
Response to reviewers
We greatly appreciate the reviewers providing valuable and constructive comments

on our manuscript. We seriously considered each comment and revised the original

manuscript accordingly. The individual comments are replied below. In the following,

the reviewer comments are black font and our responses are blue, and the green texts

are the quotes of the revised manuscript.

Reviewer #1

Greetings. The manuscript entitled “The general formulation for runoff components

estimation and attribution at mean annual time scale” with the issue of estimating the

various flow components for water resources management purposes. The structure

and goals are clear, and the results are consistent with data. This paper can certainly

be published after some major adjustments, listed below. I limited the previous

revision to the Introduction and Methodology part, I think these need to be fixed

before further going down the publication way. These itemized improvements would

make the work more scientifically sound and robust. These considerations come from

my expertise as a hydrogeologist, so they will pertain to this sphere of competency.

Furthermore, I recommend incorporating ‘recommended references’ and at least

having a quick glimpse at ‘further reading’ for a more precise framing of the work.

Best regards.

Reply: We sincerely appreciate your invaluable and constructive suggestions. We

have carefully addressed each comment and incorporated corresponding revisions

with recommended references into the revised manuscript.

From line 36 on: the description and the classification of these different baseflow

components are pretty gross. I understand that the purpose of the work is to categorize

all of them as baseflow hydrograph volume portions, but putting in the ‘same box’

phenomena that are much different from each other doesn’t sound good to me. Please

discern (from below): deep leakage (if any, if conceptualized); groundwater flow;

subsurface (hyporheic) flow; snowmelt. Moreover, these can be caused by highly

varying flow sources. We need a strong specification of phenomena and how to

consider them here. At least, we should say that there may be geological and climatic

(not in the sense of climate change, but yearly-decadal climate cycle) causes.



Groundwater flows and similar ones are related to the local aquifers’ geology as the

main uncertainty source (see e.g., Schiavo, 2023), while the heterogeneous recharge

has a negligible impact (see e.g., D’Oria et al., 2018). Snowmelt is due to

yearly-decadal climatic cycles.

Reply: Thank you for your invaluable and professional feedback. We fully agree

that categorizing hydrologic processes with distinct origins and mechanisms-such as

deep leakage, groundwater flow, subsurface flow, and snowmelt-under the unified

term “baseflow” is overly simplistic. In this study, we adopt baseflow as a pragmatic,

applied construct: the portion of slow discharge that sustains streamflow during dry

periods. We explicitly acknowledge that this aggregate may include groundwater

drainage, hyporheic/subsurface exchange, delayed snowmelt, and, where relevant,

deeper leakage. Moreover, current large-scale, long-term baseflow separation methods

are still unable to distinguish between baseflow contributions from different sources.

We acknowledge that the MPS model and baseflow separation methods used in this

study cannot reveal internal mechanistic differences among these components.

Nevertheless, they are suitable for the macro-scale analysis objectives of this research

at the catchment level. Future studies may employ more accurate tracer techniques or

modeling approaches to further differentiate these processes.

We have now added a classification of baseflow based on its various origins in the

Discussion section (Line 536-553), particularly emphasizing the key driving factors

and sources of uncertainty for these different components: “It is important to

acknowledge several uncertainties in this study. First, the definition of “baseflow”

itself introduces uncertainty. Although widely used as a collective term for delayed

streamflow components, baseflow encompasses contributions from hydrologically

distinct sources such as groundwater drainage, hyporheic exchange, snowmelt, and

deeper subsurface leakage-each with distinct origins, timescales, and sensitivities to

environmental factors. For instance, groundwater flow and deep leakage are strongly

controlled by geological heterogeneity, including the distribution of rock types,

porosity, permeability, faults, and fractures (Schiavo et al., 2023). In contrast,

snowmelt baseflow, on the other hand, is mainly driven by temperature variations

within interannual to decadal climate cycles.

The definition of baseflow directly influences the selection of catchment areas.

Guided by this macro-scale definition-viewing baseflow as the relatively stable

portion of total runoff-we included large catchments in our analysis. While this



inclusion may be a source of error, it does not affect the key finding that the MPS

model effectively captures the variability of mean annual runoff components across

catchments. A sensitivity analysis of the model's performance under different area

thresholds is provided in Appendix Table 1. Future studies could combine isotope

tracing with hydrological modeling to better quantify the contributions of these

different sources”.

Table R1 The coefficient of determination (R2) and model parameters for the MPS curve fittings

under different area thresholds for selecting catchments in China

Area thresholds

(km2)

Number of

catchments

R2 Parameters (mm)

Qs Qb Q Wp Vp Up

2,000 67 0.85 0.62 0.89 3220 2794 1439

5,000 135 0.84 0.63 0.89 3004 2651 1356

10,000 180 0.84 0.69 0.90 3098 2614 1375

20,000 219 0.85 0.68 0.90 3138 2585 1376

80,000 257 0.85 0.69 0.90 3207 2487 1364

500,000 295 0.85 0.69 0.91 3278 2428 1362

As a ‘groundwater guy’, I usually think that the common ways of defining baseflow

from the viewpoint of surface hydrographs partition lack precision (Cheng et al., 2022)

or even conceptual correctness (Cartwright et al., 2014).

Reply: We thank the reviewer for this insightful comment. In this study, we defined

baseflow as the flow that originates from groundwater and other delayed sources

(such as wetlands, lakes, snow and ice), and generally sustains streamflow during dry

periods. We agree with you that it lacks precision to separate baseflow from

streamflow using a hydrographs partition since the effect from surface water recession

is difficult to remove. Therefore, the hydrographs partition or the filtering method

only is an approximate to baseflow in theory and application. In previous studies, the

filtering method combined with hydrograph analysis are widely used (Beck et al.,

2013; Bloomfield et al., 2021; Wang et al., 2021; Xie et al., 2024), some of which

have undergone validations in catchments using tracer-based benchmarks (Gonzales

et al., 2009; Lott et al., 2016; Wang et al., 2021). Therefore, we think our approach

aligns with the pragmatic objectives to estimate mean annual baseflow.

An important point in baseflow estimation is that the structure of the aquifer is not



deterministically achievable; rather than it can be assessed in a Monte Carlo

framework. Hence, groundwater baseflow (or, simply, groundwater discharges)

should be assessed by achieving multiple realizations upon varying geological

conditions (Schiavo, 2023). Where does the role of homogeneous/heterogeneous

aquifers may be appraised? At least, one should take the spatial average of the Monte

Carlo runs as the most feasible discharge estimation. I think this

introductory/discussion point should be incorporated into the work.

Reply: We thank the reviewer for raising this critical point and insight suggestion.

We fully agree that accounting for aquifer heterogeneity uncertainty through a Monte

Carlo framework would be a more reliable approach. However, it requires much more

data and extensive stochastic analysis in up to 662 catchments from both China and

USA. In this study, we therefore approached the baseflow using the filtering method

and meanwhile added a detailed discussion on this limitation in the manuscript

(Section 5.3, Line 554-560): “Second, methodological uncertainty arises from the

digital filter method (i.e., the Lyne-Hollick algorithm) for baseflow separation. While

practical and widely applied, this approach is deterministic and does not explicitly

account for uncertainties related to aquifer heterogeneity, such as spatial variability in

hydraulic conductivity, preferential flow paths, or geologic structures. Future work

could adopt stochastic frameworks such as Monte Carlo simulation by generating

multiple realistic realizations of aquifer heterogeneity to obtain more robust and

probabilistic baseflow estimates (Schiavo et al., 2023)”.

From line 78 on: one may argue that the aridity index and the estimation of

potential evaporation are ‘subjective’, hence no robust estimations are provided: how

to answer this point?

Reply: We appreciate the reviewer’s concern that the aridity index ϕ might inherit

“subjectivity” from estimating potential evaporation. To avoid ambiguity, we

explicitly adopt the Penman formulation as our baseline. It is physically based using

(radiation, humidity, wind, temperature), has been widely benchmarked and

recommended in previous studies (Pimentel et al., 2023; Wang et al., 2025). Because

our analyses are conducted at the mean-annual, large-sample scale and our

interpretations rely primarily on relative variations and cross-basin gradients in ϕ, the

use of Penman formulation minimizes method-dependent spread and does not affect

our qualitative conclusions. We have clarified this choice in the Methods (Line



215-218): We use the Penman equation (Penman, 1948) to estimate E0 of each grid

using standard meteorological inputs (e.g., radiation, humidity, wind, temperature).

The Penman equation is widely recommended to estimate E0 at catchment scale due

to its physical basis (Pimentel et al., 2023; Wang et al., 2025), and it provides a

consistent reference for our annual, large-sample analyses.

Table 1. I usually prefer to retrieve parameters from numerical calibration or so.

What about the exponent b and the catchment storage capacity? How have they been

inferred in the various models? If they are empirically based, do they find any

confirmation in numerical applications?

Reply: The shape parameters (a, b, c, d) in the equations of Neto et al. (2020) are

obtained through an iterative nonlinear calibration procedure. A calibration subset

containing half of the total sample size is randomly picked and fitted through a

Levenberg-Marquardt nonlinear least squares algorithm, yielding estimates of a, b, c

and d. The procedure is repeated 100 times. Mean and standard deviation of the

coefficient of determination (R2) between predicted and observed fluxes are calculated

for the validation subset, as well as the mean and standard deviation of the fitted

parameters. Then, the procedure is repeated for varying values of (Qs/P) max, while its

final value is chosen to be the one who yielded the best combined performances for

both Qs and Qb.

Meanwhile, the average soil water storage capacity (Sp) is calibrated using an

annual-scale Ponce-Shetty model as implemented by Cheng et al. (2021).

I would strongly recommend somehow connecting the baseflow estimations to

previous numerical estimations; otherwise, the initial groundwater abstraction

‘lambda’ indices are pretty vaguely defined. Maybe also the work done by Zuecco et

al. (2019) can be helpful.

Reply: We thank the reviewer for the suggestion to connect our baseflow estimates

to previous numerical estimations and for pointing us to Zuecco et al. (2019). In the

present study, we have chosen a top-down, large-sample hydrological analysis

focused on revealing patterns at the mean-annual scale. This approach aligns with our

goal of providing a macroscopic overview across diverse catchments. Pursuing

detailed numerical modeling (e.g., with MODFLOW) would require site-specific

hydrogeological data that are not available for this study. Therefore, while we



acknowledge this as a potential avenue for future site-specific research, we have

focused our current work within the stated methodological framework.

The “lambda” abstraction was introduced in the Introduction as a bridge to the

groundwater-abstraction literature; it is not used in our analyses.

To better contextualize mechanisms that may affect the slow-flow component, we

now expand the Discussion with evidence on subsurface connectivity and its link to

stormflow/baseflow behavior, citing Zuecco et al. (2019), who quantified subsurface

connectivity and showed its control on event responses and hysteresis patterns in

headwater catchments (Line 562-568): “Event-scale analyses indicate that stormflow

volumes and hysteresis patterns covary with subsurface connectivity and its timing.

For example, Zuecco et al. (2019) who used graph-theory metrics to quantify

connectivity in headwater catchments and linked maximum connectivity to stormflow.

While our study operates at mean-annual scales, these findings are consistent with our

interpretation that geological heterogeneity and preferential pathways (fractures, karst,

macropores) modulate the Vp dispersion and, in turn, the aggregate baseflow fraction” .

This clarifies how connectivity and heterogeneity can modulate the baseflow signal

without changing our study scope.

Another major issue is that it has been clear to the scientific community for at least

5 years that groundwater flow is highly spatially heterogeneous, as it is conveyed in

preferential pathways where discharges are much higher than elsewhere. Any idea of

how to incorporate this viewpoint?

Reply: Thank you for this comment. We acknowledge that explicitly incorporating

groundwater heterogeneity would provide deeper mechanistic insight. In response, we

have added relevant discussion in Section 5 (Line 560-562): “Additionally, our study

did not take into account the spatial heterogeneity of groundwater flow, particularly

its preferential pathways through fractures, macropores, or highly permeable

sedimentary layers...... Future work could employ numerical models or distributed

hydrological models that explicitly represent geological structures to better capture

the effects of preferential flow paths at smaller scales ”.

References

Beck, H.E., van Dijk, A., Miralles, D.G., de Jeu, R.A.M., Bruijnzeel, L.A., McVicar, T.R. &



Schellekens, J. (2013). Global patterns in base flow index and recession based on streamflow

observations from 3394 catchments. Water Resources Research, 49(12): 7843-7863.

DOI:10.1002/2013wr013918

Bloomfield, J.P., Gong, M., Marchant, B.P., Coxon, G. & Addor, N. (2021). How is Baseflow

Index (BFI) impacted by water resource management practices? Hydrology and Earth System

Sciences, 25, 5355-5379. DOI: 10.5194/hess-25-5355-2021

Gonzales, A. L., Nonner, J., Heijkers, J. & Uhlenbrook, S. (2009). Comparison of different base

flow separation methods in a lowland catchment. Hydrology And Earth System Sciences, 13,

2055-2068. DOI:10.5194/hess-13-2055-2009

Lott, D. A. & Stewart, M. T. (2016). Base flow separation: a comparison of analytical and mass

balance methods. Journal of Hydrology, 535, 525-533. DOI:10.1016/j.jhydrol.2016.01.063

Rutledge, A. T (1998). Computer Programs for Describing the Recession of Ground-Water

Discharge and for Estimating Mean Ground-Water Recharge and Discharge from Streamflow

Records-Update (USGS); https://doi.org/10.3133/wri984148

Wang, Y., Chen, Y. & Chang, H. (2021). Seasonal dynamic identification of Eckhardt digital filter

parameters based on isotopes. Water Resources and Hydropower Engineering, 52(12): 99-110.

DOI:10.13928/j.cnki.wrahe.2021.12.010

Xie, J., Liu, X., Jasechko, S., Berghuijs, W.R., Wang, K., Liu, C., Reichstein, M., Jung, M. &

Koirala, S. (2024). Majority of global river flow sustained by groundwater. Nature

Geoscience, 17(8): 770-777. DOI:10.1038/s41561-024-01483-5


	Reviewer #1
	References

