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Abstract. Hydrological models are essential tools for assessing and predicting changes in the hydrological cycle, offering de-

tailed quantification of components like runoff (Q), total water storage (TWS), and actual evapotranspiration (AET). Precipita-

tion (PRE) and potential evapotranspiration (PET) are the major required drivers for modeling these components. In modeling,

the linkage of PRE to changes in these cycle components is well understood compared to PET. Here, we focus on the changes

in PET and their influence on hydrological cycle components (AET, Q, and TWS). We consider 12 distinct PET methods from5

three different categories (temperature-based, radiation-based, and combination type) across 553 European catchments. The

mesoscale Hydrological Model (mHM) was used to simulate 40 years of hydrological components, with a total of 6 636 mHM

runs. Comprehensive trend analysis and data concurrence index (DCI) based on trend direction were applied to three different

catchment categories (energy-limited, water-limited and mixed depending on PET method) to assess changes in PET and its

influence on AET, Q, and TWS. PET methods exhibit diverse annual and seasonal trends across catchment categories for PET,10

AET, Q, and TWS. While PET demonstrate strong agreement in trend directions, the trend magnitudes vary depending on the

choice of PET method. The findings reveal that the Jensen-Haise method produces the highest trends for PET on both annual

and seasonal scales (summer, spring, and autumn) , whereas no single PET method consistently represents the lowest trend.

AET trends are similar to those of PET but are lower in trend magnitude at annual scale, while seasonally, only energy-limited

catchments show a trend pattern similar to PET. Across all PET methods, there is strong agreement in trend direction, except15
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during the winter season. For the majority of European catchments, Q and TWS show strong agreement among different meth-

ods, either positive or negative. In the annual trend, the summer season largely contributes to PET. For AET, summer season

largely contributes to the annual trend only in energy-limited and water-limited catchments. Overall, studies focusing on the

directional changes in the hydrological cycle or its components indicate that PET methods have a limited impact. However,

when quantifying changes in hydrological cycle components, the choice of PET method becomes crucial. Therefore, selecting20

the appropriate PET method is crucial for studies on AET, Q, and TWS.
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1 Introduction

In 1948, Thornthwaite (1948) introduced the concept of potential evapotranspiration (PET), which is the potential to evaporate

water from the land surface to the atmosphere without any limitation to water availability. PET is used in diverse research25

fields. In agriculture, it is employed for irrigation scheduling and modeling crop water requirements (Xiang et al., 2020).

In environmental studies, PET is used for aridification research and investigating extreme events, including meteorological,

agricultural, and hydrological droughts (Park et al., 2018; Zhou et al., 2023; Shi et al., 2023a). In hydrology, it is used to

determine the long-term states of catchments, such as energy-limited and water-limited catchments, and it plays a key role in

the Budyko framework for estimating long-term changes in hydrological components (Reaver et al., 2022). Furthermore, PET30

is extensively used in hydrological modeling as to define the maximum rate of possible water loss through evaporation and

transpiration. It is used as one of the important input variables to simulate key hydrological, such as actual evapotranspiration

(AET), runoff (Q), and total water storage (TWS).

Since the Thornthwaite’s study, more than 50 empirical PET equations have been developed, ranging from simple to complex

types (Lu et al., 2005). They can be classified mainly into three categories based on input data: (1) Temperature-based methods,35

which utilize temperature as input (Shaw and Riha, 2011). Due to their simplicity and minimal data requirement, these are

widely used in the hydrological model (Arnold et al., 1998; Liu et al., 2008). (2) Radiation-based methods require solar

radiation (short wave or net radiation) (Xu and Singh, 2000). (3) The combinational type requires temperature, radiation, wind

speed, relative humidity, vapor pressure, etc. (Vicente-Serrano et al., 2014; Allen, 1998). All methods in these three categories

incorporate several assumptions resulting in significant differences in their estimates (Lu et al., 2005).40

In hydrological models, PET directly influences actual evapotranspiration (AET) and consequently impacts the estimation

of infiltration, runoff and total water storage. In hydrological models, AET is estimated by either separately determining water

surface evaporation, soil evaporation, and vegetation transpiration and then combining these based on land use patterns or by

first assessing potential evapotranspiration and subsequently adjusting it to actual evapotranspiration using the soil moisture

extraction function (Zhao et al., 2013). AET, being a key component of the water balance, affects the estimation of other water45

balance components (Q and TWS). Hence, uncertainty in PET estimation influences the quantification of change in water cycle

components.

Many studies have investigated the sensitivity of the hydrological model output to PET. Oudin et al. (2005) evaluated 27

PET methods with four hydrological models concluding that PET is insensitive to runoff generation, with similar conclusions

made by Aouissi et al. (2016); Birhanu et al. (2018). Assessment of four PET methods with two monthly hydrological models50

reported that runoff is unaffected by the PET method, whereas AET and total water storage depend on the PET method (Bai

et al., 2016). The study also concluded that calibration against the runoff is the main cause of PET insensitivity, and AET and

total water storage compensate for it. In contrast to previous studies, Ndiaye et al. (2024) compared 21 PET methods for runoff

estimation with three conceptual lumped hydrological models (GR4J, GR5J, and GR6J) in the Senegal River Basin, stating that
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better performance shown by combinational type methods. Similarly, Pimentel et al. (2023) compared three PET methods for55

their accuracy in simulating runoff and AET in the large-scale hydrological model (HYPE model). They found that Hargreaves-

Samani performed best in the Amazonas, central Europe, and Oceania, and Priestley-Taylor in higher latitudes. These studies

focus on the sensitivity and choice of PET methods in estimating hydrological components. While these findings reveal how

PET methods can impact the magnitude of hydrological components, the impact of PET method selection on changes in these

hydrological components is not often investigated. Temporal changes in these hydrological components are crucial for climate60

change mitigation, water availability, energy availability, and agricultural produce.

Trends in PET and its implication on hydrological components (AET) are examined by Anabalón and Sharma (2017). They

compare trends in six PET and AET datasets, mainly estimated by the Penman-Monteith or Priestley-Taylor PET method.

They found that PET trends were highly correlated with AET trends in energy-limited regions, while the AET trends were

closely correlated with precipitation trends in water-limited regions. Additionally, they reported that PET and AET trends were65

inversely related in certain cases, mainly due to the prevailing influence of precipitation trends on AET trends. Similarly, Liu

et al. (2022) identified a strong positive relationship between PET and AET changes in most global regions and an inverse

relationship with total water storage change. The study is limited by using only the Penman-Monteith approach for PET and

global datasets for AET and total water storage change. The inconsistency and lack of coherence between existing PET and

AET datasets often necessitate using a single PET method compared to various AET datasets. Furthermore, previous studies70

have primarily focused on one-to-one trend comparisons than comprehensive analysis of all hydrological cycle components,

including Q and TWS. Thus, research is needed to explore the impact of changes in PET methods on changes in different

hydrological components of hydrological models.

In this study, our objective is to assess the trends of PET using 12 different PET methods and their influence on the trend

of hydrological components (runoff; Q, AET, and total water storage;TWS) across 553 European catchments. To assess the75

agreement between changes in different PET methods and corresponding hydrological components. The mesoscale hydro-

logical model (mHM) is used to evaluate the influence of changes in different PET methods, from simple to most advanced

approaches, on hydrological components across a range of European catchments. We chose a concurrency index to assess

agreement between the PET method and hydrological components at each catchment. The data concurrency index is used to

compare directions between different datasets (Anabalón and Sharma, 2017). In our research, we use it to examine directional80

changes in PET estimates, AET, Q, and TWS across each catchment.

2 Methods and data

2.1 Study area and catchment classification

This study examines 553 catchments across Europe, covering all types of European climates. The selected catchment’s sizes

vary from 500 km2 to 252 000 km2 and they are divided into three categories based on the aridity index: energy-limited, mixed,85

and water-limited (Figure 1a). This classification is based on the aridity index (AI), estimated as the ratio of mean PET to mean

PRE, a widely used metric that quantifies the dry or wet state of the catchment (Zhang et al., 2016; Massari et al., 2022). In
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our approach, which involves the application of multiple PET methods, a catchment is considered energy-limited if the AI is

less than one for all the PET methods. Similarly, a catchment is water-limited if all PET methods report AI greater than one. If

AI values appear to be both above and below one, depending on the PET method used, then the catchment is assigned to the90

mixed category (Figure 1b). This classification allows us to distinguish the differences in magnitudes of PET and the other key

hydrological components among the catchments (Figure 1c). By employing this methodology out of 553 catchments, we find

189 catchments being energy-limited, 34 water-limited, and the rest 330 belong to the mixed category.

2.2 Meteorological and geomorphological data

The Ensemble Meteorological Dataset for Planet Earth (EM-Earth; Tang et al., 2022) and ERA5-land (Hersbach et al., 2020)95

were used to calculate different PET estimates and run the mesoscale Hydrological Model (mHM; Samaniego et al., 2010;

Kumar et al., 2013). EM-Earth dataset is generated based on the observed station data (SC-Earth) and ERA5 data. It incor-

porates a novel optimal interpolation technique and considers the temporal inconsistencies between the station and reanalysis

data (Tang et al., 2022). ERA5-land dataset is a reanalysis data product created by the European Centre for Medium-Range

Weather Forecasts (ECMWF) and has been widely used in numerous hydrological modeling studies (Muñoz-Sabater et al.,100

2021). Both datasets are available at 0.1◦ × 0.1◦ spatial resolution, but EM-Earth has hourly as well as daily time step, while

ERA5-land is at hourly scale.

In our analysis, we use daily temperature and precipitation from EM-Earth, and radiation (long- and short-wave), surface

pressure, and wind components (U and V) from ERA5-Land for the period 1980–2019 (Table 1). They are homogenized to

daily temporal scale and 0.125◦ × 0.125◦ spatial scale to be compatible with the previous simulations run by mHM (Pohl105

et al., 2023; Fang et al., 2024). Homogenization using the nearest neighbor technique and necessary mathematical operations

(appropriate unit conversion of datasets) are performed using the Climate Data Operator (CDO; Schulzweida, 2022).

Morphological data such as Leaf Area Index (LAI), soil properties, and terrain characteristics (such as flow direction, flow

accumulation, slope, and aspect) are sourced from mHM European database (Rakovec et al., 2016). This database originally

utilized data from different sources, such as soil properties from the International Soil Reference and Information Centre110

(ISRIC), terrain characteristics from the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence Agency

(NGA), LAI from Global Inventory Modeling and Mapping Studies (GIMMS) and Land cover from Global Land Cover

(GlobCover) by European Space Agency (ESA). CO2 concentration is sourced from Cheng et al. (2022), which is reconstructed

from the Carbon Dioxide Information Analysis Center (CDIAC) data.

2.3 Methodology115

2.3.1 PET methods/formulations

We incorporate 12 PET methods at a daily scale from all three categories of estimation: temperature, radiation, and com-

binational methods (Table 2). Most temperature-based methods use only daily average temperature (Thornthwaite, Oudin,

Hamon, Jensen-Haise, Mcguinnes-Bordne, Blaney-Criddle), while Baier-Robertson employs minimum and maximum daily

5

https://doi.org/10.5194/hess-2024-341
Preprint. Discussion started: 7 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Catchment classification to energy-limited, mixed, and water-limited categories. a) Catchment locations; black borders indicate a
representative catchment of each category. b) Classification example within the Budyko space for the representative catchments. c) Annual
time series of hydrological components corresponding to each representative catchment and PET estimation method (TH: Thornthwaite, BR:
Bair-Robertson, BC: Blaney-Criddle, OD: Oudin, MB: McGuinness-Borden, HM: Hamon, HS: Hargreaves-Samani, JH: Jensen-Haise, MD:
Milly-Dunne, PT: Priestley-Taylor, PM: Penman-Monteith, CO2: Modified Penman-Monteith accounts CO2.). All units are in mm year−1.

temperature and Hargreaves-Samani uses minimum, maximum, and average daily temperature. Some of them also include an120

extraterrestrial radiation term in their formulation. However, since this extraterrestrial radiation term is calculated based on

latitudinal information, only temperature data is required to calculate PET. We utilize only one radiation-based method, Milly-

Dunne PET that requires only net radiation data to estimate PET. The combinational type includes the PET methods with a

6

https://doi.org/10.5194/hess-2024-341
Preprint. Discussion started: 7 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 1. Summary of meteorological and morphological data. PRE is Precipitation, Tavg is average air temperature, Trange is the temperature
range, which is the difference between maximum and minimum air temperature, Tdew is dew point temperature of air, SW is Short wave
radiation, LW is longwave radiation, U is eastward component of wind speed at 10 m, V is northward component of wind speed at 10 m,
ConCO2 is CO2 concentration

Variable Temporal Scale Spatial Scale Record length Source Reference

Meteorological data

PRE Hourly/Daily 0.1◦× 0.1◦ 1950–2019 EM-Earth Tang et al. (2022)
Tavg Hourly/Daily 0.1◦× 0.1◦ 1950–2019 EM-Earth Tang et al. (2022)
Trange Hourly/Daily 0.1◦× 0.1◦ 1950–2019 EM-Earth Tang et al. (2022)
Tdew Hourly/Daily 0.1◦× 0.1◦ 1950–2019 EM-Earth Tang et al. (2022)
SW Hourly 0.1◦× 0.1◦ 1950-2022 ERA5-land Muñoz-Sabater et al. (2021)
LW Hourly 0.1◦× 0.1◦ 1950-2022 ERA5-land Muñoz-Sabater et al. (2021)
U Hourly 0.1◦× 0.1◦ 1950-2022 ERA5-land Muñoz-Sabater et al. (2021)
V Hourly 0.1◦× 0.1◦ 1950-2022 ERA5-land Muñoz-Sabater et al. (2021)

Other data

ConCO2 Annual 0.1◦× 0.1◦ 1950-2022 – Cheng et al. (2022)
LAI monthly 1/512◦ static GIMMS Tucker, Pinzon, and Brown

(2004)
Soil properties – 1/512◦ – SoilGrids ISRIC - World SoilInforma-

tion (2017)
Land cover static 1/512◦ static GlobCover Arino et al. (2012)
DEM (+ derivatives) static 1/512◦ static GMTED2010 USGS and NGA (2018)
Geology static 1/512◦ static GLiM Hartmann and Moosdorf

(2012)

stronger physical basis (Penman-Monteith, Priestley-Taylor). They employ more variables than the temperature- and radiation-

based methods to estimate various physical terms such as relative humidity, vapor pressure, saturation vapor pressure, slope125

of vapor pressure curve, etc. In our analysis, all these physical terms are estimated according to Allen (1998). Additionally,

in combinational category, we use the modified Penman-Monteith (CO2) method, which accounts for temporal variation in

changing carbon dioxide concentrations. Formulation details (mathematical equations and associated constants) of each PET

method are provided in Table A1.

2.3.2 mesoscale Hydrological Model (mHM)130

mHM is a hydrological model which explicitly accounts for sub-grid variability of hydrological processes (Samaniego et al.,

2010; Kumar et al., 2013; Thober et al., 2019). mHM has been successfully applied and tested in more than 1000 Euro-

pean basins ranging in size from 4 km2 to more than 100 000 km2 at various spatial resolutions or grid cell size(1-100 km)

(Samaniego et al., 2010; Kumar et al., 2013; Rakovec et al., 2016, 2019; Shrestha et al., 2024). Additionally, the model is

currently applied at the global scale with comparable and sometimes even improved model performance with respect to other135

large-scale hydrological models (Samaniego et al., 2019). mHM demonstrates robust performance and applicability across
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Table 2. List of PET methods and required input data. Tmax is maximum air temperature (°C), Tmin is minimum air temperature (°C), Pr is
surface pressure (pa), Rn is net radiation (J/m2), u2 is the wind speed at 2m from the surface (m/s), ConCO2 is CO2 concentration (ppm)

Type Method name Method abbreviation Required input References

Temperature

Hargreaves-Samani HS Tmax, Tmin, Tavg George H. Hargreaves
and Zohrab A. Samani
(1985)

Thornthwaite TH Tavg Thornthwaite (1948)
Oudin OD Tavg Oudin et al. (2005)
Hamon HM Tavg Hamon (1961)
Baier-Robertson BR Tmax, Tmin Bai et al. (2016)
Jensen-Haise JH Tavg Jensen and Haise (1963)
McGuinness-Borden MB Tavg McGuinness and Bordne

(1972)
Blaney-Criddle BC Tavg Blaney (1952)

Radiation Milly-Dunne MD Rn Milly and Dunne (2016)

Combinational
Priestley-Taylor PT Tavg, Pr, Rn Priestley and Taylor

(1972)
Penman-Monteith PM Tmax, Tmin, Tavg, Tdew, Pr,

u2, Rn

Penman (1948)

Penman Monteith[CO2] CO2 Tmax, Tmin, Tavg, Tdew, Pr,
u2, Rn, Conco2

Yang et al. (2019)

Europe (Kumar et al., 2020). It is also one of the several large scale hydrological models, which were used by the WMO for

their annual State of Global Water Resources reports (World Meteorological Organization (WMO), 2023).

We run mHM over 553 European catchments, using the meteorological data from EM-Earth and the 12 different PET

estimation methods. Overall, 6 636 mHM simulations are performed for all the study basins. The basins were not calibrated for140

the each PET method to access their true response in hydrological cycle components. All meteorological forcings were kept

constant with only varying PET estimate. To calculate TWS, we aggregate soil moisture at different layers, canopy interception

storage, snowpack, groundwater levels, sealed area reservoirs, and unsaturated zone reservoirs at each grid cell and time step.

The hydrological components (AET, Q, TWS) and PET are averaged over the catchment area and monthly time steps.

2.3.3 Trend analysis145

We use Theil-Sen’s slope method to calculate the magnitude and direction of linear change in PET, AET, Q, and TWS (Sen,

1968). Sen’s slope is non-parametric and insensitive to outliers and types of distribution. Due to its robust application, this

method is widely used in hydrology, climate, and environmental-related studies (Anabalón and Sharma, 2017; Thackeray et al.,

2022). It accounts for all possible pairs of data points from a time series and finds the median value as the slope magnitude.

Eq. 1 and 2 shows the calculation steps of Sen’s slope:150
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Sk =
Xj −Xi

tj − ti
where 1≤ i < j ≤ n (1)

Smed =





S[n+1
2 ] if n is odd

S[n
2 ]+S[n+2

2 ]
2 if n is even,

(2)

where Sk is the linear slope for pair Xi and Xj , Smed is the median slope, Xi and Xj are data points from periods ti and

tj , n is the number of data points in time series. Positive Smed represents a positive trend, with the magnitude indicating the155

rate of increase. Similarly negative Smed represents a negative trend, with the magnitude indicating the rate of decrease.

Here, we use the trend R package to estimate Sen’s slope over a 40-year period from 1980 to 2019 at annual and seasonal

(winter, spring, summer, and autumn) scales for each catchment.

2.3.4 Modified Data Concurrence Index (DCI)

The Data Concurrence Index quantifies the level of concurrence between the significant trends in different datasets of the same160

variable Anabalón and Sharma (2017). We modified this index by considering only directional information of corresponding

slopes irrespective of trend significance i.e., counting the overall positive and negative slope occurrences. The adjustment was

made to include all trend estimates from the PET methods. The Modified Data Concurrence Index (DCI) can be described as

in Eq. 3:

DCI =
1

ND

ND∑

i=1

Si

abs(Si)
, (3)165

where DCI is the Modified Data Concurrence Index, ND denotes the number of datasets, and Si is the magnitude of the slope.

The positive DCI represents a higher number of positive slopes than negative slopes and vice-versa. For instance, a DCI of

1 for AET and Q implies positive change for all the PET methods. Similarly, a DCI of -1 for AET and Q implies a negative

change for all the PET methods. A DCI of 0.5 indicates that nine out of 12 methods, or 75% of the methods, show a positive

change, and similarly, a DCI of -0.5 indicates that nine out of 12 methods show a negative change, or 75% of the methods. A170

DCI of zero denotes an equal number of positive and negative slopes (six positive and six negative). Our analysis estimates

DCI from PET, AET, Q, and TWS slopes at annual as well as seasonal scales.
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3 Results

3.1 Trend comparison of PET methods at annual scales

To quantify the long-term changes in hydrological cycle components, we used the Theil-Sen slope method. Changes in PET175

depend on the choice of PET method selection (Figure 2). Considerable variability is observed among the PET methods, with

median trends ranging from slightly positive to 6 mm year−1 during the 1980–2019 period. The Jensen-Haise method shows

the highest trend among all methods across different catchments. In energy-limited catchments, a positive trend in PET is

observed across all methods, except Penman-Monteith and Penman-Monteith[CO2] The median trend for each PET method is

positive, ranging from 1 mm year−1 to 2 mm year−1. In mixed catchments, most PET methods reflect a positive trend, though180

a few catchments using the Penman-Monteith[CO2] method exhibit a slight negative trend. All PET methods exhibit a positive

trend in water-limited catchments, except the energy-based Milly-Dunne method. Overall variability in trend estimates of PET

methods decreases from energy-limited to mixed and water-limited catchments.

AET trends closely follow PET trends across all catchment categories (Figure 2). In energy-limited catchments, all PET

methods show a positive trend in terms of median values. However, a few catchments in this category reveal a slight neg-185

ative change for the Blaney-Criddle, Jensen-Haise, Milly-Dunne, and Priestley-Taylor methods. For mixed catchments, the

median trend is positive for all PET methods except Blaney-Criddle. The negative trends are similar to those in energy-limited

catchments. Overall, the trend patterns for energy-limited and mixed catchments are similar to the trends in PET for these

catchments, regardless of trend magnitude, with a few exceptions such as Blaney-Criddle and Jensen-Haise (Figure S10). In

water-limited catchments, both positive and negative trends in AET are observed. The pattern remains similar to PET trends190

with a few exceptions, such as Blaney-Criddle.

The long-term trends in Q are relatively insensitive compared to that of the PET for energy-limited and mixed catchment

categories (Figure 2). Despite the positive median, a substantial fraction of catchments exhibit a negative trend in energy-

limited catchments. In contrast, all methods show negative trends in mixed catchments with numerous catchments maintaining

a positive trend. In water-limited catchments, there is variability in PET methods; for instance, Milly-Dunne has a larger trend,195

whereas Blaney-Criddle shows the lowest trend. Even though PET methods are insensitive in Q, variability exists among the

PET methods within each catchment category.

TWS shows sensitivity to PET methods in water-limited and mixed catchments, whereas energy-limited catchments re-

main rather insensitive (Figure 2). In energy-limited catchments, all PET methods have a negative trend corresponding to

the median; however, a substantial fraction of catchments exhibit a positive trend. Mixed catchments show similar results.200

Temperature-based methods exhibit larger variability than radiation and combination types in mixed catchments. In water-

limited catchments, PET methods show both positive and negative trends, with negative trends close to zero. The Blaney-

Criddle, Hargreaves-Samani, and Milly-Dunne methods show large positive trends. Trend estimates based on Blaney-Criddle

method demonstrate large variability as compared to other PET methods in the mixed and water-limited categories.

Each PET method results in different trends in hydrological components (AET, Q, and TWS) for all catchment categories,205

except for energy-limited catchments where Q and TWS show insensitivity to PET methods. The trend magnitude of PET
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is reduced in that of AET trend, but the overall pattern of PET methods matches well with PET in all categories. In energy-

limited catchments, PET methods are insensitive to Q and TWS, while in mixed and water-limited categories, Q and TWS

exhibit varying trends. There is no single PET method that shows a consistently higher or lower trend in all the hydrological

components.210

3.2 Trend comparison of PET methods at seasonal scales

Hydrological cycle components exhibit considerable variability in trends across different seasons. In the summer season (JJA),

nearly all PET methods demonstrate a positive trend for PET across all catchment categories, except for the Milly-Dunne

method in water-limited catchments (Figure 3). The Jensen-Haise method has the highest trend and the greatest variability

among all PET methods across each catchment category. Notable variability is observed among PET methods in water-limited215

catchments. The winter season exhibits the lowest trends, whereas the autumn season demonstrates comparable trends with

summer for PET (Text S2). The summer season is the primary contributor to the annual trends in PET across all catchment

categories (Figure S12). The trend pattern of AET in the winter season is similar to PET, while slight differences are observed

in the spring and summer seasons (Text S2). AET in the summer season, energy-limited and mixed catchments typically exhibit

an overall positive trend. The trend pattern among PET methods is consistent with the PET trends observed in energy-limited220

catchments. The Jensen-Haise method exhibits greater variability for both catchment types. However, despite the positive trend

in PET, all PET methods reveal a negative trend in AET, with Blaney-Criddle displaying the highest negative trend, followed

by Jensen-Haise. For AET, the summer season significantly contributes to the annual trends in both energy-limited and water-

limited catchments. In contrast, for mixed catchments, both spring and summer seasons play a more substantial role, depending

on the PET method (Figure S12).225

In summer, Q remains largely insensitive to changes in PET method trends across all catchment categories, with slight

variability among PET methods within each catchment category (Figure 3). A similar result is observed for the winter, spring,

and autumn seasons are discussed in the supplementary information (Text S2). For energy-limited catchments, the trend in

Q across different PET methods remains close to zero. For mixed catchments, almost all methods demonstrate a negative

trend with varying trend magnitude, with Blaney-Criddle registering the least negative trend (Figure 3). Similarly, for water-230

limited catchments, Q shows insensitivity to PET method selection. However, radiation and combination methods reflect a

positive trend corresponding to PET methods, whereas temperature-based methods exhibit both positive and negative trends

in Q (Figure 3). For Q, distinct patterns are observed in the primary contributors to annual trends. In both water-limited

and mixed catchments, spring is the most contributing season. In contrast, for energy-limited catchments, the December and

summer seasons are the main contributors, with their impact varying depending on the selected PET method (Figure S13). For235

TWS in summer, energy-limited and mixed catchments are largely insensitive to the PET method, except for Jensen-Haise,

which shows a negative trend. Although there is slight variation among PET methods within each category, mixed behavior is

observed in water-limited catchments (Figure 3). Some temperature-based methods, including Blaney-Criddle, McGuinness-

Bordne, and Hargreaves-Samani, indicate positive trends, while others show negative trends. All combination-type methods

exhibit negative trends for TWS in summer.240
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Figure 2. Boxplots represent the annual trends (mm year−1) of different PET methods for PET, AET, Q, and TWS across various categories
of catchment. The whiskers represent the 10th and 90th percentiles, and the box encompasses the 25th and 75th percentiles, with the median
represented by middle line of the box. Abbreviations used for different PET methods are TH: Thornthwaite, BR: Bair-Robertson, BC:
Blaney-Criddle, OD: Oudin, MB: McGuinness-Borden, HM: Hamon, HS: Hargreaves-Samani, JH: Jensen-Haise, MD: Milly-Dunne, PT:
Priestley-Taylor, PM: Penman-Monteith, CO2: Modified Penman-Monteith accounts CO2.
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Figure 3. Boxplot represents the seasonal (summer season (JJA)) trends of different PET methods for AET, and Q across three categories
of catchment: energy-limited, mixed, and water-limited. The whiskers represent the 10th and 90th percentiles, and the box encompasses the
25th and 75th percentiles, with the median represented by the black line within the box. Abbreviations used for different PET methods are
TH: Thornthwaite, BR: Bair-Robertson, BC: Blaney-Criddle, OD: Oudin, MB: Mcguinnes-Bordne, HM: Hamon, HS: Hargreaves-Samani,
JH: Jensen-Haise, MD: Milly-Dunne, PT: Priestley-Taylor, PM: Penman-Monteith, CO2: Modified Penman-Monteith accounts CO2. Trend
units are in mm seas−1 year−1.
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3.3 Catchment-wise DCI distribution across annual and seasonal scales

Even though there is an strong agreement across different PET methods in annual PET and AET trends, the response in Q

and TWS varies considerably (Figure 4). For PET, all catchments demonstrate strong positive DCI, indicating that a minimum

of 75% of the PET methods exhibit a positive trend. A similar pattern is observed for AET, where higher positive DCI is

noted in northern, central, and a few southern European catchments. Conversely, few catchments in southern Europe exhibit245

lower DCI values, with very few showing strong negative DCI. Q reflect strong positive agreement in southern catchments,

with very few northern catchments showing positive DCI. The majority of northern catchments exhibit strong negative DCI.

In contrast, central European catchments are marked by both strong positive and negative DCI, with few catchments with

disagreement among PET methods. TWS shows disagreement among PET methods for southern, few central and northern

European catchments. Most northern and central European catchments register strong negative agreement for PET methods.250

Overall, strong positive concurrence is observed between the PET methods for the directional agreement in the PET and AET

trends, whereas mixed concurrency is seen for Q and TWS. Despite the higher positive DCI in PET, Q and TWS show higher

negative DCI.

To better understand the annual changes of the level of concurrence between the trends, we decompose them into sub-

seasonal values. Figure 5 shows that PET and AET demonstrate strong positive agreement across all seasons, whereas Q255

and TWS predominantly show strong negative agreement in central Europe, with evident regional variations. During spring,

summer, and autumn, PET demonstrates a higher positive DCI across most catchments, reflecting an overall increasing trend

among PET methods. In winter, central and southern European catchments have a high agreement, while others exhibit lower

consistency. AET in central European catchments shows a higher positive DCI for winter, spring, and summer. However,

northern European catchments reflect disagreement for AET across PET methods in winter, with a similar trend noted in some260

southern and central catchments during autumn. In southern Europe, AET demonstrates a strong negative DCI during summer.

Across all seasons, Q shows a strong decreasing trend for all PET methods in most central European catchments. During

spring and autumn, however, most southern catchments exhibit positive agreement among PET methods. In all seasons, central

European catchments generally display strong negative DCI among PET methods for the TWS component. Southern European

catchments exhibit a strong negative DCI in summer and a strong positive DCI in spring, while showing poor agreement in265

winter and autumn. Northern European catchments also experience a combination of positive and negative concurrence.
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Figure 4. Spatial distribution of annual scale data concurrence index (DCI) for PET, AET, Q, and TWS. PET represents potential evapo-
transpiration, AET represents actual evapotranspiration, Q represents runoff at the outlet of the catchment and TWS represents total water
storage.
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Figure 5. Spatial distribution of seasonal scale (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) DCI for PET, AET, Q, and
TWS. Where DCI represents data concurrence index, PET represents potential evapotranspiration, AET represents actual evapotranspiration,
Q represents runoff at the outlet of the catchment and TWS represents total water storage.
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3.4 PET methods and combination of hydrological cycle components at annual and seasonal scales

In the previous section, we compared different PET method estimates and their impact on each hydrological component (AET,

Q, and TWS), as well as the agreement between them. Here, we demonstrate the overall impact of PET methods on possible

combinations of hydrological cycle component changes. Most catchments fall within the first five hydrological cycle combi-270

nations on annual scale (Figure 6). The Blaney-Criddle method has the highest catchment count for combinations featuring

positive trends across all hydrological cycle components, while temperature-based methods account for more catchments than

combinational methods (Figure 6). For combination featuring negative trends across all hydrological cycle components except

AET, the Blaney-Criddle method and Bair-Robertson exhibit the lowest and highest catchment count respectively (Figure 6).

For combinations showing positive trends in PRE and AET and negative trends in Q and TWS, temperature-based methods gen-275

erally represent fewer catchments than combinational methods, with the Blaney-Criddle and Bair-Robertson methods exhibit-

ing the lowest and highest counts, respectively (Figure 6). In cases with negative trends across all components, Blaney-Criddle

and Bair-Robertson again demonstrate the highest and lowest catchment counts. The last five combinations of hydrological

cycle in Figure 6 contribute very limited number of catchments, though the Blaney-Criddle method tends to capture more

catchments within these combinations. Across combinations with positive AET and negative TWS trends, the Blaney-Criddle280

method accounts for the fewest catchments, while the Bair-Robertson method has the highest count.

Furthermore, we examine the seasonal patterns of PET method selection across different hydrological cycle component

combinations. The initial five combinations remain consistent across seasons, while the last five are different due to the absence

of certain hydrological combinations. In summer, for the combination featuring positive trends across all hydrological cycle

components, temperature-based methods capture more catchments than radiation-based and combinational methods, with the285

Blaney-Criddle method accounting for the largest number (Figure S6). In cases where all components except AET show

decreasing trends, combinational and radiation-based methods dominate, covering more catchments than temperature-based

methods. For catchments with positive PRE and AET but negative Q and TWS trends, the Blaney-Criddle method demonstrates

the least count. Combinational methods generally exhibit less variability in catchment counts, while temperature-based methods

demonstrate more pronounced variations across hydrological cycle component combinations. In spring, the Blaney-Criddle290

method follows a similar pattern as of summer season, being the only method that shows decreasing trends in all hydrological

cycle components (Figure S5). In the autumn (Figure S7), temperature-based methods again capture the largest number of

catchments with positive trends in all components, while combinational methods have the fewest. For catchments with negative

trends across all hydrological cycle components except AET, Baier-Robertson method shows the most catchments while the

Blaney-Criddle method shows the least. Across all seasons, most catchments in summer exhibit positive trends for PRE and295

AET but negative trends for Q and TWS (Figure S6). In contrast, winter (Figure S4), spring (Figure S5), and autumn (Figure S7)

generally exhibit decreasing trends in all components except AET.
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Figure 6. Combination of different hydrological cycle components and the corresponding influence of PET methods on an annual scale.
PRE+, AET+, Q+, and TWS+ represent an increasing trend for PRE, AET, Q, and TWS respectively. Similarly, PRE-, AET-, Q- and TWS-
represent a decreasing trend. Where PRE is precipitation, AET is actual evapotranspiration, Q is runoff and TWS is total water storage. Ab-
breviations used for different PET methods are TH: Thornthwaite, BR: Bair-Robertson, BC: Blaney-Criddle, OD: Oudin, MB: McGuinness-
Borden, HM: Hamon, HS: Hargreaves-Samani, JH: Jensen-Haise, MD: Milly-Dunne, PT: Priestley-Taylor, PM: Penman-Monteith, CO2:
Modified Penman-Monteith accounts CO2.

4 Discussion

The estimates from PET methods consistently show an upward trend over European catchments annually (Figure 2), which is

in agreement with the work of Anabalón and Sharma (2017), who also reported such an increase across Europe using diverse300

PET datasets. The Jensen-Haise method consistently yields higher absolute values for European catchments, in agreement

with Hanselmann et al. (2024) research in Poland. The Jensen-Haise method shows the highest trend in all categories. The

Jensen-Haise method relies on temperature and extraterrestrial radiation data. Extraterrestrial radiation remains constant each

year. Therefore, the observed trends are primarily driven by temperature variations. Shi et al. (2023b) found that Jensen-Haise

trends align closely with Penman-Monteith, which is used as a benchmark for evaluating other PET methods. We observed305
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a notable distinction between the Jensen-Haise and Penman-Monteith PET methods. The differences in trends between these

methods stem mainly from meteorological forcings. In the Jensen-Haise method, temperature is a significant factor in the trend.

For Penman-Monteith, however, radiation is the main factor, followed by temperature, vapor pressure deficit, and wind speed

(Maček et al. (2018)). The Milly-Dunne method consistently demonstrates the lowest trends in water-limited catchments. This

trend, influenced by net radiation, remains lower in the south of Europe (Pfeifroth et al. (2018)). In the presented work, we do310

not perform sensitivity analyses of each PET method with meteorological forcings, as this falls outside the scope of the paper.

The AET trend is proportional to the PET trend in energy-limited and mixed catchments. In water-limited regions, there is

not enough water to evaporate and it is mainly governed by available water (PRE) Bruno and Duethmann (2024). This results

in a notable decline in AET when compared to PET. As reported by Anabalón and Sharma (2017), AET tends to correlate

more closely with PET in energy-limited regions and with precipitation in water-limited regions. However, their analysis did315

not consider different PET methods but used various existing datasets instead. AET exhibits the same directional changes as

precipitation at both annual and seasonal scales in water-limited catchments (Figure S9). Despite differences among catchment

categories, PET methods demonstrate strong positive or negative agreement in AET trends.

In general, the runoff (Q) trend varies based on the PET method across water-limited catchments, whereas energy-limited

and mixed catchment show insensitivity to PET method selection. This is in line with earlier work, e.g., Bai et al. (2015);320

Oudin et al. (2005); Seiller and Anctil (2016) who reported that runoff was generally insensitive to PET formulations. This

insensitivity is primarily attributed to the calibration of hydrological models, where the impact of PET models is offset by

the parameterization of the hydrological model. Surprisingly, even though we did not calibrate the hydrological model for

individual PET methods, we observed insensitivity to PET methods in energy-limited and mixed catchments. This is primarily

because the trend in precipitation is strongly correlated (Figure S11) with the trend in runoff (Q) (Berghuijs et al., 2017), which325

often outweighs the impact of PET (Anabalón and Sharma, 2017). The strong negative agreement between PET methods for

runoff (Q) across central European catchments was due to their strong correlation with precipitation (Figure S9).

Total water storage (TWS) appears to be insensitive in energy-limited and mixed catchments, while it exhibits variability

in the trend of different PET methods in water-limited catchments. Bai et al. (2016) observed that TWS in energy-limited

catchments is more strongly impacted by PET than in water-limited catchments, though their study focused solely on Chinese330

catchments. More recently, Boeing et al. (2024) reported a decline in TWS over Germany, consistent with our findings that

TWS decreases in energy-limited and mixed catchments for all PET methods. In hydrological models, TWS compensates for

long-term changes, i.e., higher PET results in lower TWS in energy-limited catchments, whereas water-limited catchments are

primarily governed by precipitation (Bai et al., 2016). This is in line of our findings on the opposite TWS trends relative to

AET and a stronger agreement among PET methods in energy-limited and mixed catchments.335

A large number of catchments across Europe exhibit positive changes in the hydrological cycle; however, variations exist de-

pending on the PET methods employed. Teuling et al. (2019) found increasing PRE, AET and Q in central-west Europe, while

these hydrological cycle components decreased in the Mediterranean region using the Penman method for PET estimation. Our

results confirm that the Penman method identifies fewer catchments showing these trends compared to temperature-based PET

methods. This variation will cause discrepancies in the conclusions of hydrological cycle intensification studies. Similarly,340
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many catchments demonstrate a drying hydrological cycle (positive change in AET and negative changes in Q, TWS, and

PRE). The number of catchments demonstrating these trends varies depending on the choice of PET method. Massari et al.

(2022) found that over Europe runoff deficit are more pronounced in water-limited regions due to increased AET, whereas

energy-limited catchments exhibit smaller deficits. During these drying conditions, AET is further influenced by reductions in

TWS (Massari et al., 2022).345

Even though our study’s experimental design varies from the global analysis of Pimentel et al. (2023), both utilize large-scale

hydrological models at the basin scale. Pimentel et al. (2023) compare three different PET methods to choose the best PET

method to estimate PET, AET, and Q in the hydrological model. Across Europe they reported that Jensen-Haise in northern

Europe (energy-limited), Hargreaves in central (mixed), and Priestley-Taylor alongside Hargreaves-Samani in southern Europe

(water-limited) perform better to estimate PET. For AET estimation, the Jensen-Haise method outperforms in northern Europe350

(energy-limited), while Hargreaves-Samani leads in central Europe (mixed) and Priestley-Taylor in southern Europe (water-

limited). They also argue that Priestley-Taylor is predominantly the most effective method for runoff estimation. In our study,

we found a consistently notable distinction between Jensen-Haise and Penman-Monteith across all catchment types for PET.

Similarly, for AET, Jensen-Haise consistently shows higher trends than Penman-Monteith in both energy-limited and water-

limited catchments. We observed that changes in energy-limited and mixed catchments are similar for runoff (Q) when using355

the Priestley-Taylor and Penman-Monteith methods. However, in water-limited catchments, Priestley-Taylor leads to greater

changes than ones estimated by the Penman-Monteith method.

PET method selection impacts the hydroclimatic state of the catchment. The hydroclimatic state of a catchment is commonly

classified into two categories water-limited and energy-limited catchments based on the aridity index. In our research, we

introduce a third catchment category termed “mixed”, which does not represent any physical basis. However, it underscores360

the crucial importance of PET method selection specifically for the mixed catchment category. For instance, using a PET

method that consistently generates a higher PET estimate may change a catchment from energy-limited to water-limited,

whereas a method that produces a lower PET estimate can shift it from water-limited to energy-limited. Similarly, Zhang et al.

(2016) introduced a slightly different and not well-known classification called "equitant", which applies a single PET method to

calculate the aridity index. Such variations could cause discrepancies in the results. For example, Kuentz et al. (2017) uses the365

Jensen-Haise method, Ajami et al. (2017) uses the Priestley-Taylor method, and Zhang et al. (2016) uses the Penman method

to calculate the aridity index to classify catchments. We observed catchments shifting from the mixed to the energy-limited

category after excluding PET methods that consistently overestimate PET. For instance, removing Blaney-Cridle, Jensen-

Haise and McGuinness-Bordne, 42% of the total catchments shift from mixed category to energy-limited catchment category

(Figure S8). Shifts in catchments, based on various combinations, are presented in Table S1.370

Our study comes with certain limitations that pave the way for future research. First of all, it is limited by the uncertainty

associated with the input data used to calculate the PET methods. However, previous detailed studies have investigated the un-

certainties related to these data (Hua et al., 2020; Guo et al., 2017). They reported that PET methods are sensitive to their input

data: temperature-based methods to temperature, radiation-based methods to radiation, and combination methods predomi-

nantly to both temperature and radiation, as well as to relative humidity and wind speed. Additionally, we limited our analysis375
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to one precipitation product to isolate the specific impact of the PET method. However, it is well known that precipitation is

the most sensitive meteorological input, Voisin et al. (2008); Mazzoleni et al. (2019) have extensively studied the uncertainties

related to precipitation. This identifies a potential gap for exploring the combination of precipitation with PET for accurate

simulation of hydrological cycle components.

Often large-scale hydrological models use default parameterization. This research can be further extended by incorporating380

calibration for all three hydrological components (AET, Q, and TWS) in areas with data availability. This study is confined to

temperate climate European catchments, and there is a potential gap in extending this research to arid and tropical climates,

which could yield different and interesting results. Although the Modified Penman-Monteith method accounts for CO2, it did

not show substantial differences compared to the Penman method. Further exploration of this method, along with others, would

be interesting to assess their impact under changing climate condtions.385

5 Summary and conclusions

Twelve PET methods were used to evaluate their impacts on changes in the components of the hydrological cycle using the

mesoscale Hydrological Model (mHM). These methods were applied across 553 European catchments, which vary in size

and include different European climate types. These catchments were classified as water-limited, energy-limited, and mixed

catchments based on their aridity index. To analyze changes in PET and hydrological components, we employed Sen’s slope390

estimate, and to assess the agreement between different PET methods, we used the modified data concurrence index for the

period 1980 to 2019. The results demonstrate that the choice of PET method can substantially affect changes in AET, Q, and

TWS, especially in water-limited and mixed catchments, with smaller changes and greater variability observed in water-limited

catchments on an annual scale. Seasonal variations in changes and agreement between PET methods were also observed, as

discussed in detail in sections 3.2 and 3.3. In general, there is agreement among the different methods that, since 1981, PET395

and AET are increasing over Europe, while runoff and total water storage exhibit mixed fluctuations depending on the method

used and the catchment latitude. The key findings of our study are summarized as follows:

1. PET is increasing across European catchments. The majority of the PET methods indicate a positive trend in all categories

of catchments, but the increase rates differ among the methods employed.

2. At the annual scale, the Jensen-Haise PET method stands out by consistently showing the highest trends for PET and400

AET across all catchment categories. The Milly-Dunne (energy-based) method is notable as the only one to exhibit a

negative trend for water-limited catchments. Regarding Q and TWS, the PET methods display different changes and

variability, with no method consistently showing either the lowest or highest trends for these hydrological components.

3. The trend patterns between PET and AET are similar across all methods for the hydrological cycle components. However,

Q and TWS do not exhibit the same pattern and appear to be less sensitive to choice of PET methods. Most PET methods405

agree on the trend direction for PET and AET, but in a few catchments, the trends for Q and TWS show an opposite
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direction. The negative trends in Q and TWS are primarily due to negative precipitation trends, which have a stronger

impact on these components in all catchment categories.

4. At the seasonal scale, PET methods reveal different trends for PET, with no method consistently showing the highest or

lowest trends across all seasons. However, the Jensen-Haise method shows the highest PET trends during spring, autumn,410

and summer. AET trends follow a similar pattern to PET in all seasons. The PET methods show strong agreement on

trend direction for central and southern European catchments, especially for PET, but there is less agreement for northern

catchments in winter. Strong negative agreement is found for Q and TWS in summer and spring, while disagreement is

observed for AET in central and southern catchments during autumn.

5. The summer season contributes more to the annual PET trends than any other season across all catchment categories.415

Similarly, for AET, the summer season has a higher contribution to the annual AET trend in energy-limited and water-

limited catchments. For runoff (Q), the spring season contributes more in mixed and water-limited catchments. For TWS,

the spring season has a higher contribution in energy-limited catchments.

6. Overall, The magnitude of trends varied between PET methods for PET and the hydrological components (Q, AET, and

TWS). The use of a specific PET method in a hydrological model can notably affect studies focused on the hydrological420

cycle.

7. Precipitation is the primary factor influencing the trends of hydrological components and is responsible for the overall

direction of hydrological cycle components (AET, Q, and TWS).

Our research demonstrates the critical role of PET method selection and its implications for quantifying fluctuations in the

hydrological cycle. Our findings reveal that two methods notably deviate from the others. Specifically, the Jensen-Haise method425

shows higher trend values, while the Milly-Dunne method exhibits lower trends in water-limited catchments. Consequently, we

recommend exercising caution when applying these methods as they appear to be outliers. Despite these variations, the PET

methods generally agree that atmospheric moisture demand is increasing across Europe, reflecting recent shifts in temperature

and radiation. Given the differences in trend magnitudes across methods, we encourage the use an ensemble of PET formula-

tions in the assessment of changes in the water cycle components. It allows us to capture a more comprehensive and reliable430

representation of hydrological trends.
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com/imarkonis/ithaca/tree/main/projects/pet_europe).435
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Table A1. Formulations of PET methods. Where Re is extraterrestrial radiation (MJ m−2 d−1), λ is the latent heat of vaporization (MJ kg−1),
ρ is water density (= 1000 kg m−3), da is air density (kg m−3), Ta is air temperature (°C), Td is dew point temperature (°C), Tmax is maximum
air temperature (°C), Tmin is minimum air temperature (°C), ∆ is the slope of the vapor pressure curve (kPa °C−1), γ is the psychrometric
constant (kPa °C−1), es is saturation vapour pressure (kPa), ea is actual vapour pressure (kPa), u2 is wind speed 2 m above the soil surface
(m s−1), Rs is net short-wave radiation (MJ m−2 d−1), Rn is net incoming solar radiation (MJ m−2 d−1), G is soil heat flux (MJ m−2 d−1),
RH is relative humidity (%), DL is day length (h d−1), I is annual heat index, and CO2 is carbon dioxide concentration (ppm) .

Method Formulation
Hargreaves Samani 0.0023× Re

λ×ρ ×
√

tmax− tmin× (tavg + 17.8)× 1000
McGuinness-Bordne 1000× Re

λ×ρ × Ta+5
68

Hamon k× 0.165× 216.7× DL
12 × es

tavg+273.3

Oudin 1000× Re

λ×ρ ×
tavg+5

100

Baier and Robertson 0.157× tmax +0.158(tmax− tmin)+0.109×Re−5.39
Blaney-Criddle 0.825× (0.46× tavg + 8.13)× 100×DL

365×12

Thornthwaite 16× DL
360 ×

(
10×tavg

I

)k

Jensen-Haise 1000× Re

λ×ρ ×
Tavg

40

Priestley and Taylor 1.26×∆×(Rn−G)
λ×ρ×(∆+γ)

Milley-Dunne 0.8× (Rn−G)

Penman-Monteith
0.408×∆×(Rn−G)+γ×

(
900

Tavg+273

)
×u2×(es−ea)

∆+γ×(1+0.34×u2)

Modified
Penman-Monteith

0.408×∆×(Rn−G)+γ×
(

900
Tavg+273

)
×u2×(es−ea)

∆+γ×(1+0.34×(u2+2×10−4×([CO2]−300)))
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