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Abstract 8 

Estimating runoff components, including surface flow, baseflow and total runoff is essential for 9 

understanding precipitation partition and runoff generation and facilitating water resource 10 

management. However, a general framework to quantify and attribute runoff components is still 11 

lacking. Here, we propose a general formulation through observational data analysis and 12 

theoretical derivation based on the two-stage Ponce-Shetty model (named as the MPS model). 13 

The MPS model characterizes mean annual runoff components as a function of available water 14 

with one parameter. The model is applied over 662 catchments across China and the contiguous 15 

United States. Results demonstrate that the model well depicts the spatial variability of runoff 16 

components with R2 exceeding 0.81, 0.44 and 0.80 for fitting surface flow, baseflow and total 17 

runoff, respectively. The model effectively simulates multi-year runoff components with R2 18 

exceeding 0.97, and the proportion of runoff components relative to precipitation with R2 19 

exceeding 0.94. By using this conceptual model, we elucidate the responses of surface flow and 20 

baseflow to available water and environmental factors for the first time. The surface flow is 21 

jointly controlled by precipitation and environmental factors, while baseflow is mainly influenced 22 

by environmental factors in most catchments. The universal and concise MPS model offers a new 23 

perspective on the long-term catchment water balance, facilitating broader application in 24 

large-sample investigations without complex parameterizations and providing an efficient tool to 25 

explore future runoff variations and responses under changing climate. 26 
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Key Points 27 

(1) A general and concise formulation is proposed to quantify, and attribute mean annual 28 

surface flow, baseflow and total runoff. 29 

(2) The formulation characterizes runoff components as a function of available water without 30 

additional and complicated parameter calculation. 31 

(3) The formulation performs well in quantifying and attributing runoff components in 662 32 

catchments. 33 

1. Introduction 34 

Runoff is the primary freshwater resource accessible for human life and plays an essential role 35 

in the water cycle (He et al., 2022; Wang et al., 2024). Based on the propagation time and 36 

hydraulic response of a catchment, total runoff (Q) can be divided into baseflow (Qb) and surface 37 

flow (Qs) (Gnann et al., 2019; Singh et al., 2019). Baseflow, also referred to as slow flow, is 38 

defined as the flow that originates from groundwater and other delayed sources (such as wetlands, 39 

lakes, snow and ice), and generally sustains streamflow during dry periods (Gnann, 2021; Hall, 40 

1968). Baseflow is the relatively stable component of runoff, playing a vital role in aquatic 41 

ecosystems (de Graaf et al., 2019; Price et al., 2011), water quality (Ficklin et al., 2016) and 42 

sustained water supplies (Fan et al., 2013). Surface flow, also referred to as fast flow, results from 43 

rapid processes like the saturation or infiltration of excess overland flow and swift subsurface 44 

flow (Beven and Kirkby, 1979), leading to immediate water movement. Surface flow occurs more 45 

rapidly and with more drastic changes than baseflow, which is primarily responsible for flood 46 

generation (Yin et al., 2018) and soil erosion (Morgan and Nearing, 2011). 47 

Most current studies focus on total runoff variability and attribution, and the relevant 48 

researches are fairly mature (Berghuijs et al., 2017; Han et al., 2023; Liu et al., 2021). However, 49 

few studies pay attention to comprehensive research on the different runoff components (Li et al., 50 

2020; Liu et al., 2019), and the attributions of Qs and Qb changes are still unclear (Hellwig and 51 

Stahl, 2018). Baseflow and surface flow represent different hydrological processes, and their 52 

implications for watershed management are also not identical (Zheng and Sun, 2014). For 53 
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example, the research conducted by Ficklin et al. (2016) in the United States points out apparent 54 

spatial differences between Qb and Qs in different seasons. Therefore, it is necessary to quantify 55 

runoff components and distinguish their controlling factors to better understand the runoff 56 

dynamics and facilitate water resources management in the context of intensified climate change 57 

and anthropogenic disturbance. 58 

Unlike Q, which is ascertainable through direct observation at hydrological gauges, Qb and Qs 59 

can only be estimated through indirect methods, including baseflow separation (Wu et al., 2019; 60 

Zhang et al., 2017), isotope tracing (Hale et al., 2022; Wallace et al., 2021) and hydrological 61 

modeling (Al-Ghobari et al., 2020; Cheng et al., 2020; Huang et al., 2007; Kaleris and Langousis, 62 

2017). The first two methods estimate Qb initially, and Qs is then derived as the difference 63 

between the Q and the estimated Qb, limiting their ability to examine the dynamic variations of 64 

each runoff component independently, and the isotope tracing method is challenging to conduct 65 

on a large and long-term scale. The hydrological modeling enables to simulate Qb and Qs 66 

separately, typically reflected in different modules and empirical formulations. In hydrological 67 

models, Qb is encoded using linear or non-linear storage-discharge functions (Chen and Ruan, 68 

2023; Cheng et al., 2020). Qs is closely related to rainfall, but the models for estimating it are 69 

usually event-based (such as the Soil Conservation Service Curve Number method (Al-Ghobari et 70 

al., 2020; SCS, 1972; Shi et al., 2017) and very few studies explored the controls on the mean 71 

annual Qs (Neto et al., 2020). Among various models, the Budyko framework (Budyko, 1974) in 72 

conjunction with water-energy balance method (Choudhury, 1999; Yang et al., 2008) (see the 73 

second row in Table 1), has been widely used in the analysis of mean annual Q due to its simple, 74 

universal and transparent characteristics (He et al., 2022; Roderick and Farquhar, 2011).  75 

Recently, utilizing the extended Budyko framework to estimate Qb and Qs has attracted 76 

attention. Wang and Wu (2013) and Neto et al. (2020) established the regression relationship 77 

between baseflow fraction (BFC, the ratio of Qb to precipitation (P)) and aridity index (𝜙, the 78 

ratio of mean annual potential evapotranspiration (E0) to P) using analytical formulation. 79 

However, Gnann et al. (2019) reported that using only the 𝜙 struggles to delineate baseflow 80 

variability in humid catchments, where the impact of soil water storage capacity (Sp) is as critical 81 

as that of the 𝜙. Thus, Cheng et al. (2021) proposed an analytical curve for describing mean 82 

annual Qb by introducing Sp as another theoretical boundary. Results show that the developed 83 
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curve agrees well with the observed BFC (R2 = 0.75, RMSE = 0.058) and Qb (R2 = 0.86, 84 

RMSE = 0.19 mm), outperforming the original Budyko framework. Analogously, Yao et al. 85 

(2021) derived similar functions incorporated the 𝜙, Sp and a shape parameter to model BFC and 86 

baseflow index (BFI, the ratio of Qb to Q). These extended Budyko frameworks accounting for Sp 87 

have advantages in simulating Qb. However, Sp is challenging to obtain through observations and 88 

often requires calibration (Cheng et al., 2021) or computation (Yao et al., 2021), adding certain 89 

uncertainties to the model. Notably, the calibration performance of Qs in equation (1) to obtain Wp 90 

(the proxy of Sp) in the catchments of China are not always satisfactory, especially in the northern 91 

catchments. Moreover, the complicated forms can bring inherent uncertainties and these studies 92 

have not validated the formulations of Qs, which are derived by subtracting Qb from Q or fitting 93 

curves (Cheng et al., 2021; Neto et al., 2020), implying that they may overlook the physical 94 

processes represented by surface flow. In the subsequent discussion, the Budyko framework and 95 

extended Budyko equations are collectively referred to as the "Budyko-type formulations" (Table 96 

1).  97 

Many researchers have observed similar behavior of Qb to Q (Cheng et al., 2021; Gnann et al., 98 

2019; Wang and Wu, 2013). Is there a similar behavior for Qs? In a two-stage partitioning theory 99 

(L'vovich, 1979), runoff components are delineated based on the available water at each stage. 100 

Therefore, is there a general framework to unify different runoff components? Although various 101 

functional forms have been proposed for estimating runoff components in the literature, a 102 

universal method that reveals the mechanisms of mean annual runoff components generation and 103 

subsequent quantification and attribution is still in need. 104 

Table 1. The Budyko-type formulations for estimating mean annual runoff components 105 

References Formulations Parameters 

Choudhury (1999); 

Yang et al. (2008) 

𝑄 = 𝑃 −
𝑃 × 𝐸0

(𝑃𝑛 + 𝐸0
𝑛)1/𝑛

 
n 

calibrated 

Wang and Wu (2013) 
𝑄𝑏

𝑃
= 1 − [1 + (

𝐸0

𝑃
)
−𝑣

]

−1/𝑣

 

v 

fitted 

Neto et al. (2020) 
𝑓S(𝜙) = exp(−𝜙𝑎 + 𝛿S)

𝑏 

𝑓B(𝜙) = exp(−𝜙𝑐 + 𝛿B)𝑑 

a, b, c, d 

𝛿S = ln ([
𝑄̅S

𝑃̅
]
𝑚𝑎𝑥

)

1/𝑏
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𝛿B = ln (1 − [
𝑄̅S

𝑃̅
]
𝑚𝑎𝑥

)

1/𝑑

 

fitted 

Cheng et al. (2021) 

𝑄𝑠

𝑃
= −

𝐸0 + 𝑆𝑝

𝑃
+ [1 + (

𝐸0 + 𝑆𝑝

𝑃
)
𝛼1

]

1/𝛼1

 

𝑄𝑏

𝑃
=

𝑆𝑝

𝑃
+ [1 + (

𝐸0

𝑃
)
𝛼2

]

1/𝛼2

− [1 + (
𝐸0 + 𝑆𝑝

𝑃
)
𝛼2

]

1/𝛼2

 

Sp, 𝛼1, 𝛼2 

calibrated 

Yao et al. (2021) 

𝑄𝑏 =
𝑃 + 𝑆𝑏 − √(𝑃 + 𝑆𝑏)

2 − 2𝑎𝑆𝑏𝑃

𝑎

[
 
 
 
 
 

1

−

1 +
𝐸0
𝑃

𝑃
𝑆𝑏

− √(1 +
𝐸0
𝑃

𝑃
𝑆𝑏

)
2

− 2𝑎
𝐸0
𝑃

𝑃
𝑆𝑏

𝑎

]
 
 
 
 
 

 

𝑄 = 𝑃 −

𝑃
𝑆𝑏

+ 1 − √(
𝑃
𝑆𝑏

+ 1)
2

− 2𝑎
𝑃
𝑆𝑏

𝑎

∗
𝐸0 + 𝑆𝑏 − √(𝐸0 + 𝑆𝑏)2 − 2𝑎𝐸0𝑆𝑏

𝑎
 

Sb (estimated from 

cumulative distribution 

function), a (calibrated) 

 

Note that P is the mean annual precipitation, E0 is the mean annual potential evapotranspiration, 𝑓S(𝜙) and 106 

𝑓B(𝜙) are the surface flow and baseflow function, respectively and Sp is the catchment storage capacity. 107 

  To address these questions, we derived a modified two-stage partitioning framework through 108 

observational data analysis and theoretical derivation based on the Ponce-Shetty model (Ponce 109 

and Shetty, 1995; Sivapalan et al., 2011) (namely the modified Ponce-Shetty model, MPS model) 110 

at mean annual time scale. The Ponce-Shetty model is a conceptual model with physical 111 

constraint developed at annual scale to depict how precipitation is partitioned, stored and released 112 

in the catchment (Gnann et al., 2019). It posits that annual precipitation is partitioned into Qs and 113 

soil wetting (W) and, subsequently, the resulting W is partitioned into Qb and vaporization (V) 114 

(Sivapalan et al., 2011). The MPS model enables large-sample catchments research, which may 115 

lead to new understanding of mean annual water balance and allocation. 116 
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  In general, the objectives of this study are to (1) develop a general and concise formulation to 117 

describe runoff components variability at mean annual time scale; (2) validate and compare the 118 

performance of the developed formulation against Budyko-type formulations; (3) attribute the 119 

variations of runoff components induced by the changes of precipitation and other factors. Here, 120 

we modify the Ponce-Shetty model according to some conditions and hypothesize a general 121 

runoff components model (the MPS model), that describes Qs, Qb and Q as a function of 122 

respective available water with one parameter. The MPS model is then validated over 662 123 

catchments across China and the contiguous United States (the CONUS) over a wide range of 124 

hydro-meteorological circumstances. The performance of the MPS model is also compared with 125 

the Budyko-type formulations. Section 2 introduces the derivation of the MPS model. Section 3 126 

provides the study catchments, data and the parameter estimation technique. Section 4 shows the 127 

results followed by a discussion in Section 5. The conclusions are summarized in Section 6. 128 

2. Derivation of the Modified Ponce-Shetty Model 129 

L'vovich (1979) proposed a conceptual theory for the two-stage catchment water balance 130 

partition at the annual time scale according to Horton’s approach (Horton, 1933). Firstly, 131 

precipitation is partitioned into surface flow (Qs) and catchment wetting (W, stored water), and 132 

then, the catchment wetting is partitioned into baseflow (Qb) and vaporization (V, including 133 

interception loss, evaporation and transpiration). Ponce and Shetty (1995) conceptualized the 134 

partition of each step as the form of a competition, and derived the formulations of runoff 135 

components based on the proportionality hypothesis. Sivapalan et al. (2011) reintroduced the 136 

Ponce-Shetty equations as follows: 137 

In the first stage, P = Qs+W:  138 

 

𝑄s = {

0,                             𝑖𝑓 𝑃 ≤ 𝜆s𝑊p

(𝑃 − 𝜆s𝑊p)
2

𝑃 + (1 − 2𝜆s)𝑊p
,                 𝑖𝑓 𝑃 > 𝜆s𝑊p 

 (1) 

 

𝑊 = {

𝑃,                             𝑖𝑓 𝑃 ≤ 𝜆s𝑊p

𝑃 −
(𝑃 − 𝜆s𝑊p)

2

𝑃 + (1 − 2𝜆s)𝑊p
,             𝑖𝑓 𝑃 > 𝜆s𝑊p 

 (2) 
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 𝑃 → ∞, 𝑄s → 𝑃 − 𝑊p,𝑊 → 𝑊p (3) 

In the second stage, W = Qb+V: 139 

 

𝑄b = {

0,                              𝑖𝑓 𝑊 ≤ 𝜆b𝑉p

(𝑊 − 𝜆b𝑉p)
2

𝑊 + (1 − 2𝜆b)𝑉p
,                 𝑖𝑓 𝑊 > 𝜆b𝑉p 

 (4) 

 

𝑉 = {

𝑊,                              𝑖𝑓 𝑊 ≤ 𝜆b𝑉p

𝑊 −
(𝑊 − 𝜆b𝑉p)

2

𝑊 + (1 − 2𝜆b)𝑉p
,              𝑖𝑓 𝑊 > 𝜆b𝑉p 

 (5) 

 𝑊 → ∞, 𝑄b → 𝑊 − 𝑉p, 𝑉 → 𝑉p (6) 

where 𝜆s and 𝜆b are the surface flow and baseflow initial abstraction coefficients, respectively, 140 

which range from 0 to 1. The larger value of 𝜆, the more difficult it is to generate flow. Wp and Vp 141 

are catchment wetting potential and vaporization potential, respectively, which are greater than 0. 142 

The relative 𝜆s𝑊p  and 𝜆b𝑉p  are the surface flow and baseflow generation thresholds, 143 

respectively.  144 

  Note that the interannual water storage change is supposed to be negligible (Ponce and Shetty, 145 

1995). In a companion paper of Sivapalan et al. (2011), Harman et al. (2011) employed the 146 

annual Ponce-Shetty model at mean annual time scale and validated its applicability. Using the 147 

first phase as an example, Qs can be considered a function of 𝜆s, denoted as f(𝜆s)： 148 

 

𝑓(𝜆s) = {

0,                             𝑖𝑓 𝜆s ≥ 𝑃/𝑊p

(𝑃 − 𝜆s𝑊p)
2

𝑃 + (1 − 2𝜆s)𝑊p
,                 𝑖𝑓 𝜆s < 𝑃/𝑊p 

 (7) 

When 𝜆s < 𝑃/𝑊p, the Taylor expansion of 𝑓(𝜆s) at 𝜆s=0 is: 149 

 𝑓(𝜆s) = 𝑓(0) + 𝑓′(0) ∗ 𝜆s +
𝑓′′(0)

2!
∗ 𝜆𝑠

2 + ⋯+
𝑓𝑛(0)

𝑛!
∗ 𝜆𝑠

𝑛 + ⋯ (8) 

Hence, we have the zeroth-order approximation: 150 

 
𝑓(𝜆s) ≈

𝑃2

𝑃 + 𝑊p
 (9) 

When the remainder term is relatively small, an approximation equation can be used to 151 

estimate the multi-year Qs as:  152 
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𝑄𝑠 =

𝑃2

𝑃 + 𝑊𝑝
 (10) 

In addition, the zeroth-order approximation of Qb can be similarly obtained as: 153 

 
𝑄𝑏 =

𝑊2

𝑊 + 𝑉𝑝
 (11) 

To evaluate the impact of the remainder term, we calculate the relative bias (𝛿) of runoff 154 

components for 312 basins in China and 350 basins in the United States using the approximate 155 

equations (Eq (10) and Eq (11)) and the original Ponce-Shetty equations (Eq (1) and Eq (4)) (data 156 

sources in Section 3.1). The parameters in the original Ponce-Shetty equations are calibrated 157 

using the nonlinear least squares method. The 𝛿 is calculated as: 158 

 
𝛿 =

|𝑄𝑦̃ − 𝑄𝑦|

𝑄𝑦
 (12) 

where Qy represents runoff components estimated by the Ponce-Shetty equations, and 𝑄𝑦̃ 159 

represents runoff components estimated by the sapproximate equations (Eq (10) and Eq (11)). 160 

The spatial distribution of 𝛿  and the cumulative distribution functions (CDFs) of 𝛿  are 161 

shown in Figure 1 and Figure 2, respectively. As shown in Figure 1, 77% of the basins have an 𝛿 162 

of less than 5%. The average 𝛿 for estimating Qs is 6.5% in China and 4.8% in the United States, 163 

while the average 𝛿 for estimating Qb is 7.9% in China and 6.6% in the United States, with 164 

larger deviations observed in arid basins. Figure 2 indicate that the 𝛿 values for the approximate 165 

model are within acceptable limits across both China and CONUS. The relatively low 95% 166 

threshold values, particularly for the USA datasets, suggest that the majority of predictions fall 167 

within a narrow error range, indicating robust model performance. This acceptability of 𝛿 across 168 

regions and variables highlights the approximate equations’ capability to maintain prediction 169 

accuracy under varying geographical and hydrological conditions, indicating that the Zeroth-order 170 

approximation is representative for the original Ponce-Shetty model. 171 
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 172 

Figure 1. The distribution of relative bias (𝛿) between the results by the approximate equations 173 

(Eq (10) and Eq (11)) versus the original Ponce-Shetty equations (Eq (1) and Eq (4)). The first 174 

row shows the results for 312 basins in China, and the second row shows the results for 350 175 

basins in CONUS. The first column corresponds to surface flow (Qs), and the second column 176 

corresponds to baseflow (Qb). 177 

 178 

Figure 2. Cumulative distribution functions (CDFs) of the relative bias (𝛿) for each dataset, 179 

represented by four subplots corresponding to different regions and variables: (a) China_Qs, (b) 180 

China_Qb, (c) USA_Qs, and (d) USA_Qb.  Each subplot includes a red dashed line indicating the 181 

95% 𝛿 threshold 182 
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Therefore, we can approximately consider that on a multi-year scale, Qs and Qb can be 183 

estimated using the zeroth-order approximation in Eq (10) and Eq (11). We subsequently assume 184 

a similar formulation of mean annual Q: 185 

 
𝑄 =

𝑃2

𝑃 + 𝑈𝑝
 (13) 

where Up is the parameter representing the upper limit of the portion remaining after precipitation 186 

is allocated to runoff, hereafter we refer to Up as evapotranspiration potential. 187 

Integrating equations (10), (11) and (13), we conclude a general formulation to depict 188 

multi-year variability of runoff components and their quantification, hereafter referred to as the 189 

modified Ponce-Shetty model (the MPS model): 190 

 𝑄𝑦 =
𝑋2

𝑋 + 𝑀
 (14) 

where Qy represents runoff components (i.e., Q, Qs, Qb), X corresponds to the available water of 191 

each runoff component, i.e., P is the available water of Q and Qs, and W the available water of Qb. 192 

M is an integrated parameter, representing the comprehensive effects of catchment characteristics 193 

and atmospheric water and energy demand. 194 

The MPS model encodes runoff components as a function of available water with only one 195 

parameter, which not only considers processes of runoff generation with physical constraints, but 196 

also, compared to the Budyko-type formulations and the original Ponce-Shetty model, is more 197 

concise in form and requires fewer parameters. Therefore, it is possible to estimate the long-term 198 

runoff components when only long-term variables are known. 199 

3. Data and Methodology 200 

3.1. Data 201 

  To validate the reliability of the MPS model, daily hydrological and meteorological data from 202 

312 catchments in China (Li et al., 2024) and 350 catchments in the CONUS are collected. The 203 

criteria for catchments screening can refer to He et al. (2025). The location of all the catchments 204 

hydrological stations is shown in Figure 3.  205 
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 206 

Figure 3. Location of hydrological stations for the (a) 312 catchments in China and (b) 350 207 

catchments in the CONUS, colored by the value of aridity index (𝜙, namely E0/P). 208 

  In China, precipitation data at 0.25
◦
 spatial resolution are obtained from the China 209 

Gauge-based Daily Precipitation Analysis (CGDPA) (Shen and Xiong, 2016). Other 210 

meteorological data, including wind speed, sunshine hours, relative humidity, and air temperature, 211 

are from about 736 stations of the China Meteorological Data Service Center 212 

(http://data.cma.cn/en, last access: 11 November 2023). The in-site meteorological data are 213 

interpolated into a 10-km grid using the inverse-distance weighted method (Yang et al., 2014). 214 

We use the Penman equation (Penman, 1948) to estimate E0 of each grid using standard 215 

meteorological inputs (e.g., radiation, humidity, wind, temperature). The Penman equation is 216 

widely recommended to estimate E0 at catchment scale due to its physical basis (Pimentel et al., 217 

2023; Wang et al., 2025), and it provides a consistent reference for our annual, large-sample 218 

analyses. The aridity index 𝜙 is subsequently calculated as E0/P. All grid data are aggregated 219 

and lumped for individual catchments. The discharge data are collected from the Hydrological 220 

Bureau of the Ministry of Water Resources of China (https://www.mwr.gov.cn/english/, last 221 

access: 20 December 2023) and are selected based on the length of records exceeding 35 years 222 

with less than 5% missing data. The time range for all data is 1960-2000. 223 

  In the CONUS, we use data set from CAMELS (Addor et al., 2017; Newman et al., 2015). The 224 

CAMELS data set provides 662 catchments with daily time series of precipitation and observed 225 

runoff along with aridity index, and most catchments contain 35 years of continuous runoff from 226 

1980 to 2014. The criteria for excluding catchments are referred to Gnann et al. (2019), and 227 

finally 350 catchments remained. 228 
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  We use the one-parameter Lyne-Hollick digital filter (Lyne and Hollick, 1979) to separate 229 

daily Qs and Qb from daily Q. The Lyne-Hollick method is applied forward, backward, and 230 

forward again with a filter parameter of 0.925 and has manifested to be reliable to obtain runoff 231 

components (Lee and Ajami, 2023). We use the separated Qs and Qb as the reference. Although 232 

there are other baseflow separation algorithms, according to Troch et al. (2009), the choice of 233 

baseflow separation algorithm is not a significant determinant of the water balance at the annual 234 

scale. 235 

  All the hydrological and meteorological data are aggregated to the annual and mean annual 236 

time scales for further analysis. 237 

3.2. Calibration and Validation 238 

Spatially, to verify the MPS model’s ability to characterize the variability of runoff components 239 

between catchments, we utilize the least squares fitting algorithm to estimate parameters, i.e., Wp, 240 

Vp and Up. The three parameters are restricted to being between 0 mm and 50, 000 mm, which is 241 

considered high enough to not affect the parameter estimation (Gnann et al., 2019).  242 

In terms of time, we split all data into two periods for parameter calibration and validation of 243 

Eq. (14) for individual catchments. In China, the data ranges from 1960 to 2000, so we use the 244 

first 31 years (1960-1990) as the calibration period and the remaining 5-10 years (1991-2000) as 245 

the validation period. In the CONUS, the calibration period is chosen as 1980-2000, and the 246 

validation period is from 2001 to 2014. When we know mean annual Qs, Qb, Q, P and W of the 247 

first period, the parameters, i.e., Wp, Vp and Up, can be derived from Eq. (14). Postulating the 248 

parameters remain unchanged during two periods, we consequently can estimate the mean annual 249 

Qs, Qb and Q of the second period using Eq. (14). Note that the catchment wetting W is calculated 250 

as the difference of the P and estimated Qs. 251 

The surface flow fraction (SFC, the ratio of surface flow to precipitation) and baseflow fraction 252 

(BFC, the ratio between baseflow and precipitation) represent the proportion of rainfall becoming 253 

different runoff components, which are commonly used to quantity surface flow and baseflow 254 

(Wang and Wu, 2013). Therefore, we evaluate the simulation of SFC and BFC as well as the 255 

volume of runoff components. 256 

The performance of the MPS model is evaluated by the coefficient of determination (R2) and 257 
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the root mean square error (RMSE): 258 

 

𝑅2 =

(

 
∑ (𝑋𝑠𝑖𝑚,𝑖 − 𝑋̅𝑠𝑖𝑚)(𝑋𝑜𝑏𝑠,𝑖 − 𝑋̅𝑜𝑏𝑠)

𝑁
𝑖=1

√∑ (𝑋𝑠𝑖𝑚,𝑖 − 𝑋̅𝑠𝑖𝑚)
2
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋̅𝑜𝑏𝑠)

2𝑁
𝑖=1

𝑁
𝑖=1 )

 

2

 (15) 

 
RMSE = √

1

𝑁
∑ (𝑋𝑠𝑖𝑚,𝑖 − 𝑋𝑜𝑏𝑠,𝑖)

2𝑁

𝑖=1
 (16) 

where X represents the evaluated variable, i.e., mean annual Q, Qs and Qb, SFC and BFC in this 259 

study. The subscript obs and sim represents the observed and simulated value, respectively. 260 

Higher R2 and lower RMSE indicate good model performance. 261 

3.3. Attribution analysis 262 

We split the data into the first period (1960-1990 in China and 1980-2000 in the CONUS) and 263 

the second period (1991-2000 in China and 2001-2014 in the CONUS) to attribute runoff 264 

components variation between two periods. Note that the attribution of ∆𝑄 is only conducted in 265 

China because the E0 in CAMELS dataset is a constant in each catchment. In the MPS model, we 266 

consider that the runoff changes between two long-term periods are caused by available water and 267 

other environmental and anthropogenic factors (such as land cover/use change and 268 

evapotranspiration variation) encoded by parameters. For the changes of surface flow (∆𝑄s) and 269 

total runoff (∆𝑄), postulating that each variable is independent in the MPS model, the first-order 270 

approximation of the ∆𝑄s and ∆𝑄 from the second period to the first period can be expressed as 271 

(Milly and Dunne, 2002): 272 

 
∆𝑄s =

𝜕𝑄s

𝜕𝑃
∆𝑃 +

𝜕𝑄s

𝜕𝑊p
∆𝑊p (17a) 

 
∆𝑄 =

𝜕𝑄

𝜕𝑃
∆𝑃 +

𝜕𝑄

𝜕𝑈p
∆𝑈p (17b) 

where the two terms on the right side of equation (17a) respectively represent changes in Qs 273 

caused by changes in P (∆𝑄s−𝑃) and other factors (∆𝑄s−𝑊p), and the two terms on the right side 274 

of equation (17b) respectively represent changes in Q caused by changes in P (∆𝑄𝑃) and other 275 

factors (∆𝑄𝑊p). For convenience, we refer partial derivative coefficient 
𝜕𝑄s

𝜕𝑃
, 

𝜕𝑄s

𝜕𝑊p
, 

𝜕𝑄

𝜕𝑃
 and 

𝜕𝑄

𝜕𝑈p
 in 276 
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equation (17) as 𝜁𝑄s−𝑃, 𝜁𝑄s−𝑊p, 𝜁𝑄−𝑃 and 𝜁𝑄−𝑊p , which can be calculated as: 277 

 
𝜁𝑄s−𝑃 =

𝑃2 + 2𝑃𝑊p

(𝑃 + 𝑊p)
2  (18a) 

 
𝜁𝑄s−𝑊p =

−𝑃2

(𝑃 + 𝑊p)
2 (18b) 

 
𝜁𝑄−𝑃 =

𝑃2 + 2𝑃𝑈p

(𝑃 + 𝑈p)
2  (18c) 

 
𝜁𝑄−𝑊p =

−𝑃2

(𝑃 + 𝑈p)
2 (18d) 

The changes of baseflow (∆𝑄b) is induced by the variations of the W and Vp. However, we 278 

focus more on the impact of P in application. Therefore, we combine equation (10), (11) and W = 279 

P-Qs, so the Qb can be calculated as : 280 

 
𝑄b =

𝑃2𝑊p
2

(𝑃 + 𝑊p)(𝑃𝑊p + 𝑃𝑉p + 𝑊p𝑉p)
 (19) 

The ∆𝑄b can be attributed as the variations of P, Wp and Vp: 281 

 
∆𝑄b =

𝜕𝑄b

𝜕𝑃
∆𝑃 +

𝜕𝑄b

𝜕𝑊p
∆𝑊p +

𝜕𝑄b

𝜕𝑉p
∆𝑉p (20) 

where the three terms on the right side of equation (20) respectively represent changes in Qb 282 

caused by changes in P (∆𝑄b−𝑃), Wp (∆𝑄b−Wp) and Vp (∆𝑄b−Vp). The partial derivative 283 

coefficient 
𝜕𝑄b

𝜕𝑃
 (𝜁𝑄b−𝑃) , 

𝜕𝑄b

𝜕𝑊p
 (𝜁𝑄b−𝑊p) and 

𝜕𝑄b

𝜕𝑉p
 (𝜁𝑄b−𝑉p) can be calculated as: 284 

 
𝜁𝑄b−𝑃 =

2𝑃2𝑊P
3𝑉p + 𝑃2𝑊P

4 + 2𝑃𝑊P
4𝑉p

(𝑃 + 𝑊p)
2
(𝑃𝑊p + 𝑃𝑉p + 𝑊p𝑉p)

2 (21a) 

 
𝜁𝑄b−𝑊p =

𝑃4𝑊P
2 + 2𝑃4𝑊p𝑉p + 2𝑃3𝑊P

2𝑉p

(𝑃 + 𝑊p)
2
(𝑃𝑊p + 𝑃𝑉p + 𝑊p𝑉p)

2 (21b) 

 
𝜁𝑄b−𝑉p =

−𝑃2𝑊P
2

(𝑃 + 𝑊p)
2
(𝑃𝑊p + 𝑃𝑉p + 𝑊p𝑉p)

2 (21c) 

To verify the applicability of the MPS model for runoff components attribution, we compare 285 

the calculated ∆𝑄s, ∆𝑄b and ∆𝑄 using equation (17) and (20) with the observed ∆𝑄s, ∆𝑄b 286 

and ∆𝑄 between two periods. The evaluation metrics are R2 and RMSE. 287 
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The relative contribution ratios of P and other factors to runoff components change are 288 

calculated as: 289 

 
𝜂𝑃 =

𝛥𝑄𝑦−𝑃

|𝛥𝑄𝑦−𝑃| + |𝛥𝑄𝑦−𝑊p| + |𝛥𝑄𝑦−𝑉p|
× 100% (22a) 

 
𝜂𝑊p =

𝛥𝑄𝑦−𝑊p

|𝛥𝑄𝑦−𝑃| + |𝛥𝑄𝑦−𝑊p| + |𝛥𝑄𝑦−𝑉p|
× 100% (22b) 

 
𝜂𝑉p =

𝛥𝑄𝑦−𝑉p

|𝛥𝑄𝑦−𝑃| + |𝛥𝑄𝑦−𝑊p| + |𝛥𝑄𝑦−𝑉p|
× 100% (22c) 

where 𝜂𝑃 , 𝜂𝑊p  and 𝜂𝑉p  are the relative contribution ratios of P, Wp and Vp to runoff 290 

components, respectively. We subsequently use the absolute values of 𝜂 to identify the dominant 291 

factor impacting runoff components. 292 

4. Results 293 

4.1. Inter-Catchment Variability of Runoff Components 294 

  We employ the MPS model to fit the relationship between mean annual available water and 295 

runoff components. In China, as shown in Figure 4(a-c), the MPS model performs well in 296 

describing runoff components variability between catchments, with R2 values of 0.86, 0.68 and 297 

0.91 for fitting Qs, Qb and Q, respectively. The solid lines are the best-fitted MPS curves derived 298 

using the least squares fitting algorithm, implying the median values of different parameters. We 299 

also give the potential upper and lower limits of Wp, Vp and Up across catchments. Similarly, 300 

Figure 4(d-f) illustrates that the MPS model achieves good fitting in the CONUS, with R2 of 0.81, 301 

0.44 and 0.80 for fitting Qs, Qb and Q, respectively. The fitted parameters in the CONUS are 302 

smaller than those in China, while they have more comprehensive ranges between catchments, 303 

meaning a more significant heterogeneity in climate and underlying surface.  304 

Figures 4 demonstrates that the MPS model can effectively reproduce the spatial variability of 305 

different runoff components along with the aridity index (E0/P), which are primarily controlled by 306 

the available water of the corresponding partition stage. The performance of MPS model to fit Qs 307 

and Q is better than that of Qb, indicating that the factors controlling Qb are more complicated and 308 
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not fully reflected in the model. With catchment properties and other factors (integrated by the 309 

parameters in the MPS model) remaining unchanged, the more the available water, the higher the 310 

runoff generated. Conversely, smaller parameter values are associated with greater runoff for a 311 

given amount of available water. 312 

 313 

Figure 4. The MPS model relating (a) P versus Qs, (b) W versus Qb and (c) P versus Q in China 314 

and (d) P versus Qs, (e) W versus Qb and (f) P versus Q in the CONUS. The lines are the fitted 315 

MPS curves with best fitting (solid line) and potential upper limit and lower limit (dashed lines) 316 

parameters. 317 

4.2. Validation of Runoff Components Estimation 318 

  Figure 5 shows the estimated mean annual Qs, Qb and Q in validation periods using the MPS 319 

model with inverted parameters in equation (14) in China and the CONUS. The simulated runoff 320 

components match very well with the observed, with R2 greater than 0.97 and RMSE less than 66 321 

mm. There is no significant difference in the performance in simulating Qs, Qb, and Q, except for 322 

a slight underestimation in simulating Qb of catchments in China and some in the CONUS.  323 

In panels (a), (b), and (c), we observe that the scatter points for both China (red circles) and the 324 

CONUS (blue circles) are closely aligned with the 1:1 line, further underscoring the strong 325 

correlation between modeled and observed values. Specifically, the results show that the MPS 326 

model effectively captures surface flow (Qs), baseflow (Qb), and total runoff (Q) for both regions. 327 

Despite the generally good performance, a slight underestimation of Qb is evident in a subset of 328 

catchments in China and, to a lesser extent, in the CONUS. However, these discrepancies are 329 
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minimal and do not significantly detract from the model's overall accuracy. 330 

 331 

Figure 5. The observed and simulated mean annual (a) surface flow, (b) baseflow and (c) total 332 

runoff by the MPS model in China (red circles) and the CONUS (blue circles). 333 

Figure 6 presents the estimation of SFC and BFC in validation periods using the MPS model. 334 

Similar to the simulation of Qs, the two methods also show highly consistent estimation of SFC 335 

(panel (a)), with R2 of 0.94 and RMSE of 0.03. This demonstrates the MPS model’s robust 336 

capability to estimate the surface flow fraction in China and the CONUS, closely aligning with 337 

the observed data. Panel (b) presents the estimation of BFC, where the MPS model achieves 338 

significant accuracy, reflected by the same R2 and RMSE values (0.94 and 0.03, respectively). 339 

This strong performance indicates that the MPS model is highly effective in simulating SFC and 340 

BFC across various catchments. 341 

 342 

Figure 6. The observed and simulated (a) surface flow fraction (Qs/P) and (b) baseflow fraction 343 

(Qb/P) by the MPS model in China (red circles) and the CONUS (blue circles). 344 

Figure 5 and Figure 6 document that the MPS model can effectively estimate the multi-year 345 

average of all runoff components and the proportions of precipitation allocated to runoff. 346 

The good validation performance of the MPS model verified our hypothesis that the parameters 347 
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in the general formulations remain stable at the mean annual time scale. The parameters reflect 348 

the comprehensive impact of climate and catchment characteristics, i.e., catchment wetting 349 

potential (Wp), vaporization potential (Vp) and the upper limit of the portion remaining after 350 

precipitation is allocated to runoff (Up). As shown in Figure 7(a-c), the spatial distribution of the 351 

parameters across China exhibits pronounced divergence between the northern and southern 352 

catchments, as well as the eastern and the western. The Wp, Vp and Up exhibit similar spatial 353 

patterns, which can be approximately divided into two tiers from north to south. In the catchments 354 

of the Songliao River Basin in the northeast, the Yangtze River Basin and Pearl River Basins in 355 

the south, the parameters are relatively small, with Wp and Up ranging from 0 to 2000 mm, and Vp 356 

from 0 to 4000 mm, resulting large flow. In the catchments of the Yellow River Basin, Huaihe 357 

River Basin and Haihe River Basin in the north, the parameters are quite large and usually more 358 

than 5000 mm and even 8000 mm, leading to small flow. From west to east, Wp exhibits higher 359 

values in the Yangtze and Yellow Rivers Basin sources, whereas Vp and Up are smaller in the 360 

source regions. This disparity may reflect variations in the two-stage partition of precipitation, 361 

contributing to spatial differences in total runoff. According to Figure 7(c), we can deduce that 362 

the spatial distribution of higher total runoff in south and lower in north across China, aligning 363 

with previous observational studies (He et al., 2021; He et al., 2022; Yang et al., 2019). 364 

Figure 7(d-f) shows an evident west-east discrepancy of the three parameters across the 365 

CONUS. Typically, Wp, Vp and Up of the catchments in the west coast and eastern regions are less 366 

than 5000 mm, while parameters in the central United States are extensive with values more than 367 

8000 mm. This indicates relatively low flow in the central regions. Notably, the parameters upper 368 

limits in the catchments of the CONUS are significantly higher than those in China. The 369 

extremely large values may be associated with significant parameter uncertainty (Gnann et al., 370 

2019). Figure 7 demonstrates that the values of the three parameters are larger in arid catchments 371 

and their spatial patterns are similar to that of climate zoning, which provides insights for 372 

parameterization. 373 
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 374 

Figure 7. The (a) wetting potential (Wp), (b) vaporization potential (Vp) and (c) 375 

evapotranspiration potential (Up) of the catchments in China and (d) wetting potential (Wp), (e) 376 

vaporization potential (Vp) and (f) evapotranspiration potential (Up) of the catchments in the 377 

CONUS. 378 

Figure 8 shows the violin plots of the parameters in the catchments of China and the CONUS. 379 

The median values of Wp, Vp, and Up in China are 3659 mm, 2220 mm and 1453 mm, 380 

respectively. The median values of Wp, Vp, and Up in the CONUS are 4531 mm, 3424 mm and 381 

2385 mm, respectively. Overall parameters in China are smaller and denser than those in the 382 

CONUS, implying a smaller variability of runoff components in China. Furthermore, the Cv value 383 

of Vp (1.6 in China and 6.8 in the CONUS) is the largest, followed by Up (0.9 in China and 1.6 in 384 

the CONUS), and the smallest for Wp (0.6 in China and 1.5 in the CONUS). This indicates that 385 

the parameter dispersion controlling the second partition stage of rainfall is the greatest, which 386 

could partly account for the challenges in accurately estimating Qb. 387 
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 388 

Figure 8. Violin plots of the parameters in the catchments of China and the CONUS. In each 389 

violin plot, the left side represents the distribution, with the shaded area indicating the box plot, 390 

the dot representing the mean, and the right side showing the histogram.The length of the 391 

histogram represents the number of catchments (values larger than 10,000 are not shown). 392 

4.3. The Changes Attribution of Runoff Components 393 

  The metrics to evaluate the attribution results between the changes of the observed and 394 

simulated runoff components are shown in Table 2. We use the MPS model to estimate the 395 

changes of Qs (∆𝑄s), Qb (∆𝑄b) and Q (∆𝑄) from two long-term periods by equation (17) and 396 

(20), and for comparison, we use the Budyko framework to estimate ∆𝑄, which is considered as 397 

the changes induced by P, E0, and parameter n (the calculation formulations can refer Xu et al. 398 

(2014)). The estimated and observed runoff components variations exhibit high consistency 399 

(Figure 9), with an R²of 0.99 and RMSE of 1.6 mm of ∆𝑄s attribution and R²of 0.88 and RMSE 400 

of 18 mm of ∆𝑄b attribution, respectively. As for ∆𝑄, both the MPS model and the Budyko 401 

framework can attain satisfactory performance, while the MPS model has a higher R2 (0.91) than 402 

the Budyko framework (0.89). Table 2 demonstrates that the MPS model can accurately quantify 403 

changes in runoff components over two periods. Subsequently, we quantify the contribution of 404 

precipitation and other factors (encoded by parameter Wp and Vp) to ∆𝑄s and ∆𝑄b. 405 
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 406 

Figure 9. The observed and modelled (a) surface flow and (b) baseflow by the MPS model. 407 

Table 2. The metrics of the attribution validation 408 

Variables R2 RMSE (mm) 

∆𝑄s 0.99 1.6 

∆𝑄b 0.90 16 

∆𝑄 (the MPS model) 0.91 42 

∆𝑄 (the Budyko framework) 0.89 41 

Figure 10 shows the ∆𝑄s induced by P (∆𝑄s−𝑃) and other factors (∆𝑄s−𝑊p) along with the 409 

dominant factor in the catchments of China and the CONUS. From 1960-1990 to 1991-2000 in 410 

China, the multi-year variation in P has resulted in Qs change ranging from -105 to 344 mm, 411 

mainly increasing Qs in the catchments of the Songliao River Basin, the middle and lower 412 

Yangtze River Basin, the Southeast River Basin and Pearl River Basin, and decreasing Qs in the 413 

catchments of the Yellow River Basin and the upper Yangtze River Basin (Figure 10(a)). The 414 

variations of other factors, such as land use/cover change and human activities, have resulted in 415 

Qs change ranging from -186 to 124 mm, primarily decreases Qs in 70% catchments (Figure 416 

10(b)). P and other Wp are the dominant factor altering Qs in southern and northern China, 417 

respectively (Figure 10(c)). From 1980-2000 to 2000-2014 in the CONUS, variation in P has 418 

resulted in Qs change ranging from -469 to 149 mm, mainly increasing Qs in the catchments of 419 

Interior Plains (except Great Plains), Coastal Plain, Interior highlands and Appalachian Plain, and 420 

decreasing Qs in the catchments of the Great Plains and Pacific Mountains (the physiographic 421 
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divisions are referred to Wu et al. (2021)) (Figure 10(d)). The variations of other factors have 422 

resulted in Qs change ranging from -230 to 467 mm, primarily decreases Qs in 75% catchments 423 

(Figure 10(e)). The catchments in the CONUS dominated by P and Wp account for 43% and 57%, 424 

respectively (Figure 10(f)). 425 

 426 

Figure 10. The surface flow change induced by precipitation and wetting potential (Wp) along 427 

with the dominant controlling factor. 428 

Figure 11 shows the ∆𝑄b induced by P (∆𝑄b−𝑃), Wp (∆𝑄b−𝑊p) and Vp (∆𝑄b−𝑉p) in the 429 

catchments of China and the CONUS. The spatial pattern of the effect of P on Qb is similar to that 430 

of the Qs, resulting in Qb change from -38 to 79 mm in China (Figure 11(a)) and -129 to 92 mm in 431 

the CONUS (Figure 11(e)), respectively. Catchment wetting potential has a positive effect on Qb 432 

in 70% and 75% catchments of China and the CONUS, respectively (Figure 11(b)and (f)), mainly 433 

in the northern China and the Interior Highlands, Coastal Plain and Appalachian Highlands of the 434 

CONUS. Vaporization potential has a negative effect on Qb in 56% and 77% catchments of China 435 

and the CONUS, respectively, mainly in the upper Yangze River Basin and northern China and 436 
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the central and southeastern CONUS (Figure 11(c)and (g)). Although Vp is the dominant factor 437 

controlling Qb variation in most catchments in both China (62%) and the CONUS (71%) (Figure 438 

11(d)and (h)), the contributions of the P, Wp and Vp are not significantly discrepant in terms of 439 

magnitude. 440 

 441 

Figure 11. The baseflow change induced by precipitation, wetting potential (Wp) and 442 

vaporization potential (Vp) along with the dominant controlling factor. 443 

Overall, Figure 10 and 11 illustrate that the variation of Qs is jointly controlled by P and other 444 

factors, while the variation of Qb is mainly influenced by Vp. This demonstrates that Qs is closely 445 

related to rainfall and soil storage capacity, while Qb is more affected by catchment attributes, 446 
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atmospheric water and energy demand, etc. In regions where runoff components are reduced, 447 

focus should be given to the risks of drought and river discontinuity; conversely, in areas 448 

experiencing runoff components increase, there is a need to guard against the risk of flooding. 449 

5. Discussion 450 

5.1. Superiorities of the MPS Model 451 

The researches about long-term runoff components quantification and attribution are currently 452 

fragmented and region-specific (Beck et al., 2013; Gnann, 2021). This study has developed a 453 

general formulation (the MPS model) through observational data analysis and theoretical 454 

derivation based on the Ponce-Shetty model, unveiling the patterns of variability in different 455 

runoff components at mean annual time scale. Compared to the commonly used Budyko-type 456 

formulations, it can not only estimate mean annual Q and Qb, but also can depict the variability of 457 

Qs. Figure 12 shows the estimated mean annual runoff components by the Budyko-type 458 

formulations (equations in the second and fifth rows of Table 1 in this paper). The Budyko-type 459 

formulations also achieve good validation performance, with R2 greater than 0.95 and RMSE less 460 

than 78 mm. Although the MPS model and the Budyko-type formulations are comparable in 461 

terms of R2, especially with almost equal simulation results of Qs, the MPS model reduced the 462 

RMSE values by 10 mm and 12 mm for estimating Qb, respectively.  463 

 464 

Figure 12. The observed and simulated mean annual (a) surface flow, (b) baseflow and (c) total 465 

runoff by the Budyko-type formulations in China (red circles) and the CONUS (blue circles). 466 

Figure 13 presents the estimation of SFC and BFC in validation periods using the Budyko-type 467 

formulations. The two methods also show highly consistent estimation of SFC, with R2 of 0.94 468 
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and RMSE of 0.03. However, the Budyko-type formulations underestimate the BFC of most 469 

catchments in China, while the MPS model greatly improves the simulation accuracy of BFC. 470 

 471 

Figure 13. The observed and simulated (a) surface flow fraction (Qs/P) and (b) baseflow fraction 472 

(Qb/P) by the MPS model in China (red circles) and the CONUS (blue circles). 473 

In conclusion, the MPS model has comparable capability in simulating Qs and SFC to that of 474 

Budyko-type formulations. Moreover, it outperforms Budyko-type formulations in estimating Qb 475 

and Q, and reveals superiority in estimating BFC. By characterizing runoff components as 476 

functions of available water at corresponding stages with a composite parameter, the MPS model 477 

is more concise in form and eliminates additional and complex parameter computations, thereby 478 

facilitating broader application in large-sample investigations. 479 

In addition to precisely quantifying runoff components and the allocation of precipitation, this 480 

model has innovatively attributed the contributions of different factors on the changes of Qs and 481 

Qb. Our results show that the variation of Qs is jointly controlled by P and other factors. P plays 482 

an dominant role in the variation of Qs in the catchments of the Yangtze River Basin, Southeast 483 

Basin and Pearl River Basin of China and the west coast of the CONUS, where precipitation has 484 

been reported to have undergone significant changes (Li et al., 2021; Mallakpour and Villarini, 485 

2017; Massoud et al., 2020; Xu et al., 2022). This is possibly due to more extreme precipitation 486 

events and summer rainfall in the middle-lower Yangtze River Basin (Ye et al., 2018) and an 487 

increasing trend in the frequency of heavy precipitation over large areas of the CONUS 488 

(Mallakpour and Villarini, 2017). Previous studies reported that the variation of Q in these 489 

regions are dominated by P (He et al., 2022; Huang et al., 2016). Now it seems that P mainly 490 

affects the first allocation stage (Qs) and consequently change total runoff. The variation of Qb is 491 

mainly influenced by Vp, indicating that we should pay more attention to the changes of 492 
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catchment attributes, atmospheric water and energy demand in most catchments when 493 

investigating Qb. 494 

Overall, this conceptual model extracted from observed rainfall-runoff data provides a concise, 495 

general and effective tool for predicting runoff components, and evaluating their responses to 496 

climate and environment under global change. 497 

5.2. Parameter Interpretation 498 

In the MPS model, each runoff component is associated with a parameter that can be 499 

interpreted as the upper limit of the remaining portion of available water after it has been 500 

partitioned into runoff at each stage. For instance, in the first stage, precipitation is allocated to 501 

surface flow and catchment wetting, with Wp representing the upper limit of catchment wetting, 502 

which describes the catchment's storage capacity related to soil, topography and so on (Cheng et 503 

al., 2022). Wp is influenced by soil properties and available storage capacity, determining the 504 

fraction of precipitation that rapidly becomes surface runoff versus what is stored. For the second 505 

stage, the available water comes from catchment wetting, which is then allocated to baseflow and 506 

vaporization. The parameter Vp is the upper limit of the fraction of wetting returned to the 507 

atmosphere as water vapor (Ponce and Shetty, 1995), and is likely responds to subsurface 508 

characteristics such as aquifer permeability and geological layering. For instance, in highly 509 

heterogeneous aquifers with well-developed preferential pathways (e.g., fractured rock or karst 510 

systems), water is rapidly drained toward the stream, leading to a higher efficiency of baseflow 511 

production and thus a lower Vp value (as less water is retained for evaporation). Conversely, in 512 

catchments with more homogeneous, porous media (e.g., sandy aquifers), water movement is 513 

slower and more diffuse, potentially allowing for a greater fraction of stored water to be 514 

evaporated, resulting in a higher Vp. For the total runoff, we consider precipitation as the available 515 

water competing with evapotranspiration, whose upper limit is represented by the parameter Up. 516 

Similar to Vp in the second stage, Up can be regarded as a sort of atmospheric water and energy 517 

limit (somewhat analogous to potential evapotranspiration) and emerges from the interaction of 518 

the available energy, vegetation and other catchment characteristics. To some extent, the MPS 519 

model links Qs and Qb with Q using P in the first trade-off and Vp in the second trade-off, so that 520 

the forms of different runoff components can be unified. 521 
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Additionally, we compared the distribution of the parameters in the MPS model with that in 522 

Gnann (Gnann et al., 2019) and Siva’s work (Sivapalan et al., 2011), which did not omit the 523 

initial abstraction coefficients 𝜆s and 𝜆b. There is a very similar spatial pattern of Wp and Vp in 524 

the CONUS. Specifically, high Wp can be seen in the middle of the United States (Great Plains) 525 

and the east (southern parts of the Appalachians) (Figure 7(d)), and high Vp can be seen in the 526 

middle of the United States (Great Plains) and all southern regions (Figure 7(e)). This, to some 527 

extent, illustrates the rationality of the simplification of the original Ponce-Shetty model in 528 

describing the spatial variability of runoff components. According to Ponce and Shetty (1995) 529 

and Sivapalan et al. (2011), the products 𝜆𝑠𝑊p and 𝜆b𝑉p are viewed as the initial abstraction to 530 

generate runoff. This definition is reasonable for short-term scales, such as event and annual 531 

scales. However, on the multi-annual scale, the catchment maintains a state of water balance and 532 

water losses can be disregarded (Han et al., 2020). Hence, simplifying λ to zero is rational to 533 

quantify and attribute runoff components and offer a new perspective on the long-term catchment 534 

water balance. 535 

5.3. Uncertainties and Future Improvements 536 

It is important to acknowledge several uncertainties in this study. First, the definition of 537 

“baseflow” itself introduces uncertainty. Although widely used as a collective term for delayed 538 

streamflow components, baseflow encompasses contributions from hydrologically distinct 539 

sources such as groundwater drainage, hyporehic exchange, snowmelt, and deeper subsurface 540 

leakage-each with distinct origins, timescales, and sensitivities to environmental factors. For 541 

instance, groundwater flow and deep leakage are strongly controlled by geological heterogeneity, 542 

including the distribution of rock types, porosity, permeability, faults, and fractures (Schiavo, 543 

2023). In contrast, snowmelt baseflow, on the other hand, is mainly driven by temperature 544 

variations within interannual to decadal climate cycles.  545 

The definition of baseflow directly influences the selection of catchment areas. Guided by this 546 

macro-scale definition-viewing baseflow as the relatively stable portion of total runoff-we 547 

included large catchments in our analysis. While this inclusion may be a source of error, it does 548 

not affect the key finding that the MPS model effectively captures the variability of mean annual 549 

runoff components across catchments. A sensitivity analysis of the model's performance under 550 
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different area thresholds is provided in Appendix Table A1. Future studies could combine isotope 551 

tracing with hydrological modeling to better quantify the contributions of these different sources. 552 

Second, methodological uncertainty arises from the digital filter method (i.e., the Lyne–553 

Hollick algorithm) for baseflow separation. While practical and widely applied, this approach is 554 

deterministic and does not explicitly account for uncertainties related to aquifer heterogeneity, 555 

such as spatial variability in hydraulic conductivity, preferential flow paths, or geologic structures. 556 

Future work could adopt stochastic frameworks such as Monte Carlo simulation by generating 557 

multiple realistic realizations of aquifer heterogeneity to obtain more robust and probabilistic 558 

baseflow estimates (Schiavo, 2023). Additionally, our study did not take into account the spatial 559 

heterogeneity of groundwater flow, particularly its preferential pathways through fractures, 560 

macropores, or highly permeable sedimentary layers. Event-scale analyses indicate that 561 

stormflow volumes and hysteresis patterns covary with subsurface connectivity and its timing. 562 

For example, Zuecco et al. (2019) who used graph-theory metrics to quantify connectivity in 563 

headwater catchments and linked maximum connectivity to stormflow. While our study operates 564 

at mean-annual scales, these findings are consistent with our interpretation that geological 565 

heterogeneity and preferential pathways (fractures, karst, macropores) modulate the Vp dispersion 566 

and, in turn, the aggregate baseflow fraction. Future work could employ numerical models or 567 

distributed hydrological models that explicitly represent geological structures to better capture the 568 

effects of preferential flow paths at smaller scales. 569 

The sensitivity of runoff to changes in climatic and environmental factors has always been 570 

highly anticipated. Schaake (1990) first introduced the concept of climate elasticity coefficients to 571 

quantify it, defined as the ratio of the relative change in mean annual runoff to the relative change 572 

in climatic factors. Various expressions have been widely applied in evaluating the hydrological 573 

response to multi-annual average climate change (Sun et al., 2014; Xu et al., 2014). The only 574 

climatic factor in the MPS model is P, so we primarily focuses on the elasticity of runoff 575 

components to P (𝜀), which can be expressed as 𝜀𝑦−𝑃 =
𝜕𝑄𝑦

𝜕𝑃
/

𝑄𝑦

𝑃
, quantifying the percentage of 576 

runoff components change caused by 1% change in P. 577 

Figure 14 shows elasticities of Q, Qs and Qb to P derived from the MPS model in the CONUS. 578 

We compare the elasticity distribution of the work conducted by Harman et al. (2011), who did 579 
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not omit the initial abstraction coefficients λ. In humid catchments with the aridity index of less 580 

than 1 (such as the west coast and eastern regions of the CONUS), the results from both studies 581 

are very close, with elasticity values from 1 to 2. However, the MPS model noticeably 582 

underestimates the runoff sensitivity to P in semi-arid and arid catchments (such as the Great 583 

Plains). This may be due to the error caused by the assumption that λ is a constant when deriving 584 

the MPS model.  585 

 586 

Figure 14. The elasticity of (a) total runoff, (b) surface flow and (c) baseflow to precipitation 587 

derived the MPS model. 588 

Additionally, the secondary rainfall processes, such as initial abstraction to generate runoff, 589 

precipitation intensity and seasonality should be considered in these regions, which have been 590 

proven to have a significant impact in attribution analysis (He et al., 2022; Ning et al., 2022; 591 

Zhang, 2015). Moreover, the potential evapotranspiration (E0), which indicates the impact of 592 

energy constraints (Huang et al., 2019; Wu et al., 2020), is quite significant in arid and semi-arid 593 

catchments and should be taken into account. 594 

In this paper, we interpret the parameters (i.e., Wp, Vp and Up) as a potential upper limit of each 595 

partition stage competing with corresponding runoff components following the annual 596 

Ponce-Shetty model. It is intriguing to discuss whether the connotation of the parameters has 597 

changed from annual to mean annual time scale. On a long-term scale, the initial abstraction 598 

coefficient (i.e., 𝜆𝑃and 𝜆𝑊) can be simplified as zero, indicating the loss for generating runoff is 599 

negligible. However, to what extent the initial abstraction coefficient affect precipitation partition 600 

at shorter time scales is still under-determined. The physical and theoretical interpretation of 601 

parameters and their impacts at different time scales are temporarily outside the scope of this 602 

study. However, it is valuable to further research in future work. In addition, the seasonality of 603 

rainfall measures the concentration of precipitation within a year. The more concentrated the 604 

precipitation, the more likely it is to generate surface runoff, resulting in greater intra-annual 605 
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fluctuations in the BFI and a lower annual BFI. In contrast, in catchments with evenly distributed 606 

precipitation, soil water and groundwater are replenished consistently and gradually, leading to 607 

relatively stable intra-annual BFI and a higher annual BFI. 608 

The MPS model has only one parameter for controlling each runoff component, which is 609 

arguably simplified but dependent on calibration, and their physical meaning needs further 610 

explanation. We still need to explain the parameters in terms of regional patterns of climatic 611 

and/or catchment attributes, meaning that currently this model can only be applied to gauged 612 

catchments with runoff observations and challenging to transfer to ungauged basins. Cheng et al. 613 

(2022) proposed two machine learning methods to characterize the parameter of the Budyko 614 

framework and further employed them in estimating global runoff partition. Results show that 615 

parameters related to vegetation (such as root zone storage capacity, water use efficiency and 616 

vegetation coverage) and climate (such as precipitation depth and climate seasonality) are the 617 

primary controlling factors of the parameter. Similar work can be referred to (Chen and Ruan, 618 

2023). These investigations provide priori knowledge for quantitatively linking the parameters of 619 

the MPS model to climate forcing and catchment attributes in future work. 620 

6. Conclusion 621 

We developed a general formulation (the MPS model) to estimate mean annual runoff 622 

components as a function of available water with a synthetic parameter based on a two-stage 623 

partition theory, and validated it over 662 catchments across China and the CONUS with further 624 

attribution analysis. The concise MPS model provides more accurate runoff components 625 

estimation and innovative attribution, offering new insights to long-term water balance and giving 626 

additional superiorities toward making predictions of runoff variation under global change. The 627 

main conclusions are as follows: 628 

(1) The investigated catchments fit well with the MPS model, with R2 of 0.86, 0.68 and 0.91 for 629 

fitting Qs, Qb and Q in China and R2 of 0.81, 0.44 and 0.80 for fitting Qs, Qb and Q in the CONUS, 630 

implying the MPS model can well reproduce the spatial variability of different runoff 631 

components.  632 

(2) The MPS model effectively simulates multi-year runoff components with R2 exceeding 0.97, 633 
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and the proportion of runoff components relative to precipitation with R2 exceeding 0.94. The 634 

spatial distribution of the parameters across China and the CONUS is related to that of climate 635 

zoning. 636 

(3) The MPS model has proved effective in quantifying the variations of runoff components 637 

induced by precipitation and environmental factors. The estimated and observed ∆𝑄s, ∆𝑄b and 638 

∆𝑄 exhibit high consistency, with an R²of 0.99 and RMSE of 1.6 mm of ∆𝑄s attribution, R²of 639 

0.90 and RMSE of 16 mm of ∆𝑄b attribution and R²of 0.91 and RMSE of 42 mm of ∆𝑄 640 

attribution, respectively. The variation of Qs is jointly controlled by P and environmental factors, 641 

while the variation of Qb is mainly influenced by Vp in most catchments. 642 

In general, this study proposes a general formulation for effectively estimating and attributing 643 

the mean annual runoff, surface flow and baseflow. The structure is simple with few parameters 644 

and clear physical significance. Its reliability has been authenticated, providing new insights for 645 

analyzing watershed water resources in changing environments. 646 

  647 



  - 32 - 

Author Contribution 648 

Y.H: conceptualization; model development/theoretical derivation; investigation; calculation; 649 

formal analysis; visualization; writing original draft. 650 

H.Y: conceptualization; model development/theoretical derivation; data curation; writing review 651 

& editing; supervision; funding acquisition. 652 

C.L.: conceptualization; data analysis; visualization; writing review & editing. 653 

Competing interests 654 

The authors declare that they have no conflict of interest. 655 

  656 



  - 33 - 

Appendix 657 

Table A1 The coefficient of determination (R2) and model parameters for the MPS curve fittings under different 658 

area thresholds for selecting catchments in China 659 

Area thresholds 

(km2) 

Number of 

catchments 

R2 Parameters (mm) 

Qs Qb Q Wp Vp Up 

2,000 67 0.85  0.62 0.89 3220 2794 1439 

5,000 135 0.84 0.63 0.89 3004 2651 1356 

10,000 180 0.84 0.69 0.90 3098 2614 1375 

20,000 219 0.85 0.68 0.90 3138 2585 1376 

80,000 257 0.85 0.69 0.90 3207 2487 1364 

500,000 295 0.85 0.69 0.91 3278 2428 1362 

  660 
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