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Abstract. The hydrology of thawing permafrost affects the fate of the vast amount of permafrost carbon due to its controls on

waterlogging, redox status, and transport. However, regional mapping of soil water storage in the soil layer that experiences

the annual freeze-thaw cycle above permafrost, known as the active layer, remains a formidable challenge over remote arctic

regions. This study shows that Interferometric Synthetic Aperture Radar (InSAR) observations can be used to estimate the

amount of soil water originating from the active layer seasonal thaw. Our ALOS InSAR results, validated by in situ observa-5

tions, show that the equivalent thickness of the soil water that experiences the annual freeze-thaw cycle ranges from 0 to 75 cm

in a 60-by-100-km area near the Toolik Field Station on the North Slope of Alaska. Notably, the spatial distribution of the soil

water correlates with surface topography and land vegetation cover types. We found that pixel-mismatching of the topographic

map and radar images is the primary error source in the Toolik ALOS InSAR data. The amount of pixel misregistration, the

local slope, and the InSAR perpendicular baseline influence the observed errors in InSAR Line-Of-Sight (LOS) distance mea-10

surements. For most of the study area with a percent slope of less than 5%, the LOS error from pixel misregistration is less

than 1 cm, translating to less than 14 cm of error in the soil water estimates.

1 Introduction

Permafrost soils in the Arctic store twice the amount of carbon found in the atmosphere (Hugelius et al., 2014; Ping et al.,

2008). Over the past decades, warming has led to permafrost thawing (Jorgenson et al., 2006), which may result in the release15

of stored organic matter into the atmosphere as greenhouse gases and further amplify global warming (Serreze and Barry, 2011;

Schaefer et al., 2014; Schuur et al., 2015). In permafrost regions, groundwater flows through the topmost portion of the soil,

known as the active layer, that freezes and thaws annually (Woo, 2012; O’Connor et al., 2020). This groundwater flow contains

carbon and is important in the export of carbon from land to the ocean and atmosphere (Kling et al., 1991; Stieglitz et al., 2003;

Walvoord and Striegl, 2007; Vonk and Gustafsson, 2013; Paytan et al., 2015; Neilson et al., 2018). To understand how thawing20

permafrost contributes to the global carbon cycle, it is important to understand the hydrologic flow and transport processes in

the active layer. Whether the carbon held by the active layer soils will be transformed to carbon dioxide or methane (a more

powerful greenhouse gas), or whether it will flow towards rivers and lakes as dissolved carbon in groundwater, depends largely
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on the wetness or dryness (i.e., how much water is stored) of the active layer, which controls the redox status of the soil that

influences the balance of CO2 and CH4 production (Bond-Lamberty et al., 2016; Taylor et al., 2021).25

Most of the arctic permafrost region is hard to access, and in situ observations of water storage and water flow in the

active layer are extremely limited. Remote sensing techniques hold promise for local to regional observation of the hydrologic

properties and hydrologic states of permafrost. For example, observations from the Gravity Recovery and Climate Experiment

(GRACE) mission detect changes in permafrost water mass over a regional scale (Muskett and Romanovsky, 2009), but the

spatial resolution is too coarse (∼ 100s of km) to be used in most hydrologic models (Text S1). In comparison, by measuring30

the phase difference between two paired radar images, Interferometric Synthetic Aperture Radar (InSAR) techniques estimate

surface deformation between the two radar acquisition times along the radar Line-Of-Sight (LOS) direction (Rosen et al., 2000;

Hanssen, 2001) at the spatial scale (∼ 10s to 100s meters spatial resolution) that overlaps with the scale of hydrologic field

measurements and modeling grids. Although spaceborne InSAR has been used for estimating surface deformation associated

with solid earth processes since the 1990s (Massonnet et al., 1993; Fialko et al., 2002; Pritchard and Simons, 2002; Shirzaei35

et al., 2013; Chen et al., 2014), it has only been recently used to estimate surface deformation associated with the seasonal

freeze-thaw process of the soil active layer (Liu et al., 2010; Short et al., 2011; Antonova et al., 2018; Strozzi et al., 2018;

Rouyet et al., 2019). Because ice density is less than water density (and thus ice volume is greater than water volume), the land

surface subsides as the active layer thaws from winter to summer (Liu et al., 2010). Furthermore, InSAR-observed long-term

subsidence trend signals over permafrost terrain have been used to study the deepening of the active layer due to wildfires or40

excessive melt of ground ice (Michaelides et al., 2019; Liu et al., 2014, 2015; Iwahana et al., 2016; Yanagiya and Furuya, 2020;

Abe et al., 2020; Eshqi Molan et al., 2018; Streletskiy et al., 2025).

Existing InSAR permafrost studies tended to associate the magnitude of the InSAR-observed thaw subsidence with the active

layer thickness (Liu et al., 2012; Schaefer et al., 2015; Chen et al., 2021). However, the amplitude of the thaw subsidence and

frost heave could depend on other factors such as sediment type and local topographic slope (Daout et al., 2017). Chen et al.45

(2020) found that the amplitude of the seasonal thaw subsidence is proportional to the amount of water stored in the saturated

active layer at the end of a thaw season. This is consistent with findings from recent studies that InSAR-derived seasonal

subsidence rates reflect spatial soil moisture patterns (Chen et al., 2022, 2023; Widhalm et al., 2024). In this paper, we further

established a conceptual model that relates InSAR seasonal thaw subsidence observations to soil water storage in the saturated

active layer. Our goal is to advance InSAR techniques for the high-resolution mapping of water storage above-permafrost. To50

demonstrate this, we mapped soil water stored in the saturated active layer using ALOS PALSAR data over a much larger area

in the Arctic Foothills than used in Chen et al. (2020). We validated the InSAR results using in-situ soil measurements collected

at more than 200 remote sites within ∼ 100 km of the Toolik Field Station as well as optical imagery and land cover maps.

Our results show that InSAR soil water storage estimates derived from two separate satellite frames are consistent with in-situ

observations under different vegetation covers. An important new contribution of this work is on uncertainty quantification.55

We determine the primary error sources in Toolik ALOS PALSAR Line-Of-Sight (LOS) measurements, and we discuss how

errors in InSAR LOS measurements can be linearly related to errors in soil water storage estimates.
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Figure 1. A map of the Toolik study site. The 2018 and 2019 sample sites are shown in red diamonds and yellow stars. The ALOS PALSAR

coverage is outlined in green (path 255, frame 1370) and orange (path 255, frame 1380). The blue lines show five helicopter flight lines

within the satellite data coverage, along which field measurements were collected. The 2007 Anaktuvuk River Fire scar is outlined with a

red dashed line.

2 Methods

In this section, we first describe the conceptual model that relates the soil water storage in the saturated active layer to ground

ice melting during summer thaw seasons (Section 2.1). We then explain our InSAR processing strategy for estimating average60

seasonal thaw subsidence from ALOS PALSAR data (Section 2.2), and discuss key error sources in InSAR measurements

(Section 2.3). Finally, we review available field observations and strategies for validating the InSAR results (Section 2.4).

2.1 Estimating Soil Water Storage in the Saturated Active Layer from Thaw Subsidence Measurements

Our study site near Toolik Lake is in continuous permafrost of the upper Kuparuk River basin on the North Slope of Alaska

(Figure 1). In 1987, the Toolik Field Station became part of the NSF Long Term Ecological Research program (LTER), which65

maintains long-term meteorological, ecological, and hydrological observations of the Arctic Foothills (Hobbie and Kling,

2014). The availability of the long-term databases of many basic parameters of the permafrost system makes the Toolik area

an excellent site for studying how different soils control hydrological dynamics and may change as the climate warms and

permafrost thaws.
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Based on in situ thaw measurements at Toolik, the active layer starts to thaw in early June, and the maximum seasonal thaw70

typically occurs in late August (Romanowicz and Kling, 2022). Thawing processes typically slow down around the time of

maximum thaw, because (1) thermal diffusivity of ice is larger than that of liquid water; and (2) heat takes much longer to

diffuse through a thicker active layer soil column. Due to the density difference between ice and liquid water, the land surface

subsides during the thaw season, with the opposite occurring when the active layer refreezes (Short et al., 2011; Painter et al.,

2016; Sjoberg et al., 2016; Antonova et al., 2018; Strozzi et al., 2018). The maximum seasonal thaw subsidence (dseason) is75

proportional to the amount of water stored in the saturated active layer that experiences the ice-to-water phase change in a thaw

season (denoted as zwater) following (Liu et al., 2012; Chen et al., 2020):

dseason =
ρw − ρi

ρi
zwater ≈ 0.09zwater (1)

where ρw and ρi are the density of water and ice respectively. Figure 2 illustrates the definition of zwater in this work. Here

we exclude soil water stored above the water table (tension or unsaturated zone water) in the zwater estimation. Because the80

porosity in the organic soil layers is high (∼ 0.78-0.98), water in the unsaturated zone can expand to fill the empty pore space

during freezing without contributing to surface deformation. In this study, we assume the density of water is a constant value

of 0.997 g/cm3, and the density of ice is a constant value of 0.917 g/cm3. Our calculation does not account for variations

in subsurface water and ice density due to capillarity associated with surface tension, cation hydration, surface hydration, and

interlamellar cation hydration (Zhang and Lu, 2018).85

Equation (1) shows that dseason is proportional to zwater rather than to the Active Layer Thickness (ALT). For example,

minimal thaw subsidence signals would be observed over thick but dry active layers (Chen et al., 2020). This means that active

layers with higher ice-to-water content are expected to experience larger thaw subsidence, which may have no bearing on ALT.

Furthermore, the active layer (liquid) water storage balance can be defined as:

∆S =A+(P −ET −Q) (2)90

where ∆S is the change in total soil water storage of the active layer. P , ET , and Q stand for changes in soil water storage

due to precipitation, evapotranspiration, and runoff, respectively. A is the amount of soil water change associated with the

active layer freeze and thaw process detectable by InSAR. When the active layer thaws during the summer, A> 0; when the

temperature drops in autumn and the active layer refreezes, A< 0. In the case that InSAR-observed seasonal thaw subsidence

signals are similar over multiple years, the amount of water that experienced the annual freeze-thaw cycle does not change95

much during this period (the net water drainage P −ET −Q≈ 0).

We emphasize that many geophysical processes can lead to surface deformation in permafrost terrain detectable by InSAR

(Zwieback et al., 2024b). For example, solifluction and other slope creep processes may produce long-term downward defor-

mation trends in regions with large slope angles (Dini et al., 2019). Post-glacial rebound and tectonic motions typically vary

at 100-km or larger spatial scales and can be considered as nearly spatially uniform over our study area (Liu et al., 2010;100

Stephenson et al., 2022). Given that InSAR measures relative deformation with respect to a local reference point, InSAR is

only sensitive to spatially varied surface deformation over the study area. Hydrological loading and unloading can produce
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Figure 2. Conceptual diagram of how the depth of saturated water (zwater) affects soil surface deformation. (A) The summer case when the

entire active layer is thawed. Here the soil is divided into three zones: (1) the active layer unsaturated zone (thickness of u), which contains

soil particles (dark circles) and soil atmosphere (white open space). It may also contain tension (capillary) water (shown in light blue); (2)

the water-saturated active layer (thickness of s). The upper surface defines the water table, and the lower surface defines the ice table that

separates the thawed active layer from frozen ground (or the permafrost layer at maximum annual thaw depth); and (3) the frozen permafrost

(thickness of p). (B) The winter case when the entire active layer is frozen. Water stored in the saturated active layer leads to frost heave

(0.09zwater) during freezing. By contrast, water in the unsaturated zone can expand to fill the empty pore space (soil atmosphere) during

freezing without contributing to surface deformation (thickness u does not change).

millimeter-level surface deformation signals (Liu et al., 2010), which is much smaller than centimeter-level freeze-thaw defor-

mation. Furthermore, peat accumulation processes (Jones et al., 2017) may lead to a long-term deformation signal detectable

by InSAR, and surface erosion can cause changes in surface scattering properties that decorrelate radar phase measurements105

(Zebker and Villasenor, 1992). In Section 2.2, we discuss how to extract long-term and seasonal deformation signals from

InSAR observations. The magnitude and characteristics of deformation signals, combined with in-situ observations (Section

2.4), can be used to determine the primary geophysical processes that contribute to the observed deformation patterns.

2.2 InSAR Processing Strategy

Interferometric SAR (InSAR) computes the phase difference between two Synthetic Aperture Radar (SAR) images. The re-110

sulting interferogram can be used to infer a map of surface deformation between two SAR acquisition times along the radar
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Line-Of-Sight (LOS) direction (Hanssen, 2001). More specifically, a phase cycle of 2π (in radians) equals to λ/2 of LOS

deformation, where λ is the radar wavelength. For L-band ALOS PALSAR data, λ equals 24 cm, and thus a phase cycle of 2π

represents 12 cm of LOS deformation occurred between two radar acquisition times.

In a recent proof-of-concept study (Chen et al., 2020), we processed 12 L-band ALOS PALSAR scenes (Table B1) acquired115

during summer seasons (June to October) between 2006 and 2010 from path 255 frame 1370 over our study region (Figure 1).

Note that we excluded all winter scenes acquired between November and April because the observed phases in winter-winter

interferograms are likely related to variations in snow accumulation and snow redistribution, which is not the focus of this study.

We first solved for the long-term LOS deformation trend at a pixel of interest based on a stacking approach (Sandwell and Price,

1998; Lyons and Sandwell, 2003; Rouyet et al., 2019). That is, averaging all interferograms that contain minimal seasonal120

deformation signals (e.g., a July-to-July pair) and relatively large long-term signals (e.g., span multiple freeze-thaw cycles).

An important finding of this pilot study was that no detectable long-term deformation trend above the InSAR measurement

noise level was observed outside the 2007 Anaktuvuk River fire scar (Figure 1) during the study period of 2006 to 2010.

This allowed us to substantially simplify our InSAR processing strategy for reconstructing seasonal freeze-thaw deformation

patterns over undisturbed permafrost terrain. We estimated the LOS deformation signatures due to the seasonal active layer125

freeze-thaw processes between (i) early June and late July, (ii) late July and early September, and (iii) early September and

late October by averaging all interferograms that span these periods regardless of how many years those interferograms span.

The averaged LOS deformation between early June and late July was used as an approximation of the maximum seasonal

LOS deformation because no ALOS acquisitions were made over the study area around the time of the maximum thaw (late

August at Toolik area). This approximation is reasonable given that a few centimeters of late summer thaw (August) of the130

relatively dry low-porosity mineral layer does not cause surface thaw subsidence detectable by InSAR (O’Connor et al., 2020;

Chen et al., 2020). For example, 10 cm of thaw of the saturated organic layer (∼ 90% porosity) would lead to ∼ 0.8 cm of

thaw subsidence. In comparison, 10 cm of thaw of the saturated mineral soil (∼ 20% porosity) would lead to < 0.2 cm of thaw

subsidence.

We note that InSAR measures the change in distance between the antenna and the ground object, known as the LOS direction.135

Assuming the horizontal motion of the land surface is negligible, we converted InSAR seasonal deformation estimates along

the LOS direction (dLOS) to seasonal vertical thaw subsidence estimates dseason as:

dseason =
dLOS

e3
(3)

where e3 is the vertical component of the radar LOS direction unit vector e= [e1,e2,e3]. The LOS unit vector e can be

computed based on the known satellite position and ground pixel location in the Earth-centered, Earth-fixed (ECEF) coordinate140

system, and then converted to the local east-north-up (ENU) system (Misra and Enge, 2011). For the ALOS ascending imaging

geometry over the Toolik area, e= [0.61,0.13,−0.78] at the mid-swath, and the variation of e3 across the entire swath is

minimal (less than 3%). This means that ∼ 5 cm thaw subsidence can cause 4 cm positive LOS deformation for the Toolik

ALOS PALSAR case.
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To confirm that our InSAR processing strategy is suitable for studying the active layer freeze-thaw process over vast areas,145

here we analyzed an additional 11 L-band ALOS PALSAR scenes (Table B1) acquired during summer seasons (June to Oc-

tober) between 2006 and 2010 from path 255 frame 1380 (Figure 1). We merged interferograms from the same path but two

different frames by calibrating the phase differences within the overlapping regions of the two frames. A sample merged inter-

ferogram is shown in Figure B1, and the same reference point (68.83◦ N, 150.23◦ W) as our previous study (Chen et al., 2020)

was used to calibrate all interferograms. We chose this reference point because it is in a dry highland area of relatively flat150

terrain, and the expected seasonal deformation is minimal. Only ∼ 4% of interferograms contain visible phase decorrelation

artifacts outside the fire scar, and the overall phase coherence (Figure B2(a)) of the remaining interferograms is comparable to

the sample interferogram (Figure B1). We masked out pixels with amplitude dispersion < 0.25 and pixels with phase coherence

< 0.2 to exclude water bodies and the area burned by the 2007 Anaktuvuk River fire (Figure B2(b)). A comparable pixel mask

can also be generated using the North Slope Science Initiative (NSSI) land cover GIS Data.155

Similar to our previous study, we found that the long-term subsidence trend is negligible outside the fire scar (Figure B3(d)).

This allows us to follow the same processing strategy as our previous study to extract seasonal deformation between (i) early

June and late July, (ii) late July and early September, and (iii) early September and late October by averaging all interferograms

that span these periods regardless of how many years those interferograms span (Figure B3(a)-(c)). We note that averaging

interferograms that contain the common signal of interest (stacking) reduces the impact of random tropospheric turbulent noise160

by ∼
√
N , where N is the number of independent SAR acquisitions (Sandwell and Price, 1998; Chen et al., 2020). A thaw

subsidence pattern similar to the final stacking solution was identified from all individual interferograms that span a common

season (e.g., early June to late July). The averaged LOS deformation between early June and late July was used as an approxi-

mation of the maximum seasonal LOS deformation because no ALOS acquisitions were made over the study area around the

time of the maximum thaw (late August at Toolik area). This approximation is reasonable given that a few centimeters of late165

summer thaw (August) of the relatively dry low-porosity mineral layer does not cause surface thaw subsidence detectable by

InSAR (O’Connor et al., 2020; Chen et al., 2020). For example, 10 cm of thaw of the saturated organic layer (∼ 90% porosity)

would lead to ∼ 0.8 cm of thaw subsidence. In comparison, 10 cm of thaw of the saturated mineral soil (∼ 20% porosity)

would lead to < 0.2 cm of thaw subsidence.

Based on Equation (1) and Equation (3), we further established a linear relationship between InSAR LOS deformation170

observations and the amount of water in the saturated active layer that experiences the ice-to-water phase change (zwater) as:

zwater =
ρi

(ρw − ρi)e3
dLOS (4)

where ρw and ρi are the density of water and ice, respectively. e3 =−0.78 is the vertical component of the ALOS LOS direction

unit vector e= [e1,e2,e3] as defined in Equation (3). This equation shows that InSAR-observed seasonal thaw subsidence is

proportional to the active layer water storage zwater. For the ALOS Toolik case, 5 cm InSAR LOS deformation measurements175

(dLOS) can be related to 70 cm of saturated active layer soil water column (zwater), 1 cm errors in InSAR LOS deformation

measurements can lead to 14 cm error in zwater estimates. We note that Equation (4) employs the assumption that the horizontal

motion of the land surface is negligible. Our study site is a transitional region located between the Coastal Plain and the steep
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mountains of the Brooks Range, which consists of gently rolling hills and broad exposed ridges that extend along the northern

flank of the Brooks Range. Given that the long-term subsidence trend is negligible outside the fire scar and seasonal deformation180

signatures follow the expected seasonal freeze-thaw patterns (Figure S3), InSAR observations at our study site are primarily

related to the volume change associated with water-to-ice phase change rather than slope creep processes. For a 5% slope

angle, 1 cm of freeze-thaw deformation perpendicular to the land surface leads to 0.87 mm horizontal deformation and 9.96

mm vertical deformation. For a 10% slope angle, 1 cm of thaw deformation perpendicular to the land surface leads to 1.74 mm

horizontal deformation and 9.85 mm vertical deformation. Because the slope angle at most radar pixels is less than 10%, we185

conclude that the assumption of negligible horizontal motion is reasonable.

2.3 Error Sources in InSAR-based zwater Estimates

To quantify errors in InSAR-based zwater estimates, here we evaluate major error sources in InSAR LOS deformation solutions

(dLOS), which can be written as (Zebker and Villasenor, 1992; Zebker et al., 1994, 1997):

dLOS =
λ

4π
φ+∆ddem +∆ddecor +∆dunwrp +∆dorb +∆datm +∆diono +∆dn (5)190

where λ is the radar wavelength (24 cm for L-band ALOS data), and φ is the average phase of all interferograms that con-

tain the common seasonal deformation signal of interest. The remaining noise terms on the right-hand side are errors due to

topography-related artifacts (∆ddem), phase decorrelation (∆ddecor) and phase unwrapping errors (∆dunwrp), orbital errors

(∆dorb), atmospheric (∆datm) and ionospheric (∆diono) artifacts, and other smaller error terms associated with thermal and

soil moisture effects (∆dn).195

In the Toolik ALOS InSAR data analysis, we excluded ∼ 4% of interferograms containing visible phase decorrelation and

phase unwrapping errors. Long-wavelength phase signatures, varying at spatial scales of tens to hundreds of kilometers and

potentially caused by orbital errors and tropospheric or ionospheric noises, were removed as a planar phase ramp from each

interferogram (Staniewicz et al., 2020; Wang and Chen, 2022; Zebker et al., 2023). The deramp process does not remove

localized freeze-thaw deformation patterns that vary from hilltop ridges to the lowland valleys and riparian zones on the spatial200

scale of ∼ 100s of meters. Interferograms formed by the SAR scenes acquired on 8 September 2008 (for frame 1380) and SAR

scenes acquired on 22 July 2007, 24 July 2008, and 14 September 2010 (for both frame 1370 and 1380) were also excluded

because of severely distorted ionospheric artifacts (Gray et al., 2000; Wegmuller et al., 2006; Chen and Zebker, 2012; Fattahi

et al., 2017). Because of a cool and dry tundra climate and relatively small elevation variation (∼ 200-300 meters), the stratified

tropospheric noise component (Doin et al., 2009) is minimal over the study site. Given that long-wavelength tropospheric and205

ionospheric noise was removed during the planar ramp removal process, the residual atmospheric noise term (e.g., due to

localized temperature or water vapor variations) is mostly random at time scales longer than one day, but is correlated in

space and typically increases with distance from the InSAR reference point (Emardson et al., 2003; Staniewicz et al., 2020).

Assuming a 2 cm tropospheric error in each ALOS PALSAR interferogram (Zebker et al., 1997; Emardson et al., 2003),

the turbulent random noise level can be reduced to less than 1 cm after stacking four interferograms formed from four SAR210
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acquisitions. In the remainder of this section, we focus on the dominant error term associated with topography-related artifacts

for the ALOS Toolik case.

At a pixel of interest, an error in the Digital Elevation Model (DEM; δ) with respect to the reference pixel can lead to an

error (∆ddem) in the LOS deformation estimates as (Berardino et al., 2002; Werner et al., 2003; Fattahi and Amelung, 2013):

∆ddem =
Bperp

rsinθl
δ (6)215

where Bperp is the perpendicular component of the InSAR spatial baseline, which can be calculated from known radar imaging

geometry. For ALOS interferograms, Bperp typically ranges from several hundred to several thousand meters. r is the distance

between the radar antenna and the ground pixel, and θl is the radar look angle. Because the look angle of ALOS PALSAR does

not vary much over the ∼ 60 km radar swath, both r ∼ 850 km and θl ∼ 34 degrees can be approximated as constant values

for all ALOS interferograms collected from the same path and frame.220

In this study, we removed the topographic phase during interferogram formation using the ArcticDEM (10-meter resolution

and resampled to a 30-meter grid) data (Porter et al., 2018), which are widely used in the Arctic community because of its pan-

arctic coverage and high quality (Tozer et al., 2019). Interferograms with comparable quality can be also generated using the

Kuparuk River watershed DEM (Chen et al., 2020). While the Kuparuk River watershed DEM has been thoroughly validated

and highly accurate (Nolan, 2003b), it does not have complete spatial coverage over the entire study area. It is common to225

assume that ∆ddem is linearly proportional to Bperp. This assumption is valid when δ in Equation (6) is introduced by errors

in the DEM dataset itself (thus δ is the same for all interferograms). Because thaw subsidence patterns over undisturbed

permafrost terrain are expected to be spatially coherent, phase discontinuity in interferograms was visually inspected. If the

magnitude of these artifacts is linearly proportional to InSAR perpendicular baseline Bperp, they are likely associated with the

errors in the ArcticDEM dataset, given that thaw subsidence signals do not depend on Bperp. Furthermore, we discovered that230

δ can also be introduced by misregistration of the DEM and a SAR image. For example, as shown in Figure 3(a), a radar image

(blue) and a topography map (black) are misregistered by 1 pixel to the east, which leads to a positive δ on the east-facing

slope and a negative δ on the west-facing slope. Similarly, pixel misregistration to the north or south can lead to δ on the north-

and south-facing slopes across the hill ridge. Because the same amount of pixel misregistration leads to larger δ in areas with

larger slopes (Figure 3(b)), these artifacts are most prominent in interferograms formed using misregistered SAR scenes over235

steep terrains. In this study, we employed the same image co-registration routine as the standard InSAR processing software

such as the InSAR Scientific Computing Environment (ISCE) (Rosen et al., 2012) and GMTSAR (Sandwell et al., 2011). The

2-D cross correlation method for image alignment can achieve sub-pixel accuracy in most cases. However, the alignment can

be worse than 1 pixel, because SAR images and DEM data were acquired from sensors with different spatial resolutions and

imaging geometries. To better understand these pixel-mismatching artifacts, we approximated the DEM error δ due to pixel240

misregistration as the difference between the ArcticDEM and the shifted ArcticDEM in east/west and north/south directions.

For example, the DEM error δi,j due to 1 pixel misregistration to the east at pixel (i, j) can be written as:

δi,j = hi,j −hi+1,j (7)
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Figure 3. An illustration of SAR and DEM misregistration in hilly terrains. The DEM profile is shown in black. When the SAR image (blue)

is misregistered by 1 pixel to the east, there is a positive DEM error on the east-facing slope and a negative DEM error on the west-facing

slope. Similarly, pixel misregistration to the north or south can lead to DEM errors on the north- and south-facing slopes across the hill ridge.

The same amount of pixel misregistration leads to larger errors in areas with steep terrain (panel a) than in relatively flat terrain (panel b).

where hij is the ArcticDEM at pixel (i, j). Similarly, we can approximate δi,j due to 1 pixel misregistration to the south at

pixel (i, j) as hi,j −hi,j+1. We then calculated the expected LOS errors ∆ddem due to δ based on Equation (6) for a given245

imaging geometry and perpendicular baseline. Results from these numerical experiments were then compared to actual InSAR

LOS observations across hill ridges.

2.4 Field Observation for validating InSAR-estimated zwater

Our InSAR thaw subsidence estimates were validated using a relatively large number of field observations collected within

∼ 100 km of Toolik Field Station (Figure 1) in 2018 (August 15 - August 24) and 2019 (July 26 - August 3). Particularly,250

the amount of water stored in the saturated active layer can be quantified by determining saturated active layer thickness and

porosity. Tundra soil in the Toolik area consists of three layers from top to bottom: the acrotelm (peat that contains living

plants), the catotelm (peat that contains dead plant materials), and the mineral soil (Figure 4). The thickness of these three soil

layers and the depth to the water table were measured at each sampling site. The porosity (ϕ) of each soil core sample was also

measured to characterize the water-holding capacity of active layer soils. zwater can then be calculated as:255

zwater =
∑

i=1,2,3

zsiϕi (8)

where zsi and ϕi are the saturated thickness and the porosity of the ith soil layer. Here, we assume the soil column below

the water table is fully saturated. We also note that the mineral soil layer has much lower porosity (thus much less water-

holding capability) than organic soil layers. For example, a fully saturated, 10-cm-thick acrotelm layer with a porosity of 0.90

contributes to 9 cm of zwater, while a fully saturated, 10-cm-thick mineral soil layer with a porosity of 0.20 only contains 2260

cm of zwater.

To jointly analyze remote sensing and in situ observations, an exact point-to-point comparison is challenging, if not impossi-

ble, because they were collected at very different spatial and temporal scales. A pixel in an InSAR-derived deformation map is

∼ 100-by-100 meter, while field measurements were collected at sites with size ∼ 900 cm2 (30-by-30 cm plots). To overcome

this challenge, we designed a statistical comparison approach. This was done by fitting probability density functions (PDFs)265
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Figure 4. (Left) A cartoon showing the three soil layers. The lighter blue dashed line denotes the groundwater level, and the darker blue line

shows the location of the permafrost table note that the depth of permafrost may be in any soil layer. (Right) A photo of a soil pit with three

soil layers from top to bottom: the acrotelm (peat that contains living plants), the catotelm (peat that contains dead plant materials), and the

mineral soil.

to the empirical distributions (histograms) of the in-situ soil property measurements, including the thickness and porosity of

the acrotelm, the catotelm, and the mineral soil as well as the depth to water table (O’Connor et al., 2020; Chen et al., 2020),

and using these distributions to calculate the range of possible thaw subsidence. There are also sources of error in the property

measurements, which are (1) errors from reading the measured value, which is typically small (e.g., <0.5 cm for thaw depth

measurements from probing), and (2) in situ measurements varying due to the sub-meter-scale heterogeneity of arctic soils.270

To reduce estimation bias, we targeted specific vegetation cover types and soil layers needing larger sample sizes over time

to improve statistical robustness. The PDF fitting results did not change much after a second year of sampling, indicating that

the sample size in this study is sufficiently large to capture the statistical characteristics of soil properties. We drew random

samples from the PDFs of soil properties, and calculated the statistical distribution of zwater following Equation (8).

Finally, we validated InSAR-observed zwater using field-based predictions of zwater at different vegetation types. For the275

purpose of studying active layer soil properties, we grouped various subclassifications of vegetation types over the study area

(Walker and Walker, 1996; Stow et al., 2004; Walker et al., 2017) into four primary land cover types: "sedge", "tussock",

"woody shrub", and "sparse vegetation" (O’Connor et al., 2020). The sedge land cover typically occurs in wet to saturated

sites (e.g., riparian zones) and may occasionally mix with shrub mounds on slightly elevated ground. The tussock land cover is

distributed broadly from ridges to riparian zones. The term "woody shrub land cover" refers to areas dominated by woody-stem280

plants, which include both woody shrubs along the water tracks and heath vegetation on ridges. Because the soil in water tracks

typically consists of well-drained acrotelm with underlying gravel and boulders, we did not collect soil samples in the water

tracks. As a result, this study focuses on soil measurements collected over three land cover types: sedge, tussock, and woody

shrub on ridge-tops (referred to as "heath"). Photographs of the land cover types are shown in Figure B4. We also identified
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the land cover type of each InSAR pixel using the North Slope Science Initiative (NSSI) Land Cover Map (Payne et al., 2016),285

which does not distinguish between woody shrubs within water tracks and heath on hill ridges.

3 Results and Discussion

3.1 InSAR-estimated soil water storage in the saturated active layer

InSAR-observed average seasonal thaw subsidence estimates (2006-2010) between early June and late July from two indepen-

dently processed ALOS PALSAR frames are consistent with no visual discontinuity or artifacts (Figure 5(a)). This confirms290

that our InSAR analysis is robust for reconstructing thaw subsidence over permafrost terrain. Positive values ("uplift") below

noise levels (<1 cm) are detected at a small number of the pixels, mostly around the reference point (a dry highland area

with relatively flat terrain) where the minimum seasonal deformation is expected. These positive values are associated with

noise (e.g., residual decorrelation noise and residual tropospheric nosie) added to ∼ 0 cm of deformation signal. In summary,

ninety-five percent of the observed thaw subsidence range from 0 cm to 5.4 cm, which correlates with the topography as well295

as the watershed and river network morphology (Figure 5(b)). The drier ridge-top areas usually show less than 2 cm thaw

subsidence, while the wetter valleys and riparian zones show up to 6 cm subsidence. Thaw subsidence of ∼ 4 cm is observed

near the transition zone as the steeper hilly terrain (south) transitions to flatter plains (north). Based on Equation (1), 1 cm

thaw subsidence (∼ 0.78 cm LOS deformation) is related to ∼ 11 cm zwater. Therefore, ninety-five percent of zwater estimates

range from 0 to 62 cm in the Toolik area, with up to 75 cm zwater observed in the wettest riparian zone after removing less300

than 3% of outliers (Figure 5(c)). Here, pixels are marked as outliers if they are larger than the upper adjacent value, which is,

by definition, the largest observation that is less than or equal to the threshold located at the 1.5 Inter-Quartile Range (IQR)

above the upper quartile (Q3). The spatial variation of zwater is consistent with groundwater flows and accumulation from the

higher ridges to the flatter riparian zones and valleys (e.g., Figure 6). Large zwater values are often observed in wet local low

regions.305

Because the amount of soil water influences the type of vegetation that can grow, the spatial pattern of InSAR-observed

zwater correlates with land cover types (Figure 5(d)). We found that land cover type indicates the characteristics of soil stratig-

raphy (Figure B5), and each soil layer possesses different characteristics (e.g., porosity and thickness) that influence the water-

holding capability of the active layer. For example, water-loving sedges tend to grow on wet soils with a thick porous catotelm

layer and a shallow water table, while heath vegetation is often found on dry hill ridges with a thin catotelm layer and a deep310

water table. To further illustrate the spatial correlation between the amount of soil water and land cover types, Figure 7 (a)-(c)

shows a zoomed-in area near the Toolik Field Station from frame 1370 (with the location outlined by the purple dashed line

in Figure 5(c)), where all three major land cover types are present. We found that (1) sedges are often distributed over regions

with large zwater values, where open water bodies are visible in the optical image; (2) woody shrubs are typically distributed

over well-drained high ground. On average, soils covered by sedges store 23% more zwater than soils covered by tussocks and315

58% more zwater than soils covered by woody shrubs (Table 1). Figure 7 (d)-(f) shows another zoomed-in area from frame

1380 (with the location outlined in a red dashed line in Figure 5(c)), where the terrain transitions from rolling hills to coastal
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Figure 5. (a) Seasonal thaw subsidence (in the vertical direction) over the area of interest. A darker red color means larger thaw subsidence

between early June and late July during the 2006-2010 study period. Water bodies and the area burned by the 2007 Anaktuvuk River fire have

been masked out. (b) Digital Elevation Model of the same region. A darker color indicates a lower elevation. (c) InSAR-estimated zwater

map. A darker blue color indicates a larger amount of zwater . (d) Land vegetation cover map of the same region. The map was modified

from the North Slope Science Initiative (NSSI) Land Cover Map (Payne et al., 2016).
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Figure 6. Normalized surface elevation (yellow) and InSAR-estimated zwater (blue) along five flight lines shown in Figure 1. The original

elevation and zwater data were adjusted to a notionally common scale by subtracting the mean from the original data and dividing the data

by its range. The normalized zwater curve was then smoothed using a box car filter with a window size equal to 4% of the number of radar

pixels along the transect.

Table 1. Relationship between zwater and land vegetation cover

Unit: cm Woody Shrub Tussock Sedge Wet Tussock

Mean 24.7 31.8 39.0 36.6

Std. dev. 20.3 23.0 23.4 15.0

Q1 - 25th % 8.5 14.0 22.2 26.9

Median - 50th % 20.0 28.8 35.9 35.4

Q3 - 75th % 36.6 44.7 51.9 44.9

plains. Here, tussocks are the dominant land-cover type, and water-loving shrubs and sedges are distributed along the water

tracks (visible in the optical image). Because this region is wetter than the Toolik Lake area, we refer to the tussock pixels in

Figure 7 (d)-(f) as “wet tussock” in Figure 7 (g) and Table 1).320

To validate InSAR zwater estimates, the expected distribution of zwater was also calculated from field measurements col-

lected near Toolik (Figure 1) following Equation (8). We found that zwater estimated from field and satellite observations is

statistically consistent (Figure 8(a)-(d)). The median zwater values derived from field data, ALOS PALSAR path 255 frame

1370 data, and ALOS PALSAR path 255 frame 1380 data are 30.8 cm, 28.4 cm, and 28.1 cm, respectively. The standard devi-

ation values of zwater derived from field data, ALOS PALSAR path 255 frame 1370 data, and ALOS PALSAR path 255 frame325

1380 data are 21.2 cm, 18.9 cm, and 17.3 cm, respectively. Both InSAR and field observations are also consistent over three
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Figure 7. (a-c) InSAR-estimated zwater map, land cover map, and optical image (from Google Earth Landsat imagery acquired in April

2013) for the Toolik area (outlined in purple dashed line in Figure 5(c)). (d-f) InSAR-estimated zwater map, land cover map, and Landsat

optical image (provided by Google Earth) for the northern study area (outlined in red dashed line in Figure 5(c)). Areas outlined in orange

show larger zwater values. The color bar and legend are the same as Figure 5(c) and (d). (g) Boxplots of InSAR-estimated zwater for woody

shrub, tussock, and sedge in the Toolik area (outlined in purple dashed line in Figure 5(c)), and wet tussock in the northern study area

(outlined in red dashed line in Figure 5(c)). The wet tussock in the north generally stores more soil water than those growing near the Toolik

area. The boxplots display lower adjacent, lower quartile, median, upper quartile, and upper adjacent values.

major land cover types (Figure 8 (e)). Based on in situ data, zwater has a median of 19.5 cm, 24.1 cm, and 34.9 cm for heath,

tussock, and sedge land covers. This is consistent with InSAR observations over three land cover types: 20.0 cm for woody

shrubs, 28.8 cm for tussocks, and 35.9 cm for sedges (Table 1). InSAR observations for each land-cover type generally show a

larger variation of zwater compared to field observations. This is likely because InSAR pixels were classified using the NSSI330

land cover map, which is less accurate than field-based land-cover classification at each sampling site. We also note that the

land cover map used for classifying InSAR pixels does not distinguish woody shrubs located near the water tracks and those on

dry ridge tops, while during field data collection, we only sampled dry heath land covers on the ridges. This is another reason

that InSAR woody shrub observations show a larger variation compared to the other two land cover types.

Due to the remote nature of the study area, the number of available field observations is limited. We acknowledge that most335

field sites are located within the coverage of ALOS PALSAR path 255 frame 1370. Nevertheless, both frames exhibit similar

land cover type combinations, suggesting similar climatic and geological settings (Figure 5 (d)). While some of our field sites

are located outside the radar footprint (Figure 1), field observations at these sites follow similar statistical distributions as those

sites located within the radar footprint. Furthermore, InSAR-observed average seasonal thaw subsidence estimates (2006-2010)

from two independently processed ALOS PALSAR frames are consistent with no visual discontinuity or artifacts at the frame340

boundary (Figure 5 (a)). This indicates the InSAR processing strategy produced consistent thaw subsidence estimates. We

observed surface subsidence due to the thawing of the active layer from early June to late July and a net surface uplift between

late July and late October resulting from the refreezing of the soil (Figure B3(a)-(c)). Minimal long-term subsidence trends
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Figure 8. Histograms of zwater values calculated from (a) in-situ data, and (b)-(c) ALOS PALSAR path 255 frame 1370-1380 thaw subsi-

dence estimates. InSAR pixels with a long-term trend greater than 6 mm/year were excluded in the statistics, because this study is focused

on undisturbed permafrost terrain with negligible subsidence trend. (d) Boxplots comparing zwater calculated from in situ data and InSAR

thaw subsidence estimates. (e) Boxplots comparing zwater calculated from in situ data and InSAR thaw subsidence for woody shrub (heath),

tussock and sedge land covers. Here zwater derived from InSAR subsidence observations is for the Toolik area in Figure 7 (a). The boxplots

display lower adjacent, lower quartile, median, upper quartile, and upper adjacent values.

were observed outside the fire scar (Figure B3(d)). These observations confirm that the observed InSAR seasonal deformation

signals at our study site are primarily related to the volume change associated with water-to-ice phase change. We translated345

InSAR measurements into soil water storage in the saturated active layer following Equation (4), which does not require

additional information on soil properties. We used in-situ soil measurements as an independent validation for InSAR results

in regions wherever it is possible, and our goal is to develop a remote sensing technique that can fill the observational gaps in

remote Arctic areas with no in-situ observations.

We also acknowledge that field observations were collected in 2018 and 2019, while ALOS PALSAR InSAR data were350

used to estimate the average seasonal thaw subsidence between 2006 and 2010. In-situ thaw depth measurements show that

the August 11 thaw depth (∼ 40 cm) at the Toolik long-term monitoring site has increased very slightly since 1990. At the

Imnavait site, the August 11 thaw depth increase between 2006 and 2010 is ∼ 5 cm. At both sites, we did not observe any

long-term subsidence trend above the InSAR noise level (Chen et al., 2020). This is because a 5 cm thaw of the low porosity

(thus less water-holding capacity) mineral soils was unlikely to cause any soil water content increase that is detectable by355
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InSAR. Therefore, our study focuses on the comparison between InSAR average seasonal thaw subsidence estimates (2006-

2010) and recent field observations over undisturbed permafrost terrain (relatively stable with long-term changes undetectable

by InSAR). Due to the limited ALOS PALSAR temporal sampling rate, the investigation of inter-annual variability of InSAR

thaw subsidence patterns is outside the scope of this work. Future work can focus on studying how the signal magnitude of

seasonal thaw subsidence changes over multiple years using Sentinel-1 data collected with 6-12 day revisit cycles (Zwieback360

and Meyer, 2021; Zwieback et al., 2024a).

3.2 The signature of ArcticDEM errors

Because DEM error is the dominant error source in the ALOS Toolik InSAR data, here we discuss errors in thaw subsidence

estimates associated with errors in the DEM data. When there is an error in the DEM data, a similar signature may be observed

in the InSAR surface deformation observations. For example, Figure 9(a) shows seasonal thaw subsidence between early June365

and late July outside the 2007 Anaktuvuk River fire zone inferred from an L-band ALOS interferogram that spans 3 June

2006 and 30 July 2010. We zoomed into the region outlined in blue (Figure 9(c)), where a discontinuity in thaw subsidence

estimates across the blue dashed line is visible and affects a relatively flat area. This artifact is likely associated with a discon-

tinuity observed at the same location in the ArcticDEM data (Figure 9(e)), which were used to remove topographic phases in

interferograms. As a comparison, Figure 9(b) shows the seasonal thaw subsidence map between early June and late July over370

the same region inferred from an L-band ALOS interferogram that spans 8 June 2008 and 30 July 2010. While both interfero-

grams suggest similar seasonal thaw subsidence patterns, the error in the DEM data does not lead to any visible discontinuity

in the thaw subsidence derived from the second interferogram (Figure 9(d)). This is because the perpendicular baseline is 5070

m for the interferogram shown in Figure 9(a) and 1558 m for the interferogram shown in Figure 9(b). As shown in Fattahi and

Amelung (2013), DEM errors in the LOS measurement are linearly proportional to the perpendicular baseline for a fixed error375

in the ArcticDEM (Equation (6)).

To better illustrate that our observations are consistent with existing InSAR DEM error studies, we analyzed all 51 interfer-

ograms from path 255 frame 1380 and identified a linear relationship between the InSAR perpendicular baseline and the thaw

subsidence errors at P1-P2 across the discontinuity line (marked in Figure 9 (c) and (d)). The observed linear slope (Figure

9 (f)) suggests a 1.16-meter error in the ArcticDEM, which is consistent with the ∼ 1-2 m DEM discontinuity observed in380

the actual ArcticDEM data (Figure 9 (e)). Existing InSAR studies tend to assume non-negligible DEM artifacts are typically

observed in areas with steep terrain (Li et al., 2014; Staniewicz et al., 2020; Zhou et al., 2020). However, our results show that

more than 1.5 cm LOS errors associated with inaccurate DEM can be observed over relatively flat areas in ALOS PALSAR

interferograms with Bperp values > 4000 m. This error is on the same order of magnitude as the observed centimeter-level

thaw subsidence signals; thus, it is not negligible. These artifacts caused by errors in the ArcticDEM can be mitigated by (1)385

excluding interferograms with larger Bperp or (2) estimating and removing a phase component that is proportional to Bperp

from all interferograms (Berardino et al., 2002). In our case, the discontinuity line is no longer observable after applying the

stacking technique (as shown in Figure 5(c)), thus having minimal impact on the final zwater estimates.
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Figure 9. Seasonal thaw subsidence between early June and late July (cm; in orange-red color) outside the 2007 Anaktuvuk River fire zone

as inferred from an L-band ALOS interferogram that spans (a) 3 June 2006 and 30 July 2010, and (b) 8 June 2008 and 30 July 2010. The

perpendicular baseline is 5070 m for interferogram (a) and 1558 m for interferogram (b). (c) A zoomed-in region of interferogram (a) as

outlined in blue. Here ArcticDEM errors lead to a visible discontinuity in thaw subsidence estimates across the blue dashed line. (d) A

zoomed-in region of interferogram (b) as outlined in blue. With a smaller perpendicular baseline, no substantial discontinuity exists across

the blue dashed line. (e) A shaded relief map derived from the Arctic Pan-Arctic Digital Elevation Model. The averaged DEM gradient of 50

transects along the red solid line shows the location of the ArcticDEM error marked by the blue triangle symbol. This sharp discontinuity is

co-located with the dashed line marked in panel (c). (f) Thaw subsidence difference (in cm) between P1 and P2 of all available interferogram

pairs vs. the perpendicular baseline (in m). A linear relationship between the perpendicular baseline and the deformation error (orange line)

can be observed.
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3.3 Topographic artifacts related to DEM-SAR pixel misregistration

An important finding of this study is that pixel misregistration between the DEM and a SAR image can lead to DEM-related390

errors in InSAR LOS measurements. As an example, Figure 10(a) shows an interferogram formed by SAR images acquired on

8 June 2008 and 30 July 2010, and Figure 10(b) shows an interferogram formed by SAR images acquired on 3 June 2006 and

27 July 2009. Because the long-term subsidence trend is negligible, similar early June to late July thaw subsidence patterns are

present in these two interferograms. To quantify InSAR LOS errors in areas with larger percent slopes (> 7.5%), we zoomed

in to a hilly area near Imnavait Creek with a slope between 8.4% and 11.0%, and calculated the phase difference (a phase395

difference of 2π is equivalent to 12 cm LOS distance difference for L-band ALOS PALSAR data) between points PE on

the east-facing slope and PW on the west-facing slopes across a hill ridge. Because water flows away from ridges with very

small catchment areas, we expect to observe minimal freeze-thaw deformation on either side of the dry hill ridge. However,

the phase difference between PE and PW is 1.23 rad (an equivalent LOS deformation error of 2.3 cm) for the interferogram

that spans 8 June 2008 and 30 July 2010 (Figure 10(d)), and 0.92 rad (an equivalent LOS deformation error of 1.7 cm) for400

the interferogram that spans 3 June 2006 and 27 July 2009 (Figure 10(e)). Although the perpendicular baselines of these two

interferograms are similar (∼ 1500 meters), the observed errors are different. These artifacts were observed in many Toolik

ALOS interferograms across ridges (Figure 11). These phase artifacts are most noticeable in interferograms formed using one

of the three SAR images (acquired on 8 June 2008, 24 October 2008, and 27 October 2009), which likely suffer more severe

pixel misregistration errors than other SAR scenes. By contrast, an error in the DEM dataset itself can lead to LOS errors that405

are linearly proportional to the perpendicular baseline (Bperp) in all interferograms (Section 3.2), while long-term deformation

trend signals are proportional to temporal baselines (e.g., related to various slope processes as discussed in (Dini et al., 2019)).

To confirm that the observed InSAR phase errors between east-facing and west-facing slopes are indeed associated with

DEM-SAR misregistration, the Kuparuk River watershed DEM data (Nolan, 2003a) were shifted to the east by 1 pixel (∼
12 m). The difference between the original and shifted DEM was used as an approximation of the DEM error (δ) caused by410

1-pixel misregistration to the east as described in Equation (7). In this case, a positive DEM error on the east-facing slope with

respect to the west-facing slope was observed (Figure 12 (a)). Similarly, a negative DEM error was observed on the east-facing

slope with respect to the west-facing slope when the original DEM was shifted by 1 pixel to the west (Figure 12 (b)). When

the DEM-SAR misregistration is in the north-south direction, DEM errors on the north-facing slope with respect to the south-

facing slope were observed (Figure 12 (c) and (d)). Furthermore, at a given location, DEM errors increase as the amount of415

pixel misregistration increases to 2 pixels (Figure 12 (e)-(h)). Finally, the simulated DEM errors due to pixel misregistration

were compared to real LOS InSAR observations over the same region. Because ridges in the zoomed-in Imnavait Creek area

are mainly along the north-south direction, the observed LOS error patterns in real ALOS Toolik interferograms (Figure 11)

are most visible on the east-facing and west-facing slopes, which closely resemble DEM error patterns as shown in Figure 12

(a).420

The land-surface slope is another factor that could affect the magnitude of DEM errors δ at different pixels. We classified

radar pixels into four groups based on their percent slope. For each group, phase errors associated with pixel-mismatching (1
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Figure 10. (Top) (a) An L-band ALOS interferogram (path 255 frame 1370) that spans 8 June 2008 and 30 July 2010. (b) An L-band ALOS

interferogram (path 255 frame 1370) that spans 3 June 2006 and 27 July 2009. (c) A map of the percent slope in the study area. The black box

outlines the zoomed-in area. Point Pf ("f" stands for "flat") marks the location of a flat region analyzed in Figure 14. (Bottom) The InSAR

phase measurement over the zoomed-in region outlined with the black box. PE and PW are on the east-facing and west-facing slopes. The

phase difference between PE and PW is 1.23 rad in (d) and 0.92 rad in (e). A phase difference of 2π is equivalent to a 12 cm LOS error for

L-band ALOS PALSAR data. (f) A map of the percent slope in the zoomed-in area.

Figure 11. InSAR phase measurements over the zoomed-in region outlined with the black box in Figure 10 for interferograms with large

pixel misregistration errors. PE and PW are on the east-facing and west-facing slopes. Here all interferograms were referenced to a local

reference point near PE .
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Figure 12. Estimated DEM errors (in m) introduced by 1 pixel shift (∼ 12 m) to (a) east, (b) west, (c) north, and (d) south, and shifting the

DEM for 2 pixels (∼ 24 m) to the (e) east, (f) west, (g) north, and (h) south. At a given pixel location, larger pixel misregistration leads to

larger DEM errors. For fixed pixel misregistration, pixels with larger slopes show larger DEM errors. The study area is the same as in Figure

10, zoomed-in panels. The green color means the error is negligible. Purple and pink colors indicate positive and negative errors, respectively.

radian phase error is equivalent to 1.9 cm LOS error) were calculated for the case that the location of the ridge is off by 1 pixel

(∼ 12 m) to the east and a perpendicular baseline of 5104 m. This scenario can be considered as the error upper bound because

(1) the perpendicular baselines of L-band ALOS Toolik data are typically less than 5104 meters, and (2) the amount of pixel425

misregistration in the standard InSAR processing software packages is on the order of sub-pixels. We found that topographic

artifacts associated with DEM-SAR pixel misregistration are most noticeable in areas with a slope larger than 10%, and the

majority of the surface area with a low slope (0-5%) show negligible phase errors due to DEM-SAR pixel misregistration

(Figure 13). To further illustrate this, Figure 14 shows the amount of the LOS errors (in cm) in all interferograms at a steep

area and a flat area. Up to ∼ 6 cm LOS errors associated with pixel misregistration were observed in the steep area, while < 1430

cm LOS errors were observed in the flat area.

In summary, we found that (1) the DEM error δ increases as the amount of pixel misregistration increases for a given pixel

location (Figure 12); (2) the DEM error δ increases with local slopes at different pixel locations for the same amount of pixel

misregistration (Figure 13 and Figure 14); and (3) the relationship between the LOS error due to δ and the perpendicular

baseline is non-linear. We emphasize that both the amount of pixel misregistration and the slope influence the DEM error435

δ. For example, δ equals 0 if there is no pixel misregistration. At a given pixel location, δ increases as the amount of pixel

misregistration increases. For a fixed amount of pixel misregistration, δ increases as the slope increases at different pixel

locations. This means that the perpendicular baseline is not the only factor that controls the observed DEM artifacts in InSAR

LOS measurements ∆ddem. It is difficult to fully correct the pixel misregistration because SAR images and DEM data were

acquired from sensors with different spatial resolutions and imaging geometries. For example, the generation of the ArcticDEM440

using multiple imagery data acquired at different times can introduce distortions, which makes it challenging to precisely
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Figure 13. Estimated InSAR phase errors (in radians) at pixels with different slopes (0-5%, 5-7.5%, 7.5-10%, and >10%). Here DEM errors

are introduced by 1 pixel misregistration (∼ 12 m) to the east as in Figure 12(a). InSAR phase errors were calculated based on an InSAR

perpendicular baseline of 5104 m. An error of 1 radian equals an LOS error of 1.9 cm for L-band ALOS data.

quantify the propagation of this effect in the misregistration. Additionally, pixel misalignment could also be influenced by

atmospheric distortions in optical imagery. Given that these pixel misregistration artifacts are mostly observed in a small subset

of pixels with relatively large slope angles, we did not develop a misalignment correction algorithm in this study. Nonetheless,

our approach provides a method to estimate spatial characteristics and upper bound of InSAR phase errors due to DEM-SAR445

pixel misregistration in individual interferograms.

4 Conclusions

InSAR-estimated seasonal surface thaw subsidence can be related to the amount of water stored in the saturated soil active layer

above permafrost, which can be used to constrain hydrologic models and water mass budgets. In the Toolik area, 95% of zwater
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Figure 14. Line-of-sight (LOS) errors (in cm) of all interferogram pairs vs. perpendicular baseline (in m) at PE-PW with an average percent

slope of 10.4% (blue dots) and around Pf with an average percent slope of 1.9% (orange dots). The location of these pixels is shown in

Figure 10.

estimates range from 0 to 62 cm, and the spatial distribution of zwater correlates with elevation and vegetation cover types.450

The amount of error in InSAR-estimated zwater is linearly proportional to the error in InSAR LOS deformation measurements.

Although most InSAR measurement noises have been mitigated during the processing procedure, errors in the ArcticDEM

data and DEM-SAR misregistration can lead to visible InSAR LOS measurement errors. In the ALOS Toolik case, a 1-2 meter

error in the ArcticDEM data can lead to a LOS error larger than 1.5 cm when the perpendicular baseline is larger than 4000 m.

Errors associated with the DEM-SAR misregistration are determined by the amount of pixel misregistration, the local slope,455

and InSAR perpendicular baselines. In the Toolik area, these pixel-mismatching artifacts are mainly observed in regions with

a steeper slope (> 10%) in interferograms formed using a subset of SAR scenes with noticeable misregistration issues. Most

pixels in our study area have percent slopes smaller than 5%, and the LOS measurement error is generally smaller than 1 cm

(equivalent to zwater errors smaller than 14 cm). As the landscape near Toolik Lake on the North Slope of Alaska transitions

from hilly terrain to the south to flat plains to the north, DEM-SAR misregistration no longer produces visible phase artifacts460

in InSAR LOS observations. Our study shows that InSAR is an effective and powerful technique for accurately monitoring the

status of and changes in hydrological characteristics in active-layer soils above continuous permafrost. InSAR estimates of soil

water depth are statistically consistent with in situ observations, and the advantages of InSAR estimates include broader spatial

coverage, higher spatial resolution, and the ability to map spatial patterns.

Data availability. ALOS PALSAR data were downloaded from the Alaska Satellite Facility at https://asf.alaska.edu/asfsardaac/. Arctic-465

DEM data were provided by the Polar Geospatial Center at https://www.pgc.umn.edu/data/arcticdem/. Kuparuk River watershed DEM data

were obtained at https://toolik.alaska.edu/gis/data/index.php. Toolik in situ soil measurements collected in the 2018 and 2019 summer field

campaigns can be accessed from O’Connor et al. (2020).
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Appendix A: Comparison between InSAR and Other Satellite Remote Sensing Techniques for Studying Water in the

Active Layer470

Observations from the Gravity Recovery and Climate Experiment (GRACE) mission have been used to estimate changes in

water mass within permafrost regions with a grid size of 1 arc degree, approximately 111 km. However, the spatial resolution

is too coarse for applications in understanding water flow in the active layer and for constraining most and especially detailed

hydrologic models. Meanwhile, instead of estimating the amount of water stored in the active layer, the mass change observed

by GRACE is mainly caused by mass loading by snow accumulation in winter and mass unloading by runoff in spring–summer475

(Muskett and Romanovsky, 2009).

In recent years, a spaceborne GNSS-R mission, the Cyclone Global Navigation Satellite System (CYGNSS) mission, has

also been applied to study the freeze-thaw process in permafrost regions (Wu et al., 2020; Carreno-Luengo and Ruf, 2022).

CYGNSS focuses on detecting the freeze-thaw state of the surface soil on top of the permafrost by monitoring changes in the

dielectric constant. A regional map of the freeze-thaw state is derived by comparing the measured reflectivity with reflectivity480

measurements corresponding to frozen and thawed reference states. According to Carreno-Luengo and Ruf (2021), the detected

freeze-thaw state could be sensitive to properties of the top soil layer (0-7 cm), such as soil temperature and soil moisture

content (SMC). However, according to our field data collected at ∼ 200 sites (marked in Figure 1 in the main paper), the

active layer thickness in our study area has a mean of 56 cm with a quartile range of 44-67 cm, much thicker than the top soil

layer (0-7 cm). Therefore, it is hard to infer soil water storage in the entire active layer using the information of SMC in the485

top soil layer. Moreover, in Carreno-Luengo and Ruf (2022), the authors showed that the SMC of the top soil layer actually

does not impact the freeze-thaw state results from CYGNSS data. Therefore, there does not exist a strong relationship between

CYGNSS-detected freeze-thaw states and SMC in the top soil layer. To conclude, CYGNSS observations could be used to

infer soil properties in the top soil layer, but monitoring soil water equivalent depth in the entire active layer would be difficult.

Appendix B: Supplementary Tables and Figures490
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Table B1. Synthetic Aperture Radar scenes used in the study

Date Orbit Path Frame Date Orbit Path Frame

2006/06/03 01900 255 1370 2006/06/03 01900 255 1380

2006/10/19 03913 255 1370 2006/10/19 03913 255 1380

2007/09/06 08610 255 1370 2007/09/06 08610 255 1380

2007/10/22 09281 255 1370 2007/10/22 09281 255 1380

2008/06/08 12636 255 1370 2008/06/08 12636 255 1380

2008/09/08 13978 255 1370 2008/10/24 14649 255 1380

2008/10/24 14649 255 1370 2009/07/27 18675 255 1380

2009/07/27 18675 255 1370 2009/09/11 19346 255 1380

2009/09/11 19346 255 1370 2009/10/27 20017 255 1380

2009/10/27 20017 255 1370 2010/06/14 23372 255 1380

2010/06/14 23372 255 1370 2010/07/30 24043 255 1380

2010/07/30 24043 255 1370
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Figure B1. An L-band ALOS PALSAR interferogram (Path 255 Frame 1370-1380) that spans June 3, 2006 and July 27, 2009 over the study

area. A phase cycle (2π) equals 12 cm radar Line-Of-Sight (LOS) deformation. Subsidence leads to positive LOS deformation (pink). The

same reference point at 68.83◦ N, 150.23◦ W were used for both frames, as marked by the red star.
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Figure B2. (a) A map of the average phase coherence of all interferograms used for estimating seasonal thaw subsidence. Low phase

coherence is observed over water bodies and regions burned by the 2007 Anaktuvuk River fire. (b) The pixel mask used in this study. The

black color indicates pixels that have been masked out or are outside the study area. This mask excludes any pixels with amplitude dispersion

< 0.25 and phase coherence < 0.2 (e.g. water bodies and the area affected by the 2007 Anatuvuk River fire).
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Figure B3. Average seasonal surface deformation (in cm) between (a) early June and late July, (b) late July and early September, and (c)

early September and late October derived from ALOS PALSAR Path 255 Frame 1380 InSAR observations. (d) Average long-term surface

deformation trend (cm/yr) between 2006 and 2010 derived from ALOS PALSAR Path 255 Frame 1380 InSAR observations. Here red means

subsidence, yellow means no significant deformation, and blue means uplift. The area affected by the 2007 Anaktuvuk River fire, along

with water bodies, has been masked out based on InSAR phase coherence. Toolik Field Station in-situ data suggest that the air temperature

fluctuated around or below freezing in early September during the ALOS PALSAR data acquisition times (at ∼ 12 am local time). In this

scenario, ice can be formed at the top of the soil, which leads to frost heave in saturated soils (Chen et al., 2020)

.
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Figure B4. Field photos of (a) heath land cover, (b) tussock tundra land cover, (c) sedge land cover (Adapted from Chen et al. (2020)).
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Figure B5. Soil stratigraphy under different land covers near Toolik Lake area as derived from field measurements collected at sites marked

in Figure 1 in the main paper (Adapted from Chen et al. (2020)).
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