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Abstract. Behavioural hydrological modelling aims not only at predicting the discharge of an area within a model, but also at 

understanding and correctly depicting the underlying hydrological processes. Here, we present a new approach for the 

calibration and evaluation of water balance models, exemplarily applied to the Riveris catchment in Rhineland-Palatinate, 

Germany. For our approach, we used the behavioural model WaSiM. The first calibration step is the adjustment of the 

evapotranspiration (ETa) parameters based on MODIS evaporation data. This aims at providing correct evaporation behaviour 10 

of the model and at closing the water balance at the gauging station. In a second step, geometry and transmissivity of the 

aquifer are determined using the Characteristic Delay Curve (CDC). The portion of groundwater recharge was calibrated using 

the Delayed Flow Index (DFI). In a third step, inappropriate pedotransfer functions (PTFs) could be filtered out by comparing 

dominant runoff process patterns under a synthetic precipitation event with a soil hydrological reference map, Then, the 

discharge peaks were adjusted based on so-called signature indices. This ensured a correct depiction of high-flow volume in 15 

the model. Finally, the overall model performance was determined using signature indices and efficiency measures. The results 

show a very good model fit with values for the NSE of 0.88 and 0.9 for the KGE in the calibration period and an NSE of 0.81 

and a KGE of 0.89 for the validation period. Simultaneously, our calibration approach ensured a correct depiction of the 

underlying processes (groundwater behaviour, runoff patterns). This means that our calibration approach allows selecting a 

behaviourally faithful one from many possible parameterisation variants. 20 
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1 Introduction 

Traditionally, hydrological models are calibrated mainly on the basis of gauging data, with the aim of accurately predicting 25 

discharge. However, the underlying processes like groundwater behaviour or runoff generation processes are often neglected 

in this approach (Schaake et al., 1996; Xiong and Guo, 1999; Casper et al., 2019; Kheimi and Abdelaziz, 2022). Relying solely 

on statistical evaluations of overall runoff performance may not adequately capture model performance for high and low flow 

extremes (Westerberg et al., 2011; Althoff and Rodrigues, 2021). This means that although these models are then suitable for 

predicting runoff, they do not allow investigations of the underlying processes. This emphasises the necessity for physically-30 

based models to be not just theoretically accurate but also empirically validated against the dynamics of natural hydrological 

systems (K. Beven, 2002). 

 

Behavioural modelling addresses this issue by considering not only the discharge, but also the discharge-forming processes 

when calibrating the model. This means that methodological approaches must be incorporated in the calibration process that 35 

allow to align different simulated processes with the actual catchment responses (Vansteenkiste et al., 2014). For instance, 

Ferket et al. (2010), H. Zhang et al. (2011), and Meresa et al. (2023) implemented performance measures on the sub-surface 

flow (e.g., interflow and deep percolation to groundwater) components of runoff discharges. Casper et al. (2023) improved the 

reproduction of spatial and temporal evapotranspiration (ETa) patterns by applying a MODIS-based calibration approach to 

vegetation-related ETa parameters. 40 

 

Groundwater’s delayed response to precipitation and its role in baseflow during dry periods are critical for accurate water 

resource management (K. J. Beven and Alcock, 2012). The duration from groundwater recharge to baseflow discharge is 

influenced by topography, geology, vegetation, land use, and climate (Barthel, 2006; Götzinger et al., 2008). Baseflow fed 

streamflow is directly related to groundwater storage and its interaction with streams, which can vary heavily across catchments 45 

(Barkwith et al., 2015). This complexity necessitates incorporating groundwater flow into hydrological models to accurately 

simulate discharge under diverse hydrological conditions (Knisel Jr, 1963; Smakhtin, 2001; McNamara et al., 2011; Barkwith 

et al., 2015; Stoelzle et al., 2015). The behaviour of the groundwater component in water balance models must therefore be 
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considered when calibrating a model. This makes it necessary to implement a way of evaluating the model’s ability to correctly 

represent groundwater behaviour and its temporal contribution to the overall discharge. 50 

 

Pedotransfer functions (PTF) allow the estimation of soil hydraulic properties from widely available soil data like grain size, 

density, or depth. Simulation outcomes of different PTFs highly differ in runoff components (surface runoff, interflow and 

deep percolation) and evapotranspiration (ETa) rates in space and time (Refsgaard, 2001; Stisen et al., 2008; Koch et al., 2016, 

Koch et al., 2017; Casper et al., 2019; Mohajerani et al., 2021). Therefore, the correct choice of a PTF for soil parameterisation 55 

is crucial. 

 

Liu et al. (2022) demonstrated that the incorporation of remote sensing data like ETa data or terrestrial water storage change 

(TWSC) for hydrologic model calibration can improve the depiction of those processes. It was also shown that combinations 

of different evaluation criteria increase the model accuracy regarding the underlying processes (Nesru et al., 2020; Nolte et al., 60 

2021; Yáñez-Morroni et al., 2024). However, there have been no calibration approaches that include the evaluation of ETa, 

groundwater behaviour, runoff generation processes, and the overall discharge in one consecutive calibration process. 

 

To address the above-mentioned challenges, our research introduces a new approach for the parameterisation and calibration 

of water balance models. This approach comprises the calibration of evapotranspiration patterns of different land uses based 65 

on remote sensing ETa data, ensuring correct ETa patterns and a closed water balance. In addition, the ground water behaviour 

is assessed by deriving the long term baseflow from the measured discharge of the catchment. This allows for calibration of 

the groundwater behaviour (storage, recession) as well as the groundwater recharge (deep percolation) within the model. 

Furthermore, the influence of the soil parameterisation on the spatial pattern of runoff generation is assessed. This ensures a 

correct depiction of runoff patterns over the catchment area. Lastly, high discharge volume is calibrated by deriving 70 

information about the catchment discharge characteristics from the flow duration curve. By incorporating the calibration and 

evaluation of these different model aspects, we aim at reaching a model calibration that correctly simulates the discharge as 
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well as the underlying hydrological processes, leading to a behavioural model in the sense of Gupta et al. (2006), which 

simulates a correct hydrograph at the catchment outlet for the right reasons. 

 75 

Our study is aimed at (i) systematically describing the calibration steps in connection to the structure of the hydrological model 

and its parameterisations; (ii) exploring the implications of process specific parameters on model behaviour; (iii) demonstrating 

how our novel approach of model calibration can lead to a more accurate simulation of hydrological processes in space and 

time, which we define as a behavioural model. 

2 Methodology and Material 80 

2.1 Study area 

The Riverisbach catchment (Fig. 1) was selected as the study area for the demonstration of the parameterisation approach. This 

was due to the good availability of data on soil, land use, evaporation patterns and discharge, which is necessary for the 

evaluation of the model calibration. The catchment basin is located south-east of Trier in Rhineland-Palatinate, Germany. It 

covers an area of around 22 km² and ranges from 329 m above sea level in the north-west to 705 m above sea level in the 85 

south, resulting in a height amplitude of 376 metres and an average slope gradient of 4.49 %. The used gauging station 

‘Riveristalsperre’ is located in the west of the catchment at 49° 41.771’ N, 6° 46.741’ E. The mean annual precipitation amounts 

to 918 mm per year. 
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 90 
Figure 1: Topography, soil types and land cover types within the Riverisbach catchment as it’s used within our WaSiM based model. 

 

The area is located above bedrock from the Drohntal strata, i.e. quartz sandstone and quartzitic sandstone with intercalations 

of claystone and siltstone. The soils are dominated by Cambisols, while Gleysols and Stagnosols can be found along the 

watercourses in the floodplain area. The majority of the Riverisbach catchment area is covered by forest. Conifers are 95 

dominating in the north-east and west and deciduous trees in the centre and south. In the west there are also small areas of 

grassland and mixed woodland. 

2.2 Data sources 

Soil type information was taken from the ‘Bodenflächendaten im Maßstab 1:50.000 (BFD50)’ (Landesamt für Geologie und 

Bergbau, 2021). The data for the landuse is derived from European Union’s Copernicus Land Monitoring Service information 100 

(European Environment Agency, Copenhagen, 2018). INTERMET data (Gerlach, 2006) was used as time series for 

meteorological data. Wind data was taken from the Agrarmeteorologie Rheinland-Pfalz (2024). Values for the saturated 

hydraulic conductivity 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 were taken from Ad-hoc-AG Boden (2006). 

2.3 Model setup and parameterisation 

The WaSiM model (Schulla, 1997) version 10.08.02 (Schulla, 2024a) was selected for the simulation and development of the 105 

parameterisation approach. It is a deterministic, hydrological catchment model that is suitable for the simulation of both small 

(< 1 km²) and very large areas (> 10000 km²). It also simulates the underlying processes that lead to discharge generation. This 

includes the ETa, groundwater flow, surface runoff and interflow, as well as groundwater recharge. It is therefore suitable for 

a behavioural modelling approach that includes the calibration of these processes. A schematic depiction of the WaSiM model 

is shown in Fig. 2. The soil is represented in the model as a rectangular grid of 1-dimensional columns. Each of these columns 110 

is divided into soil horizons of different thicknesses, which in turn are subdivided into several layers. At the bottom, a section 
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of aquifer layers is included. Surface runoff, interflow and groundwater-contributing deep percolation can be generated. 

Surface runoff and interflow of each subcatchment are delayed through a single linear reservoir (SLR) each. 

 

 115 

Figure 2: Conceptual diagram of the WaSiM model’s structure. Bold text symbolises certain parameters or functions that are used 
to derive parameter values for the model parameterisation. Blue arrows indicate water fluxes within the model. 

 

Spatially resolved data is differentiated within the model using grid structures. This also enables the model to interpolate 

climatic input data over the catchment area. The model uses the Richards equation (Richards, 1931) to calculate the water 120 

transport within the unsaturated soil zone. It is defined as: 

∂θ
∂t

=
∂
∂z
�k(Ψm) �

𝜕𝜕Ψ𝑚𝑚

𝜕𝜕t
�� (1) 

where 𝑧𝑧 is the depth, 𝜃𝜃 is the water content [vol.-%], 𝑡𝑡 is the time [d], and Ψm is the hydraulic conductivity in dependence of 

the matrix potential [𝑐𝑐𝑐𝑐 · 𝑑𝑑−1]. The van Genuchten parameters (Van Genuchten, 1980) are used to calculate the soil physical 

properties. The Penman-Monteith (Monteith, 1965) method is used to calculate evapotranspiration. A two-dimensional 125 

approach based on Darcy’s law (Darcy, 1856) is used to calculate groundwater flow. It is defined as: 

𝑞𝑞 = 𝑘𝑘 ⋅
∂Ψ
∂𝑧𝑧

(2) 
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where 𝑞𝑞 is the volume flow [𝑚𝑚3 · 𝑠𝑠−1], 𝑘𝑘 is the hydraulic conductivity [𝑚𝑚 · 𝑠𝑠−1], and [𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

] is the hydraulic gradient [-]. 

For the model parameterisation, a spatial resolution of 40 m and a temporal resolution of 1 h were chosen. The 40 m spatial 

resolution showed to be the best trade-off between spatial resolution precision and model computation time. This also applies 130 

to the chosen temporal resolution of 1 h. INTERMET data (Gerlach, 2006) was used as input time series for meteorological 

data (temperature, precipitation, radiation, humidity). The data ranges from 01.01.2010 to 31.12.2020. Wind data was taken 

from the Agrarmeteorologie Rheinland-Pfalz (2024) for the stations Avelsbach [49.754° N, 6.693° E], Hermeskeil [49.655° 

N, 6.933° E] and Konz [49.687° N, 6.572° E]. Missing entries for periods of a few hours were manually resolved. 

 135 

Following, the preprocessing tool of WaSiM, TANALYS (Schulla, 2024b), was used to calculate the required spatial 

information grids based on the digital elevation model. These spatial information grids include grids for the slope, exposition, 

subcatchments, river network, river width and depth, colmation, as well as lateral aquifer conductivities (𝑘𝑘x and 𝑘𝑘𝑦𝑦). A value 

of 50 was selected as the threshold for the river network. The threshold value describes from how many cells of runoff must 

be combined to form a water body cell in the model. Higher values for this threshold therefore result in a coarser river network, 140 

while lower values result in finer river networks. The resulting network, based on the threshold value of 50 cells, showed the 

best fit with the water body of the catchment. Based on the soil types and land use information, profiles of the individual soils 

were created. These profiles contained data on thickness, soil type, depth, bulk density, carbonate content, humus content and 

dry bulk density of the individual horizons. 

 145 

Simulated soil hydraulic properties include hydraulic conductivity, soil water content at field capacity, and saturated water 

content. These are described using van Genuchten parameters and the saturated hydraulic conductivity 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠. We used 12 

different pedotransfer functions (PTFs) to calculate these parameter values. Pedotransfer functions can derive the required 

values for the van Genuchten parameters from measured soil data based on certain regression curves. Combinations of used 

pedotransfer functions are shown in Table 1. For the first seven PTF combinations, values for the saturated hydraulic 150 

conductivity 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠  were taken from the KA5 Ad-hoc-AG Boden (2006). For PTF combinations 8 to 12, the values were 

calculated by the respective PTF’s equation for 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠. The chosen PTFs mainly differ in their underlying data, soil sample size, 
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and considered soil parameters for the resulting predictive equations. A comprehensive analysis of the effects of PTFs 1 to 11 

on hydrological soil properties has been provided by Mohajerani et al. (2021). Each soil was then initialised with 27 layers, 

including a groundwater layer, and their respective hydraulic properties derived by the PTFs. 155 

 

Table 1: PTF combinations used to estimate the van Genuchten parameters and the saturated hydraulic conductivities. 

PTF Combination Van Genuchten Parameters Soil Hydraulic Conductivity 𝒌𝒌𝒔𝒔𝒔𝒔𝒔𝒔 

1 Wösten et al. (1999) Ad-hoc-AG Boden (2006) KA5 

2 Renger et al. (2008) Ad-hoc-AG Boden (2006) KA5 

3 Weynants et al. (2009) Ad-hoc-AG Boden (2006) KA5 

4 Zacharias and Wessolek (2007) Ad-hoc-AG Boden (2006) KA5 

5 Teepe et al. (2003) Ad-hoc-AG Boden (2006) KA5 

6 Y. Zhang and Schaap (2017): Rosetta H2w Ad-hoc-AG Boden (2006) KA5 

7 Y. Zhang and Schaap (2017): Rosetta H3w Ad-hoc-AG Boden (2006) KA5 

8 Wösten et al. (1999) Wösten et al. (1999) 

9 Renger et al. (2008) Renger et al. (2008) 

10 Y. Zhang and Schaap (2017): Rosetta H2w Y. Zhang and Schaap (2017): Rosetta H2w 

11 Y. Zhang and Schaap (2017): Rosetta H3w Y. Zhang and Schaap (2017): Rosetta H3w 

12 Szabó et al. (2021): euptfv2 Szabó et al. (2021): euptfv2 

 

2.4 Calibration scheme 

The calibration approach and its individual steps are described and summarised in Table 2. In Fig. 3, the individual calibration 160 

steps are depicted schematically in connection to the corresponding hydrological processes conceptualised in the WaSiM 

model structure. In step 1, evapotranspiration parameters are calibrated using MODIS evaporation patterns. This step ensures 

a closed water balance as well as correct ETa patterns across different land uses. Step 2 adjusts the geometry and transmissivity 

of the groundwater model. In step 3, the rate of groundwater recharge via the amount of water entering the aquifer is calibrated. 

Both steps aim at correctly depicting the groundwater model behaviour with its contribution to total discharge. In step 4, the 165 

different PTFs are evaluated by comparing the patterns of dominant runoff processes under a synthetic heavy rainfall event. 
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This step allows for the identification and exclusion of unsuitable PTFs that generate inaccurate runoff patterns. In step 5, the 

peaks in the hydrograph, represented as the high flow volume on the flow duration curve, are then adjusted to calibrate the 

model parts that are directly influenced by precipitation. Finally, in step 6, the model is evaluated in terms of its ability to 

predict the overall discharge, based on hydrograph efficiency metrics in a split-sample test. 170 

Table 2: Scheme for the calibration and evaluation approach applied in this study. 

Step Description Aim Scale Behaviour 

1 Adjustment of ETa (for 

each landuse) 

Close the water 

balance, match spatial 

patterns with MODIS 

Spatial and temporal 

pattern match 

Mean long-term behaviour 

2 Adjusting GW-model 

(transmissivity) 

Calibrated baseflow 

within the DFI 

Temporal match 

(DFI) 

Mean long-term behaviour 

of GW-submodel 

3 Adjusting GW-recharge Partitioning GW / 

interflow 

GW / interflow Long-term GW-recharge 

4 Checking runoff 

generation processes 

Match runoff processes 

with reference map 

(BHK) 

Spatial match Model behaviour test for 

extreme precipitation 

event (100 mm) 

5 Adjusting high flows Adjusting signature 

indices 

Match on flow 

duration curve 

Rainfall-fed part of the 

hydrograph 

6 Final model evaluation Peak flow statistics, 

split-sample test 

Flow duration curve, 

hydrograph 

Consistency at catchment 

outlet 
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Figure 3: Conceptual diagram of the WaSiM model structure and the steps of the associated calibration approach. 
Evapotranspiration patterns are calibrated using MODIS evaporation data (1). The groundwater model flow is then calibrated using 175 
the transmissivity (2). Groundwater recharge, i.e. the amount of water, is adjusted by calibrating the amount of interflow with the 
scaling factor 𝒅𝒅𝒓𝒓 (3). Dominant runoff process patterns derived from an extreme synthetic rainfall event are compared with the 
reference map to filter for matching patterns (4). Calibration of high discharge (peak flows) by adjusting the recession parameters 
of the direct runoff and interflow single linear reservoirs for each subcatchment (5). The last step, the evaluation of the hydrograph 
with efficiency metrics (6), is not shown in this concept figure. 180 

2.5 Calibration of ETa patterns (Step 1) 

The approach for calibrating the ETa patterns was originally described by Casper et al. (2023). According to this, the 

evaporation parameters were calibrated using land use-specific MODIS-derived data (MOD16A2) and validated against 

Landsat-derived ETa data. This calibration step enhances the representation of spatio-temporal ETa dynamics within the model 

and closes the water balance at the catchment outlet. All ETa related parameters are taken from Casper et al. (2023).  185 

2.6 Calibration of transmissivity (Step 2) 

Firstly, the model was calibrated in terms of its ability to reproduce the groundwater behaviour and the associated base flow. 

For this purpose, simulation runs were carried out with the initial parameterisations. A model run for the period from 1 January 
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2010 to 31 December 2014 served as a preliminary run for model spin-up, while the actual model run was then carried out for 

the period from 1 January 2010 to 31 December 2020 using the preliminary run as the initial model state. 190 

We then examined the groundwater behaviour of the catchment and the model by applying the delayed flow index (DFI) 

method of Stoelzle et al. (2020) to the measured gauging data and the simulated hydrograph. For this, the series of discharge 

values of the hydrograph is divided into non-overlapping sections. These sections span a specific period of block-length n 

(days) with 1 ≤  𝑛𝑛 ≤  180. The minimum flow value of each interval is then compared with the ones from adjacent intervals. 

If a minimum value multiplied by a specific factor 𝑓𝑓 =  0.9 is smaller than the adjacent minima, a turning point (TP) is defined 195 

at its position. These TPs are then connected and form a delayed-flow hydrograph, which results in a specific hydrograph for 

each block length n. From this, the delayed-flow index (DFI) is calculated for each block length as the ratio of the sum of the 

delayed-flow to the sum of the total flow. An example how the applied block lengths result in different hydrographs can be 

seen in Fig. 4. 

 200 

 
Figure 4: Application of the DFI approach. (a) is the hydrograph separation according to calculated break point values for block 
lengths. The corresponding characteristic delay curve (CDC) derived from the hydrograph separation over all block lengths of 𝟏𝟏 ≤
 𝒏𝒏 ≤  𝟏𝟏𝟏𝟏𝟏𝟏 are shown in (b). 

 205 

The DFI analysis was conducted using R (R Core Team, 2023) within RStudio (RStudio Team, 2020). The above-mentioned 

method was applied to the simulated hydrograph. DFI values for the individual block lengths n were calculated using the 
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function baseflow from the package lfstat (Gauster et al., 2022). The resulting DFI values for all block lengths n were then 

plotted in a diagram, creating a characteristic delay curve (CDC). The find_bps function from the R-package segmented 

(Muggeo et al., 2008) was then used to determine the breakpoints of the curve. Breakpoints are defined as those points of the 210 

curve at which a change in the discharge characteristic can be determined (sudden change in slope). For this, 𝑛𝑛𝐿𝐿𝐿𝐿 =  4 linear 

segments were fitted to the CDC by residual minimisation, resulting in a total of 𝑛𝑛𝐵𝐵𝐵𝐵 =  3 breakpoints along the curve. The 

area between the last breakpoint (𝑛𝑛 =  48) and 𝑛𝑛 =  180 was then considered as the area of the CDC where the aquifer’s 

baseflow is the dominant contribution. This was the area where our groundwater model calibration took place. This procedure 

was then done for each PTF, resulting in a CDC for each PTF parameterisation. 215 

 

Calibration was done to fit the slope of the rear area of the CDC. As the slope is determined by the transmissivity of the aquifer, 

adjustments were made for the model parameters 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦, colmation, as well as the thickness of the aquifer. This was done until 

the slopes of the rear ends of the CDC for the simulations were identical with the slope of the CDC for the gauging station. A 

table with the calibrated model parameters can be found in the Appendix (Table B1). 220 

2.7 Calibration of groundwater recharge (Step 3) 

After the groundwater transmissivity was adjusted, the different PTFs showed varying proportions in their CDC curves’ rear 

areas. This indicated that the different PTFs lead to different amounts of water that reached the aquifer. To fit the simulation’s 

CDC curve height to the height of the curve for the measured discharge, the value for the model parameter drainage density 

(𝑑𝑑𝑟𝑟) was adjusted for each PTF independently. This conceptual parameter describes how much of the infiltrating water in the 225 

soil passes into the interflow and thus does not reach the aquifer. It therefore controls the amount of water contributing to 

groundwater recharge. As per Schulla (1997), the parameter 𝑑𝑑𝑟𝑟 is included in the formula for the interflow as 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑘𝑘𝑠𝑠(Θ𝑚𝑚) ⋅ 𝛿𝛿𝛿𝛿 ⋅ 𝑑𝑑𝑟𝑟 ⋅ tan𝛽𝛽 (3) 

with 𝑘𝑘𝑠𝑠 being the saturated hydraulic conductivity [𝑚𝑚 ·  𝑠𝑠−1], 𝛩𝛩𝑚𝑚 being the water content in the actual layer m [-], 𝑑𝑑𝑟𝑟 being 

the scaling parameter for the interflow to consider anisotropy of 𝑘𝑘𝑠𝑠,ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, compared to 𝑘𝑘𝑠𝑠,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, and 𝛽𝛽 being the slope 230 

angle with a maximum of 𝛽𝛽 =  45°. 
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In this context, higher values of 𝑑𝑑𝑟𝑟  represent soil with stronger lateral drainage capabilities. This usually leads to more 

interflow and therefore less water that can infiltrate into the aquifer and contribute to groundwater recharge. Regarding the 

groundwater recharge calibration, higher values for 𝑑𝑑𝑟𝑟 lowered the curve, especially in the rear end. This brought the DFI 235 

values into the range of the reference curve (Fig. 5) for PTFs that initially showed higher CDCs in the rear area. For CDCs of 

PTFs that were lower than the reference CDC of the gauging station, the value for 𝑑𝑑𝑟𝑟 had to be lowered. This reduced interflow 

and increased the groundwater recharge. A table with the values of 𝑑𝑑𝑟𝑟 for the different PTFs can be found in the Appendix 

(Table B2). 

 240 

Figure 5: CDCs for the uncalibrated groundwater model and after groundwater model calibration, exemplarily for PTF 8. 

2.8 Evaluation of dominant runoff process patterns (Step 4) 

In the next step, the different PTFs were compared regarding their ability to accurately depict the surface runoff processes in 

the catchment area under a heavy precipitation event. This step served to filter out those PTFs that are not capable of simulating 

the correct runoff patterns. For this purpose, the approach developed by Mohajerani et al. (2023) for comparing the runoff 245 

processes was used and adapted for our calibration scheme. 

 

The soil hydrological map (BHK) of Rhineland-Palatinate from Steinrücken and Behrens (2010) was used as a reference for 

our comparison. The BHK is a map that depicts which runoff type dominantly appears under a heavy precipitation event. It 
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divides the runoff into saturated overland flow (SOF), subsurface flow (SSF) and deep percolation (DP). Two finer 250 

classifications for SOF and SSF are characterised by different delay times. However, the WaSiM model does not consider the 

delay but only the runoff type itself. Therefore, we only used the three main groups and not the subgroups for the comparison. 

We also refrained from subdividing the model processes according to the fractions, as suggested by Mohajerani et al. (2023). 

This was done because the soil hydrological map categorises the subclasses according to the delay and not to the proportions 

of runoff processes. A division by fractions therefore wouldn’t be fully comparable with a division by delay times (as in the 255 

BHK). 

 

The BHK was adjusted to the Riverisbach catchment boundaries and rasterised to a resolution of 40 m x 40 m. This was done 

to facilitate a direct comparison between simulated runoff processes and the BHK as reference. For the comparison, the model 

state at the end of 31 December 2014 was used as the initial state of this step’s model run. This initial state was then used to 260 

carry out a 7-day run-up under controlled climatic conditions ( 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  10 °𝐶𝐶 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  0 𝑊𝑊 · 𝑚𝑚−2 , 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  0 𝑚𝑚 · 𝑠𝑠−1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  100 % and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  0 𝑚𝑚𝑚𝑚) for the entire duration. This was 

done to eliminate influences from melting snow on the runoff analysis during the following main run as well as bringing soil 

moisture to field capacity. The final state of this preliminary run then served as the initial state for another 7-day model run. 

During this run, the catchment was irrigated with 100 mm of rain over the first seven hours (14.286 𝑚𝑚𝑚𝑚 · ℎ−1). Over the 265 

simulation period of these seven days, the cumulative runoff fractions for each cell of the catchment grid were calculated. 

From the calculated fractions of runoff per grid cell, maps were created where each grid cell’s dominant runoff process was 

attributed to. This resulted in a dominant runoff process map for each PTF. 

 

The simulated runoff process patterns were then compared with the runoff process patterns of the BHK. For this purpose, the 270 

comparison approach using the spatial efficiency metric (SPAEF) (Stisen et al., 2017; Demirel et al., 2018), was adapted. The 

SPAEF is to be understood as a measure of spatial similarity. It is defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  1 −  �(𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2 (4) 

𝛼𝛼 =  𝜌𝜌(𝐴𝐴,𝐵𝐵) (5)  
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𝛽𝛽 = �
𝜎𝜎𝐴𝐴
𝜇𝜇𝐴𝐴

𝜎𝜎𝐵𝐵
𝜇𝜇𝐵𝐵

� � (6) 275 

𝛾𝛾 =  
∑ min�𝐾𝐾𝑗𝑗 , 𝐿𝐿𝑗𝑗�𝑛𝑛
𝑗𝑗=1

∑ 𝐾𝐾𝑗𝑗𝑛𝑛
𝑗𝑗=1

(7) 

with 𝛼𝛼 being the Pearson correlation coefficient between the simulated grid (A) and the reference grid (B). 𝛽𝛽 is the fraction of 

coefficient of variations as an indicator of spatial variability. 𝛾𝛾 is the percentage of histogram intersection (Demirel et al., 

2018). The closer the SPAEF value is to 1, the higher the similarity between the compared patterns. During our analysis, 

however, we encountered a limitation with the standard SPAEF formula when applied to patterns consisting of only three 280 

groups. Specifically, the Pearson correlation coefficient, as a component of the SPAEF, tended to yield lower values if 

deviations occurred in marginal areas. This occurred even when there was substantial overall agreement. To address this issue, 

we adapted the SPAEF calculation by substituting the Pearson correlation component. Instead, we used a direct measurement 

of percentage agreement between the simulation and the reference map grids. This adjustment led to the development of a 

modified SPAEF formula: 285 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −�(𝛿𝛿 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2 (8) 

𝛿𝛿 =
∑ 1𝑛𝑛𝑔𝑔
𝑗𝑗=1

𝑛𝑛𝑔𝑔
 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑗𝑗 = 𝐵𝐵𝑗𝑗 (9) 

where 𝛿𝛿 is the percentage match of all grid fields between simulated map (A) and reference map (B). It is calculated as the 

fraction of the amount of identical grid cell pairs between both maps to the number of grid cells in one map (𝑛𝑛𝑔𝑔). 𝛽𝛽 and 𝛾𝛾 

remain unchanged. This new equation for SPAEFmod allowed us to correctly analyse the agreement between the simulated 290 

runoff patterns and the reference patterns of the hydrological map (BHK). A separate SPAEFmod value was then calculated 

based on the DRP map for each PTF. 

2.9 Calibration of high flow discharge (Step 5) 

The discharge peaks of the model were calibrated by adjusting the coefficients of the single linear reservoirs for the direct 

runoff (𝑘𝑘𝑑𝑑) and the interflow (𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖). The metrics of the signature indices (Casper et al., 2012) were used to evaluate the 295 
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calibration of the individual linear reservoirs. These indices consider different sections and properties of the flow duration 

curves (FDCs) of simulated and measured discharge and compare them against each other. This yields a percentage bias for 

each signature indice parameter. The BiasRR describes the percent bias in the mean values. The BiasFDCmidslope describes 

the percent bias in slope of the mid-segment. The BiasFHV describes the percent bias in high-segment volumes (upper 2 %). 

The BiasFLV is the difference in the long-term baseflow. The BiasFMM depicts the percent bias in mid-range flow levels. 300 

 

First, the coefficient for the direct runoff single linear reservoir, 𝑘𝑘𝑑𝑑, was calibrated. A low value of 2 seemed to fit best for all 

PTFs, as the proportion of direct runoff in the total runoff was low and did not need to be delayed any further. The value of 

BiasFHV was then minimised by adjusting the coefficient for the interflow runoff single linear reservoir, 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 . This was done 

to adjust the peaks of the simulated hydrograph to more closely resemble those of the measured hydrograph of the catchment. 305 

Higher values for 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 lead to a stronger delay of the interflow runoff. This results in lower peaks of the discharge. 

2.10 Final model evaluation (Step 6) 

2.10.1 Characteristic delay curve (CDC) comparison 

The CDCs for the different PTFs were compared to determine how well the discharge is simulated in the interflow area. For 

this purpose, the Manhattan distance between the CDCs between 𝑛𝑛 =  1 and 𝑛𝑛 =  43 (last breakpoint of the measured data) 310 

was calculated according to the following formula: 

𝑑𝑑(𝐴𝐴,𝐵𝐵) = �|𝐴𝐴𝑖𝑖 − 𝐵𝐵𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

(10) 

where A represents the values of the CDC for the gauging station and B the values for the curve of the simulation. 
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2.10.2 High discharge histogram overlap (HDHO) analysis 

In addition, a high discharge histogram overlap (HDHO) analysis was carried out based on the hydrographs. By comparing 315 

the histograms of the temporal peak discharge distribution for the simulated and measured hydrograph, the model’s capability 

of simulating the strongest discharge events can be assessed. For this purpose, the maximum discharge value of each year was 

determined. This was done for each PTFs hydrograph and for the measured data. The data were plotted in a histogram. The 

histogram overlap between simulated and measured data was then calculated for each PTF according to following formula: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =
∑ min�𝐾𝐾𝑗𝑗 , 𝐿𝐿𝑗𝑗�𝑛𝑛
𝑗𝑗=1

∑ 𝐾𝐾𝑗𝑗𝑛𝑛
𝑗𝑗=1

(11) 320 

where 𝑛𝑛 is the number of bins, 𝐾𝐾𝑗𝑗 the number of values within bin j for the reference (gauging station), and 𝐿𝐿𝑗𝑗 the number of 

values in bin 𝑗𝑗 for the simulation. This was done to determine a measure of the predictive accuracy of the discharge peaks. 

High histogram overlap values indicate a model’s better predictive accuracy. Lower values represent poorer model capabilities 

of high discharge prediction. 

2.10.3 Hydrograph efficiency metrics 325 

The hydrographs of the final simulations were then compared with the measured hydrograph by applying a split sample test. 

This was done to evaluate the model’s ability to correctly predict the overall discharge. For this purpose, three metrics were 

chosen. These include the Kling-Gupta efficiency (KGE) to evaluate the correspondence between observed and simulated 

hydrographs. It considers aspects like correlation, bias, and variability (Gupta and Kling, 2011). The Nash-Sutcliffe model 

efficiency coefficient (NSE) was used to evaluate how well simulated and measured values fit the 1:1 line. It puts a special 330 

focus on the prediction of correct volume (Nash and Sutcliffe, 1970). The third metric included was the coefficient of 

determination R². This metric is a measurement of the proportion of variance in the measured data that is predictable from the 

model data. The Kling-Gupta efficiency was calculated according to following formula: 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −�(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 (12) 
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where r is the Pearson correlation coefficient, α is a term representing the variability of prediction errors, and β is a bias term. 335 

The Nash-Sutcliffe model efficiency coefficient was calculated according to following formula: 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑄𝑄𝑂𝑂𝑡𝑡 − 𝑄𝑄𝑚𝑚𝑡𝑡 )2𝑇𝑇
𝑡𝑡=1

∑ �𝑄𝑄𝑂𝑂𝑡𝑡 − 𝑄𝑄𝑂𝑂�
2𝑇𝑇

𝑡𝑡=1

(13) 

where 𝑄𝑄𝑂𝑂 is the mean of observed discharges, 𝑄𝑄𝑚𝑚 is the simulated discharge, and 𝑄𝑄𝑂𝑂𝑡𝑡  is the observed discharge at time 𝑡𝑡. The 

coefficient of determination was calculated according to formula: 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

(14) 340 

where 𝑦𝑦𝑖𝑖 is the simulated discharge,  𝑦𝑦�𝑖𝑖 is the measured discharge, and 𝑦𝑦 is the mean measured discharge. All three efficiency 

metric values were calculated for the calibrated model hydrographs for each PTF. 

 

3 Results 

3.1 ETa patterns (Step 1) 345 

In step 1, we were able to use the already parameterised and calibrated values for the ETa-relevant plant properties from Casper 

et al. (2023). This made a separate evaluation of calibrated parameter values obsolete. The adequacy of the used values was 

also supported by the closed water balance in our model (see subsection 3.4), with deviations ranging from −10.99 % to 3 %. 

3.2 Groundwater model parameterisation (Step 2 and 3) 

The evaluation of the groundwater model adjustment (Fig. 6) shows that, in step 2 of our approach, we successfully matched 350 

the slope of the CDC to the observed data for all PTFs. This was achieved by using a single layer aquifer with a thickness of 

1 m and lateral hydraulic conductivities of 3𝐸𝐸 − 5 𝑚𝑚 · 𝑠𝑠−1. In step 3, the CDC height could also be adapted to the course of 

the gauging station curve for almost all PTFs. Only PTFs 9 and 10 could not be adjusted in height. The corresponding values 

for 𝑑𝑑𝑟𝑟 range from 20 for PTF 11 up to 75 for PTF 2. The values for PTFs 9 and 10 were even higher but did not change the 

https://doi.org/10.5194/hess-2024-369
Preprint. Discussion started: 22 January 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

height of the CDC. In the front part of the curve, the simulations almost exclusively run below the reference curve of the 355 

gauging station. Only PTFs 9 and 10 run above the curve for the measured data. 

 

Figure 6: CDCs for the uncalibrated groundwater model and after groundwater model calibration for each PTF. 

3.3 Dominant runoff process patterns (Step 4) 

In step 4, the simulated dominant runoff processes for each PTF were compared to the reference map (BHK) to evaluate how 360 

well each PTF represents the spatial patterns of runoff (see Fig. 7). The overview of the simulated runoff processes shows that 

some PTFs deviate significantly from the reference map. Except for PTFs 4, 9 and 10, all show dominant interflow over most 

of the catchment area. PTFs 1, 3, 5, 8 and 12 show hardly any significant areas of deep percolation. However, in the reference 

map of the BHK, deep percolation can be found in the northern and southern edges of the catchment. Only PTFs 6, 7 and 11 

show such areas with dominating deep percolation at the same positions as the BHK. PTF 4 shows almost exclusively 365 

dominant, extensive surface runoff. It also only shows interflow around the watercourse. This differs highly from the reference 

map. In comparison, PTF 9 and 10 show strongly dominating deep percolation over a large area. Also, only narrow areas with 

interflow can be found in the vicinity of the watercourse. The area with surface runoff in the west is also not depicted correctly 

in both PTFs. For all PTFs, the high correspondence between simulated and reference map for the direct runoff patterns results 

from the fact that, by definition, surface runoff occurs in the model when a watercourse flows through a cell. 370 
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Figure 7: Spatial patterns for the simulated dominant runoff processes and the corresponding BHK reference map after a synthetic 
rainfall event. 

The overall values as well as the individual metrics of the SPAEFmod metric are listed in Table 3. The SPAEFmod values 

summarise the values for the three individual parameters. PTFs 2, 7 and 11 achieve very high values of just over 0.8. Their 375 

simulated patterns for these PTFs therefore show high similarity to the patterns of the reference map. PTFs 1, 3, 4, 6, 8, and 

12 show values in the mid-range. They show strong overall similarities between the patterns, while individual areas are not 

correctly depicted in the simulated patterns. PTFs 4, 9 and 10 have the lowest values of -0.34, -4.08 and -3.75. 

 
Table 3: Metrics for the comparison of simulated dominant runoff processes and the BHK reference map. 380 

PTF % match 𝜶𝜶 Histogram overlap SPAEFmod 

1 0.88 0.77 0.96 0.74 

2 0.86 0.90 0.98 0.82 

3 0.88 0.80 0.96 0.76 

4 0.13 0.46 0.14 -0.34 

5 0.88 0.76 0.95 0.73 

6 0.84 1.29 0.94 0.66 

7 0.85 1.08 0.98 0.83 

8 0.88 0.76 0.96 0.73 

9 0.24 5.97 0.26 -4.08 

10 0.25 5.63 0.29 -3.75 

11 0.86 1.14 0.97 0.8 
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12 0.88 0.77 0.95 0.74 

 

3.4 High flow calibration (Step 5) 

The signature indices, including an evaluation of the high discharge (step 5), show a pronounced amplitude across the range 

of PTFs for some indices. For the BiasRR, which represents the mean deviation and thus the water balance, most PTFs show 

only small deviations of less than 5 %. Only PTFs 4 and 10 have higher deviations of over 10 %. It is striking that most PTFs 385 

underestimate the water balance, i.e. show negative deviations. Only PTFs 7 and 11 overestimate the water balance with 

positive deviations. The biasFDCmidslope, which describes the reactivity of the hydrograph, shows a large amplitude. PTFs 

such as 1, 2, 3, 8 and 10 show deviations of well below 10 %. PTF 7 shows an upward deviation of 24.57 %. PTF 9 shows a 

downward deviation of -33.65 %. Almost all PTFs show a BiasFHV close to 0. Only PTFs 9 and 10 show significant deviations 

of -44.26 % and -26.49 %. Most PTFs show a moderate underestimation of between -10 % and -15 % for the BiasFLV. Only 390 

PTFs 10 and 9 show a slight and a considerable upward deviation of 2.93 % and 44.65 % respectively. The deviation of the 

median (BiasFMM) shows a strong amplitude across the various PTFs. PTF 6 shows the largest negative deviation of -26.99 %. 

PTF 9 shows the largest positive deviation of 24.74 %. PTF 10 has the lowest deviation from zero at just 6.3 %. 

 
Table 4: Signature indices of the calibrated model for different PTFs. 395 

PTF BiasRR BiasFDC BiasFHV BiasFLV BiasFMM 

1 -4.2 3.5 0.65 -13.05 -8.79 

2 -4.11 5.55 -0.34 -14.26 -6.96 

3 -4.43 6 -0.38 -12.94 -4.05 

4 -11.6 11.51 -1.32 -13.32 -27.1 

5 -7.05 9.59 0.07 -8.97 -22.56 

6 -1.51 21.2 0.32 -11.78 -26.99 

7 3.15 24.57 -0.29 -10.33 -23.23 

8 -4.89 6.34 0.27 -13.49 -17.82 

9 -10.99 -33.65 -44.26 44.65 24.74 

10 -5.6 -1.67 -26.49 2.93 6.3 
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11 3 17.9 0.17 -7.48 -16.41 

12 -4.33 16.73 -0.7 -21.85 -9.41 

 

3.5 Final model evaluation (Step 6) 

The Manhattan distances, calculated between the CDCs of simulated and observed data across the range of n values from 𝑛𝑛 =

 1 to 𝑛𝑛 =  43, show considerable variabilities across all PTFs (Table 5). While PTF 8 has a distance value of only 1.8, the 

distance value of PTF 9 is several times higher with 8.3. PTFs 1 and 10 also show small distances, while the other PTFs are 400 

located in the middle range. For the high discharge histogram overlap (HDHO), PTF 4 shows the lowest value of 0.4. PTF 8 

shows a high value of 0.9. Other PTFs are located in between. 

 

Table 5: Efficiency metrics for the calibrated model for different PTFs. 

PTF MHd HDHO NSEcal KGEcal R²cal NSEval KGEval R²val 

1 2.22 0.8 0.834 0.896 0.842 0.758 0.872 0.803 

2 4.41 0.7 0.659 0.820 0.691 0.591 0.795 0.674 

3 3.13 0.7 0.721 0.848 0.740 0.638 0.822 0.705 

4 5.05 0.4 0.644 0.733 0.694 0.346 0.612 0.561 

5 4.34 0.7 0.719 0.819 0.747 0.551 0.754 0.666 

6 5.91 0.7 0.746 0.867 0.771 0.649 0.827 0.729 

7 5.95 0.7 0.597 0.808 0.673 0.477 0.758 0.640 

8 1.5 0.9 0.881 0.901 0.888 0.807 0.889 0.843 

9 8.3 0.5 0.542 0.557 0.589 0.573 0.545 0.648 

10 1.62 0.5 0.808 0.814 0.821 0.780 0.789 0.782 

11 5.61 0.7 0.553 0.788 0.634 0.417 0.737 0.594 

12 4.31 0.7 0.667 0.821 0.700 0.585 0.795 0.671 

 405 

The split-sample test carried out based on the simulated and measured hydrograph (Fig. 8) shows strong consistency with 

evaluation metrics of the model for the best parameterisation (PTF 8). The model shows high values for the efficiency measures 

for both the calibration and the validation period. Between calibration and validation, there is only a slight decrease in the NSE 
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from 0.88 to 0.81, while the KGE decreases only minimally from 0.9 to 0.89. The R² also remains high at 0.89 to 0.84. 

Efficiency measures for the split-sample test of other PTFs (Table 5) show a large value range. For example, PTFs 1 and 10 410 

also show relatively high values for the efficiency measures. However, PTFs 4, 9 and 11 show the lowest values. All other 

PTFs show values in between. 

 

 
Figure 8: Measured (Gauging station) and simulated (PTF 8) hydrographs. Period before the dashed vertical line is the calibration 415 
period, while the one right of the dashed line marks the validation period. Efficiency metric values are shown for their respective 
period. 

The hydrograph simulated by PTF 8 successfully replicates the measured hydrograph, with only slight underestimation of peak 

flows and a minor delay in response around December 2017. The model tends to smooth out finer fluctuations, resulting in a 

lower reactivity compared to observed data. Overall, however, PTF 8 closely mirrors the complex shape of the observed 420 

hydrograph. Hydrographs for other PTFs can be found in the appendix as Fig. A1 and Fig. A2. 

 

The long-time discharge can also be depicted as a flow duration curve (Fig. 9). The flow duration curve for PTF 8 shows very 

good agreement in the high discharge volume. This corresponds to the discharge peaks of the hydrograph. In the middle part, 

the flow duration curve shows a kink. From there, it is no longer fully congruent with the curve for the measured discharge in 425 

areas for lower discharge volumes. The simulation slightly deviates from the measured flow duration curve in the area of very 

low discharges. However, it should be noted that the representation is logarithmic. The deviations occurring in the low 
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discharge range therefore only account for a small proportion of the total discharge. PTF 8 therefore fits the flow duration 

curve of the reference the best. The other PTFs are deviating around the measured curve. Some overestimate the corresponding 

proportions and others underestimate the proportions. In the middle range, the results of the simulations are almost exclusively 430 

lower than the reference. 

 
Figure 9: Flow duration curve for the gauging station, for the simulation with PTF 8 (red) and the other PTFs (grey). 

4 Discussion 

This study employed a multi-step calibration approach designed to incrementally improve the accuracy of hydrological 435 

simulations, by systematically targeting specific components of the water balance model. The following paragraphs discuss 

the results of each calibration step in detail. 

4.1 Evapotranspiration/Water Balance (Step 1) 

We used calibrated vegetation parameters from Casper et al. (2023). Because of the almost closed water balance (BiasRR in 

Table 4), an additional calibration step for evapotranspiration parameters was not necessary in our case. Only if the water 440 

balance can’t be closed at the catchment outlet, it would have been necessary to adjust the evaporation parameters. 

https://doi.org/10.5194/hess-2024-369
Preprint. Discussion started: 22 January 2025
c© Author(s) 2025. CC BY 4.0 License.



25 
 

4.2 Groundwater model (Step 2 and 3) 

Fitting to the Characteristic Delay Curve (CDC) is a perfect means for the calibration of the groundwater model in terms of its 

mean long-term behaviour (Fig. 6). The gradient of those segments of the CDCs which correspond to longer delay intervals 

(higher n-values) are highly sensitive to aquifer transmissivity parameters (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 and thickness). On the other hand, the long-445 

term groundwater recharge depends on the interflow intensity, which is adjusted by the parameter drainage density 𝑑𝑑𝑟𝑟. This 

approach effectively modified the height of the CDCs across most PTFs. However, two PTFs (PTFs 9 and 10) did not allow a 

good adjustment to the observed CDC height, due to lack of soil stratification in their parameterisation. These two PTFs 

estimate the hydraulic properties based on grain size, while key factors like depth or bulk density—typically considered in 

other PTFs or when using the KA5 standard for saturated hydraulic conductivity (𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠)—are not addressed. This means that, 450 

in the absence of stratification, there is little interflow and a large portion of water percolates into the aquifer (Ahuja et al., 

1981). Without stratification, interflow cannot be controlled by the scaling factor 𝑑𝑑𝑟𝑟 because there is too little interflow to 

begin with. The consistent underestimation of the initial segments of the CDCs suggests that the catchment is delaying certain 

parts of the water more than the model does (Yeh and Chen, 2022). This could theoretically be resolved by increasing the 

interflow delay through increasing values for 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖. However, as our catchment is mainly interflow dominated, the discharge 455 

peaks are almost exclusively interflow. Such an adjustment could reduce peak discharge significantly, which might 

compromise the hydrograph fit, as noted by Shrestha et al. (2013). Therefore, we assume that a two-layer aquifer model with 

distinct transmissivities would probably better represent the complex groundwater dynamics in our catchment. 

4.3 Evaluation of dominant runoff processes (Step 4) 

The evaluation of dominant runoff processes has shown that most PTFs can reproduce the pattern of the reference with 460 

reasonable accuracy (Fig. 7). However, PTFs 4, 9, and 10 showed significant deviations from the reference patterns, which 

indicate that these PTFs produce soil parameter estimates that differ substantially from actual field conditions. This results in 

either little interflow and too much surface runoff (PTF 4) or too much deep percolation and no interflow (PTFs 9 and 10). 

The high proportion of surface runoff and low fractions of interflow of PTF 4 are probably due to the low hydraulic 
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conductivities compared to other PTFs (Mohajerani et al., 2021). Therefore, the upper soil layers in the model quickly saturate 465 

during the synthetic rainfall event which results in a predominance of surface runoff. In contrast, PTFs 9 and 10 lead almost 

exclusively to dominant deep percolation. This is due to a lack of soil stratification, as only the grain size distribution is 

considered, but no other properties such as bulk density or depth (Renger et al., 2008; Y. Zhang and Schaap, 2017). 

Consequently, the model assumes uniform permeability, that allows most precipitation to infiltrate directly into the 

groundwater reservoir and bypass interflow pathways. However, the strong deviations in runoff pattern among these three 470 

PTFs can be systematically identified using the SPAEFmod metric. While the majority of PTFs achieved SPAEFmod values 

exceeding 0.65, which indicates good alignment with the reference map, PTFs 4, 9, and 10 showed significantly lower (in 

some cases, negative) values. This evaluation step serves as a reliable means to screen out PTFs that fail to capture dominant 

runoff processes accurately. This ensures that only soil parameterisations consistent with observed runoff fractions are 

considered in the final model selection process. 475 

4.4 High flow calibration (Step 5) 

The subsequent adjustment of the rainfall-fed part of the hydrograph, e.g. discharge fractions in the high volume based on the 

signature indices (Table 4), showed good applicability. For all PTFs except 9 and 10, the biasFHV could be brought close to 

zero. The water distribution could be shifted from peak discharge values towards mid-range discharge levels by adjusting 𝑘𝑘𝑑𝑑 

or 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖. PTFs 9 and 10 lack volume in the discharge peaks due to the large proportion of water that infiltrates very quickly into 480 

the aquifer. Therefore, hardly any direct runoff or interflow is present, which could contribute to high volume discharge (Seiler 

and Gat, 2007). This is also reflected in the patterns for the dominant runoff processes. In that case, the parameter 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 could 

not be used to shift more water from the peaks to the stronger delayed portions of discharge without losing a significant amount 

of water volume in the peaks. This is probably because our study area produces only little direct runoff, the contribution of 

which to the total runoff is delayed via 𝑘𝑘𝑑𝑑, mainly interflow contributes to the discharge. As a result, the hydrograph peaks in 485 

our model primarily reflect fast interflow rather than a balanced combination of direct runoff and interflow runoff. An 

independent adjustment via 𝑘𝑘𝑑𝑑 and 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 would only be possible, if both runoff types are present to a certain extend. Adding a 

second aquifer layer with slightly higher conductivities than our current aquifer would enable us to represent a less delayed 
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groundwater discharge that currently is depicted through interflow. As a result, less interflow would be needed to represent 

parts of the slow components and therefore could be used to model part of the peak discharge. However, the necessity for this 490 

depends entirely on the catchment characteristics (Natkhin et al., 2012; Kraller et al., 2014) and can be derived from a repeated 

application of the Characteristic Delay Curve (Step 2 and 3), then with two aquifer layers. 

4.5 Final model evaluation (Step 6) 

The hydrograph of the best fitting model (based on PTF 8) shows that the model is capable of correctly mapping the discharge 

(Fig. 8). This is also supported by high values of efficiency measures such as NSE (0.81), KGE (0.89) and R² (0.84) for the 495 

validation period in the split-sample test. In addition, a high discharge histogram overlap (0.9) shows a good agreement in the 

peak discharge over time. However, the various PTFs show considerable deviations from each other. The choice of the 

pedotransfer function has a significant influence on the individual processes depicted by the model, and therefore the correct 

choice of the pedotransfer function is crucial to develop a behaviourally correct model parameterisation. This is also consistent 

with the findings of Mohajerani et al. (2021) and Paschalis et al. (2022). Our multi-criteria calibration framework, with its 500 

combination of parameterisation steps, proved effective both in evaluating PTFs and refining the calibration itself.  

Inconsistencies with both the CDCs and the patterns of dominant runoff processes proved the non-suitability of PTFs 9 and 

10.  Likewise, PTF 4 was found unsuitable due to deviations in runoff process patterns, despite its potential for further 

groundwater volume adjustments via drainage density 𝑑𝑑𝑟𝑟. This shows that a holistic view of the different processes is indeed 

necessary, as one PTF can be suited for a single process such as the groundwater flow but unsuited for other processes. 505 

4.6 Transferability and Outlook 

Our calibration approach is effectively transferable to other hydrological models and catchments, provided the necessary input 

parameters are available. For the first step, the calibration of ETa, remote-sensing ETa data is necessary. Here, readily available 

MODIS data can be used. Additionally, the application of the delayed flow index (DFI) requires only simulated and measured 

hydrographs, alongside a mechanism for adjusting groundwater recharge by percolating water. Models must support runoff 510 
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partitioning into surface runoff, interflow, and deep percolation (groundwater recharge) to utilise the dominant runoff process 

comparison. For this, a spatial reference is necessary like the soil hydrological map used in our study. While certain methods 

necessitate only discharge data, we emphasize the benefits of incorporating multiple evaluation approaches. This 

comprehensive parameterisation captures the catchment behaviour across various hydrological processes more accurately. 

Consequently, our methodology demonstrates broad applicability for future parameterisations of hydrological water balance 515 

models, particularly those with a process representation similar to the WaSiM model. 

 

Including tracer data as an additional evaluation criterion could enhance the robustness of our model parameterisation 

assessments (e.g., Wu et al., 2023). It offers valuable insights into discharge composition by distinguishing contributions from 

individual runoff components at the gauging station. For glacial and snow influenced catchments, the isotope approach of 520 

Penna et al. (2014) could be applied. For wetlands, Birkigt et al. (2018) and Schwerdtfeger et al. (2016) demonstrated 

approaches of tracer-based modelling. This could further improve the accuracy of selecting the correct model parameterisation 

by including this additional evaluation step. 

5 Conclusions 

Our study demonstrates that the multi-criteria calibration approach is highly effective not only in calibrating individual sub-525 

processes within the model but also in providing a robust evaluation of the model’s overall performance. By applying this 

approach, we were able to accurately identify specific parameterisations that resulted in incorrect representations of certain 

hydrological processes. This capability prevents the reliance on parameterisations that may yield satisfactory efficiency metrics 

(at catchment outlet) yet fail to adequately capture the underlying hydrological processes in the catchment area. 

 530 

We consider this approach a significant advancement over traditional methods that prioritise hydrograph-based efficiency 

metrics alone when assessing model calibration and performance. Calibrating the ETa-relevant plant parameters ensured 

accurate spatio-temporal representation of ETa and a closed water balance. This step improved the model's ability to simulate 

plant-water interactions and maintain correct hydrological fluxes. Calibration of the groundwater model enhanced the 
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representation of groundwater behaviour, including baseflow contributions to discharge and groundwater recharge. This 535 

improved the accuracy of aquifer water storage and flow dynamics. Evaluating dominant runoff patterns enabled correct 

discharge partitioning and better spatial representation of runoff generation. Finally, applying signature indices and traditional 

efficiency metrics together allowed for both behavioural and quantitative model evaluation. Our multi-criteria framework adds 

depth to the calibration process by aligning the process representation with observed data in space and time. This enhances the 

model’s reliability across varied hydrological conditions. 540 
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Appendix 

A Figures 545 

 
Figure A1: Full hydrographs for the gauging station and the simulation for PTFs 1 to 6. The hydrograph left of the dashed line was 
used as calibration period, while the part right of the dashed line served as calibration period. 

 

 550 
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Figure A2: Full hydrographs for the gauging station and the simulation for PTFs 7 to 12. The hydrograph left of the dashed line was 
used as calibration period, while the part right of the dashed line served as calibration period. 

 

 555 
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B Tables 

Table B1: Parameters adjusted within our parameterisation and calibration approach. 

Parameter Unit Values Description 

𝑘𝑘𝑥𝑥 [𝑚𝑚 ⋅ 𝑠𝑠−1] 3E-5  Lateral conductivity of the aquifer in x-direction 

𝑘𝑘𝑦𝑦 [𝑚𝑚 ⋅ 𝑠𝑠−1] 3E-5 Lateral conductivity of the aquifer in y-direction 

Colmation [𝑚𝑚 ⋅ 𝑠𝑠−1] 3E-5 Hydraulic conductivity resistance between aquifer 

and waterbody 

River network threshold [−] 50 Threshold for the river network generation in 

TANALYS 

𝑑𝑑𝑟𝑟 [−] 10 to 75 (160) Scaling factor for the interflow 

𝑘𝑘𝑑𝑑 [ℎ] 2 Recession parameter for the direct runoff SLR 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 [ℎ] 8 to 30 Recession parameter for the interflow SLR 

 
Table B2: Calibrated parameters with values for different PTFs. 560 

PTF 𝒌𝒌𝒊𝒊𝒊𝒊𝒊𝒊 𝒅𝒅𝒓𝒓 Comment 

1 9 42  

2 21 75  

3 9 35  

4 27 10  

5 8 65  

6 30 30  

7 14 25  

8 26 65  

9 30 (160+) Calibration of 𝑑𝑑𝑟𝑟 not possible 

10 30 (160+) Calibration of 𝑑𝑑𝑟𝑟 not possible 

11 18 20  

12 18 50  

 

 

 

 

 565 
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