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Abstract. Accurate estimation of actual evapotranspiration (ETa) at both field and larger spatial scales is crucial for 15 

understanding crop water use and hydrological interactions particularly in arid regions facing water scarcity. In South Africa, 

ETa data gaps hinder effective agricultural water management. Advances in geospatial techniques combining Geographical 

Information Systems (GIS) and remote sensing have made it possible to estimate ETa over large areas. However, the reliability 

of this depends on the accuracy of algorithms used which must be validated against ground measurements. With the lack of 

direct ETa measurements in South Africa, this has been a challenging task. This study evaluated ETa variability at farm level 20 

to the level of an irrigation Scheme, covering over 36,000 hectares. A total of 22 Landsat 8 satellite images from 2019 to 2021 

were used to estimate ETa based on four algorithms: the Surface Energy Balance Algorithm for Land (SEBAL), Surface 

Energy Balance System (SEBS), Vegetation Index (VI)-based ETa and Crop Water Stress Index (CWSI)-based ETa. Field-

scale estimates were compared to measurements from a smart field weighing lysimeter, while larger-scale estimates were 

validated against extrapolated ETa values. The SEBAL, SEBS and VI-based ETa algorithms correlated well with field-scale 25 

lysimeter data, while the CWSI-based algorithm showed poor correlation. SEBAL emerged as the best-performing algorithm, 

with high correlation coefficients (r=0.91-0.96), strong R² values (0.83-0.92) and the lowest errors (RMSE 0.31-0.89 mm d⁻¹, 

MAE 0.27-0.82 mm d⁻¹). Findings from this study forms a foundation of improved water management strategies to reduce the 

overuse of water in agriculture. 

1 Introduction 30 

Evapotranspiration (ET) is a critical component in hydrological studies representing a bi-directional process encompassing 

both evaporation of soil water content, water from other land cover surfaces and losses though transpiration from vegetation 

canopy (Pandey et al., 2016; Raza et al., 2022). In agricultural settings, actual evapotranspiration (ETa) serves as a crucial 
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measure for quantifying crop water use (Djaman et al., 2023). Accurate quantification of ETa allows farmers to determine 

precise crop water requirements as water lost through the process of ET which must to be replenished through irrigation 35 

(Elfarkh et al., 2022; Djaman et al., 2023). In irrigation schedules where ETa is not quantified, the likelihood is that farmers 

will either over-irrigate or under−irrigate. The overuse of water in irrigation contributes largely to the continuous depletion of 

the available scarce water resources. In alternate scenarios, crops might suffer water logging conditions and salinity problems, 

which can impact crop yields negatively (Ingrao et al., 2023).  

 40 

Monitoring and managing agricultural water resources requires accurate measurement of ETa, however, this requires expensive 

devices which are not practical to deploy across larger extents (Sharma et al., 2015; Djaman et al., 2019).  For many decades, 

crop evapotranspiration (ETc) has been estimated using meteorological methods requiring data acquired from weather stations 

(Meyer, 1926). These stations are still not enough in most parts of South African agricultural landscapes (Ncoyini et al., 2022). 

The Food and Agriculture Organization (FAO) has provided crop coefficient (Kc) values for a wide range of crops cultivated 45 

globally to aid in estimating ETc (Allen et al., 1998). However, the original Kc values were developed outside South Africa 

and were not specifically tailored for horticultural or non-agricultural vegetation while in agriculture they were not developed 

using drought−resistant cultivars which of lately are prevalent in the country’s arid regions (Mulovhedzi et al., 2020; Mukiibi 

et al., 2023). According to Allen et al. (1998) ETc can be estimated by multiplying the crop specific Kc values by the reference 

evapotranspiration (ETo) value. The Kc values are determined as the ratio of ETa to ETo, with ETo calculated using 50 

meteorological variables with models like the Penman-Monteith and Dalton amongst others (Dalton, 1802; Allen et al., 1998). 

However, ETa on the ground is typically derived using specialized equipment such as lysimeters, although these devices offer 

high accuracy representation of actual water use, they are point instruments which are limited in their ability to represent the 

spatial variability of ETa particularly in heterogeneous landscapes (Doležal et al., 2018; McNamara et al., 2021). 

 55 

With ETa being key in development of Kc values and determining the true reflection of crop water consumption, South Africa 

faces a substantial gap in the direct measurement of ETa primarily due to the limited availability of the necessary devices for 

this purpose. This limitation is highlighted in the study of (Meijninger and Jarmain, 2014), who could not validate satellite ET 

estimates from a remote sensing-based model in Kwazulu-Natal. The country has only two FLUXNET eddy covariance 

stations providing open-access data, with other stations being privately owned and inaccessible for national water management 60 

efforts (Blatchford et al., 2020). 

 

With the economic impracticality of quantifying water use for the vast diversity of vegetation species worldwide and the 

logistical challenges of conducting ground experiments for millions of species, remote sensing can provide estimates of ET 

over large areas, providing an alternative to ground-based measurements which often lack the spatial coverage and sometimes 65 

the temporal resolution required for effective water management (Tan et al., 2021; Saha et al., 2022; Tran et al., 2023). 

However, the success of remote sensing in ET estimation depends on the availability of high accuracy measuring devices and 
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good algorithms capable of calibrating remotely sensed images for precise ET determination (Li et al., 2023; Tran et al., 2023). 

Satellite-derived ET estimates can be influenced by factors such as cloud cover, atmospheric conditions, sensor saturations 

and their spatio-temporal resolution (Mckenzie et al., 1998; Wang et al., 2023). In regions with heterogeneous landscapes and 70 

variable cropping patterns, these challenges are further exacerbated leading to discrepancies between satellite-derived ET 

estimates and ETa observed in the field (Lian et al., 2022). 

 

Several ET algorithms have been developed, applied and validated across different environments (Zamani and Rahimzadegan, 

2018). These algorithms include the Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration at 75 

High Resolution with Internalized Calibration (METRIC), Atmosphere Land Exchange Inverse (ET-ALEXI), Surface Energy 

Balance (SEBS) and the Three-Temperature Model (3T Model) amongst others ( Bastiaanssen, 2000; Allen et al., 2007; Yan, 

2016). Studies involving the utilization of remote sensing data for assessing water use and hydrology in South Africa have 

been conducted employing the SEBAL algorithm alongside data from Landsat at different scales (Shoko et al., 2015; Ndou et 

al., 2018; Singels et al., 2018). These studies reported the lack of accurate measured ET which was measured using devices 80 

with known inaccuracies such as eddy covariance systems. However, Bastiaanssen et al. (2005) reported that the SEBAL 

algorithm can have an accuracy of about 85% at field scale while it can be improved to over 95% if applied across different 

seasons. However, studies focusing on SEBAL seasonality impact are still lacking in South Africa. Gibson et al. (2013) 

suggested that future research using the SEBS algorithm in South Africa should focus exclusively on agricultural landscapes. 

This recommendation arises from the limitations of ET algorithms when applied to a wide range of land use types. 85 

 

Vegetation index-based evapotranspiration (VI-ETa) approaches have been proven to be effective in estimating ETa across 

diverse regions. For instance, Glenn et al. (2010) reviewed the combination of ground-based ETa measurements with VI-ETa 

methods across different biomes obtaining strong correlations with coefficients of determination ranging between 0.45 and 

0.95. Their findings indicate correlations between 0.67 and 0.97, with which they suggested that VI-ETa algorithms can be 90 

more accurate when calibrated with accurate ground measurements such as those obtained from weighing lysimeters. Jiang et 

al. (2020) emphasized that errors in ETa estimates can be reduced to within 5% using such devices, while Hunsaker et al. 

(2005) demonstrated similar precision. Nagler et al. (2013) used MODIS EVI to estimate ETa in riparian and agricultural areas 

achieving less than 10% error when compared to eddy covariance measurements. They recommended VI-ETa models for 

drylands where non-vegetative factors are minimal and suggested the Penman-Monteith or Blaney-Criddle methods for areas 95 

lacking ETa data. Abbasi et al. (2021) applied VI-ETa using Landsat imagery to monitor agricultural drought in Iran, despite 

the lack of ground data in the country. They found that VI-ETa estimates correlated well with in-situ data at the basin scale, 

with errors ranging from 15 to 21%, and from 2.5 to 34% at the country scale. These studies highlight the potential of VI-ETa 

to accurately estimate crop water use provided accurate calibration data such as data from weighing lysimeters is available. In 

South Africa, VI-ETa use remains limited due to challenges in obtaining precise ETa measurements for calibration. 100 

Furthermore, the use of crop water stress index (CWSI) for determining ETa remains unexplored in the country. 
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The Vaalharts Irrigation Scheme which is one of the largest in South Africa requires accurate ETa estimation for optimizing 

water usage and ensuring sustainable agricultural practices. This is because the scheme sources water from areas such as the 

Vaal River through the Bloemhof dam with ample water to sustain irrigation (Maisela, 2007). Water in the scheme is only 105 

monitored from discharge points for billing purposes using flow meters, however, the amount of water used by crops and the 

surrounding vegetation after each irrigation event remains unknown. Given the limitations of ETa variability data, there is a 

pressing need for research focused on evaluating and improving the accuracy of ETa algorithms.  

 

This study aims at evaluating the capabilities and accuracies of SEBAL, SEBS, VI-based ETa and the CWSI-based ETa 110 

algorithms using an integration of a high precision smart field weighing lysimeter and automatic weather stations approach. 

The specific objectives were: (i) to use ETa measurements by a smart field weighing lysimeter across four cropping seasons 

to validate estimates from the four algorithms at field scale and, (ii) to extrapolate ETa from lysimetric measurements to other 

locations with weather stations. This is the first study to evaluate remotely sensed ETa using a smart field weighing lysimeter 

as demonstrated by (Tran et al., 2023) that lysimeter approach in South Africa is uncommon on their review study. This study 115 

contributes to the broader field of remote sensing offering more information on the strengths and limitations of these algorithms 

in diverse agricultural landscapes to solve the irrigation water management and ETa data scarcity challenges. 

 

2 Methods and materials 

2.1 Study area description 120 

This study was conducted within the Vaalharts irrigation scheme located in the Northern Cape province of South Africa 

between the coordinates: 24°44'16.91"E and 27°38'33.23''S on the North, while on the Southern parts the scheme starts at 

24°37'37.46''E and 28° 4'54.38''S. The irrigation scheme is the largest irrigation scheme in South Africa covering over 36 950 

hectares (Ojo et al., 2011). The scheme is located between two plateaus, and its terrain is low-lying, with elevations ranging 

between 1080 and 1 137 m above sea level (asl). The scheme receives irrigation water through a canal system with water 125 

coming from the Bloemhof dam, the dam which is fed by the Vaal River. Additional water comes from the Harts River were 

water goes into the irrigation scheme facilitated by a diversion weir located in Warrenton town, the weir collects water from 

the Harts and Bloemhof dam into the scheme. The study area experiences low annual rainfall averaging between 400 and 500 

mm year−1 (Moeletsi et al., 2022). Several crops are planted including maize, wheat, barley, cotton, soybeans, groundnuts, 

watermelon and various fruit trees such as pecans and olives (Pretorius, 2018; Ratshiedana, 2022). The soils within the scheme 130 

are alluvial soils prone to salinization (Ojo, 2013). Pivot irrigation systems dominate the area, while other forms of irrigation, 

such as flood irrigation, bubblers, sprinklers and drips, are common (Maisela, 2007; Verwey and Vermeulen, 2011; 

Ratshiedana, 2022). The irrigation scheme supports both small-scale and large-scale farming operations. The importance of 
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this scheme lies in it being a major source of employment and food security and contributing significantly to the local economy 

where most agricultural enterprises emerged to support farming and retail was developed to support the farming communities 135 

residing around the scheme (Maisela, 2007). The study area comprises of an 18-ha experimental farm and four validation sites 

with automatic weather stations with station locations named: SABBI, Tadcaster, Jankempdorp and Ganspan (Fig.1). 

 

Figure 1. Map showing the study area distinct regions, (a) delineates the Vaalharts irrigation scheme, its surrounding 

towns, major rivers and dams, (b) shows the (18-ha) experimental farm, and (c) indicates the study area’s position in 140 

relation to various provinces. 

2.2 Research approach 

Having identified that direct measurement of ETa in South Africa is the limiting factor in evaluating remote sensing ETa 

products and algorithms. This study focuses on the use of a smart field weighing lysimeter as an accurate tool for measuring 

ETa to enable the evaluation and calibration of four ETa algorithms. Ground-based measurement and monitoring techniques 145 

were used for validation, while satellite-based monitoring provided a continuous and cost-effective source of information. 

These measurements developed a large-scale validation proxy using meteorological information considering the scarcity of 

data in an agricultural landscape. The research approach is summarised in the conceptual representation below (Fig.2). 
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Figure 2. Conceptual framework for the study approach linking satellite data and ground measurements. 150 

2.3 Data Acquisition 

2.3.1 Satellite data acquisition and pre-processing 

Remotely sensed Landsat 8 images with multiple bands were obtained from the United States Geological Survey (USGS) 

Earth Explorer portal (https://earthexplorer.usgs.gov/ Accessed: 04 February 2023) using a bulk downloader for automatic and 

continuous download of the specified data (Table 1). A total of 22 images were acquired for the study period, their cloud cover 155 

% are given in Table (S1). The Level 1 Terrain Corrected (L1T) were retrieved covering a period between 1st September 2019 

and 31 May 2021. The pre-processing of Level 1 Terrain Corrected (L1TP) data was executed using the Semi-Automatic 

Classification Plugin (SCP) in QGIS. Radiometric calibration was done to transform digital numbers (DN) to top-of-

atmosphere (TOA) reflectance. This conversion was achieved by utilizing the metadata linked to each image file. Since the 

L1TP data had already been georeferenced, geometric correction was unnecessary. Atmospheric correction was applied to 160 

mitigate the impact of atmospheric scattering and absorption. For the thermal bands, processing was carried out to derive 

temperature values in degrees Celsius (°C) while they were also resampled to 30 m to match the multispectral bands. 
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Table 1. Landsat 8 Satellite Data used for estimating ETa 

Band Name Wavelength 

Band 2 - Blue 0.45-0.51 nm 

Band 3 - Green 0.53-0.59 nm 

Band 4 - Red 0.64-0.67 nm 

Band 5 - Near Infrared (NIR) 0.85-0.88 nm 

Band 6 - Short-wave Infrared (SWIR) 1 1.57-1.65 nm 

Band 7 - Short-wave Infrared (SWIR) 2 2.11-2.29 nm 

Band 10 - TIRS 1 10.60-11.19 µm 

Band 11 - TIRS 2 11.50-12.51 µm 

 165 

2.3.2 Smart field weighing lysimeter measurement and evapotranspiration calculation 

 

A smart field weighing lysimeter by METER Group© was used to measure field soil-water-crop interactions. The lysimeter 

used is cylindrical in shape with 60 cm height and a diameter of 30 cm with the surface area of 0.07 m2. This lysimeter contains 

a suite of sensors which measure soil water content fluxes, soil temperature, matric potential, soil electrical conductivity and 170 

contains weighing balances that measure the lysimeter mass and another balance measuring the drainage amount outside the 

lysimeter cylinder. The weight losses are related to soil water evaporation and crop transpiration, while mass gains are related 

to irrigation or precipitation events. The lysimeter used offers real-time monitoring and high temporal resolution data at an 

interval of 1 minute on mass balances, while sensors measurements were done at 10 minutes interval. The process of calculating 

ETa from smart field weighing lysimeter data was done using R in Posit Software (PBC), formerly known as RStudio 175 

(https://posit.co/). The processing was focused on aggregating hourly measurements to daily totals to match with the daily ETa 

estimated by the satellite images. The tidyverse and lubridate packages were used to prepare the data by extracting the date 

component from the timestamp. The daily ETa values were visualized using the ggplot2 package to identify patterns or 

anomalies and the results were exported as .csv for further analysis. The exported data was further processed using the 

Savitzky-Golay filtering technique on Originlab© software to smooth ETa data were un-explainable spikes existed as done by 180 

Peters et al. (2014). Evapotranspiration was computed using the changes in lysimeter and drainage balances weight with 

irrigation negligible during zero-irrigation days using Eq. (1):  

 

ETa = I − ΔD − ΔS                                                                                                                                (1) 

 185 

where ETa I is irrigation or precipitation in mm, ΔD is the change in the drainage mass balance in kg whereas, ΔS is the change 

in lysimeter mass balance (kg).  
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Based on the measured parameters, the above formula can be represented using the simplified Eq. (2):  

 190 

𝐸𝑇𝑎 =  (𝐿𝑚(𝑛) + 𝐷𝑚(𝑛) − 𝐿𝑚(𝑛 − 1) + 𝐷𝑚(𝑛 − 1) ⨯ 14.14                                                                                          (2) 

 

where Lm (n) is the lysimeter mass in kg at time “n”, Dm (n) is the drainage mass in kg at tine “n”, Lm (n−1) is the lysimeter 

mass at time “n−1”, while Dm (n−1) is the drainage mass in kg at time “n−1”. The value 14.14 was obtained based on the 

assumption that, 1 kg of water seepage in the lysimeter equals 0.001 m3 which when divided by the surface area of the lysimeter 195 

it gives 0.014 m which is equivalent to 14 mm, as a result each 1 kg equalled 14 mm. 

2.3.3 Meteorological data 

 

An ONSET HOBO remote monitoring system (RX3000) automatic weather station was used to measure all meteorological 

variables at field level. The operating range of the station is -40 to 60 °C while it does support remote communications with 200 

its continuous solar power supply supporting the battery life. The station was configured with different soil sensors including 

moisture and temperature sensors while it provided cloud-based data access through HOBOlink. The stations used for the 

purpose of calibration and validation of remotely sensed variables were the automatic weather stations owned by the 

Agricultural Research Council (ARC) of South Africa. The stations are equipped with humidity sensors, air temperature, wind 

speed sensors, wind direction, gust sensor, rain gauge, barometric sensors, soil moisture sensors and solar radiation sensors 205 

(Moeletsi et al., 2022). Each weather station is installed at a height of 1.2 m.  The meteorological information is retrieved 

remotely and can be accessed through: https://www.arc.agric.za/arc−iscw/Pages/Agrometeorology−Reports.aspx accessed on 

16 June 2023. For this study, the data required was extracted for the times September 2019 to end of May 2021. 

 

 2.4 Remote sensing-based evapotranspiration algorithms 210 

2.4.1 Vegetation Index-Based Evapotranspiration (VI-ETa) estimation 

The VI-ET algorithm is a remote sensing technique which is used to estimate ETa by incorporating vegetation indices (VIs) 

such as the Normalized Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI) (Glenn et al., 2010). These 

indices are derived from any multispectral satellite imagery which can reflect vegetation health, canopy density and their state 

of greenness. The algorithm integrates these indices with ETo derived from meteorological data for the purpose of determining 215 

Kc values at different vegetation growth stages representing the relationship between vegetation status and water use (Nagler 

et al., 2013). The VI-ETa algorithm then estimates ETa by multiplying the VI-based Kc by meteorological derived ETo to 

enable the modelling of spatially distributed estimates of vegetation water use across different land covers. This algorithm was 

selected based on its ability to provide detailed spatial resolution over large areas, making it suitable for field scale, regional 

or even global ETa estimation. The general equation for ETa or ETc which resemble the same component is given by Eq. (3): 220 
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ETa = ETo ⨯ Kc                                                                                                                                                                         (3) 

The values of Kc  were derived at field scale using the FAO procedure (Allen et al., 1998) as the ratio of ETa to ETo using 

Eq. (4):  

Kc =
ETa

ETo
                                                                                                                                                                                     (4) 225 

 

The ETo which incorporates the variability in weather conditions was determined using R from an automatic weather station 

data using the standard Penman-Monteith equation introduced by Allen et al. (1998) given as Eq. (5): 

 

ETo =
0.408∆(Rn−G)+γ(

Cn
T+273

)U2(es−ea)

(∆+γ(1+CdU2))
                                                                                                                                         (5)                    230 

where the symbol ∆ is the slope of saturation vapour pressure (kPa ℃−1). The term Rn corresponds to the total radiation on the 

vegetation surface (MJ m² d−1) over a 24−hour period, while the term G denotes the heat flux density. The average daily air 

temperature is indicated as T (℃), while the term U2 is the average hourly wind speed measured at a height of 2 m (m s−1). 

The variable es denotes the saturation vapour pressure (kPa), while ea signifies the actual vapour pressure (kPa). The difference 

of es − ea indicates the saturation vapour pressure deficit (kPa). The term γ is the psychrometric constant (kPa ℃−1), whereas 235 

Cn and Cd are constants that vary based on the reference crop surface being used (Allen et al., 1998).   

 

The Kc values were determined for every satellite pass date based on the measured ETa and the determined ETo at farm level. 

The measurement of ETa was only based on one farm within the entire irrigation scheme due to limitation of ETa measuring 

device in the scheme. As a result, the relationship between Kc values and NDVI was used to model the Kc for the entire 240 

irrigation scheme using the approach used by Niu et al. (2020) for estimating Kc spatial variability. The determination of Kc 

was done for four cropping seasons at the farm level resulting in four Kc models which were amalgamated into an ensemble 

Kc model. The determination of Kc was done on QGIS using the NDVI layer using Eq. (6): 

 

Kc = a × DNVI + b                                                                                                                                                                   (6) 245 

 

where 𝑎 and 𝑏 are the coefficients from the relationship between NDVI and Kc 
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Figure 3. The workflow for VI-ETa algorithm’s actual evapotranspiration estimation and validation. The workflow integrates 250 
various steps including data processing, generation of the ETa maps and accuracy validation steps. 

2.4.2 The SEBAL Model 

The Surface Energy Balance Algorithm for Land (SEBAL) is a remote sensing algorithm used to estimate ETa based on 

thermal and multispectral datasets across large areas by calculating the energy balance of the Earth’s surface. This algorithm 

was developed by Bastiaanssen in the early 2000s with the purpose of using images to analyse the exchange of energy between 255 

the land surface and the atmosphere above it to the rate of water losses through evaporation and transpiration (Bastiaanssen, 

2000). The retrieval of ETa was based on the energy balance approach using the SEBAL incorporated on the Surface Energy 

Balance and Crop Water Stress Spatial Analysis (SEBCS) plugin on QGIS which is given by Eq. (7):  

ETa = Rn − G − H                                                                                                                                                                    (7) 

where Rn represent the net radiation, G is the soil heat flux while H is the sensible heat flux and ETa is the evapotranspiration 260 

component equivalent to the latent heat flux (LE), all variables are measured in MJ m−2 d−1.  

2.4.3 Crop water stress-based ETa 

Jackson et al. (1981) established a mathematical relationship between the crop water stress index (CWSI) and the vegetation 

water consumption. To compute ETa, they devised an approach given as Eq. (8): 

ETa = ETo ⨯ (1 − CWSI)                                                                                                                                                         (8) 265 
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The same formula was applied in this study using the Landsat 8 thermal data. The CWSI was calculated using the CWSI plugin 

on QGIS using thermal images, the outputs were multiplied by the sunshine hours for daily CWSI. The CWSI was computed 

based on Eq. (9): 

CWSI =
∆T−∆Tm

∆Tx−∆Tm
                                                                                                                                                                        (9) 

where ΔT represents the difference in air temperature as determined by LST, ΔTm indicates the least change in LST_air, and 270 

ΔTx denotes the greatest divergence between LST and air temperature. 

2.3.4 The Surface Energy Balance SEBS model approach 

System (SEBS) was introduced by Su (2002) for estimating heat flow fluxes and evaporative fractions. This model shares 

similarities with the SEBAL model, with a distinction being the incorporation of soil heat flux in the SEBS model. The soil 

heat flux was calculated using Eq. (10): 275 

Go = Rn[Tc + (1 − Fvc)(Ts − Tc)]                                                                                                                                          (10) 

 

where Go is the soil heat flux, the term Rn represents the net radiation while Tc stands for the psychrometric constant for the 

canopy air layer. The variable Ts represents the psychrometric constant for the soil and Fvc is the fractional vegetation cover. 

2.4 The validation of ETa algorithms at farm scale 280 

2.4.1 Selection of validation pixels at field and irrigation scheme levels 

One pixel was selected were the lysimeter and weather station were located at the experimental farm, the pixel represented 

estimate values at farm level from each algorithm. The validation of ETa derived the four algorithms evaluated was done by 

directly matching the ETa value measured from the smart field weighing lysimeter daily value with the ETa value estimated 

by the used algorithms  across the 22 days in different cropping seasons at field scale. In the study area, only one farm was 285 

equipped with the smart field weighing lysimeter. The system could only validate ETa estimated at its location pixel for the 

four algorithms. However, to validate the effectiveness of the algorithms at different locations within the irrigation scheme, a 

relationship between Kc developed and ETo was used to estimate ETa using weather station locations. Direct comparisons 

between estimated ETa and extrapolated  ETa were used for the validation process. However, the selection of validation dates 

were based on the periods when the scheme was entirely green during summer seasons when the area was not under intense 290 

water stress. This was to ensure that ETa is evaluated based on an active vegetation pixel than baresoil pixels, which would 

result in soil water evaporation possibly giving no values in such a water deficit environment. The spatial assessment was 

conducted for the models that demonstrated good results at the farm level with the assumption that poor-perfoming algorithms 

will likely not yield good results when transferred to different environments. 
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2.4.2 Evaluation metrics 295 

The statistical metrics used for the evaluation process included the correlation coefficient (r), coefficient of determination (R2), 

Root Mean Square Error (SE), Mean Absolute Error (MAE), Standard Error (SE) and Bias . The error metrics were used to 

determine the level of errors attributed to the used algorithms on their estimation of ETa compared to the measurements of 

ETa by the lysimeter. These metrics were selected because each of them captures a unique aspect of model accuracy and 

reliability. The r and R² assess the strength and consistency of the relationship between estimated and measured values, 300 

highlighting the model’s ability to explain variability. The RMSE and MAE quantify the magnitude of errors, with RMSE 

emphasizing large deviations and MAE providing an average error magnitude. The SE and bias evaluate the presence of 

systematic over- or underestimation, offering insights into the directional tendencies of the algorithms. In combination, these 

metrics ensure a strong evaluation by portraying both precision and accuracy of the algorithms and identifying any systematic 

discrepancies (Chicco et al., 2021; Hodson, 2022). The complete set of equations used for the evaluation is included in 305 

Equations (S1)–(S6) 

3 Results 

3.1 Estimation of Kc based on vegetation index (VI) for ETa determination 

The variations in Kc and NDVI across four cropping seasons are illustrated in Fig.4. During the 2019 cropping season 

(Fig.4−a), the season began with relatively high Kc and NDVI values (0.86 and 0.8), suggesting that the crop was healthy and 310 

actively transpiring, with substantial green canopy cover. As the season advanced to around DOY 268, Kc and NDVI values 

gradually became closer (0.76 and 0.79), indicating consistent vegetation growth and stabilization of canopy greenness. 

Towards the end of the season (DOY 300), both indices declined to 0.43 and 0.38, reflecting the senescence phase of the crop 

marked by reduced greenness and water demand. In the 2019−2020 season (Fig.4−b), around DOY 316, both Kc and NDVI 

values were low (0.41 and 0.37), representing the early growth stage with sparse vegetation and minimal transpiration. The 315 

indices reached their peak by DOY 31 in 2020, indicating the height of the crop’s growth and greenness, before tapering off 

again to 0.4 and 0.35 as the season ended, consistent with the crop’s natural lifecycle. On other Seasons as depicted on Fig. 

4−c and Fig. 4−d: Similar trends were observed, wherein Kc and NDVI closely mirrored the crop development stages. During 

the early stages, the indices remained low, gradually increasing as the crop established its canopy. Peaks are the period of 

maximum crop growth, followed by declines as the crop matured and approached senescence. A summary of Kc models 320 

derived through linear regression analysis between Kc and NDVI are shown in Table (S2), while the scatter plots between 

estimated ET and measured ETa are shown in Figure (S1). 
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Figure 4. The variability of Kc values in relation to the changes in NDVI for the period 2019−2021 where (a) is the 

winter cropping season in 2019, (b) relates to 2019−2020 summer season, (c) is the 2020 winter season and (d) is the 325 

2021 summer season calculated in the Southern Hemisphere. 

3.2 The spatial distribution of ETa based on the four remote sensing algorithms 

Figure 5 presents the spatial distribution of ETa variation across the irrigation scheme for the period between 9 th September 

2019 and 27th October 2019. The spatial distribution maps are at a 30-meter spatial resolution. The maps shown are based on 

four remote sensing algorithms used to estimate daily ETa on the satellite pass days when the Landsat 8 images were free of 330 

clouds. On all three dates, ETa estimates show variability due to changes in environmental conditions like temperature, 

radiation, and vegetation activity. ETa values tend to increase toward the later date (October 27), especially with SEBAL, VI-

ETa and SEBS, reflecting seasonal dynamics or crop growth. High ETa values (red regions) concentrated in areas with dense 

vegetation or high soil moisture. Low ETa values (green regions) are in regions with less vegetation or water stress. SEBAL 

and SEBS consistently estimate higher ETa values compared to CWSI and VI. The differences between algorithms highlight 335 

the variability in their sensitivity to input parameters like vegetation indices, surface temperature and energy balance terms. 

These maps provided ETa evaluation pixels at different station locations within the irrigation scheme. The estimates of ETa 

by SEBS, SEBAL and VI-based were comparable in most cases, while the CWSI estimates were mostly lower or extremely 

high in certain cases. The VI-based ETa had a minimum of 0 mm d−1 which was a result of bare soil pixels which are uncaptured 

by vegetation indices when estimating ETa. The spatial distribution maps aided in providing correlation pixels for the 340 
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evaluation. More maps which demonstrate the spatial distribution of ETa across the irrigation scheme are in Figures (S2) - 

(S6). 

 

Figure 5. An example of the spatial distribution of ETa within Vaalharts irrigation scheme estimated by SEBAL, CWSI, 

SEBS and VI-based algorithms for the 9th of September 2019 to 27th October 2019. 345 
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3.3 Evapotranspiration variability across different seasons and algorithms at the field scale 

Figure 6 (a−d) presents the temporal trends between lysimeter ETa and ETa estimated using four algorithms at the field level. 

Figure 6−a shows the variations between lysimeter ETa and VI-ETa across the cropping seasons. The graphs indicate that, on 

most days, lysimeter ETa closely matched VI-ETa, with only slight underestimations and overestimations on some days. 

Overall, the differences were minimal. Figure 6−b compares lysimeter ETa with SEBAL algorithm estimates. Both methods 350 

exhibited similar trends, with SEBAL estimates increasing and decreasing in tandem with lysimeter ETa. Throughout the 

cropping seasons, both methods captured ETa fluxes similarly. However, SEBAL tended to overestimate ETa on most days, 

with evident overestimations on days of the year (DOY) 31, 130, 207, 287, and 113, and slight underestimations around DOY 

320. Figure 6−c illustrates the relationship between lysimeter ETa and CWSI−ETa. Unlike the other algorithms, CWSI−ETa 

showed significant fluxes on most days, with values often surpassing those of lysimeter ETa. The lysimeter ETa displayed 355 

smoother variability compared to the more fluctuating CWSI−ETa values. Figure 6−d shows that SEBS ETa estimates closely 

tracked lysimeter ETa values, like the SEBAL and VI-ETa estimates. The scatter plots between the models and lysimeter ETa 

values is shown in Figure (S7). 

 

Figure 6. Variability of lysimeter ETa and estimated ETa by VI ETa (a), SEBAL (b), CWSI ETa (c) and SEBS (d) 360 

algorithms. 

3.3.1 Summary of evaluation metrics for the four algorithms against the smart lysimeter at farm scale 

The evaluation of SEBAL, VI, CWSI and SEBS ETa algorithms against the lysimeter measured ETa using statistical metrics 

shows significant differences in their performance as indicated on Fig.7. The SEBAL and VI algorithms demonstrate strong 

correlations with measured lysimeter ETa values where both have achieved high correlation coefficient (0.92) and R2 values 365 
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of 0.84 and 0.85, respectively which indicates a strong linear relationship. These methods exhibit the lowest RMSE and MAE 

values, indicating higher accuracy, with average prediction errors of 0.83 mm d−1 and 0.58 mm d−1 for RMSE, and 0.69 mm 

d−1 and 0.44 mm d−1 for MAE. The results are highly statistically significant, with p-values < 0.001. On the other hand, the 

CWSI-based ETa algorithm demonstrates a very low correlation coefficient of 0.42 with the R2 value of 0.18, alongside higher 

RMSE of 1.91 mm d−1 and MAE of 1.40 mm d−1, indicating poorer performance in both accuracy and explanation of variance. 370 

The SEBS algorithm demonstrated a strong correlation with the correlation coefficient of 0.86 and a substantial R2 of 0.75 

with higher errors on RMSE of 1.07 and MAE of 0.87, mm d−1 and greater variability in prediction errors with SE of 1.12 and 

a highly statistically significant correlations with p value <0.001. The bias values indicate that SEBAL and SEBS generally 

overestimate the measured values by 0.33 mm d−1 and 0.52 mm d−1, respectively, whereas VI tends to slightly underestimate 

them, with an average bias of approximately -0.12 mm d−1. However, the SEBAL and VI are the most reliable methods with 375 

lower error rates, whereas CWSI has the least effectiveness in accurately predicting the measured lysimeter ETa values with 

R2 of 0.18, RMSE of 1.91, MAE of 1.40 and a p value <0.05 showing the result are not statistically significant. 

 

 
Figure 7. Evaluation best performing algorithms at multi-stations. 380 
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3.4 Comparison of quantified ETa from all algorithms and measurements  

 

Figure 8 shows a comparison of the total ETa estimates from 2019 to 2021 of cloud free Landsat 8 data across the four different 

algorithms: SEBAL, SEBS, VI-ETa, and CWSI-ETa against lysimeter-measured ETa in millimetres (mm). The total estimated 

ETa for each algorithm is represented by a bar in the corresponding colour. The lysimeter data acts as a benchmark of ETa, 385 

and differences in bar heights demonstrates how closely each algorithm aligns with the measured ETa. This reflection provides 

insight into the accuracy and reliability of the algorithms in estimating ETa over the study period. The total ETa measured by 

the lysimeter which matches the evaluated Landsat 8 images was 91.63 mm while SEBAL had a closer reading with only 1.41 

mm. VI-based ETa followed with 2.36 mm which was followed by the SEBS algorithm with 5.63 mm difference whereas the 

CWSI-based ETa algorithm had the biggest difference of 16.24 mm over the evaluated period. These findings demonstrate the 390 

reliability of SEBAL, VI-based ETa and SEBS in accurately estimating ETa. 

 

Figure 8. Total lysimeter measured and estimated ETa by SEBAL (blue), VI-ETa (green), CWSI (red) and SEBS 

(yellow) during the study period.  

3.5 The statistical summary of evaluation of algorithms across pixels at different locations with weather stations 395 

The findings for the three algorithms which demonstrated promising performance at field level: SEBAL, SEBS, and VI-based 

reveal distinct differences in their accuracy and reliability across the validation weather station locations (Table 2). The SEBAL 

algorithm consistently demonstrates robust performance, with high correlation values, indicating a close match between its 

ETa estimates and measured ETa data. The low error values reflect SEBAL’s ability to make precise predictions with minimal 

bias, demonstrating its reliability across all sites. Although SEBS appears to be performing well, it shows more variability in 400 

its accuracy. Its correlation and determination coefficient values are slightly lower than SEBAL, while it exhibits higher 

prediction errors. This suggests that SEBS might be more sensitive to local environmental conditions or input data quality, 
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leading to moderate discrepancies in its ETa estimates compared to the measured ETa values. The VI-based ETa performs 

better than SEBS in certain cases but not as consistently as SEBAL. It shows moderate correlation and determination 

coefficient values, with errors slightly higher than SEBAL but lower than SEBS. The bias values suggest that VI-based ETa 405 

might overestimate or underestimate ETa depending on the site, yet its statistical significance remains strong. 

Table 2. The statistical summary of performance of estimated daily ETa from SEBAL, VI, SEBS and CWSI based models 

with measured lysimeter ETa 

Algorithm SEBAL ETa SEBS ETa VI ETa 

Statistical 

Metric 

SABBI Tadcaster Jankem

pdorp 

Ganspa

n 

SABBI Tadcaster Jankemp

dorp 

Ganspan SABBI Tadcas

ter 

Jankemp

dorp 

Ganspan 

r 0.93 0.94 0.96 0.91 0.89 0.81 0.90 0.78 0.90 0.80 0.90 0.86 

R2 0.87 0.88 0.92 0.83 0.80 0.66 0.81 0.61 0.82 0.63 0.80 0.73 

RMSE 0.31 0.89 0.53 0.47 1.31 1.48 0.93 1.59 0.41 0.77 0.86 0.52 

MAE 0.27 0.82 0.38 0.36 1.21 1.29 0.77 1.41 0.32 0.54 0.74 0.47 

SE 0.10 0.31 0.19 0.17 0.17 0.52 0.33 0.56 0.12 0.27 0.31 0.19 

Bias 0.01 0.70 0.26 -0.09 1.10 0.95 0.61 0.90 0.08 0.39 0.54 0.02 

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

  

3.6 The regression plot of algorithms ETa against the extrapolated ETa at different study area locations 410 

 

Figure 9 demonstrates the scatter plots between ETa by each algorithm compared to extrapolated ETa on weather stations. The 

points displayed on each plot indicates the degree of correlation between the two sets of ETa values with those points along 

the line showing high correlations while those far apart indicates low correlations. The figure displays a series of scatter plots 

derived from the relationship between ETa estimated by each better performing algorithm and values of ETa extrapolated from 415 

lysimeter measurements with weather station measurements. The slope and alignment of the regression lines relative to the 

data points provide insight into the performance of each algorithm. The SEBAL approach shows regression lines closely 

aligned with the data, indicating strong agreement and a reliable estimation of ETa values, while the SEBS method displays 

greater variability, with data points more widely dispersed around the regression lines, reflecting less precise predictions 

compared to SEBAL. However, VI exhibits moderate performance, with data points closer to the regression lines than SEBS 420 

but not as tightly clustered as SEBAL. 
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Figure 9. Scatter plots between ETa estimated using VI-ET, SEBAL and SEBS algorithms compared to extrapolated 

ETa on weather stations. 
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4 Discussion 425 

In South Africa, water crisis significantly impacts livelihoods, this issue necessitates urgent measures to manage and equitably 

distribute water resources particularly in agriculture which is a major water user. To address this, remote sensing approaches 

using Landsat 8 images were used to estimate ETa using various algorithms (SEBAL, VI-ETa, CWSI-ETa and SEBS). Ground 

truth data from a smart field weighing lysimeter was used for calibrating and validating these estimates. Evaluations at both 

farm and scheme levels revealed that SEBAL was the most accurate algorithm, followed by VI-ETa and SEBS, while CWSI-430 

ETa performed poorly. 

 

The determination of ETa using the VI-ETa approach demonstrates the utility of NDVI as a reliable proxy for vegetation 

dynamics and crop water use. The strong linear relationship observed between NDVI and Kc shows NDVI’s ability to capture 

phenological changes and crop development under unstressed conditions. These findings align with those of Niu et al. (2020), 435 

who reported a good correlation between NDVI and Kc values. This consistency across studies emphasizes the strength of 

NDVI-based methods in agricultural water management. The ensemble Kc model, developed through an integration of season-

specific Kc models, exhibited exceptional accuracy in aligned with ground-derived Kc values. The model’s capacity to 

generalize Kc across diverse vegetation types and cropping seasons shows its potential for broad applicability in irrigated 

schemes like the Vaalharts scheme which is characterized by diverse crops and horticultural practices.  440 

 

Validation of VI-ETa approach in estimating ETa against lysimeter measurements demonstrated its reliability with strong 

correlations and low error metrics. The slight underestimation of ETa, which reflected in a negative bias, suggests potential 

for fine-tuning the algorithm to account for localized environmental or crop-specific conditions. These results reflect the 

findings by Jarchow et al. (2022), who reported comparable accuracy in lysimeter-based validations. However, the VI-ETa 445 

approach also has limitations which were observed. For instance, the algorithm’s dependence on vegetation surfaces restricts 

its utility in quantifying bare soil evaporation, necessitating complementary methods to address evaporation in sparsely 

vegetated areas. This limitation signifies an area for future refinement particularly in mixed land-use systems or early-season 

conditions with minimal vegetation cover. Beyond field-scale validations, the extrapolation of ETa estimates to broader spatial 

scales demonstrates the practicality of the algorithm for regional water resource management. The ability to estimate Kc values 450 

over large areas enhances precision irrigation planning and monitoring, this demonstrates critical needs in agricultural water 

management. The VI-ETa algorithm’s performance in this study was enhanced by the ensemble Kc model which captures the 

diversity in vegetation phenology and water requirement which offers a reliable and scalable method for estimating crop water 

use.  

 455 

The SEBAL algorithm demonstrated a strong performance in estimating ETa, as evidenced by its statistical indicators. 

However, a slight positive bias indicates a tendency for overestimation. In instances where estimates from SEBAL are used 
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for crop water requirements, the overestimation can be accounted for during irrigation scheduling to reduce the overuse of 

water. Despite the obtained minor overestimations on this study, SEBAL algorithm remains one of the most reliable algorithms 

for ETa estimation which provides a good balance between complexity and accuracy (Allen et al., 1998). The performance 460 

aligns with some previous studies which applied SEBAL algorithm, for instance, Shoko et al. (2015) demonstrated SEBAL’s 

efficacy in a South African context, where it achieved high accuracy using Landsat 8 and MODIS data validated against eddy 

covariance system measurements. They reported lower values being estimated using MODIS data with ETa difference 

compared to Landsat 8 estimates. Allen et al. (1998) validated SEBAL’s estimates against lysimeter ETa measurements, 

confirming its suitability for watershed-scale applications. Although these comparisons affirm the reliability of SEBAL, they 465 

also highlight its adaptability across various environmental and spatial scales. The slight overestimation observed in this study 

may stem from assumptions inherent in SEBAL’s parameterization such as surface albedo and aerodynamic resistance, which 

could vary under specific microclimatic conditions. Moreover, the resolution of the input satellite data plays a role; higher-

resolution datasets, like those from Landsat 8, tend to improve estimation accuracy although it may still introduce minor 

discrepancies depending on land cover heterogeneity. 470 

 

On the other hand, the CWSI-based ETa estimation showed the weakest performance among all algorithms evaluated, with 

weak statistical metrics. These findings suggest that CWSI-based method may not be suitable for precise ETa estimation in 

environments characterized by high variability in land use and water stress regimes. The poor performance of CWSI algorithm 

can be attributed to the method’s reliance on capturing thermal dynamics which poses challenges, this is typically the case 475 

when using thermal data with coarse resolution such as the 90 m spatial resolution of Landsat 8 satellite. Katimbo et al. (2022) 

highlighted the sensitivity of CWSI to soil water depletion, particularly when levels drop below 80% of field capacity. This 

sensitivity becomes problematic in arid environments where moisture deficits are pronounced and soil moisture fluctuates 

significantly, leading to inaccuracies in ETa estimation. Furthermore, studies by Liu et al. (2022) and Boyaci et al. (2024) have 

demonstrated that the performance of CWSI is influenced by factors including crop type, environmental conditions, and 480 

calibration of temperature measurements. These factors contribute to variability in how well CWSI reflects ETa rates. In this 

study, such variability may have limited the method’s effectiveness in capturing the dynamic water stress conditions 

experienced by crops. While the CWSI provides a temperature-based indication of water stress, it does not fully account for 

other critical factors influencing ET, such as atmospheric evaporative demand and plant physiological responses. This 

limitation, as discussed by Liu et al. (2022), may explain the observed discrepancies and demonstrates the need for caution 485 

when applying CWSI in areas where environmental and crop conditions vary significantly. 

 

The SEBS algorithm showed a strong potential in estimating ETa at the field level when compared against smart field weighing 

lysimeter measurements. However, its performance varied across different validation sites, with the lowest correlation 

observed at Ganspan validation site. Despite this variability, the results suggest that SEBS estimates generally maintain a 490 

strong linear relationship with ground-based measurements and extrapolated ETa values, confirming the algorithm’s reliability 
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under specific conditions. Nevertheless, certain limitations of SEBS were evident. The algorithm exhibited higher errors 

compared to SEBAL with a tendency to overestimate ETa. This overestimation may reflect the algorithm’s sensitivity to input 

parameters or specific environmental conditions, suggesting the need for calibration to improve its accuracy in heterogeneous 

settings such as the Vaalharts irrigation scheme. Similar observations have been reported in other studies. For example, 495 

McCabe and Wood (2006) and Dobriyal et al. (2012) noted overestimations in forested areas, while Rwasoka et al. (2011) 

observed daily overestimations in grasslands. The heterogeneous environment which comprised of pecan trees, natural 

vegetation, grass and diverse crops likely contributed to the observed overestimation. The shared thermal pixels between 

different land covers may have skewed heat flux estimates when different land covers exist in one pixel. Moreover, findings 

from South Africa’s Gibson et al. (2011) and Gokool et al. (2018) affirms the influence of climatic conditions and validation 500 

methodologies on SEBS performance. Gibson et al. (2011) observed overestimations under wet conditions, while Gokool’s 

study in a sub-humid sugarcane farm reported low accuracies associated with ground measurement uncertainties. These 

findings highlight the importance of using accurate devices like weighing lysimeters and higher-resolution Landsat data, as 

done in this study, to improve SEBS calibration and applicability.  

 505 

The evaluation of these algorithms highlights their respective strengths and limitations in estimating ETa within a 

heterogeneous irrigation scheme. SEBAL, VI-ETa and SEBS demonstrated strong potential for water management 

applications, while CWSI-ETa requires further refinement to address its limitations. The role of input data spatial resolution 

and the challenges of extrapolating ETa through weather stations from lysimeter measurements are critical considerations for 

enhancing the accuracy and applicability of these models. Weather stations and lysimeters provide point-based measurements, 510 

which might not capture the spatial dynamics across larger areas. This mismatch can result in over- or underestimation when 

scaling up. Errors in weather station data such as: temperature, wind speed and humidity measurements can propagate when 

used to validate or calibrate ETa models for larger areas. Moreover, algorithms may struggle to accurately account for varying 

levels of water stress across regions, particularly in arid zones where rapid moisture changes occur. 

5 Conclusions 515 

In this study four algorithms: SEBAL, SEBS, VI-ETa and CWSI-ETa were used to estimate ETa which was evaluated using 

a smart field weighing lysimeter measured ETa. The findings demonstrated that among the evaluated, SEBAL and VI-ETa 

demonstrated the best performance, with strong accuracy and reliability. SEBAL showed high accuracy at both farm and 

scheme scales, making it a valuable tool for ETa estimation and water management. Although the study was conducted within 

the Vaalharts irrigation scheme, algorithms like SEBAL and VI-ETa demonstrate strong potential for widespread application 520 

in regions with comparable cropping systems and water resource challenges. For instance, the strong correlation between 

NDVI and Kc demonstrates the universal applicability of NDVI-based approaches for monitoring crop water use in diverse 

agricultural settings. However, the distinctiveness of the results also highlights critical site-specific complexities. The observed 
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algorithm performances, particularly the limitations of CWSI-ETa in arid zones, point to the necessity of adapting models to 

local climatic and environmental conditions. Variations in microclimate, crop type and irrigation practices across regions can 525 

influence the reliability and accuracy of ETa estimates. The findings of this study make emphasis on the importance of 

integrating high-resolution satellite data with ground-based measurements to improve ETa estimation accuracy. Although the 

findings align with global literature, regional or site-specific local validations remain essential to account for localized factors 

such as soil heterogeneity and mixed land-use systems. This is key considering the limitations of direct ETa measurements in 

most parts of South Africa. The focus on general principles and site-specific adaptations can provide a framework for scaling 530 

these approaches to other regions. The revisit period of Landsat 8 also stands out as a key challenge in using ETa estimates for 

continuous irrigation scheduling particularly for crops that require frequent irrigation. 

6 Suggestions for further research 

Future studies should prioritise improving the CWSI-based algorithm by using higher-resolution thermal datasets and better 

calibration methods to improve accuracy in environments with diverse land use and water stress regimes. Complementary 535 

techniques, such as combining VI-based models with additional indices, are critical for overcoming constraints in estimating 

bare soil evaporation, particularly in sparsely vegetated or early-season settings. Comprehensive field validations across 

diverse land use types and climates in South Africa are critical for increasing ETa model resilience. Given the lack of ETa data 

in Africa, it is critical to deploy advanced measuring tools such as eddy covariance systems and high-precision lysimeters with 

open-access policies to ensure a wide-scale evaluations of ETa algorithms. Future studies should also modify and test 540 

algorithms in various geographic regions and agricultural systems to ensure their broader application. 
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