower AET. The distribution of NSE (median: -0.11) from MODIS AET indicates a 255 

poor prediction of AETFluxtower on the monthly scale. In contrast, the distribution of NSE from CMRSET AET shows a positive, 

but still close to zero, median value of 0.14, implying better performance than MODIS but still overall poor performance. 

For KGE, the median KGE values across flux tower sites for monthly MODIS and CMRSET AET are 0.45 and 0.53, 

respectively. The sub-components of KGE, such as α shows closer variability in MODIS AET (median α = 1.07) and in 
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CMRSET (median α = 0.94) compared to flux tower estimates. The β component of KGE shows a lower mean in MODIS 260 

AET (median β = 0.77) and a slightly higher mean in CMRSET (median β = 1. 07) compared to flux tower estimates. The r 

component of KGE shows a relatively similar correlation for both MODIS AET (median r = 0.77) and CMRSET (median r = 

0.69) with AETFluxtower. Although these components of KGE provide valuable information about the ability of AETRS to capture 

dynamics from AETFluxtower, this information is diluted in the final KGE value. Figure S1 in the supplementary information 

shows the traditional efficiency metric values at each flux tower site.  265 

 

 

Figure 5: Comparison of monthly signatures; a) Coefficient of variation of monthly AET, b) Water stress, and c) AET 

asynchronicity to PET, between remotely sensed AET (MODIS and CMRSET) and flux tower AET. 
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270 
Figure 6: Index of AET responsiveness to rainfall vs. aridity index at flux tower sites. (Note that the index of zero indicates no 

correlation between rainfall event and the subsequent AET). 

 

Figure 7: Distribution of conventional efficiency metrics, all calculated on a monthly timestep: 1) Nash Sutcliffe efficiency (NSE), 2) 

Kling Gupta Efficiency (KGE), 3) Alpha (α – ratio of standard deviations), 4) Beta (β – ratio of means), and r (r – Pearson correlation 275 
coefficient), calculated using monthly MODIS and CMRSET AET with flux tower AET (Note that there are two outliers not shown 

in the NSE calculated for MODIS and CMRSET, which are lower than -3). 
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4 Discussion 

This study developed evapotranspiration signatures at various temporal scales and used them to evaluate remotely sensed AET 

information against flux towers. The study provides a basis for exploring what sort of signatures might be useful when 280 

investigating and characterising AET behaviours, with applications across other domains, such as characterising catchment 

processes and critiquing hydrological models. 

4.1 Value of AET signatures over aggregate measures of performance 

AET signatures introduced in this analysis offer comprehensive behavioural insights into AET to complement existing suites 

of indices for streamflow and, to a lesser extent, groundwater. A key benefit of these signatures is their capacity to characterise 285 

different aspects of AET dynamics, allowing the quantification of nuanced aspects that can be discerned through visual 

inspection but, without signatures, are not easily defined numerically. Some examples are given in Table 3.  

Table 3: Example of aspects of AET dynamics that can be discerned via visual inspection of timeseries (Figure 2) and are 

subsequently reflected in signature results (Figure 4 & 5) 

Flux tower Aspects of AET dynamics based on 

visual inspection 

Corresponding signature results 

Calperum CMRSET closely synchronizes with 

PET variability 

 

AET asynchronicity to PET(AAP) is low (0.17; 

note a value of zero would mean perfect 

synchronicity) 

 

The seasonal variation in MODIS is 

shifted (peaks are too early) 

Timing of seasonal peaks (TSP) indicates earlier 

peak (July for MODIS compared to December 

for CMRSET and fluxtower) 

 

Gingin The seasonal variation in fluxtower 

AET is offset with PET 

 

Fluxtower AAP is relatively higher (0.34) 

showing the asynchronicity with PET 

CMRSET closely synchronizes with 

PET variability.  

 

CMRSET AAP is low (0.12) 

Cumberland Plain Clear and regular seasonal cycle is 

observed in fluxtower and RS AET 

 

Periodicity (P12month) is greater than 0.6 for 

fluxtower and RS AET 

Fluxtower and RS AET are mostly 

synchronized 

 

TSP is same for MODIS and CMRSET 

(January) and only slightly different for 

fluxtower (February) 

Wombat State 

Forest 

Clear and regular seasonal cycle is 

observed in fluxtower and RS AET 

P12month  is greater than 0.73 for fluxtower and 

RS AET 

 

Clear and somewhat high temporal 

variability of monthly AET is 

observed in fluxtower and RS AET 

 

Coefficient of variation (CV) is greater than 0.44 

for fluxtower and RS AET 
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Howard Springs Relatively high temporal variability 

of monthly AET is observed in 

fluxtower and RS AET 

CV is higher in MODIS (0.52) compared to 

fluxtower AET (0.32) and CMRSET (0.31) 

 

 

fluxtower and RS AET are mostly 

synchronized. 

 

TSP is same for MODIS and CMRSET 

(January) and different for fluxtower (March) 

 

Robson Creek Lower temporal variability of 

monthly AET is observed in 

fluxtower AET compared to RS AET 

CV is low in fluxtower AET (0.18) compared to 

CMRSET (0.27) and MODIS (0.24) 

RS AET is more responsive to and 

synchronizes with PET than 

fluxtower AET 

 

Flux tower water stress (WS) is higher (0.38) 

compared to CMRSET (0.17) and MODIS 

(0.11) 

 290 

This capacity for nuanced characterisation in AET signatures contrasts with traditional fit/performance metrics such as NSE 

and KGE. As mentioned in the introduction, these commonly used performance metrics are often applied to quantify 

hydrological model performances but may obscure specific behavioural information (McMillan, 2021; Wagener & Gupta, 

2005). For example, the NSE calculated using monthly MODIS and CMRSET AET at some flux tower sites showed negative 

values, indicating bad predictive skills, whereas the KGE calculated using both the AETRS tended to show some predictive 295 

skills over flux tower observations. However, both of these conventional performance metrics fail to identify what aspects of 

AET in remote sensing products have led to poor prediction of AETFluxtower. Even though the subcomponents of KGE, such as 

the ratio of standard deviation, the ratio of mean, and the Pearson correlation coefficient, provided valuable information about 

the ability of these two AETRS products to capture AET dynamics compared to AETFluxtower, the final KGE value dilute this 

information. Therefore, incorporating AET signatures into applications such as hydrological model calibration and evaluation 300 

could lead to more accurate and realistic outcomes. 

4.2 Insights into actual evapotranspiration behaviour at Australian flux tower sites 

This study confirms various anticipated AET behaviours at flux tower sites in Australia across different temporal scales. For 

example, the 𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙  increased as the aridity index decreased as expected, indicating that less arid flux towers have a higher 

𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙 , whereas more arid flux towers have a lower 𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙 . However, the CVannual  across flux tower sites was low 305 

(range of 0-0.2 at 14 out of 17 sites), regardless of their aridity index. This finding is consistent with the relatively constant 

annual AET variability over time, as reported by Gardiya Weligamage et al. (2023). In terms of CVmonthly of flux tower AET, 

a higher degree of AET fluctuation was observed compared to the annual scale; however, flux towers situated in temperate 

climates with dry winters and hot summers (e.g., Cape Tribulation, Cow Bay, and Robson Creek) exhibited lower monthly 

variability. As expected, WS at flux towers largely increased with increased aridity. Regarding seasonal AET behaviour, the 310 

TSP of flux tower AET was identified between November and March. Regarding the P12month of flux tower AET, no distinct 

relationship was found between periodicity and the aridity index. At the event scale, most flux towers did not show a discernible 

correlation between rainfall events and subsequent AET events. Therefore, at this stage, the ‘index of AET responsiveness to 
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a rainfall event’ signature does not appear to add significant value in this AET signature analysis. However, we employed this 

event-scale signature to evaluate commonly used conceptual rainfall-runoff model performances in a companion paper 315 

(Gardiya Weligamage et al., 2024), and the models were found to be very biased in this signature. Therefore, this event-scale 

signature adds value in constraining models or exploring model deficiency. Furthermore, this event-scale signature is 

particularly noteworthy, as it highlights a distinct aspect of AET dynamics not previously quantified. As McMillan, (2020) 

confirmed, no signature (even an indirect AET behaviour explanation using hydrological signatures) was previously identified 

for assessing AET at the event scale. 320 

4.3 Implications for quality of remotely sensed actual evapotranspiration 

The eight AET signatures proposed in this study are used to highlight the strengths and weaknesses of two AETRS products 

(i.e., MODIS AET and CMRSET) on multiple aspects by assessing their AET signatures with those obtained from flux tower 

observations. Given that it seems increasingly common for studies (particularly modelling studies) to uncritically adopt AETRS 

products, these findings underscore the deficiencies in AETRS data and pinpoint several specific aspects of failure. Thus, we 325 

emphasize the importance of investigating AETRS data prior to use in any other applications, such as rainfall-runoff modelling.  

More specifically, most signatures, such as monthly and seasonal (except periodicity from MODIS monthly AET) AET 

signatures, reveal that AETRS is generally unbiased compared to AETFluxtower. However, the wide scatter observed in the AET 

signatures underscores the challenge of reproducing the dynamics captured by flux tower data. This wide scatter was seen in 

several signatures such as CVmonthly, AAP, P12month, and TSP. At the annual scale, RS-derived AET signatures of 𝐴𝐸�̃�𝑎𝑛𝑛𝑢𝑎𝑙  330 

and CVmonthly showed underestimation (negative bias) relative to flux towers. At the seasonal scale, challenges were particularly 

pronounced with the MODIS AET, which exhibited offsets in TSP, while being overly periodic compared to flux tower data. 

Therefore, caution should be exercised when extracting seasonal information from MODIS AET. Conversely, the regionally 

developed CMRSET product tended to align comparatively better with the TSP observed by flux towers, likely because the 

CMRSET model was calibrated only to flux tower sites in Australia (Guerschman et al., 2022), in contrast to MODIS which 335 

is globally calibrated and thus has less Australian focus. Our findings concur with Guerschman et al. (2022), who reported that 

the calibrated CMRSET model performs better than MODIS AET (i.e., MOD16A2). However, CMRSET exhibited greater 

scatter in terms of periodicity, highlighting issues with seasonal consistency.  

4.4 Limitations and future studies 

While this study assessed these signatures calculated using AETFluxtower estimates and compared them with those calculated 340 

using AETRS estimates, there are uncertainties associated with flux measurement errors and spatial representativeness of both 

estimates. In this study, we assumed the AETFluxtower to be robust and compared the AET signatures calculated using them with 

those calculated using remotely sensed products. However, these flux towers may be subjected to errors in energy closure in 

the eddy covariance method due to conditions such as weak turbulence or systematic flux leakage on hillslopes (Chen et al., 

2011; Wilson et al., 2002). Moreover, as mentioned, there can be differences in AET signatures due to the different spatial 345 
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footprints of observation between AETRS and AETFluxtower. Viewing this study as starting point for the study of AET signatures, 

future studies can expand or modify these signatures in order to best capture AET behaviours, including on other continents, 

and can be employed in hydrological model calibration and evaluation to represent AET processes realistically.  

5. Conclusion 

This study proposed eight AET signatures to explore AET behaviours at different temporal scales, expanding upon 350 

hydrological signature studies and providing comprehensive insights into AET dynamics. The AET signatures calculated from 

flux towers in Australia were consistent with anticipated AET behaviour, and their comparison with signatures derived from 

remotely sensed AET data highlights the strengths and weaknesses of RS information. In a broader context, the remotely 

sensed products used in this study show significant scatter around the flux tower values, signalling caution regarding their 

capacity to mimic observed AET behaviours accurately. Therefore, future studies are encouraged to leverage these AET 355 

signatures to evaluate remotely sensed products before their adopted and to better extract and improve information for activities 

such as hydrological modelling. 
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