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Abstract

Estimating runoff components, including surface flow, baseflow and total runoff is essential for
understanding precipitation partition and runoff generation and facilitating water resource
management. However, a general framework to quantify and attribute runoff components is still
lacking. Here, we propose a general formulation through observational data analysis and
theoretical derivation based on the two-stage Ponce-Shetty model (named as the MPS model).
The MPS model characterizes mean annual runoff components as a function of available water
with one parameter. The model is applied over 662 catchments across China and the contiguous
United States. Results demonstrate that the model well depicts the spatial variability of runoff
components with R? exceeding 0.81, 0.44 and 0.80 for fitting surface flow, baseflow and total
runoff, respectively. The model effectively simulates multi-year runoff components with R?
exceeding 0.97, and the proportion of runoff components relative to precipitation with R2
exceeding 0.94. By using this conceptual model, we elucidate the responses of surface flow and
baseflow to available water and environmental factors for the first time. The surface flow is
jointly controlled by precipitation and environmental factors, while baseflow is mainly influenced
by environmental factors in most catchments. The universal and concise MPS model offers a new
perspective on the long-term catchment water balance, facilitating broader application in
large-sample investigations without complex parameterizations and providing an efficient tool to

explore future runoff variations and responses under changing climate.
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Key Points

(1) A general and concise formulation is proposed to quantify, and attribute mean annual

surface flow, baseflow and total runoff.

(2) The formulation characterizes runoff components as a function of available water without

additional and complicated parameter calculation.

(3) The formulation performs well in quantifying and attributing runoff components in 662

catchments.

1. Introduction

Runoff is the primary freshwater resource accessible for human life and plays an essential role
in the water cycle (He et al., 2022; Wang et al., 2024). Based on the propagation time and
hydraulic response of a catchment, total runoff (Q) can be divided into baseflow (Qs) and surface
flow (Qs) (Gnann et al., 2019; Singh et al., 2019). Baseflow, also referred to as slow flow, is
defined as the flow that originates from groundwater and other delayed sources (such as wetlands,
lakes, snow and ice), and generally sustains streamflow during dry periods (Gnann, 2021; Hall,
1968). Baseflow is the relatively stable component of runoff, playing a vital role in aquatic
ecosystems (de Graaf et al., 2019; Price et al., 2011), water quality (Ficklin et al., 2016) and
sustained water supplies (Fan et al., 2013). Surface flow, also referred to as fast flow, results from
rapid processes like the saturation or infiltration of excess overland flow and swift subsurface
flow (Beven and Kirkby, 1979), leading to immediate water movement. Surface flow occurs more
rapidly and with more drastic changes than baseflow, which is primarily responsible for flood
generation (Yin et al., 2018) and soil erosion (Morgan and Nearing, 2011).

Most current studies focus on total runoff variability and attribution, and the relevant
researches are fairly mature (Berghuijs et al., 2017; Han et al., 2023; Liu et al., 2021). However,
few studies pay attention to comprehensive research on the different runoff components (Li et al.,
2020; Liu et al., 2019), and the attributions of Qs and Oy changes are still unclear (Hellwig and
Stahl, 2018). Baseflow and surface flow represent different hydrological processes, and their

implications for watershed management are also not identical (Zheng and Sun, 2014). For
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example, the research conducted by Ficklin et al. (2016) in the United States points out apparent
spatial differences between O, and Qs in different seasons. Therefore, it is necessary to quantify
runoff components and distinguish their controlling factors to better understand the runoff
dynamics and facilitate water resources management in the context of intensified climate change
and anthropogenic disturbance.

Unlike Q, which is ascertainable through direct observation at hydrological gauges, Oy and O
can only be estimated through indirect methods, including baseflow separation (Wu et al., 2019;
Zhang et al., 2017), isotope tracing (Hale et al., 2022; Wallace et al., 2021) and hydrological
modeling (Al-Ghobari et al., 2020; Cheng et al., 2020; Huang et al., 2007; Kaleris and Langousis,
2017). The first two methods estimate Oy initially, and Qs is then derived as the difference
between the Q and the estimated Qy, limiting their ability to examine the dynamic variations of
each runoff component independently, and the isotope tracing method is challenging to conduct
on a large and long-term scale. The hydrological modeling enables to simulate O, and Qs
separately, typically reflected in different modules and empirical formulations. In hydrological
models, Qb is encoded using linear or non-linear storage-discharge functions (Chen and Ruan,
2023; Cheng et al., 2020). Qs is closely related to rainfall, but the models for estimating it are
usually event-based (such as the Soil Conservation Service Curve Number method (Al-Ghobari et
al., 2020; SCS, 1972; Shi et al., 2017) and very few studies explored the controls on the mean
annual Qs (Neto et al., 2020). Among various models, the Budyko framework (Budyko, 1974) in
conjunction with water-energy balance method (Choudhury, 1999; Yang et al., 2008) (see the
second row in Table 1), has been widely used in the analysis of mean annual Q due to its simple,
universal and transparent characteristics (He et al., 2022; Roderick and Farquhar, 2011).

Recently, utilizing the extended Budyko framework to estimate O, and Qs has attracted
attention. Wang and Wu (2013) and Neto et al. (2020) established the regression relationship
between baseflow fraction (BFC, the ratio of Qp to precipitation (P)) and aridity index (¢, the
ratio of mean annual potential evapotranspiration (Eo) to P) using analytical formulation.
However, Gnann et al. (2019) reported that using only the ¢ struggles to delineate baseflow
variability in humid catchments, where the impact of soil water storage capacity (Sp) is as critical
as that of the ¢. Thus, Cheng et al. (2021) proposed an analytical curve for describing mean
annual Oy by introducing Sp as another theoretical boundary. Results show that the developed

-3-
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curve agrees well with the observed BFC (R?=0.75, RMSE =0.058) and O, (R*=0.86,
RMSE =0.19 mm), outperforming the original Budyko framework. Analogously, Yao et al.
(2021) derived similar functions incorporated the ¢, Sp and a shape parameter to model BFC and
baseflow index (BFI, the ratio of Qp to Q). These extended Budyko frameworks accounting for Sp
have advantages in simulating O». However, Sy is challenging to obtain through observations and
often requires calibration (Cheng et al., 2021) or computation (Yao et al., 2021), adding certain
uncertainties to the model. Notably, the calibration performance of Qs in equation (1) to obtain W,
(the proxy of Sp) in the catchments of China are not always satisfactory, especially in the northern
catchments. Moreover, the complicated forms can bring inherent uncertainties and these studies
have not validated the formulations of Qs, which are derived by subtracting Qp from Q or fitting
curves (Cheng et al., 2021; Neto et al., 2020), implying that they may overlook the physical
processes represented by surface flow. In the subsequent discussion, the Budyko framework and
extended Budyko equations are collectively referred to as the "Budyko-type formulations” (Table
1).

Many researchers have observed similar behavior of Qn to Q (Cheng et al., 2021; Gnann et al.,
2019; Wang and Wu, 2013). Is there a similar behavior for Qs? In a two-stage partitioning theory
(L'vovich, 1979), runoff components are delineated based on the available water at each stage.
Therefore, is there a general framework to unify different runoff components? Although various
functional forms have been proposed for estimating runoff components in the literature, a
universal method that reveals the mechanisms of mean annual runoff components generation and

subsequent quantification and attribution is still in need.
Table 1. The Budyko-type formulations for estimating mean annual runoff components

References Formulations Parameters
Choudhury (1999); 0—p- P X E, n
Yang et al. (2008) (P + Eg)t/m calibrated

Q E —-v —1/1] Vv
Wang and Wu (2013) <b_4_ [1 + (_0) ]
p P fitted
a,b,cd

fs(#) = exp(—¢* + &5)”
Neto et al. (2020) 0s 1/b
fo@) = exp(—°© + 6)* 5 = In (H )
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Qs EO +Sp+ 1+(E0 +Sp a1/
P 3 3
Cheng et al. (2021)

1
@ _Sp [1 + (ﬁ)az]wz _ [1 + (—Eo al Sp>a2] "

|

_ P+S,—/(P+5,)? - 2aS,P

Qp p 1
I
1+ EP 1+ EP z 24 Eo P
+P5— 1+ g) P,
Yao et al. (2021) B a ‘

%+1_J(%+1)2_2a%

Eg+ Sy —/(Eq + Sp)? — 2aE,S),
*
a

~ 1/d
aeu(e-f3])

fitted

Spy ay, @y

calibrated

Sp (estimated from
cumulative distribution

function), a (calibrated)

Note that P is the mean annual precipitation, Eo is the mean annual potential evapotranspiration, fs(¢) and

fg (@) are the surface flow and baseflow function, respectively and Sy, is the catchment storage capacity.

To address these questions, we derived a modified two-stage partitioning framework through

observational data analysis and theoretical derivation based on the Ponce-Shetty model (Ponce

and Shetty, 1995; Sivapalan et al., 2011) (namely the modified Ponce-Shetty model, MPS model)

at mean annual time scale. The Ponce-Shetty model is a conceptual model with physical

constraint developed at annual scale to depict how precipitation is partitioned, stored and released

in the catchment (Gnann et al., 2019). It posits that annual precipitation is partitioned into Qs and

soil wetting (W) and, subsequently, the resulting W is partitioned into Qp and vaporization (V)

(Sivapalan et al., 2011). The MPS model enables large-sample catchments research, which may

lead to new understanding of mean annual water balance and allocation.
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In general, the objectives of this study are to (1) develop a general and concise formulation to
describe runoff components variability at mean annual time scale; (2) validate and compare the
performance of the developed formulation against Budyko-type formulations; (3) attribute the
variations of runoff components induced by the changes of precipitation and other factors. Here,
we modify the Ponce-Shetty model according to some conditions and hypothesize a general
runoff components model (the MPS model), that describes Qs, Qb and Q as a function of
respective available water with one parameter. The MPS model is then validated over 662
catchments across China and the contiguous United States (the CONUS) over a wide range of
hydro-meteorological circumstances. The performance of the MPS model is also compared with
the Budyko-type formulations. Section 2 introduces the derivation of the MPS model. Section 3
provides the study catchments, data and the parameter estimation technique. Section 4 shows the

results followed by a discussion in Section 5. The conclusions are summarized in Section 6.

2. Derivation of the Modified Ponce-Shetty Model

L'vovich (1979) proposed a conceptual theory for the two-stage catchment water balance
partition at the annual time scale according to Horton’s approach (Horton, 1933). Firstly,
precipitation is partitioned into surface flow (Qs) and catchment wetting (W, stored water), and
then, the catchment wetting is partitioned into baseflow (Qn) and vaporization (V, including
interception loss, evaporation and transpiration). Ponce and Shetty (1995) conceptualized the
partition of each step as the form of a competition, and derived the formulations of runoff
components based on the proportionality hypothesis. Sivapalan et al. (2011) reintroduced the
Ponce-Shetty equations as follows:

In the first stage, P = Qs+W:

(0, if P< AW,
2
={ (P-2W 1
Qs (P=2sWp) P> A, (1)
P+ (1—219)W,
( P, if P< AW,
w =4 (P - AW, @)

P_ ] [ P>AW
TP - 2a)W, ¥ s
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P — ,Q, =P — W, W > W, 3)

In the second stage, W = Qu+V:

0, if W< Y,
2
Q=9 (W-211%) (4)
if W >
W+ (1= 24V, W= b
w, if W< Y,
2

V= W=V, 5
w ( o) if W> Y, ©)

W+ (-2,
W=, >W-=KV->1 (6)
where A, and A, are the surface flow and baseflow initial abstraction coefficients, respectively,

which range from 0 to 1. The larger value of A, the more difficult it is to generate flow. W, and V,

are catchment wetting potential and vaporization potential, respectively, which are greater than 0.
The relative AW, and A,V are the surface flow and baseflow generation thresholds,

respectively.

Note that the interannual water storage change is supposed to be negligible (Ponce and Shetty,
1995). In a companion paper of Sivapalan et al. (2011), Harman et al. (2011) employed the
annual Ponce-Shetty model at mean annual time scale and validated its applicability. Using the

first phase as an example, Qs can be considered a function of A, denoted as f(As):

0, if As=P/W,
FO9={_(P =)’ | 0
P+ (1—2A)W,’ i As < P/W,
When A < P /W, the Taylor expansion of f(4s) at As=0is:
f(As) = f(0) + f'(0) * A + f”Z(IO) * A2+ .- +fr;('0) * AT 4 - (8)

Hence, we have the zeroth-order approximation:

2

fQ@s) = ©)

P+ W,

When the remainder term is relatively small, an approximation equation can be used to

estimate the multi-year Qs as:
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Qs = P+ VVp (10)
In addition, the zeroth-order approximation of Qp can be similarly obtained as:
WZ
Qb = Wi, (11)

To evaluate the impact of the remainder term, we calculate the relative bias (§) of runoff
components for 312 basins in China and 350 basins in the United States using the approximate
equations (Eq (10) and Eq (11)) and the original Ponce-Shetty equations (Eq (1) and Eq (4)) (data
sources in Section 3.1). The parameters in the original Ponce-Shetty equations are calibrated

using the nonlinear least squares method. The & is calculated as:

|Qy QY|
6 =——— 12

where Qy represents runoff components estimated by the Ponce-Shetty equations, and Q:,

represents runoff components estimated by the sapproximate equations (Eq (10) and Eq (11)).
The spatial distribution of § and the cumulative distribution functions (CDFs) of § are
shown in Figure 1 and Figure 2, respectively. As shown in Figure 1, 77% of the basins have an &
of less than 5%. The average & for estimating Qs is 6.5% in China and 4.8% in the United States,
while the average § for estimating Qb is 7.9% in China and 6.6% in the United States, with
larger deviations observed in arid basins. Figure 2 indicate that the & values for the approximate
model are within acceptable limits across both China and CONUS. The relatively low 95%
threshold values, particularly for the USA datasets, suggest that the majority of predictions fall
within a narrow error range, indicating robust model performance. This acceptability of § across
regions and variables highlights the approximate equations’ capability to maintain prediction
accuracy under varying geographical and hydrological conditions, indicating that the Zeroth-order

approximation is representative for the original Ponce-Shetty model.
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Figure 1. The distribution of relative bias (&) between the results by the approximate equations

(Eq (10) and Eq (11)) versus the original Ponce-Shetty equations (Eq (1) and Eq (4)). The first
row shows the results for 312 basins in China, and the second row shows the results for 350
basins in CONUS. The first column corresponds to surface flow (Qs), and the second column

corresponds to baseflow (Qb).
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Figure 2. Cumulative distribution functions (CDFs) of the relative bias (&) for each dataset,
represented by four subplots corresponding to different regions and variables: (a) China_Qs, (b)
China_Qy, (c) USA_Qs, and (d) USA_Q». Each subplot includes a red dashed line indicating the
95% ¢ threshold
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Therefore, we can approximately consider that on a multi-year scale, Qs and Qp can be
estimated using the zeroth-order approximation in Eq (10) and Eq (11). We subsequently assume

a similar formulation of mean annual Q:

Q= (13)

where Uy is the parameter representing the upper limit of the portion remaining after precipitation
is allocated to runoff, hereafter we refer to Up as evapotranspiration potential.

Integrating equations (10), (11) and (13), we conclude a general formulation to depict
multi-year variability of runoff components and their quantification, hereafter referred to as the

modified Ponce-Shetty model (the MPS model):
XZ
& =%7m
where Qy represents runoff components (i.e., Q, Qs, Qb), X corresponds to the available water of

(14)

each runoff component, i.e., P is the available water of Q and Qs, and W the available water of Qp.
M is an integrated parameter, representing the comprehensive effects of catchment characteristics
and atmospheric water and energy demand.

The MPS model encodes runoff components as a function of available water with only one
parameter, which not only considers processes of runoff generation with physical constraints, but
also, compared to the Budyko-type formulations and the original Ponce-Shetty model, is more
concise in form and requires fewer parameters. Therefore, it is possible to estimate the long-term

runoff components when only long-term variables are known.

3. Data and Methodology

3.1. Data

To validate the reliability of the MPS model, daily hydrological and meteorological data from
312 catchments in China (Li et al., 2024) and 350 catchments in the CONUS are collected. The
criteria for catchments screening can refer to He et al. (2025). The location of all the catchments

hydrological stations is shown in Figure 3.

-10 -
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Figure 3. Location of hydrological stations for the (a) 312 catchments in China and (b) 350
catchments in the CONUS, colored by the value of aridity index (¢, namely Eo/P).

In China, precipitation data at 0.25° spatial resolution are obtained from the China
Gauge-based Daily Precipitation Analysis (CGDPA) (Shen and Xiong, 2016). Other
meteorological data, including wind speed, sunshine hours, relative humidity, and air temperature,
are from about 736 stations of the China Meteorological Data Service Center
(http://data.cma.cn/en, last access: 11 November 2023). The in-site meteorological data are
interpolated into a 10-km grid using the inverse-distance weighted method (Yang et al., 2014).
We use the Penman equation (Penman, 1948) to estimate Eoq of each grid using standard
meteorological inputs (e.g., radiation, humidity, wind, temperature). The Penman equation is
widely recommended to estimate Eg at catchment scale due to its physical basis (Pimentel et al.,
2023; Wang et al., 2025), and it provides a consistent reference for our annual, large-sample
analyses. The aridity index ¢ is subsequently calculated as Eo/P. All grid data are aggregated
and lumped for individual catchments. The discharge data are collected from the Hydrological
Bureau of the Ministry of Water Resources of China (https://www.mwr.gov.cn/english/, last
access: 20 December 2023) and are selected based on the length of records exceeding 35 years
with less than 5% missing data. The time range for all data is 1960-2000.

In the CONUS, we use data set from CAMELS (Addor et al., 2017; Newman et al., 2015). The
CAMELS data set provides 662 catchments with daily time series of precipitation and observed
runoff along with aridity index, and most catchments contain 35 years of continuous runoff from
1980 to 2014. The criteria for excluding catchments are referred to Gnann et al. (2019), and

finally 350 catchments remained.

-11-
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We use the one-parameter Lyne-Hollick digital filter (Lyne and Hollick, 1979) to separate
daily Qs and Qo from daily Q. The Lyne-Hollick method is applied forward, backward, and
forward again with a filter parameter of 0.925 and has manifested to be reliable to obtain runoff
components (Lee and Ajami, 2023). We use the separated Qs and Qp as the reference. Although
there are other baseflow separation algorithms, according to Troch et al. (2009), the choice of
baseflow separation algorithm is not a significant determinant of the water balance at the annual
scale.

All the hydrological and meteorological data are aggregated to the annual and mean annual

time scales for further analysis.
3.2. Calibration and Validation

Spatially, to verify the MPS model’s ability to characterize the variability of runoff components
between catchments, we utilize the least squares fitting algorithm to estimate parameters, i.e., W),
V» and U,. The three parameters are restricted to being between 0 mm and 50, 000 mm, which is
considered high enough to not affect the parameter estimation (Gnann et al., 2019).

In terms of time, we split all data into two periods for parameter calibration and validation of
Eq. (14) for individual catchments. In China, the data ranges from 1960 to 2000, so we use the
first 31 years (1960-1990) as the calibration period and the remaining 5-10 years (1991-2000) as
the validation period. In the CONUS, the calibration period is chosen as 1980-2000, and the
validation period is from 2001 to 2014. When we know mean annual Qs, Qb, Q, P and W of the
first period, the parameters, i.e., W}, ¥, and U,, can be derived from Eq. (14). Postulating the
parameters remain unchanged during two periods, we consequently can estimate the mean annual
Os, Qv and Q of the second period using Eq. (14). Note that the catchment wetting W is calculated
as the difference of the P and estimated Qs.

The surface flow fraction (SFC, the ratio of surface flow to precipitation) and baseflow fraction
(BFC, the ratio between baseflow and precipitation) represent the proportion of rainfall becoming
different runoff components, which are commonly used to quantity surface flow and baseflow
(Wang and Wu, 2013). Therefore, we evaluate the simulation of SFC and BFC as well as the
volume of runoff components.

The performance of the MPS model is evaluated by the coefficient of determination (R?) and

-12 -
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the root mean square error (RMSE):

2
§V=1(Xsim,i - Xsim)(Xobs,i - Xobs \

— 2 _ P
\/Zli\’:l(XSim'i o XSim) Z?]=1(Xobs,i — Xobs

1 N 2
RMSE = _Z (Xsim,i — Xobs,i) (16)

where X represents the evaluated variable, i.e., mean annual Q, Qs and Qb, SFC and BFC in this

R? (15)

study. The subscript obs and sim represents the observed and simulated value, respectively.

Higher R? and lower RMSE indicate good model performance.

3.3. Attribution analysis

We split the data into the first period (1960-1990 in China and 1980-2000 in the CONUS) and
the second period (1991-2000 in China and 2001-2014 in the CONUS) to attribute runoff
components variation between two periods. Note that the attribution of AQ is only conducted in
China because the Eo in CAMELS dataset is a constant in each catchment. In the MPS model, we
consider that the runoff changes between two long-term periods are caused by available water and
other environmental and anthropogenic factors (such as land cover/use change and
evapotranspiration variation) encoded by parameters. For the changes of surface flow (AQg) and
total runoff (AQ), postulating that each variable is independent in the MPS model, the first-order
approximation of the AQg; and AQ from the second period to the first period can be expressed as

(Milly and Dunne, 2002):

_ 005 90Qs
AQs == AP + o, AW, (17a)
20 a0
AQ =—oAP + a—UpAUp (17b)

where the two terms on the right side of equation (17a) respectively represent changes in Qs
caused by changes in P (AQs_p) and other factors (AQs_yp), and the two terms on the right side

of equation (17b) respectively represent changes in Q caused by changes in P (AQp) and other

9Qs 8Qs 2Q -
20 99 X gpg 22

n
ap’ aw,’ oP Uy

factors (AQwp). For convenience, we refer partial derivative coefficient

~13-



277 equation (17) as {os—ps Cos—wps o-p aNd {o_wp , Which can be calculated as:

_ P24 2PW,

Cos—p = m (18a)

_p2
Sos—wp = m (18b)

P% + 2PU,

$o-p = (P Up) (18¢c)

PZ
Co-wp = (P 0.Y (18d)
278 The changes of baseflow (AQy) is induced by the variations of the W and Vp. However, we

279  focus more on the impact of P in application. Therefore, we combine equation (10), (11) and W =

280  P-Qs, so the Qp can be calculated as :

2 2
Q, = bW (19)
(P + W, )(PW, + PV, + Wy l})
281  The AQy can be attributed as the variations of P, Wy and Vp:
9]
AQ, = aQ AP + %AW + a—?/bAV (20)

282  where the three terms on the right side of equation (20) respectively represent changes in Oy

283  caused by changes in P (AQp_p), Wp (AQp_wp) and Vp (AQy_vyp). The partial derivative
284 coefficient 22 ((Qb DE (ZQb wp) and aQ ((Qb yp) €an be calculated as:

ZPZWP3Vp + P*Wy + 2PWR'Y,
Sob-p = 2 2 (21a)
(P +W,) (PW, + PV, + W,1,)

P*WE + 2P*W,V, + 2P3W§YV,,
Sob-wp = 2 2 (21b)
(P +Wp)" (PW, + PV, + Wylp)

obovp = —PWy 21¢)
_V -_
TP+ W) (PWy + PY, + W)’

285 To verify the applicability of the MPS model for runoff components attribution, we compare
286  the calculated AQg, AQ, and AQ using equation (17) and (20) with the observed AQg, AQy
287 and AQ between two periods. The evaluation metrics are R? and RMSE.
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The relative contribution ratios of P and other factors to runoff components change are

calculated as:

np = AQy- x 100% (22a)
P T 1AQy—p| + 14Qy—wpl + 14Qy_yyl
AQy—Wp
= X 100% 22b
™o =120, 51+ 140y ol + 140y o] 0 (220)
A0.,_
vy X 100% (22¢)

7” =
P |4Qy—p| + [AQy_wpl| + [4Qy_yp]
where 7np, nw, and ny, are the relative contribution ratios of P, W, and V, to runoff

components, respectively. We subsequently use the absolute values of 7 to identify the dominant

factor impacting runoff components.

4. Results

4.1. Inter-Catchment Variability of Runoff Components

We employ the MPS model to fit the relationship between mean annual available water and
runoff components. In China, as shown in Figure 4(a-c), the MPS model performs well in
describing runoff components variability between catchments, with R? values of 0.86, 0.68 and
0.91 for fitting Qs, Qv and Q, respectively. The solid lines are the best-fitted MPS curves derived
using the least squares fitting algorithm, implying the median values of different parameters. We
also give the potential upper and lower limits of Wy, Vp and U, across catchments. Similarly,
Figure 4(d-f) illustrates that the MPS model achieves good fitting in the CONUS, with R? of 0.81,
0.44 and 0.80 for fitting Qs, Qv and Q, respectively. The fitted parameters in the CONUS are
smaller than those in China, while they have more comprehensive ranges between catchments,
meaning a more significant heterogeneity in climate and underlying surface.

Figures 4 demonstrates that the MPS model can effectively reproduce the spatial variability of
different runoff components along with the aridity index (Eo/P), which are primarily controlled by
the available water of the corresponding partition stage. The performance of MPS model to fit Qs

and Q is better than that of Q, indicating that the factors controlling Q, are more complicated and
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not fully reflected in the model. With catchment properties and other factors (integrated by the
parameters in the MPS model) remaining unchanged, the more the available water, the higher the
runoff generated. Conversely, smaller parameter values are associated with greater runoff for a

given amount of available water.
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Figure 4. The MPS model relating (a) P versus Qs, (b) W versus Qb and (c) P versus Q in China
and (d) P versus Qs, (e) W versus Qb and (f) P versus Q in the CONUS. The lines are the fitted
MPS curves with best fitting (solid line) and potential upper limit and lower limit (dashed lines)

parameters.
4.2. Validation of Runoff Components Estimation

Figure 5 shows the estimated mean annual Qs, Qb and Q in validation periods using the MPS
model with inverted parameters in equation (14) in China and the CONUS. The simulated runoff
components match very well with the observed, with R? greater than 0.97 and RMSE less than 66
mm. There is no significant difference in the performance in simulating Qs, Qb, and Q, except for
a slight underestimation in simulating Qp of catchments in China and some in the CONUS.

In panels (a), (b), and (c), we observe that the scatter points for both China (red circles) and the
CONUS (blue circles) are closely aligned with the 1:1 line, further underscoring the strong
correlation between modeled and observed values. Specifically, the results show that the MPS
model effectively captures surface flow (Qs), baseflow (Qp), and total runoff (Q) for both regions.
Despite the generally good performance, a slight underestimation of Qp is evident in a subset of

catchments in China and, to a lesser extent, in the CONUS. However, these discrepancies are
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Figure 5. The observed and simulated mean annual (a) surface flow, (b) baseflow and (c) total

runoff by the MPS model in China (red circles) and the CONUS (blue circles).

Figure 6 presents the estimation of SFC and BFC in validation periods using the MPS model.

Similar to the simulation of Qs, the two methods also show highly consistent estimation of SFC

(panel (a)), with R? of 0.94 and RMSE of 0.03. This demonstrates the MPS model’s robust

capability to estimate the surface flow fraction in China and the CONUS, closely aligning with

the observed data. Panel (b) presents the estimation of BFC, where the MPS model achieves

significant accuracy, reflected by the same R? and RMSE values (0.94 and 0.03, respectively).

This strong performance indicates that the MPS model is highly effective in simulating SFC and

BFC across various catchments.
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Figure 6. The observed and simulated (a) surface flow fraction (Qs/P) and (b) baseflow fraction

(Qu/P) by the MPS model in China (red circles) and the CONUS (blue circles).

Figure 5 and Figure 6 document that the MPS model can effectively estimate the multi-year

average of all runoff components and the proportions of precipitation allocated to runoff.

The good validation performance of the MPS model verified our hypothesis that the parameters
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in the general formulations remain stable at the mean annual time scale. The parameters reflect
the comprehensive impact of climate and catchment characteristics, i.e., catchment wetting
potential (W,), vaporization potential (Vp) and the upper limit of the portion remaining after
precipitation is allocated to runoff (Up). As shown in Figure 7(a-c), the spatial distribution of the
parameters across China exhibits pronounced divergence between the northern and southern
catchments, as well as the eastern and the western. The Wy, V, and Up exhibit similar spatial
patterns, which can be approximately divided into two tiers from north to south. In the catchments
of the Songliao River Basin in the northeast, the Yangtze River Basin and Pearl River Basins in
the south, the parameters are relatively small, with W, and U, ranging from 0 to 2000 mm, and Vp
from 0 to 4000 mm, resulting large flow. In the catchments of the Yellow River Basin, Huaihe
River Basin and Haihe River Basin in the north, the parameters are quite large and usually more
than 5000 mm and even 8000 mm, leading to small flow. From west to east, W, exhibits higher
values in the Yangtze and Yellow Rivers Basin sources, whereas Vp and Up are smaller in the
source regions. This disparity may reflect variations in the two-stage partition of precipitation,
contributing to spatial differences in total runoff. According to Figure 7(c), we can deduce that
the spatial distribution of higher total runoff in south and lower in north across China, aligning
with previous observational studies (He et al., 2021; He et al., 2022; Yang et al., 2019).

Figure 7(d-f) shows an evident west-east discrepancy of the three parameters across the
CONUS. Typically, Wy, V, and U, of the catchments in the west coast and eastern regions are less
than 5000 mm, while parameters in the central United States are extensive with values more than
8000 mm. This indicates relatively low flow in the central regions. Notably, the parameters upper
limits in the catchments of the CONUS are significantly higher than those in China. The
extremely large values may be associated with significant parameter uncertainty (Gnann et al.,
2019). Figure 7 demonstrates that the values of the three parameters are larger in arid catchments
and their spatial patterns are similar to that of climate zoning, which provides insights for

parameterization.
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Figure 7. The (a) wetting potential (W,), (b) vaporization potential (V) and (c)
evapotranspiration potential (U,) of the catchments in China and (d) wetting potential (Wp), (e)
vaporization potential (Vp) and (f) evapotranspiration potential (U,) of the catchments in the
CONUS.

Figure 8 shows the violin plots of the parameters in the catchments of China and the CONUS.
The median values of Wp, Vp, and Up in China are 3659 mm, 2220 mm and 1453 mm,
respectively. The median values of W,, Vp, and Up in the CONUS are 4531 mm, 3424 mm and
2385 mm, respectively. Overall parameters in China are smaller and denser than those in the
CONUS, implying a smaller variability of runoff components in China. Furthermore, the Cy value
of Vp (1.6 in China and 6.8 in the CONUS) is the largest, followed by Up (0.9 in China and 1.6 in
the CONUS), and the smallest for W, (0.6 in China and 1.5 in the CONUS). This indicates that
the parameter dispersion controlling the second partition stage of rainfall is the greatest, which

could partly account for the challenges in accurately estimating Qo.
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Figure 8. Violin plots of the parameters in the catchments of China and the CONUS. In each
violin plot, the left side represents the distribution, with the shaded area indicating the box plot,
the dot representing the mean, and the right side showing the histogram.The length of the

histogram represents the number of catchments (values larger than 10,000 are not shown).
4.3. The Changes Attribution of Runoff Components

The metrics to evaluate the attribution results between the changes of the observed and
simulated runoff components are shown in Table 2. We use the MPS model to estimate the
changes of Qs (AQs), Qb (AQy) and Q (AQ) from two long-term periods by equation (17) and
(20), and for comparison, we use the Budyko framework to estimate AQ, which is considered as
the changes induced by P, Eo, and parameter n (the calculation formulations can refer Xu et al.
(2014)). The estimated and observed runoff components variations exhibit high consistency
(Figure 9), with an R* of 0.99 and RMSE of 1.6 mm of AQ; attribution and R* of 0.88 and RMSE
of 18 mm of AQ, attribution, respectively. As for AQ, both the MPS model and the Budyko
framework can attain satisfactory performance, while the MPS model has a higher R? (0.91) than
the Budyko framework (0.89). Table 2 demonstrates that the MPS model can accurately quantify
changes in runoff components over two periods. Subsequently, we quantify the contribution of

precipitation and other factors (encoded by parameter W, and Vp) to AQs and AQy.

-20-



406
407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

200 . . . 300 .
a
sop @ _ (b)
200} o 1
O  China o
100} O USA ]
E E 100
E sor E
ol S
2 < of -
E z
< < -100} ©
100t - 1 B ;é;
7 200} '
-150} ]

-200 . . - -300 : g : : :
-200 -100 0 100 200 -300  -200  -100 0 100 200 300

Observed AQQ(mm} Observed AQb(mm)

Figure 9. The observed and modelled (a) surface flow and (b) baseflow by the MPS model.

Table 2. The metrics of the attribution validation

Variables R? RMSE (mm)
AQ, 0.99 1.6
AQy 0.90 16
AQ (the MPS model) 0.91 42
AQ (the Budyko framework) 0.89 41

Figure 10 shows the AQs induced by P (AQs-p) and other factors (AQs_y,) along with the

dominant factor in the catchments of China and the CONUS. From 1960-1990 to 1991-2000 in
China, the multi-year variation in P has resulted in Qs change ranging from -105 to 344 mm,
mainly increasing Qs in the catchments of the Songliao River Basin, the middle and lower
Yangtze River Basin, the Southeast River Basin and Pearl River Basin, and decreasing Qs in the
catchments of the Yellow River Basin and the upper Yangtze River Basin (Figure 10(a)). The
variations of other factors, such as land use/cover change and human activities, have resulted in
Qs change ranging from -186 to 124 mm, primarily decreases Qs in 70% catchments (Figure
10(b)). P and other W, are the dominant factor altering Qs in southern and northern China,
respectively (Figure 10(c)). From 1980-2000 to 2000-2014 in the CONUS, variation in P has
resulted in Qs change ranging from -469 to 149 mm, mainly increasing Qs in the catchments of
Interior Plains (except Great Plains), Coastal Plain, Interior highlands and Appalachian Plain, and

decreasing Qs in the catchments of the Great Plains and Pacific Mountains (the physiographic
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divisions are referred to Wu et al. (2021)) (Figure 10(d)). The variations of other factors have
resulted in Qs change ranging from -230 to 467 mm, primarily decreases Qs in 75% catchments
(Figure 10(e)). The catchments in the CONUS dominated by P and W account for 43% and 57%,
respectively (Figure 10(f)).
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-inf
dominant factor
(c) dominant factor 4P
e w,

Figure 10. The surface flow change induced by precipitation and wetting potential (W) along

with the dominant controlling factor.
Figure 11 shows the AQy induced by P (AQy-p), Wp (AQp-wp) and Vp (AQp-yp) in the

catchments of China and the CONUS. The spatial pattern of the effect of P on Qy is similar to that
of the Qs, resulting in Qp change from -38 to 79 mm in China (Figure 11(a)) and -129 to 92 mm in
the CONUS (Figure 11(e)), respectively. Catchment wetting potential has a positive effect on Qp
in 70% and 75% catchments of China and the CONUS, respectively (Figure 11(b)and (f)), mainly
in the northern China and the Interior Highlands, Coastal Plain and Appalachian Highlands of the
CONUS. Vaporization potential has a negative effect on Qp in 56% and 77% catchments of China

and the CONUS, respectively, mainly in the upper Yangze River Basin and northern China and
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437  the central and southeastern CONUS (Figure 11(c)and (g)). Although V, is the dominant factor
438  controlling Qp variation in most catchments in both China (62%) and the CONUS (71%) (Figure
439  11(d)and (h)), the contributions of the P, W, and V, are not significantly discrepant in terms of

440  magnitude.

(a) AQyp (e) AQyp

(b) AQp.wp (f) AQowp value (mm)

inf

dominant factor
(d) dominant factor

¢ P
o W,
oV,
441
442 Figure 11. The baseflow change induced by precipitation, wetting potential (W,) and
443 vaporization potential (Vp) along with the dominant controlling factor.
444 Overall, Figure 10 and 11 illustrate that the variation of Qs is jointly controlled by P and other

445  factors, while the variation of Qy is mainly influenced by Vj. This demonstrates that Qs is closely

446  related to rainfall and soil storage capacity, while Qy is more affected by catchment attributes,
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atmospheric water and energy demand, etc. In regions where runoff components are reduced,
focus should be given to the risks of drought and river discontinuity; conversely, in areas

experiencing runoff components increase, there is a need to guard against the risk of flooding.

5. Discussion

5.1. Superiorities of the MPS Model

The researches about long-term runoff components quantification and attribution are currently
fragmented and region-specific (Beck et al., 2013; Gnann, 2021). This study has developed a
general formulation (the MPS model) through observational data analysis and theoretical
derivation based on the Ponce-Shetty model, unveiling the patterns of variability in different
runoff components at mean annual time scale. Compared to the commonly used Budyko-type
formulations, it can not only estimate mean annual Q and Qx, but also can depict the variability of
Qs. Figure 12 shows the estimated mean annual runoff components by the Budyko-type
formulations (equations in the second and fifth rows of Table 1 in this paper). The Budyko-type
formulations also achieve good validation performance, with R? greater than 0.95 and RMSE less
than 78 mm. Although the MPS model and the Budyko-type formulations are comparable in
terms of R?, especially with almost equal simulation results of Qs, the MPS model reduced the

RMSE values by 10 mm and 12 mm for estimating Qn, respectively.
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Figure 12. The observed and simulated mean annual (a) surface flow, (b) baseflow and (c) total
runoff by the Budyko-type formulations in China (red circles) and the CONUS (blue circles).
Figure 13 presents the estimation of SFC and BFC in validation periods using the Budyko-type

formulations. The two methods also show highly consistent estimation of SFC, with R? of 0.94
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and RMSE of 0.03. However, the Budyko-type formulations underestimate the BFC of most

catchments in China, while the MPS model greatly improves the simulation accuracy of BFC.
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Figure 13. The observed and simulated (a) surface flow fraction (Qs/P) and (b) baseflow fraction
(Qu/P) by the MPS model in China (red circles) and the CONUS (blue circles).

In conclusion, the MPS model has comparable capability in simulating Qs and SFC to that of
Budyko-type formulations. Moreover, it outperforms Budyko-type formulations in estimating Qo
and Q, and reveals superiority in estimating BFC. By characterizing runoff components as
functions of available water at corresponding stages with a composite parameter, the MPS model
is more concise in form and eliminates additional and complex parameter computations, thereby
facilitating broader application in large-sample investigations.

In addition to precisely quantifying runoff components and the allocation of precipitation, this
model has innovatively attributed the contributions of different factors on the changes of Qs and
Qo. Our results show that the variation of Qs is jointly controlled by P and other factors. P plays
an dominant role in the variation of Qs in the catchments of the Yangtze River Basin, Southeast
Basin and Pearl River Basin of China and the west coast of the CONUS, where precipitation has
been reported to have undergone significant changes (Li et al., 2021; Mallakpour and Villarini,
2017; Massoud et al., 2020; Xu et al., 2022). This is possibly due to more extreme precipitation
events and summer rainfall in the middle-lower Yangtze River Basin (Ye et al., 2018) and an
increasing trend in the frequency of heavy precipitation over large areas of the CONUS
(Mallakpour and Villarini, 2017). Previous studies reported that the variation of Q in these
regions are dominated by P (He et al., 2022; Huang et al., 2016). Now it seems that P mainly
affects the first allocation stage (Qs) and consequently change total runoff. The variation of Qy is

mainly influenced by Vp, indicating that we should pay more attention to the changes of
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catchment attributes, atmospheric water and energy demand in most catchments when
investigating Qp.

Overall, this conceptual model extracted from observed rainfall-runoff data provides a concise,
general and effective tool for predicting runoff components, and evaluating their responses to

climate and environment under global change.
5.2. Parameter Interpretation

In the MPS model, each runoff component is associated with a parameter that can be
interpreted as the upper limit of the remaining portion of available water after it has been
partitioned into runoff at each stage. For instance, in the first stage, precipitation is allocated to
surface flow and catchment wetting, with W, representing the upper limit of catchment wetting,
which describes the catchment's storage capacity related to soil, topography and so on (Cheng et
al., 2022). W, is influenced by soil properties and available storage capacity, determining the
fraction of precipitation that rapidly becomes surface runoff versus what is stored. For the second
stage, the available water comes from catchment wetting, which is then allocated to baseflow and
vaporization. The parameter Vp is the upper limit of the fraction of wetting returned to the
atmosphere as water vapor (Ponce and Shetty, 1995), and is likely responds to subsurface
characteristics such as aquifer permeability and geological layering. For instance, in highly
heterogeneous aquifers with well-developed preferential pathways (e.g., fractured rock or karst
systems), water is rapidly drained toward the stream, leading to a higher efficiency of baseflow
production and thus a lower V, value (as less water is retained for evaporation). Conversely, in
catchments with more homogeneous, porous media (e.g., sandy aquifers), water movement is
slower and more diffuse, potentially allowing for a greater fraction of stored water to be
evaporated, resulting in a higher V,. For the total runoff, we consider precipitation as the available
water competing with evapotranspiration, whose upper limit is represented by the parameter Up.
Similar to Vp in the second stage, Up can be regarded as a sort of atmospheric water and energy
limit (somewhat analogous to potential evapotranspiration) and emerges from the interaction of
the available energy, vegetation and other catchment characteristics. To some extent, the MPS
model links Qs and Qp with Q using P in the first trade-off and Vp in the second trade-off, so that

the forms of different runoff components can be unified.
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Additionally, we compared the distribution of the parameters in the MPS model with that in
Gnann (Gnann et al., 2019) and Siva’s work (Sivapalan et al., 2011), which did not omit the
initial abstraction coefficients A; and A,. There is a very similar spatial pattern of W, and V; in
the CONUS. Specifically, high W, can be seen in the middle of the United States (Great Plains)
and the east (southern parts of the Appalachians) (Figure 7(d)), and high V, can be seen in the
middle of the United States (Great Plains) and all southern regions (Figure 7(e)). This, to some
extent, illustrates the rationality of the simplification of the original Ponce-Shetty model in

describing the spatial variability of runoff components. According to Ponce and Shetty (1995)
and Sivapalan et al. (2011), the products A;W, and A,V are viewed as the initial abstraction to

generate runoff. This definition is reasonable for short-term scales, such as event and annual
scales. However, on the multi-annual scale, the catchment maintains a state of water balance and
water losses can be disregarded (Han et al., 2020). Hence, simplifying A to zero is rational to
quantify and attribute runoff components and offer a new perspective on the long-term catchment

water balance.
5.3. Uncertainties and Future Improvements

It is important to acknowledge several uncertainties in this study. First, the definition of
“baseflow” itself introduces uncertainty. Although widely used as a collective term for delayed
streamflow components, baseflow encompasses contributions from hydrologically distinct
sources such as groundwater drainage, hyporehic exchange, snowmelt, and deeper subsurface
leakage-each with distinct origins, timescales, and sensitivities to environmental factors. For
instance, groundwater flow and deep leakage are strongly controlled by geological heterogeneity,
including the distribution of rock types, porosity, permeability, faults, and fractures (Schiavo,
2023). In contrast, snowmelt baseflow, on the other hand, is mainly driven by temperature
variations within interannual to decadal climate cycles.

The definition of baseflow directly influences the selection of catchment areas. Guided by this
macro-scale definition-viewing baseflow as the relatively stable portion of total runoff-we
included large catchments in our analysis. While this inclusion may be a source of error, it does
not affect the key finding that the MPS model effectively captures the variability of mean annual

runoff components across catchments. A sensitivity analysis of the model's performance under
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different area thresholds is provided in Appendix Table Al. Future studies could combine isotope
tracing with hydrological modeling to better quantify the contributions of these different sources.

Second, methodological uncertainty arises from the digital filter method (i.e., the Lyne -
Hollick algorithm) for baseflow separation. While practical and widely applied, this approach is
deterministic and does not explicitly account for uncertainties related to aquifer heterogeneity,
such as spatial variability in hydraulic conductivity, preferential flow paths, or geologic structures.
Future work could adopt stochastic frameworks such as Monte Carlo simulation by generating
multiple realistic realizations of aquifer heterogeneity to obtain more robust and probabilistic
baseflow estimates (Schiavo, 2023). Additionally, our study did not take into account the spatial
heterogeneity of groundwater flow, particularly its preferential pathways through fractures,
macropores, or highly permeable sedimentary layers. Event-scale analyses indicate that
stormflow volumes and hysteresis patterns covary with subsurface connectivity and its timing.
For example, Zuecco et al. (2019) who used graph-theory metrics to quantify connectivity in
headwater catchments and linked maximum connectivity to stormflow. While our study operates
at mean-annual scales, these findings are consistent with our interpretation that geological
heterogeneity and preferential pathways (fractures, karst, macropores) modulate the V, dispersion
and, in turn, the aggregate baseflow fraction. Future work could employ numerical models or
distributed hydrological models that explicitly represent geological structures to better capture the
effects of preferential flow paths at smaller scales.

The sensitivity of runoff to changes in climatic and environmental factors has always been
highly anticipated. Schaake (1990) first introduced the concept of climate elasticity coefficients to
quantify it, defined as the ratio of the relative change in mean annual runoff to the relative change
in climatic factors. Various expressions have been widely applied in evaluating the hydrological
response to multi-annual average climate change (Sun et al., 2014; Xu et al., 2014). The only

climatic factor in the MPS model is P, so we primarily focuses on the elasticity of runoff
. d e
components to P (&), which can be expressed as &,_p = % /%, quantifying the percentage of

runoff components change caused by 1% change in P.
Figure 14 shows elasticities of Q, Qs and Qyp to P derived from the MPS model in the CONUS.

We compare the elasticity distribution of the work conducted by Harman et al. (2011), who did
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not omit the initial abstraction coefficients A. In humid catchments with the aridity index of less
than 1 (such as the west coast and eastern regions of the CONUS), the results from both studies
are very close, with elasticity values from 1 to 2. However, the MPS model noticeably
underestimates the runoff sensitivity to P in semi-arid and arid catchments (such as the Great
Plains). This may be due to the error caused by the assumption that A is a constant when deriving

the MPS model.

(b) &osp

Figure 14. The elasticity of (a) total runoff, (b) surface flow and (c) baseflow to precipitation

derived the MPS model.

Additionally, the secondary rainfall processes, such as initial abstraction to generate runoff,
precipitation intensity and seasonality should be considered in these regions, which have been
proven to have a significant impact in attribution analysis (He et al., 2022; Ning et al., 2022;
Zhang, 2015). Moreover, the potential evapotranspiration (Eo), which indicates the impact of
energy constraints (Huang et al., 2019; Wu et al., 2020), is quite significant in arid and semi-arid
catchments and should be taken into account.

In this paper, we interpret the parameters (i.e., Wp, Vp and Up) as a potential upper limit of each
partition stage competing with corresponding runoff components following the annual
Ponce-Shetty model. It is intriguing to discuss whether the connotation of the parameters has
changed from annual to mean annual time scale. On a long-term scale, the initial abstraction
coefficient (i.e., Apand Ay,) can be simplified as zero, indicating the loss for generating runoff is
negligible. However, to what extent the initial abstraction coefficient affect precipitation partition
at shorter time scales is still under-determined. The physical and theoretical interpretation of
parameters and their impacts at different time scales are temporarily outside the scope of this
study. However, it is valuable to further research in future work. In addition, the seasonality of
rainfall measures the concentration of precipitation within a year. The more concentrated the

precipitation, the more likely it is to generate surface runoff, resulting in greater intra-annual
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fluctuations in the BFI and a lower annual BFI. In contrast, in catchments with evenly distributed
precipitation, soil water and groundwater are replenished consistently and gradually, leading to
relatively stable intra-annual BFI and a higher annual BFI.

The MPS model has only one parameter for controlling each runoff component, which is
arguably simplified but dependent on calibration, and their physical meaning needs further
explanation. We still need to explain the parameters in terms of regional patterns of climatic
and/or catchment attributes, meaning that currently this model can only be applied to gauged
catchments with runoff observations and challenging to transfer to ungauged basins. Cheng et al.
(2022) proposed two machine learning methods to characterize the parameter of the Budyko
framework and further employed them in estimating global runoff partition. Results show that
parameters related to vegetation (such as root zone storage capacity, water use efficiency and
vegetation coverage) and climate (such as precipitation depth and climate seasonality) are the
primary controlling factors of the parameter. Similar work can be referred to (Chen and Ruan,
2023). These investigations provide priori knowledge for quantitatively linking the parameters of

the MPS model to climate forcing and catchment attributes in future work.

6. Conclusion

We developed a general formulation (the MPS model) to estimate mean annual runoff

components as a function of available water with a synthetic parameter based on a two-stage
partition theory, and validated it over 662 catchments across China and the CONUS with further
attribution analysis. The concise MPS model provides more accurate runoff components
estimation and innovative attribution, offering new insights to long-term water balance and giving
additional superiorities toward making predictions of runoff variation under global change. The
main conclusions are as follows:
(1) The investigated catchments fit well with the MPS model, with R? of 0.86, 0.68 and 0.91 for
fitting Qs, Qv and Q in China and R? of 0.81, 0.44 and 0.80 for fitting Qs, Qb and Q in the CONUS,
implying the MPS model can well reproduce the spatial variability of different runoff
components.

(2) The MPS model effectively simulates multi-year runoff components with R? exceeding 0.97,
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and the proportion of runoff components relative to precipitation with R? exceeding 0.94. The
spatial distribution of the parameters across China and the CONUS is related to that of climate
zoning.
(3) The MPS model has proved effective in quantifying the variations of runoff components
induced by precipitation and environmental factors. The estimated and observed AQs, AQ, and
AQ exhibit high consistency, with an R* of 0.99 and RMSE of 1.6 mm of AQ, attribution, R* of
0.90 and RMSE of 16 mm of AQ,, attribution and R*of 0.91 and RMSE of 42 mm of AQ
attribution, respectively. The variation of Qs is jointly controlled by P and environmental factors,
while the variation of Qy is mainly influenced by Vp in most catchments.

In general, this study proposes a general formulation for effectively estimating and attributing
the mean annual runoff, surface flow and baseflow. The structure is simple with few parameters
and clear physical significance. Its reliability has been authenticated, providing new insights for

analyzing watershed water resources in changing environments.
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657  Appendix

658 Table A1 The coefficient of determination (R?) and model parameters for the MPS curve fittings under different

659 area thresholds for selecting catchments in China
Area thresholds  Number of R? Parameters (mm)

(km?) catchments Os O 0 W, Vp Up
2,000 67 0.85 0.62 0.89 3220 2794 1439
5,000 135 0.84 0.63 0.89 3004 2651 1356
10,000 180 0.84 0.69 0.90 3098 2614 1375
20,000 219 0.85 0.68 0.90 3138 2585 1376
80,000 257 0.85 0.69 0.90 3207 2487 1364

500,000 295 0.85 0.69 0.91 3278 2428 1362

660
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