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Abstract. The flow duration curve (FDC) represents the distribution of streamflow, providing vital information for managing 

river systems. Constructing FDC is especially challenging in ungauged basins where streamflow data are lacking. This study 

addresses key gaps by utilizing machine learning and deep learning models to predict FDC in ungauged basins. The objectives 10 

include: (a) identifying influential hydrologic, meteorological, and topographic factors, (b) evaluating various combinations 

of predictor variables, (c) assessing the effects of different precipitation metrics on flow predictions, and (d) comparing ML 

and DL model performance. We developed and evaluated random forest (RF), deep neural network (DNN), support vector 

regression (SVR), and elastic net regression (ENR) models using historical data from 140 streamflow stations. Feature 

importance analysis revealed that watershed area and precipitation were the key factors for high discharge percentiles, whereas 15 

land use and basin characteristics gained greater importance for medium and low flows. Scenario analysis showed that 

combining all variables yielded the highest accuracy in predicting FDC. Different precipitation metrics had minimal impact 

on streamflow predictions, indicating that other factors played a more significant role. The DNN outperformed RF, SVR, and 

ENR in predicting low (𝑄!"), medium (𝑄"#), and high flows (𝑄"), achieving an average coefficient of determination that was 

8.03% higher, a root mean square error that was 227.4% lower on average, and a standard deviation that was 46.4% lower. 20 

This study demonstrates the effectiveness of advanced ML and DL approaches for predicting FDC in ungauged basins, offering 

a foundation for advancing hydrological prediction. 

1 Introduction  

Accurate prediction of streamflow in ungauged basins remains a critical challenge in hydrology, essential for effective water 

resource management, ecosystem protection, and sustainable development (Booker & Snelder, 2012; Castellarin et al., 2004). 25 

One widely used approach to tackle this challenge is constructing flow duration curves (FDC), which are instrumental in 

various water-related applications, such as hydropower generation, irrigation system design, stream-pollution management, 

river and reservoir sedimentation control, and fluvial erosion (Yi & Yi, 2024). However, constructing FDC in ungauged or 

poorly gauged basins presents significant challenges due to the lack of reliable streamflow data. In many regions globally, 

discharge has not been measured regularly or accurately, leading to the designation of such areas as ungauged basins. The 30 
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scarcity of streamflow data is a well-recognized issue, as demonstrated by numerous studies across diverse geographic regions, 

such as Canada (LeBoutillier & Waylen, 1993), China (Ma et al., 2024), Greece (Mimikou & Kaemaki, 1985), Mexico 

(Arsenault et al., 2019), Korea (Won et al., 2023), USA (Ridolfi et al., 2020). While gauged basins allow for empirical 

derivation of FDC using long-term flow records, ungauged basins require alternative approaches to estimate streamflow. 

Recognizing the importance of predicting FDC at ungauged sites, substantial research efforts have been dedicated to addressing 35 

this challenge (Castellarin et al., 2018; Costa et al., 2014; Li et al., 2010). The International Association of Hydrological 

Sciences (IAHS) has also promoted initiatives like predictions in ungauged basins (PUB) to foster research in unmonitored 

basins (Sivapalan, 2003). As a result, prediction of FDC at ungauged sites has become a major focus within PUB, due to the 

widespread use of FDC for planning and managing water resources. 

PUB has been a long-standing challenge in hydrology (Smakhtin et al., 1997). Common methods include regionalization 40 

techniques, where hydrological relationships are transferred from nearby gauged catchments with similar characteristics, and 

hydrological modeling, where conceptual or physically based models simulate flow using catchment attributes and climate 

inputs (Mohamoud, 2008; Razavi & Coulibaly, 2013; Shu & Ouarda, 2012). A wide range of approaches—statistical, 

conceptual, and physical methods—have been applied to this problem. For example, one study proposed a method for 

constructing FDC at gauged stations using continuous historical flow data (Vogel & Fennessey, 1994). However, continuous 45 

flow data is limited in many parts of the world due to the costs associated with installing, operating, and managing gauges 

(Hrachowitz et al., 2013; Mishra & Coulibaly, 2010; Sivapalan et al., 2003). To address the lack of data, numerous methods 

for predicting flow in ungauged basins have been widely researched (Mohamaoud, 2008; Shu & Ouarda, 2012). Regression 

equations are often used to estimate FDC percent exceedances and the parameters of probabilistic models that represent FDC 

(Mohamaoud, 2008; Pugliese et al., 2016). However, this approach requires defining hydrologically homogeneous regions and 50 

involves uncertainties due to the number of physical and climatic variables influencing the water regime of a basin (Castellarin 

et al., 2004). Regional hydrological models for estimating daily FDC at ungauged river basins exist (Fennessey & Vogel, 

1990), but these models may perform poorly at specific gauging stations where the hydrological behavior deviates from the 

general characteristics of the basin (Burgan & Aksoy, 2022). Alternative approaches include multivariate statistical models 

(Holmes et al., 2002), geostatistical methods (Goodarzi & Vazirian, 2023; Pugliese et al., 2014), kriging techniques 55 

(Castellarin, 2014), linear and nonlinear mathematical equations (Ganora et al., 2009; Yaşar & Baykan, 2013), and spatial 

nonlinear interpolation methods (Archfield & Vogel, 2010; Hughes & Smakhtin, 1996; Mohamaoud, 2008).  

However, these approaches carry inherent uncertainties, as they rely on assumptions about the similarity between basins or the 

accuracy of model inputs and parameters (Farmer & Vogel, 2013; Gianfagna et al., 2015; Razavi & Coulibaly, 2013; Zelelew 

& Alfredsen, 2014). The primary limitation lies in the complexity of regional hydrological characteristics and the difficulty of 60 

accurately translating those characteristics between ungauged basins (Yi, 2024). Machine learning (ML) techniques have 

recently emerged as promising alternatives for estimating FDC in ungauged basins, leveraging basin attributes to predict flow 

characteristics. Although these models offer notable advantages, they are still limited by their dependence on the quality of 

training data and the potential risk of overfitting, especially in the absence of observed flow data. The lack of observed data 
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fundamentally limits the validation of any FDC derived in ungauged basins, thus making the accurate characterization of flow 65 

variability an ongoing challenge. 

To address the limitations in predicting FDC in ungauged basins, numerous machine learning algorithms have been applied, 

including artificial neural networks (ANN) (Atieh et al., 2017), gene expression programming (GEP) (Razaq et al., 2016), 

multi-output neural networks (MNN) (Worland et al., 2019), support vector machines (SVM) (Razaq et al., 2016), and long 

short-term memory (LSTM) models (Feng et al., 2021). Despite these advances, significant gaps persist. First, many studies 70 

only compare two ML algorithms, lacking a comprehensive evaluation of diverse models, particularly deep learning (DL) 

methods for streamflow prediction (Arsenault & Brissette, 2014). Second, existing models face challenges in capturing flow 

variability in ungauged basins due to persistent data scarcity (Feng et al., 2021). This limitation makes it uncertain whether 

advanced DL models like LSTM are suitable for PUB applications, where there is a dearth of sufficient training data. Third, 

while various hydrologic, meteorological, and topographic factors have been used to predict flow duration curves (Atieh et al., 75 

2017), few studies rank the importance of these variables across different flow percentiles. Understanding which factors are 

most influential under specific flow conditions is crucial for accurately predicting streamflow variability. Fourth, most studies 

use average annual precipitation as the primary predictor (Arsenault & Brissette, 2014; Atieh et al., 2017; Worland et al., 

2019), without exploring the impact of different precipitation metrics—such as those accumulated over various durations—on 

low, medium, and high flow predictions. This lack of exploration leaves gaps in understanding how different rainfall 80 

characteristics influence flow predictions. This study aims to address these four gaps through the following objectives: 

(a) Determine the importance of different independent variables across various discharge percentiles, particularly 

examining which factors are most influential in low (𝑄!"), medium (𝑄"#), and high flows (𝑄") discharge scenarios.  

(b) Evaluate different combinations of independent variables for FDC predictions, identifying the scenario that provides 

the most accurate prediction results.  85 

(c) Assess the influence of various precipitation variables on streamflow predictions, particularly their impact on high 

and low flow conditions. 

(d) Compare the performance of different ML and DL models to identify the best-performing model for FDC predictions. 

The novelty of this research lies in the development of a comprehensive approach that integrates a wide range of predictor 

variables—including hydrologic, meteorological, and topographic factors—to predict the full range of discharge percent 90 

exceedances using ML and DL algorithms. Moreover, unlike previous studies, this work assesses the relative importance of 

different factors for each discharge percent exceedances along the FDC, providing valuable insights into the dominant drivers 

for different flow conditions. The contribution of this study is not only in predicting streamflow in ungauged basins but also 

in advancing our understanding of how specific physical factors influence different portions of the FDC, thereby supporting 

more effective water resource management and planning. 95 
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2 Study area 

Approximately two-thirds of South Korea, predominantly along its eastern coast, consists of mountains. This topography 

directs the flow of river water westward, leading it into the Yellow Sea. Geographically, South Korea lies within the East 

Asian region, significantly impacted by the Asian monsoons with four distinct seasons (Fig. 1). The mean annual precipitation 100 

in South Korea is approximately 1,300 mm, about 1.6 times greater than the global average (Lee et al., 2023). A significant 

portion of this precipitation, approximately two-thirds of the annual total, occurs during the rainy season from June to 

September, frequently resulting in floods. The winter lasts from December to February, while the summer lasts from June to 

September. The low streamflow is usually observed between December and February. South Korea, experiences high humidity 

in summer (June to August) due to the influence of the North Pacific high-pressure system.  105 

The country encompasses five major river basins: the Han, Nakdong, Geum, Seomjin, and Yeongsan River Basins (Fig. 1). 

The Han River Basin has the largest basin area, while the Nakdong River Basin has the longest river course (Table 1). The 

study area covers the entire South Korea including 140 discharge stations from Han, Nakdong, Geum, Seomjin, and Yeongsan, 

respectively.  

South Korea's major river basins—Han, Nakdong, Geum, Seonjin, and Yeongsan—each contribute uniquely to the country's 110 

water resources (Table 1). These basins vary in size, length, and precipitation, reflecting the diverse hydrological patterns 

across the nation. The Han and Nakdong basins are the largest and serve as critical water sources for the densely populated 

and industrialized regions, while the smaller Geum, Seonjin, and Yeongsan basins play vital roles in supporting agriculture 

and local ecosystems. The variation in precipitation among these basins underscores the importance of tailored water 

management strategies to ensure sustainable use and preservation of water resources across the country. 115 

Table 1 Characteristics of five river basins in South Korea.  

River Basin Han Nakdong Geum Seonjin Yeongsan 

Area (km2) 34,428 23,690 9,914 4,914 3,469 

River Length (km) 483.0 511.0 388.0 222.0 135.0 

Average precipitation 1,261.1 1,163.4 1,225.6 1,415.5 1,310.4 

Table 2 Statistics (mean, max, min, and standard deviation (SD) of the hydrologic, meteorological, and physical 

variables for 140 stream gauge stations.  

Variable Unit Mean Max Min SD 

Watershed Area km2 276.9 1590 28 260 

Avg basin elevation m 364.4 914.4 42.9 225 

Avg basin slope % 11.7 19.3 2.8 3.7 

Urban area % 4.9 46.5 0.01 8.8 

Forest/Mountain area % 67.7 97.6 3.1 30.1 
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Agriculture area % 26.6 95.3 1.6 28.8 

Water area % 0.8 6.1 0 0.8 

𝑃$%%&$' mm 1,231 2,810 854 209 
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Figure 1 Map of South Korea showing the five major river basins: Nakdong, Han, Geum, Seomjin, and Yeongsan River 

Basins. The red points indicate the locations of 140 streamflow stations with natural flows, and the green areas 

represent the corresponding basins. © Google Maps (2024). 

3 Materials and methods 

3.1 Workflow 125 

Fig. 2 presents the methodology of this study. The initial step involves gathering input data, such as discharge, Digital Elevation 

Model (DEM), Land Use Land Cover (LULC) product, and precipitation. The second step focuses on data preprocessing. 

Here, discharge data is utilized to estimate the different discharge percentile (𝑄", 𝑄(#, 𝑄)#, 𝑄*#, 𝑄+#, 𝑄"#, 𝑄,#, 𝑄-#, 𝑄.#, 𝑄!#, 

𝑄!" ), while DEM is employed to determine basin area, slope, and elevation. The LULC data assists in calculating the 

percentages of agriculture, forested, water, and urban areas. Additionally, precipitation data is used to compute the cumulative 130 

precipitation over 120 days for each basin. The third step involves developing ML and DL models, including RF, SVR and 

ENR for ML, and DNN for DL. In the fourth step, the performance of these ML and DL models is evaluated using metrics 

such as coefficient of determination (R²), root mean square error (RMSE), standard deviation (SD), and Taylor diagram. The 

final step entails applying the optimized model to forecast future low flow scenarios using new input data that was not included 

in the model training and testing phases. 135 
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Figure 2 A workflow illustrating the sequence starting from the collection of input data and culminating in the selection 

of the final model. 

3.2 Data collection and preprocessing 

We used discharge as the dependent variable, and hydrologic, meteorological, and topographic factors as the independent 140 

variables to analyze their influence on streamflow. The independent variables consist of basin area, average basin elevation, 

average basin slope, precipitation within each basin, and percentages of different LULC types, including urban, forest, 

agriculture, and water. We chose these variables to effectively capture the diverse characteristics impacting streamflow and 

build robust prediction models. 
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3.2.1 Hydrologic data 145 

The study area covers the entire South Korea including 140 discharge stations from Han, Nakdong, Geum, Seomjin, and 

Yeongsan, respectively. The Korea Water Resources Corporation provides daily inflow data from observation gaging stations 

(http://www.water.or.kr). We selected discharge stations that have at least five years of data and no upstream water 

infrastructure, such as reservoirs. We used the U.S. Army Corps of Engineers, Hydrologic Engineering Center’s Statistical 

Software Package to estimate the discharge. 𝑄" refers to the discharge where 5% of the entire daily flow is greater than this 150 

value. 𝑄!" refers to the discharge where 95% of the entire daily flow is greater than this value. Other discharge factors follow 

the same principle. 

3.2.2 Meteorological data 

The Korea Meteorological Administration offers open access to meteorological data for the entire South Korea 

(https://data.kma.go.kr/resources/html/en/aowdp.html). Precipitation data were obtained from two to eight Automatic Weather 155 

Stations within each basin. The Thiessen polygon method was utilized to approximate the precipitation data across these 

basins.  

Precipitation data were processed into 𝑃$%%&$' , 𝑃(#,  𝑃*#, 𝑃()#, 𝑃("#, and 𝑃(.#, and used as independent variables. 𝑃$%%&$' 

represents the annual average precipitation in each watershed, and 𝑃(# and 𝑃*# represent the maximum sustained precipitation 

for 10 and 30 days, respectively. 𝑃()#, 𝑃("#, and 𝑃(.# represent the minimum sustained precipitation for 120 days, 150 days, 160 

and 180 days. 

3.2.3 Topographic and land use data 

The Ministry of Land, Infrastructure and Transport provides an open access to the Digital Elevation Model (DEM) (90 m) for 

the South Korea (http://data.nsdi.go.kr/dataset). Using QGIS, we calculate the watershed area, basin elevation, and average 

basin slope with the latest DEM from 2020.  165 

The Ministry of Environment provides an open access LULC map for the entire South Korea (https://egis.me.go.kr/req/list.do). 

LULC maps are categorized based on resolution into three distinct types: the broad category with a 30 m resolution, the 

medium category at 5 m resolution, and the detailed category with a 1 m resolution. Approximately 91.5% is analyzed using 

the broad category map, while the remaining area is assessed through a combined use of medium and detailed category maps. 

For a more focused analysis, the study area is reclassified into four distinct categories: urban, forest/mountain, agriculture, and 170 

water. 
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3.3 Machine learning models 

3.3.1 Random forest 

RF is an ensemble learning method used for classification and regression. It generates multiple decision trees, trains each tree 

on different subsets of the dataset, and aggregates several prediction results (Breiman, 2001). This algorithm is a representative 175 

ML of the bagging technique, where random samples are repeatedly drawn from the original data to train individual models, 

and their results are combined. By randomly selecting variables during the tree-building process, RF reduces the correlation 

between decision trees, thereby enhancing predictive performance and increasing efficiency. 

RF reduces the risk of overfitting by randomly sampling multiple times and aggregating the diverse results (Ali et al., 2012). 

It is less sensitive to outlier data and has the advantage of easy parameter tuning. RF automatically assesses the significance 180 

of variables, using measures such as Gini importance, which simplifies the evaluation process. However, increasing the number 

of trees to enhance predictive performance can significantly increase computational load, resulting in longer training times. 

The key parameters used in Random Forest include n_estimators, max_depth, min_samples_split, and min_samples_leaf 

(Kelkar & Bakal, 2020). n_estimators represent the number of trees in the forest, max_depth denotes the maximum depth of 

each tree. Min_samples_split signifies the minimum number of samples required to split an internal node, while 185 

min_samples_leaf represents the minimum number of samples required to be at a leaf node. 

3.3.2 Deep neural network 

DNN has become a fundamental tool in machine learning, particularly due to their ability to learn hierarchical representations 

from data (Yi et al., 2024). Unlike traditional models, DNNs employ multiple hidden layers that allow them to extract 

progressively complex features from raw inputs. This hierarchical approach has enabled DNN to outperforms many other 190 

machine learning methods, especially in tasks such as image classification, speech recognition, and language translation, where 

high-dimensional data and complex patterns are involved. Each layer in a DNN refines the information passed from the 

previous layer, allowing for more abstract and informative feature representations (Schmidhuber, 2015). 

One of the key advantages of DNN is their ability to model non-linear relationships, thanks to the use of non-linear activation 

functions such as Rectified Linear Unit (ReLU). These functions introduce non-linearity into the system, enabling the network 195 

to solve complex problems that linear models cannot handle effectively. Additionally, DNN leverages large amounts of data 

and computational resources to fine-tune these models, resulting in highly accurate predictions. This adaptability makes DNN 

particularly useful in fields like computer vision and natural language processing, where non-linear patterns dominate (LeCun 

et al., 2015). 

Despite their powerful capabilities, DNN also comes with challenges, particularly in the realm of training. The networks can 200 

be prone to overfitting, especially when dealing with smaller datasets. To mitigate this, techniques such as regularization, 

dropout, and batch normalization are often employed. These methods help to generalize the model and prevent it from 

memorizing the training data. Furthermore, the computational demand of DNN can be a limitation, as training deep models 
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requires significant processing power and memory. However, advancements in hardware, such as the use of GPUs and TPUs, 

have helped alleviate some of these challenges (Goodfellow et al., 2016). 205 

3.3.3 Support vector regression 

SVR, a subset of SVM algorithms, is designed for regression analysis (Smola & Schölkopf, 2004). SVR aims to approximate 

the relationship between input variables and a continuous target variable by finding a function that minimizes prediction errors. 

Unlike SVMs for classification, SVR establishes a hyperplane in a continuous space to best fit the data points (Awad & 

Khanna, 2015). This involves mapping input variables into a high-dimensional feature space to maximize the margin—the 210 

distance between the hyperplane and the nearest data points—while minimizing error. SVR accommodates non-linear 

relationships using a kernel function, which maps data into a higher-dimensional space, enhancing its capability for handling 

complex variable interactions (Yi et al., 2022). The model employs a hyperplane and a margin within an ε-insensitive tube, 

which allows some deviations from the hyperplane without penalizing them as errors, providing a robust approach to regression 

tasks. 215 

SVR is particularly effective in high-dimensional spaces and handles scenarios where the number of dimensions exceeds the 

number of samples efficiently (Drucker et al., 1997). It performs well when there is a clear margin of separation between 

classes, making it memory efficient and accurate in such conditions. However, SVR is less suitable for very large datasets as 

both its computational and memory requirements can become prohibitive. It also struggles with noisy datasets where target 

classes overlap and underperforms when the feature count per data point greatly exceeds the number of training samples.  220 

C and Gamma are the parameters for a nonlinear SVR with a Gaussian radial basis function kernel (Jiang et al., 2009). C 

controls error tolerance and a low C makes the decision surface smooth, while a high C aims at classifying all training examples 

correctly. Gamma defines how much influence a single training example has. The larger gamma is, the closer other examples 

must be to be affected.  

3.3.4 Elastic net regression 225 

ENR is a versatile machine learning algorithm that integrates the strengths of both Lasso and Ridge Regression. ENR is a type 

of regularized linear regression model that adds appropriate constraints to the linear regression coefficients, helping to prevent 

model overfitting. ENR is a versatile machine learning algorithm that integrates the strengths of both Lasso and Ridge 

Regression. ENR is a compromise between the Ridge model, which improves model stability and solves multicollinearity 

problems, and the Lasso model, which selects only useful variables and reduces the model size. It utilizes both the L2 norm 230 

used in Ridge regression and the L1 norm used in Lasso regression, incorporating the sum of the absolute values and the sum 

of squares of the regression coefficients as constraints (Kelly et al., 2012). 

ENR can effectively discard unimportant variables even in the presence of high correlations between variables, while selecting 

the most important ones and applying appropriate weights based on importance and correlation. It can also address 

multicollinearity issues between input variables. 235 

https://doi.org/10.5194/hess-2024-355
Preprint. Discussion started: 21 January 2025
c© Author(s) 2025. CC BY 4.0 License.



12 
 

The main hyperparameters of ENR include Alpha and Lambda. Alpha represents the mix ratio between Lasso regression (alpha 

= 1) and Ridge regression (alpha = 0) (Friedman et al., 2010). This means that during training, the model will test 10 values 

evenly spaced between 0 (pure Ridge) and 1 (pure Lasso), covering different combinations of Ridge and Lasso penalties. 

Lambda refers to the penalty strength parameter, which defines a range of 10 values from 10-4 to 10-1, meaning that lambda 

values are tested between 0.0001 and 0.1. 240 

3.4 Scenarios 

We analyze streamflow predictions across four scenarios involving various meteorological and topographic variables (Table 

3). Scenario 1 uses precipitation and basin area as independent variables. Scenario 2 includes precipitation, basin area, and 

LULC. Scenario 3 substitutes LULC with basin slope and elevation. Scenario 4 incorporates all these variables. Each scenario 

tests different accumulated precipitation values to forecast streamflow. In total, we simulate 128 cases incorporating different 245 

scenarios and precipitation values for 11 discharge levels that make up the FDC. 

For predicting large stream discharge (e.g., 𝑄" , 𝑄(# , 𝑄)# , 𝑄*# ), we use the 𝑃$%%&$' , 𝑃(# , and 𝑃*# , which represent the 

accumulated maximum precipitation over a short duration to capture short and intense storms (Table 4). In four scenarios for 

each of the four stream discharges, we simulate four different precipitation variables along with other independent variables, 

resulting in a total of 64 combinations. 250 

For predicting median stream discharge (e.g., 𝑄+#, 𝑄"#, 𝑄,#, 𝑄-#), we use the 𝑃$%%&$', 𝑃()#, and 𝑃("#, which represent the 

accumulated maximum precipitation over a medium duration to capture medium storms. In four scenarios for each of the four 

stream discharges, we simulate three different precipitation variables along with other independent variables, resulting in a 

total of 48 combinations. 

For predicting small stream discharge (e.g., 𝑄!#, 𝑄!"), we use the annual total precipitation 𝑃$%%&$' and 𝑃(.#, which represent 255 

the accumulated maximum precipitation over a long duration to capture rainfall events. In four scenarios for each of the two 

stream discharges, we simulate two different precipitation variables along with other independent variables, resulting in a total 

of 16 combinations.  

Table 3 Four scenarios have different combinations of hydrologic, meteorological, and topographic factors. 

Scenario Discharge Precipitation Area LULC Slope & Elevation 

1 O O O X X 

2 O O O O X 

3 O O O X O 

4 O O O O O 

Table 4 Different precipitation values to predict streamflow percent exceedances (𝑸𝟓 to 𝑸𝟗𝟓).  260 

Discharge Precipitation 

𝑄" 𝑃$%%&$' 𝑃(# 𝑃*#       
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𝑄(# 𝑃(# 𝑃*#       

𝑄)# 𝑃(# 𝑃*#       

𝑄*# 𝑃(# 𝑃*#       

𝑄+#     𝑃()# 𝑃("#   

𝑄"#     𝑃()# 𝑃("#   

𝑄,#     𝑃()# 𝑃("#   

𝑄-#     𝑃()# 𝑃("#   

𝑄.#     𝑃()# 𝑃("#   

𝑄!#     𝑃()# 𝑃("# 𝑃(.# 

𝑄!"     𝑃()# 𝑃("# 𝑃(.# 

 

3.5 Model performance metrics 

The three model performance metrics are the R2, RMSE, and SD. R2 is a goodness of fit that ranges from 0 to 1 that measures 

the preciseness of the model outcome. Equation 1 presents the formula for calculating the R where the sum of squares of 

residuals (SSR) is the differences between the observed and predicted values and the total sum of squares (SST) is the sum of 265 

the squared differences between the observed values and the mean of observed values.  

𝑅) = 1 − 1&2	45	16&$789	45	:89;<&$'9	(11:)
?4@$'	1&2	45	16&$78	(11?)

 ,         (1) 

RMSE measures the average difference between a statistical observed values and predicted values. It is the standard deviation 

of the residuals. Equation 2 shows the calculation for RMSE where 𝑦; is the actual value, 𝑦A)  is the predicted value, and n is the 

total number of observations.  270 

𝑅𝑀𝑆𝐸 =	.(
%
	∑ (𝑦; −	𝑦1;))%

;B( ,          (2) 

To calculate the standard deviation, which measures the amount of variation or dispersion of a set of values, you can use a 

similar approach to the RMSE formula you provided. The standard deviation (𝜎) for a set of observed values (𝑦;) is calculated 

as follows, where 𝑦 is the mean of the observed values and 𝑛 is the total number of observations: 

𝑆𝐷 =	.(
%
	∑ 6𝑦; −	𝑦7

)
%
;B( ,          (3) 275 
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4 Results 

4.1 Influence of hydrologic, meteorological, and topographic factors on flow dynamics 

We aimed to compare prediction results of four scenarios using different combinations of multiple independent variables. We 

assessed the relative importance of eight independent variables to construct scenarios based on their combinations. Using 

percentile flow as the dependent variable and watershed area, average slope, precipitation, among others, as independent 280 

variables, we developed a multiple linear regression model. We analyzed the beta coefficients to indicate the relative 

importance of each independent variable. The beta coefficient represents the slope of each independent variable in the 

estimated regression equation. A larger beta coefficient suggests that the independent variable has a greater impact on changes 

in the dependent variable, implying higher relative importance of that variable in the scenario being analyzed. This approach, 

which involves multiple linear regression and beta coefficients, is widely used to evaluate the relative importance of 285 

independent variables. By standardizing all variables in the analysis, we controlled for the impact of variable units on the slope. 

As beta coefficients represent standardized slopes, they provide a straightforward interpretation: a larger beta coefficient 

implies a stronger influence of the corresponding independent variable on the dependent variable. We then established the 

rankings of the importance of eight independent variables for all discharge scenarios. 

Table 5 shows the ranking of the independent variables by discharge percentiles. The importance of the eight independent 290 

variables was evaluated separately for low, medium, and high discharge percentiles. For high discharge percentiles (above 

𝑄*#), watershed area and precipitation exhibited the highest importance, while basin elevation and basin slope, representing 

watershed topographical characteristics, also ranked highly in importance. Water, urban, agriculture, and forest/mountain area 

(LULC) were given lower priority. In contrast, for medium and low discharge scenarios (below 𝑄+#), the importance of LULC 

was found to be high, followed by watershed area. 295 

Table 5 Summary table of eight independent variables (in beta coefficients) ranked by discharge percentiles. The 

number indicates the order of importance. In dependent variables include watershed area (Area), precipitation (Pre), 

basin slope, basin elevation (Elv), water area, urban area, agriculture (Agr) area, forest/mountain (Forest) area.  

Discharge Area Pre Slope Elv Water  Urban  Agr Forest 

𝑄" 
0.731 0.014 0.071 0.022 -0.149 -0.576 -1.26 -1.26 

(1) (4) (2) (3) (5) (6) (7) (8) 

𝑄(# 
0.965 0.05 0.080 0.072 -0.237 -1.201 -2.59 -2.62 

(1) (4) (2) (3) (5) (6) (7) (8) 

𝑄)# 
1.01 0.097 0.014 0.131 -0.124 -0.512 -1.25 -1.28 

(1) (3) (4) (2) (5) (6) (7) (8) 

𝑄*# 
0.988 0.133 -0.029 0.158 -0.084 -0.368 -0.953 -0.979 

(1) (3) (4) (2) (5) (6) (7) (8) 

0.920 0.145 -0.053 0.15 0.147 1.351 2.54 2.53 
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𝑄+# (4) (7) (8) (5) (6) (3) (1) (2) 

𝑄"# 
0.904 0.135 -0.075 0.156 0.526 4.24 8.36 8.40 

(4) (7) (8) (6) (5) (3) (2) (1) 

𝑄,# 
0.903 0.111 -0.087 0.158 0.969 7.622 15.15 15.24 

(5) (7) (8) (6) (4) (3) (2) (1) 

𝑄-# 
0.909 0.092 -0.105 0.161 0.867 7.001 13.9 13.9 

(4) (7) (8) (6) (5) (3) (2) (1) 

𝑄.# 
0.896 0.057 -0.116 0.149 0.776 6.48 12.7 12.8 

(4) (7) (8) (6) (5) (3) (2) (1) 

𝑄!# 
0.759 -0.016 -0.167 0.14 1.162 9.505 18.8 19.0 

(5) (7) (8) (6) (4) (3) (2) (1) 

𝑄!" 
0.608 -0.047 -0.164 0.11 1.19 9.79 19.3 19.6 

(5) (7) (8) (6) (4) (3) (2) (1) 

4.2 Scenario evaluation for flow duration curve prediction 

We developed a FDC prediction model using four scenarios based on combinations of independent variables. We compared 300 

the prediction results of the four scenarios for annual precipitation (𝑃$%%&$'), with RF and DNN evaluated at the 70th percentile 

discharge (𝑄-#), and SVR and ENR evaluated at the 30th percentile discharge (𝑄*#), to determine the scenario with the best 

prediction results. Additionally, we compared the prediction results of the four scenarios for other discharge percentiles and 

precipitation metrics. Scenario 4, which included all independent variables, generally showed the most superior prediction 

results. 305 

In Fig. 3, graphs of results for each scenario are displayed. These graphs visually depict the similarity between a series of 

observed and predicted data, indicating correlation. Fig. 3 illustrates the results for four scenarios per machine learning 

technique: (a) corresponds to the results of RF for the 70th percentile discharge (𝑄-#) and annual precipitation (𝑃$%%&$'); (b) 

represents the results of DNN; (c) shows the results of SVR, and (d) displays the results of ENR. Overall, Scenario 4, which 

included all independent variables, demonstrated superior performance.  310 

Table 6 provides the exact values of the indicators representing the scenario results, along with the correlation coefficient (R²) 

shown in Fig. 3. In Fig. 3a, Scenario 4 outperforms the other scenarios by an average of 10%. In Fig. 3b, Scenario 4 outperforms 

the other scenarios by an average of 5%, and in Fig. 3d, by an average of 3%. 

Table 6 Summary table of four scenario models with their R2, RMSE and SD. For RF is 𝑸𝟕𝟎 and 𝑷𝒂𝒏𝒏𝒖𝒂𝒍; DNN is 𝑸𝟕𝟎 

Pannual; SVR is 𝑸𝟑𝟎 and Pannual; ENR is 𝑸𝟑𝟎  and 𝑷𝒂𝒏𝒏𝒖𝒂𝒍. 315 

ML model Index Scenario 1 Scenario 2 Scenario 3 Scenario 4 

RF R2 0.766 0.834 0.854 0.895 
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RMSE 0.498 0.419 0.394 0.334 

SD 1.18 1.15 1.10 1.09 

DNN 

R2 0.808 0.864 0.828 0.878 

RMSE 0.601 0.506 0.571 0.480 

SD 1.21 1.25 1.32 1.36 

SVR 

R2 0.694 0.612 0.736 0.640 

RMSE 2.540 2.90 2.36 2.75 

SD 2.41 2.80 2.25 2.70 

ENR 

R2 0.803 0.822 0.822 0.834 

RMSE 2.04 1.94 1.93 1.87 

SD 2.06 1.95 1.93 1.89 
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Figure 3 Graphs of results for four scenarios per machine learning technique. Black points closer to the red dashed line 

represent better results. 

4.3 Impact of precipitation variables on streamflow prediction  320 

We used various precipitation variables to predict accurate flow for each flow rate. For 𝑄"  to 𝑄*#, 𝑃(#, 𝑃*#, 𝑃(.# and 𝑃$%%&$' 

were used, for 𝑄+#   to 𝑄.#, 𝑃(#, 𝑃()#, 𝑃("#, and 𝑃$%%&$' were used and for 𝑄!# and 𝑄!", 𝑃(#, 𝑃()#, 𝑃("#, 𝑃(.# and 𝑃$%%&$' were 

used. To compare the results among precipitation variables, analysis was conducted on Scenario 4, which exhibited the highest 

prediction accuracy. Specifically, analysis was performed on 𝑄", representing high flow, and 𝑄!", representing low flow. The 
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analysis of prediction based on precipitation variable 𝑃 revealed that the predicted flow was not significantly related to the 325 

type of precipitation variable 𝑃. Because the precipitation variable 𝑃 has a low level of importance among the independent 

variables. 

Fig. 4 illustrates the result of prediction based on precipitation variables. (a) represents the results of Random Forest for 𝑄"; 

(b) illustrates the results of DNN for 𝑄". Both models showed similar prediction accuracy for precipitation variables. (c) covers 

the results of SVR for 𝑄!"; (d) corresponds the results of ENR for 𝑄!". Also, both models showed similar prediction accuracy 330 

for precipitation variables. The results can be explained to the examination of the importance of independent variables, where 

the importance of 𝑃 has low importance. 
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Figure 4 Graphs showing results for different precipitation variables (𝑷) in (a) RF, (b) DNN, (c) SVR, and (d) ENR. 

Black points closer to the red dashed line indicate better performance. 335 

4.4 Impact of precipitation variables on streamflow prediction  

We developed FDC prediction models using RF, DNN, SVR, ENR. Scenario 4 showed the best performance among the four 

scenarios. Performance varied across different precipitation values at different discharge percentiles. We identified the best-

performing ML algorithms by selecting low, medium, and two high discharge percentiles along with the highest-performing 

precipitation values. 340 

A Taylor diagram visually quantifies the similarity between a set of observations and a reference dataset, summarizing the 

match in terms of correlation, root-mean-square difference, and standard deviations. Fig. 5 illustrates the Taylor diagram: (a) 

𝑄(# and 𝑃$%%&$', (b) 𝑄"# and 𝑃$%%&$', (c) 𝑄!# and 𝑃$%%&$', and (d) 𝑄!" and 𝑃$%%&$'. Points closer to the reference point (start) 

represent better results. Overall, DNN (blue triangle) outperforms RF (red circle), SVR (black rectangle), and ENR (green 

diamond) as indicated by higher R2 values and lower RMSEs.  345 

Based on the Fig. 5, DNN model consistently demonstrates superior performance compared to the other models evaluated. 

Across all figures, DNN is closest to the reference point in terms of both standard deviation and correlation coefficient, 

indicating that it best captures the variability in the data while maintaining a strong correlation with the reference observations. 

This consistent proximity to the reference point suggests that DNN has the lowest centered RMSE across different scenarios, 

reinforcing its robustness and reliability. In contrast, while the other models (RF, SVR, and ENR) show varying degrees of 350 

performance, none consistently match the DNN in both key metrics. Therefore, DNN emerges as the most accurate model for 

predicting the dataset in question, making it the preferred choice for this analysis. 

Table 7 Summary table of four ML models with their R2 and SD. 

ML model RF DNN SVR ENR 

Index R2 SD R2 SD R2 SD R2 SD 

𝑄(#, 𝑃$%%&$' 0.673 11.6 0.845 11.9 0.567 7.94 0.854 4.79 

𝑄"#, 𝑃$%%&$' 0.886 1.76 0.924 2.12 0.645 1.60 0.784 1.27 

𝑄!#, 𝑃$%%&$' 0.578 0.540 0.606 0.670 0.307 0.786 0.648 0.582 

𝑄!", 𝑃$%%&$' 0.362 0.358 0.495 0.329 0.190 0.77 0.459 0.651 
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 355 
Figure 5 Taylor diagram for four different cases under Scenario 4 (a) 𝑸𝟏𝟎 and 𝑷𝒂𝒏𝒏𝒖𝒂𝒍, (b) 𝑸𝟓𝟎 and 𝑷𝒂𝒏𝒏𝒖𝒂𝒍, (c) 𝑸𝟗𝟎 

and 𝑷𝒂𝒏𝒏𝒖𝒂𝒍, and (d) 𝑸𝟗𝟓 and 𝑷𝒂𝒏𝒏𝒖𝒂𝒍. Points closer to the reference point (start) represent better results. 
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5 Discussion 

5.1 Validation 

To validate the model, we used DNN model based on Scenario 4, which consistently outperformed others ML models across 360 

different scenarios. We validated our model using data from an additional station called Cheongamgyo in the Nakdong River 

(Table 8). This station (2002634) had six years of data. The station has no upstream water infrastructure and maintains natural 

flow conditions making it ideal for validating our model. We predicted the flow rates at the validation station using 𝑃$%%&$' as 

an independent variable since it showed minimal influence on the outcomes (Fig. 6). We found that our FDC prediction models 

are highly influenced by the watershed area. Upon examining the data, we noticed that the discharge at the validation station 365 

was smaller compared to other basins with similar watershed areas.  

The watershed area of the validation station is 473.3 square kilometers, with discharges for each percentile from 𝑄" to 𝑄!" as 

follows: 23.58 cubic meters per second (CMS) (𝑄"), 11.61 CMS (𝑄(#), 5.23 CMS (𝑄)#), 2.89 CMS (𝑄*#), 1.75 CMS (𝑄+#), 

1.22 CMS (𝑄"#), 0.85 CMS (𝑄,#), 0.58 CMS (𝑄-#), 0.43 CMS (𝑄.#), 0.30 CMS (𝑄!#), and 0.22 CMS (𝑄!"). To further analyze 

the discharge percentile, we reviewed data from seven other sites (with basin codes 2018665, 1007605, 21010625, 2010650, 370 

2010690, 2018635, and 1003620) with watershed areas ranging from 400 to 500 square kilometers. The information on the 

basin codes is available at http://wamis.go.kr/ENG/. The average flow discharge at these sites for each percentile was 38.73 

CMS (𝑄"), 16.98 CMS  (𝑄(#), 7.83 CMS  (𝑄)#), 5.16 CMS  (𝑄*#), 3.88 CMS  (𝑄+#), 3.04 CMS  (𝑄"#), 2.36 CMS  (𝑄,#), 1.84 

CMS  (𝑄-#), 1.30 CMS (𝑄.#), 0.71 CMS (𝑄!#), and 0.42 CMS (𝑄!"), which were all higher than the validation station.  

Table 8 Independent variables for the additional station (Cheongamgyo). In dependent variables include watershed 375 

area (Area), precipitation (Pre), basin slope, basin elevation (Elv), water area, urban area, agriculture (Agr) area, 

forest/mountain (Forest) area. 

Area Pre Slope Elv Water Urban Agr Forest 

(km2) (mm) (%) (m) (%)  (%)  (%) (%) 

473.3 916.9 13.3 468.1 0.3 1.4 6.9 91.4 
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Figure 6 FDC for observed and predicted values at the validation station (Cheongamgyo). 

5.2 Comparison of machine learning and deep learning models 380 

Table 9 presents the percentage performance differences of the DNN compared to RF, SVR, and ENR across four scenarios, 

with positive values indicating that DNN performed better and negative values indicating otherwise. On average, DNN 

consistently outperformed RF, SVR, and ENR in terms of R² and RMSE. Specifically, DNN achieved an average improvement 

of 0.90% in R² compared to RF, 20.37% compared to SVR, and 2.80% compared to ENR, indicating better predictive accuracy. 

For RMSE, DNN showed substantial improvement over the other models, with average reductions in error of 23.94% 385 

compared to RF, 395.49% compared to SVR, and 262.61% compared to ENR, demonstrating its efficiency in reducing 

prediction error. However, for SD, DNN showed mixed results, with a lower performance compared to RF (-11.75%) but 

better average performance compared to SVR (98.04%) and ENR (52.86%), highlighting variability in capturing flow 

fluctuations. Overall, DNN performed better in most metrics, proving to be a more reliable approach for predicting FDC. 

Table 9 Percentage performance differences of DNN compared to RF, SVR, and ENR across scenarios. 390 

ML model Index Scenario 1 Scenario 2 Scenario 3 Scenario 4 Average 

RF 
R2 5.20% 3.47% -3.14% -1.94% 0.90% 

RMSE 17.1% 17.2% 31.0% 30.4% 23.9% 
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SD -2.48% -8.00% -16.67% -19.85% -11.75% 

SVR 

R2 14.1% 29.2% 11.1% 27.1% 20.4% 

RMSE 322.6% 473.1% 313.3% 472.9% 395.5% 

SD 99.2% 124.0% 70.5% 98.5% 98.0% 

ENR 

R2 0.62% 4.86% 0.72% 5.01% 2.80% 

RMSE 239.4% 283.4% 238.0% 289.6% 262.6% 

SD 70.3% 56.0% 46.2% 39.0% 52.9% 

5.3 Uncertainty analysis 

For the high-flow percent exceedances (𝑄"), the analysis shows higher SD, indicating greater uncertainty compared to other 

percent exceedances such as 𝑄*# and beyond (Fig. 7). Large discharges are often influenced by unpredictable factors such as 

intense precipitation and human interventions, which make reliable model predictions more challenging. The variability of 

extreme flows contributes to the increased standard deviation, indicating that model predictions are less certain under these 395 

conditions. 

On the other hand, low-flow conditions represented by 𝑄!" also show higher uncertainty, though the factors are different. Low 

flows are typically driven by groundwater contributions, baseflow, and dry-weather conditions, which can be highly variable 

based on local hydrogeology, seasonal patterns, and anthropogenic influences. The difficulty in capturing these dynamics, 

combined with the relative scarcity of low flow events, leads to higher standard deviation and increased uncertainty for these 400 

predictions. In contrast, intermediate percent exceedances such as 𝑄*# tend to have more stable and frequent flow conditions, 

leading to more accurate and consistent model predictions with lower SD. 
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Figure 7 Uncertainty analysis for RF, DNN, SVR, and ENR models by percent exceedance. 

5.4 Limitations and future studies 405 

To predict the flow of natural rivers, we selected locations without upstream flow-regulating structures like dams and focused 

on sites with sufficient data (more than five years), ultimately utilizing 140 locations for model development and validation. 

However, the success of machine learning, particularly deep learning models, heavily depends on large amounts of high-

quality data, which the selected dataset lacked, resulting in suboptimal model performance. DL models are especially effective 

with large datasets, but struggle to generalize with limited data, which is why simpler models can sometimes outperform more 410 

complex ones under such conditions. Despite having 897 streamflow gauging stations in Korea, constraints related to selecting 

sites without upstream flow-regulating structures, and the need for high-quality data with minimal missing values over five 

years, reduced the number of suitable locations to just 140. This limited sample size highlights the need for more data to 

enhance model accuracy and reliability. 

For future studies, a potential solution to address the limitation of having insufficient flow observation stations is to increase 415 

the available data. We constructed a single dataset using the complete set of data (over five years) from one observation station. 

To increase the number of data points, if n years of data can be collected from one observation station, it is possible to construct 

a dataset for each year, resulting in n datasets, with each dataset representing one year. By employing this method, since we 

have collected flow observation stations with more than 5 years of data, the number of datasets can increase by at least fivefold. 
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With this approach, the number of data points can range from a minimum of around 1,000 to several thousand, making it more 420 

suitable for building ML models compared to the current study. 

6 Conclusion 

This study concludes that ML and DL models are powerful tools for predicting FDC in ungauged basins, offering key insights 

into hydrologic behavior in the absence of direct measurements. By evaluating the influence of hydrologic, meteorological, 

and topographic factors, assessing combinations of predictor variables, examining the impact of different precipitation metrics, 425 

and comparing ML and DL model performances, this research underscores the potential of advanced modeling techniques for 

supporting effective water resource management. Below are the key findings that emerged from this study: 

a) Identifying influential factors: The importance of independent variables varies significantly across discharge 

percentiles. High discharges (above 𝑄*# ) are most influenced by watershed area and precipitation, while 

topographical characteristics also play a role. Conversely, for low and medium discharges (below 𝑄+# ), LULC 430 

becomes more important, followed by watershed area. This indicates that different variables influence streamflow at 

different discharge levels. 

b) Assessing prediction influence: Scenario 4, which included all independent variables, consistently produced the most 

accurate predictions for FDC across different machine learning models and discharge percentiles. It outperformed 

other scenarios, achieving higher prediction accuracy as demonstrated by improved R². 435 

c) Assessing prediction influence: Different precipitation variables (𝑃) had no significant influence on streamflow 

prediction across various flow rates. Even in Scenario 4, which showed the highest prediction accuracy, predictions 

for high (𝑄") and low flows (𝑄!") were not significantly impacted by the type of precipitation variable, indicating 

that precipitation variables have a relatively low importance compared to other factors. 

d) Comparing ML and DL model performance: The DNN outperformed other models (RF, SVR, and ENR) in predicting 440 

FDC. The DNN showed higher correlation and lower RMSE values, demonstrating robust performance, particularly 

for intermediate flow conditions (e.g., 𝑄*#), while exhibiting higher uncertainty at extreme high (𝑄") and low (𝑄!") 

flow scenarios. 

This study highlights the potential of ML and DL techniques to improve the prediction of FDC in ungauged basins, while also 

identifying specific limitations related to data availability and quality. By exploring the importance of various independent 445 

variables and comparing different modeling approaches, we have gained insights into factors that influence streamflow 

prediction across different discharge levels. Addressing these limitations through expanded datasets and incorporating more 

advanced algorithms could further enhance prediction reliability, ultimately contributing to more effective water resource 

management and planning. 

 450 
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Code and data availability 

All data is publicly primarily available in Korean and some in English. The Korea Water Resources Corporation provides daily 

inflow data from observation gaging stations (http://www.water.or.kr). The Ministry of Land, Infrastructure and Transport 

provides an open access to the Digital Elevation Model (DEM) (90 m) for the South Korea (http://data.nsdi.go.kr/dataset). The 

Korea Meteorological Administration offers open access to meteorological data for the entire South Korea 455 

(https://data.kma.go.kr/resources/html/en/aowdp.html). The Ministry of Environment provides an open access LULC map for 

the entire South Korea (https://egis.me.go.kr/req/list.do). The input data are available online (Yi, 2024a).  
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