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Abstract.

Hydrological models are essential tools for assessing changes in the hydrological cycle, enabling detailed quantification of
runoff (Q), total water storage (TWS), and actual evapotranspiration (AET). Precipitation (P) and potential evapotranspiration
(PET) are the two major drivers in modeling these components, with the influence of P more extensively studied than PET.
This study evaluates the impact of PET method selection on AET, Q, and TWS using 12 PET formulations categorized as
temperature-based, radiation-based, and combinational. We applied the mesoscale Hydrological Model (mHM) to simulate 40
years of hydrological components across 553 European catchments. PET effects were analyzed through trend analysis and
the Data Concurrence Index (DCI) across three catchment categories: energy-limited, mixed, and water-limited. Our results
indicate that annual and seasonal trends are variably sensitive to method choice, depending on each component and catchment
category. While PET shows strong agreement in trend direction, trend magnitudes vary among different PET methods. Jensen-
Haise consistently produces the highest annual and seasonal PET trend magnitudes, whereas no single method consistently
yields the lowest. AET trends generally align with PET but are weaker in magnitude on an annual scale. Seasonally, only
energy-limited catchments show AET trends similar to PET. For Q, and TWS, most European catchments exhibit strong trend
agreement across PET methods. As expected, summer is the primary contributor to annual PET trends, while for AET, its
influence is most notable in energy-limited catchments. Looking at statistically significant trends, there is general agreement
for PET and AET, which decline for the other hydroclimatic variables. On an annual scale, varying patterns of hydrological

cycle intensification (increases in P, AET, Q, and TWS) are observed across European catchments, highlighting the influence of



PET method selection. Overall, this study highlights how the PET method selection affects the quantification of hydrological

trends, emphasizing the importance of method selection for robust assessment of AET, Q, and TWS.
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1 Introduction

Potential evapotranspiration (PET) is the potential to evaporate water from the land surface to the atmosphere without any
limitation to water availability. Although the concept has been in use for centuries, Thornthwaite (1948) was the first to for-
mally introduce the term “potential evapotranspiration” in the scientific literature. A related but distinct concept is “reference
crop evapotranspiration”, which is sometimes used interchangeably with PET. However, these terms differ in their conceptual
basis and applications. Reference crop evapotranspiration specifically estimates the water requirements of a standardized refer-
ence crop under ideal conditions, whereas potential evapotranspiration provides a broader representation of water and energy
exchange processes over diverse landscapes and large regions (Xiang et al., 2020). PET is used in diverse research fields.
In environmental studies, PET is used for aridification research and investigating extreme events, including meteorological,
agricultural, and hydrological droughts (Park et al., 2018; Zhou et al., 2023; Shi et al., 2023a). In hydrology, it is used to
determine the long-term states of catchments, such as energy-limited and water-limited catchments, and it plays a key role
in the Budyko framework for estimating long-term changes in hydrological components (Reaver et al., 2022). Furthermore,
PET is extensively used in hydrological modeling as to define the maximum rate of possible water loss through evaporation
and transpiration. It is used as one of the important input variables to simulate key hydrological components, such as actual
evapotranspiration (AET), runoff (Q), and total water storage (TWS).

Since Thornthwaite’s study, more than 100 empirical PET equations have been developed, ranging from simple to complex
types (Proutsos et al., 2023). They can be classified mainly into three categories based on input data: (1) Temperature-based
methods, which utilize temperature as input (Shaw and Riha, 2011). Due to their simplicity and minimal data requirement,
these are widely used in hydrological model (Arnold et al., 1998; Liu et al., 2008). (2) Radiation-based methods require solar
radiation (short wave or net radiation) (Xu and Singh, 2000). (3) The combinational type requires temperature, radiation, wind
speed, relative humidity, vapor pressure, etc. (Vicente-Serrano et al., 2014; Allen, 1998). Out of these 100+ methods, the
majority are temperature-based methods (40+), followed by radiation-based methods (30+) and combination-based methods
(10+) (Proutsos et al., 2023). Many of these empirical methods were initially developed and tested for particular regional
scales or climatic conditions. For instance, the Thornthwaite method is most suitable for humid climates, while the Hargreaves-
Samani method is particularly effective in arid and semi-arid regions. Similarly, the Hamon method is suitable for all climates.
All methods in these three categories incorporate several assumptions (climatic conditions and data availability) resulting in
significant differences in their estimates (Lu et al., 2005).

PET influences AET and consequently impacts the estimation of infiltration, Q, and TWS in hydrological models. PET can
have direct as well as indirect influence on AET. In hydrological models, AET is estimated by either separately determining
water surface evaporation, soil evaporation, and vegetation transpiration and then combining these based on land use patterns or
by first assessing potential evapotranspiration and subsequently adjusting it to actual evapotranspiration using the soil moisture

extraction function (Zhao et al., 2013). The mesoscale Hydrological Model (mHM) explicitly represents interception, where a
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portion of AET is derived from interception evaporation. This process is estimated as a fraction of PET using a power function
derived from Deardorff (1978) and Liang et al. (1994). When the evaporative demand exceeds the intercepted water, the
interception storage is fully depleted. Interception storage in the mHM is estimated as a function of leaf area index (LAI) that
varies depending on vegetation types and season. AET in mHM is mainly contributed by canopy evaporation, soil evaporation,
and open water evaporation. AET, being a key component of the water balance, affects the estimation of other water balance
components (Q, and TWS). While Q remains relatively insensitive, AET and TWS are more responsive to the choice of
PET method (Bai et al., 2016). Hence, uncertainty in PET estimation influences the quantification of change in water cycle
components.

Many studies have investigated the sensitivity of the hydrological model output to PET. Oudin et al. (2005) evaluated 27 PET
methods with four hydrological models concluding that PET is insensitive to runoff generation, with similar conclusions made
by Aouissi et al. (2016) and Birhanu et al. (2018). Assessment of four PET methods with two monthly hydrological models
reported that runoff is unaffected by the PET method, whereas AET and total water storage depend on the PET method (Bai
et al., 2016). The study also concluded that calibration against the runoff is the main cause of PET insensitivity, and AET and
total water storage compensate for it. In contrast to previous studies, Ndiaye et al. (2024) compared 21 PET methods for runoff
estimation with three conceptual lumped hydrological models (GR4J, GR5]J, and GR6J) in the Senegal River Basin, stating that
better performance shown by combinational type methods. Similarly, Pimentel et al. (2023) compared three PET methods for
their accuracy in simulating runoff and AET in the large-scale hydrological model (HYPE model). They found that Hargreaves-
Samani performed best in the Amazonas, central Europe, and Oceania, and Priestley-Taylor in higher latitudes. These studies
focus on the sensitivity and choice of PET methods in estimating hydrological components. While these findings reveal how
PET methods can impact the magnitude of hydrological components, the impact of PET method selection on changes in these
hydrological components is not often investigated. Temporal changes in these hydrological components are crucial for climate
change mitigation, water availability, energy availability, and agricultural produce.

Trends in PET and its implication on hydrological components (AET) are examined by Anabalén and Sharma (2017). They
compare trends in six PET and AET datasets, mainly estimated by the Penman-Monteith or Priestley-Taylor PET method.
They found that PET trends were highly correlated with AET trends in energy-limited regions, while the AET trends were
closely correlated with precipitation trends in water-limited regions. Additionally, they reported that PET and AET trends were
inversely related in certain cases, mainly due to the prevailing influence of precipitation trends on AET trends. Similarly, Liu
et al. (2022) identified a strong positive relationship between PET and AET changes in most global regions and an inverse
relationship with total water storage change. The study is limited by using only the Penman-Monteith approach for PET and
global datasets for AET and total water storage change. The inconsistency and lack of coherence between existing PET and
AET datasets often necessitate using a single PET method compared to various AET datasets. Furthermore, previous studies
have primarily focused on one-to-one trend comparisons than comprehensive analysis of all hydrological cycle components,
including Q, and TWS. Thus, research is needed to explore the impact of changes in PET methods on changes in different

hydrological components of hydrological models.
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In this study, our objective is to assess the trends of PET using 12 different PET methods and their influence on the trend of
hydrological components (AET, Q, and TWS) across 553 European catchments. We further evaluate the agreement among PET
methods by applying the Data Concurrence Index (DCI) to the trends of each corresponding hydrological cycle component
(AET, Q, and TWS). The mesoscale hydrological model (mHM) is used to evaluate the influence of changes in different PET
methods, from simple to most advanced approaches, on hydrological components across a range of European catchments. We
chose a concurrency index to assess agreement between the PET method and hydrological components at each catchment. The
data concurrency index is used to compare directions between different datasets (Anabalén and Sharma, 2017). In our research,

we use it to examine directional changes in PET estimates, AET, Q, and TWS across each catchment.

2 Methods and data
2.1 Study area and catchment classification

This study includes 553 European catchments ranging in size from 500 km? to 252 000 km?. Catchments were selected based
on the following criteria: first, a minimum area of 500 km?; second, at least 10 years of observed discharge data from GRDC
database; and third, a closed water balance condition ((P — @)/P < 1). The selected catchments are divided into three cat-
egories based on the aridity index: energy-limited, mixed, and water-limited (Figure 1a). This classification is based on the
aridity index (Al), estimated as the ratio of mean PET to mean precipitation, a widely used metric that quantifies the dry or
wet state of the catchment (Zhang et al., 2016; Massari et al., 2022). In our approach, which involves the application of mul-
tiple PET methods, a catchment is considered energy-limited if the Al is less than one for all the PET methods. Similarly, a
catchment is water-limited if all PET methods report Al greater than one. If Al values appear to be both above and below one,
depending on the PET method used, then the catchment is assigned to the mixed category (Figure 1b). Three representative
catchments from each category are indicated by dark black lines in (Figure 1a) and are plotted in (Figure 1b). This classifi-
cation allows us to distinguish the differences in magnitudes of PET and the other key hydrological components among the
catchments (Figure 1¢). By employing this methodology out of 553 catchments, we find 189 catchments being energy-limited,
34 water-limited, and the rest 330 belong to the mixed category.

2.2 Meteorological and geomorphological data

The Ensemble Meteorological Dataset for Planet Earth (EM-Earth; Tang et al., 2022) and ERA5-Land (Mufioz-Sabater et al.,
2021) were used to calculate different PET estimates and run the mesoscale Hydrological Model (mHM; Samaniego et al.,
2010; Kumar et al., 2013b). The EM-Earth dataset (Tang et al., 2022) is derived from observed station data SC-Earth (Tang
et al., 2021) and ERAS data (Hersbach et al., 2020). It incorporates a novel optimal interpolation technique and considers
the temporal inconsistencies between the station and reanalysis data (Tang et al., 2022). ERAS5-Land dataset is a reanalysis
data product created by the European Centre for Medium-Range Weather Forecasts (ECMWF) and has been widely used

in numerous hydrological modeling studies (Mufioz-Sabater et al., 2021). Both datasets are available at 0.1° x 0.1° spatial
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Figure 1. Catchment classification to energy-limited, mixed, and water-limited categories. a) Spatial location of catchments; black borders
indicate a representative catchment of each category. b) Classification example within the Budyko space for the representative catchments.
Colored points represent three representative catchments, with each set of 12 points per color corresponding to different PET methods of rep-
resentative catchments. c) Annual time series of simulated hydrological components corresponding to each representative catchment and PET
estimation method (TH: Thornthwaite, BR: Baier-Robertson, BC: Blaney-Criddle, OD: Oudin, MB: McGuinness-Bordne, HM: Hamon, HS:
Hargreaves-Samani, JH: Jensen-Haise, MD: Milly-Dunne, PT: Priestley-Taylor, PM: Penman-Monteith, CO2: Penman-Monteith[CO2].).

All units are in mm year™!.

resolution, but EM-Earth has hourly as well as daily time step, while ERA5-Land is at hourly scale. Meteorological forcings,
particularly precipitation and temperature from EM-Earth, have been found to be more accurate based on comparisons with

several datasets in data-rich regions (Tang et al., 2022).
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In our analysis, we use daily temperature and precipitation from EM-Earth, and radiation (long- and short-wave), surface
pressure, and wind components (U and V) from ERAS5-Land for the period 1980-2019 (Table 1). The EM-Earth dataset
provides high-quality precipitation and temperature data and has been shown to perform well over Europe (Tang et al., 2022).
It has undergone climatology-based bias correction and accounts for precipitation undercatch. However, since EM-Earth does
not include all necessary variables for PET estimation, we utilize ERAS5-Land as a complementary dataset. ERA5-Land has
been demonstrated to perform better than other reanalysis datasets, including ERAS and ERA-Interim (Mufioz-Sabater et al.,
2021). Nonetheless, its limitations in hydrological modeling have been acknowledged by Clerc-Schwarzenbach et al. (2024);
Tarek et al. (2020). Several recent global studies follow a similar strategy, combining precipitation and temperature from EM-
Earth with radiation, wind speed, and other meteorological variables from ERA5-Land (Tang et al., 2023; Yin et al., 2024;
Rakovec et al., 2023). These meteorological data combinations, along with the simulated hydrological components derived
from them, demonstrate lower uncertainty across Europe (Tang et al., 2023). These are homogenized to daily temporal scale
and 0.125° x 0.125° spatial scale to be compatible with the previous simulations run by mHM (Pohl et al., 2023; Fang
et al., 2024). Homogenization using the nearest neighbor technique and necessary mathematical operations (appropriate unit
conversion of datasets) are performed using the Climate Data Operator (CDO; Schulzweida, 2022).

Morphological data such as Leaf Area Index (LAI), soil properties, and terrain characteristics (such as flow direction, flow
accumulation, slope, and aspect) are sourced from mHM European database (Rakovec et al., 2016). This database originally
utilized data from different sources, such as soil properties from the International Soil Reference and Information Centre
(ISRIC), terrain characteristics from the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence Agency
(NGA), LAI from Global Inventory Modeling and Mapping Studies (GIMMS) and Land cover from Global Land Cover
(GlobCover) by European Space Agency (ESA). CO, concentration is sourced from Cheng et al. (2022), which is reconstructed
from the Carbon Dioxide Information Analysis Center (CDIAC) data.

2.3 Methodology
2.3.1 PET methods/formulations

We incorporate 12 PET methods at a daily scale from all three categories of estimation: temperature, radiation, and combi-
national methods (Table 2). Temperature-based methods require temperature data, which can include average temperature,
minimum temperature, or maximum temperature. Additionally, PET methods that incorporate extraterrestrial radiation are also
considered under this category. Combinational-based methods require a larger number of variables compared to temperature-
and radiation-based methods to estimate various physical terms, such as wind speed and surface pressure (Table 2). Most
temperature-based methods use only daily average temperature (Thornthwaite, Oudin, Hamon, Jensen-Haise, McGuinness-
Bordne, and Blaney-Criddle), while Baier-Robertson employs both minimum and maximum daily temperatures. Some of
these methods also include an extraterrestrial radiation term in their formulation. However, since this radiation term is cal-
culated based on latitude and follows a consistent annual cycle varying only with the calendar date, only temperature data is

needed for PET calculation. We utilize only one radiation-based method, Milly-Dunne PET, which requires only net radiation
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Table 1. Summary of meteorological and morphological data. P is Precipitation, Ty is average air temperature, Trange is the temperature
range, which is the difference between maximum and minimum air temperature, Tqew 1S dew point temperature of air, SW is Short wave
radiation, LW is Long wave radiation, U is eastward component of wind speed at 10 m, V is northward component of wind speed at 10 m,
Conco, is CO2 concentration

Variable Temporal Scale Spatial Scale Record length ~ Source Reference

Meteorological data

P Hourly/Daily 0.1° x 0.1° 1950-2019 EM-Earth Tang et al. (2022)

Tave Hourly/Daily 0.1° x 0.1° 1950-2019 EM-Earth Tang et al. (2022)

Trange Hourly/Daily 0.1° x 0.1° 1950-2019 EM-Earth Tang et al. (2022)

Tgew Hourly/Daily 0.1° x 0.1° 1950-2019 EM-Earth Tang et al. (2022)

SW Hourly 0.1° x0.1° 1950-2022 ERAS5-Land Muiioz-Sabater et al. (2021)

LW Hourly 0.1° x0.1° 1950-2022 ERAS5-Land Muioz-Sabater et al. (2021)

U Hourly 0.1° x 0.1° 1950-2022 ERAS5-Land Muiloz-Sabater et al. (2021)

\" Hourly 0.1° x 0.1° 1950-2022 ERAS5-Land Muioz-Sabater et al. (2021)

Other data

Conco, Annual 0.1° x 0.1° 1950-2022 - Cheng et al. (2022)

LAI monthly 1/512° static GIMMS Tucker et al. (2005)

Soil properties - 1/512° - SoilGrids ISRIC - World Soillnforma-
tion (2017)

Land cover static 1/512° static GlobCover Arino et al. (2012)

DEM (+ derivatives) static 1/512° static GMTED2010 USGS and NGA (2018)

Geology static 1/512° static GLiM Hartmann and Moosdorf
(2012)

data to estimate PET. The combinational methods, such as Penman-Monteith and Priestley-Taylor, have a stronger physical
basis. In our analysis, all these physical terms are estimated following Allen (1998). Additionally, within the combinational
category, we employ the modified Penman-Monteith (CO2) method, which accounts for temporal variations in changing carbon
dioxide concentrations. Formulation details, including mathematical equations and associated constants for each PET method,

are provided in Table Al.
2.3.2 mesoscale Hydrological Model (mHM)

mHM is a hydrological model which explicitly accounts for sub-grid variability of hydrological processes (Samaniego et al.,
2010; Kumar et al., 2013b; Thober et al., 2019). mHM has been successfully applied and tested in more than 1000 Euro-
pean basins ranging in size from 4 km? to more than 100000 km? at various spatial resolutions or grid cell size (1-100 km)
(Samaniego et al., 2010; Kumar et al., 2013b; Rakovec et al., 2016, 2019; Shrestha et al., 2024). Additionally, the model is
currently applied at the global scale with comparable and sometimes even improved model performance with respect to other
large-scale hydrological models (Samaniego et al., 2019). mHM demonstrates robust performance and applicability across
Europe (Kumar et al., 2020). It is also one of the several large-scale hydrological models, which were used by the WMO for
their annual State of Global Water Resources reports (World Meteorological Organization (WMO), 2023).
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Table 2. List of PET methods and required input data. Trmax is maximum air temperature (°C), Tmin is minimum air temperature (°C), Pr is
surface pressure (pa), R, is net radiation (J/m?), uz is the wind speed at 2m from the surface (m/s), Conco, is CO2 concentration (ppm)

Type Method name Method abbreviation Required input References
Hargreaves-Samani HS Tiax> Trin> Tave Hargreaves and Samani
(1985)
Thornthwaite TH Tave Thornthwaite (1948)
Temperature Oudin OD Tave Oudin et al. (2005)
p Hamon HM Tave Hamon (1961)
Baier-Robertson BR Tmax> Tmin Bai et al. (2016)
Jensen-Haise JH Tave Jensen and Haise (1963)
McGuinness-Bordne MB Tave McGuinness and Bordne
(1972)
Blaney-Criddle BC Taye Blaney (1952)
Radiation Milly-Dunne MD R, Milly and Dunne (2016)
Priestley-Taylor PT Tave, Pr, Ry Priestley and Taylor
Combinational (1972)
Penman-Monteith PM Tiax> Tmins Taves Taew, Pr,  Penman (1948)
u2 ’ Rn
Penman-Monteith[CO5] COq Tiax> Tmins Tavg, Taew, Pr,  Yang et al. (2019)

uz, Rns COHCOZ

We run mHM(v5.12.0) over 553 European catchments, using the meteorological data from EM-Earth and the 12 different
PET estimation methods. Overall, 6636 (12 x 553) mHM simulations are performed for all the study basins. The model
was set up for each catchment at a daily temporal resolution and 0.125° x 0.125° spatial scale. All meteorological forcings
were kept constant with only varying PET estimates. To calculate TWS, we aggregate soil moisture at different layers, canopy
interception storage, snowpack, groundwater levels, sealed area reservoirs, and unsaturated zone reservoirs at each grid cell
and time step. The hydrological components (AET, Q, and TWS) and PET are averaged over the catchment area and monthly
time steps. In this research default parametrization is used for model setup. The default parameterization of mHM has been
shown to perform well in previous studies (Kumar et al., 2013a; Rakovec et al., 2016). Furthermore, it has been demonstrated
as one of the best-performing configurations compared to other large-scale hydrological models (Samaniego et al., 2019).
Additionally, our assessment of model performance is consistent with the findings of Samaniego et al. (2019). Our model
evaluation against discharge shows that the median Kling—Gupta Efficiency (KGE) ranges from 0.60 to 0.75 across most PET
methods (Figure S1).

2.3.3 Trend analysis

We use Theil-Sen’s slope method to calculate the magnitude and direction of linear change in PET, AET, Q, and TWS (Sen,
1968). The Mann-Kendall trend test is used to test the statistical significance of the observed trend (Kendall, 1948). A trend

is considered statistically significant at the 5% level (p < 0.05). Sen’s slope is non-parametric and insensitive to outliers and
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types of distribution. Due to its robust application, this method is widely used in hydrology, climate, and environmental-related
studies (Anabalén and Sharma, 2017; Thackeray et al., 2022). It accounts for all possible pairs of data points from a time series

and finds the median value as the slope magnitude. Eq. 1 and 2 shows the calculation steps of Sen’s slope:

X —X; .
Sp="21—"" wherel<i<j<n (1
t—t;
S[ ni1) if n is odd
Smed = S n2+5' nt2 (2)
[s] " [] if n is even,

where S}, is the linear slope for pair X; and X, Sy,eq is the median slope, X; and X; are data points from periods ¢; and
tj, n is the number of data points in time series. Positive S,,.q represents a positive trend, with the magnitude indicating the
rate of increase. Similarly negative S,,.q represents a negative trend, with the magnitude indicating the rate of decrease.

Here, we use the trend R package to estimate Sen’s slope over a 40-year period from 1980 to 2019 at annual and seasonal

(winter, spring, summer, and autumn) scales for each catchment. The units of trend at the annual scale are expressed as mm

1 1

year—!, while at the seasonal scale, they are represented as mm seas ! year™'. For instance, a summer season trend of 1 mm
seas ! year~! indicates that each year, an additional 1 mm is added to the summer season. The trend of each PET method
were analyzed exclusively within seasons (for example winter season compared with winter season), without cross-seasonal

comparisons.
2.3.4 Data Concurrence Index (DCI)

The Data Concurrence Index quantifies the level of concurrence between the significant trends in different datasets of the
same variable (Anabal6n and Sharma, 2017). DCI is applied in two forms in this study. The first is the original formulation,
which includes only statistically significant trends. It is used to evaluate agreement among PET methods that yield significant
changes in hydrological cycle components. The second is a modified version that considers all detected trends, regardless of
significance. This captures the overall agreement across all PET methods for each catchment and each hydrological component.

The detailed formulation for both cases are described in Eq. 3:

N
S.
L 8; - — For statistically significant trends
N Zl S| v 1, if S; is statistically significant
DCI= N with §; = 3)

N
Si .
> For all trends 0, otherwise

10
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where DCI is the Data Concurrence Index, N denotes the number of datasets, and S; is the magnitude of the slope.

The positive DCI represents a higher number of positive slopes than negative slopes and vice-versa. For instance, a DCI of
1 for AET and Q implies positive change for all the PET methods. Similarly, a DCI of -1 for AET and Q implies a negative
change for all the PET methods. A DCI of 0.5 indicates that nine out of 12 methods, or 75% of the methods, show a positive
change, and similarly, a DCI of -0.5 indicates that nine out of 12 methods show a negative change, or 75% of the methods. A
DCI of zero denotes an equal number of positive and negative slopes (six positive and six negative). Our analysis estimates

DCI from PET, AET, Q, and TWS slopes at annual as well as seasonal scales.

3 Results
3.1 Trend comparison of PET methods at annual scales

By applying the Theil-Sen slope method, we observe that changes in PET depend on the choice of PET estimation formulation
(Figure 2). Considerable variability is observed among the PET methods, with median slopes ranging from slightly positive to
6 mm year~! during the 1980-2019 period. The Jensen-Haise method shows the highest change among all methods across dif-
ferent catchment categories and also has the highest absolute average PET across European catchments (Figure S2). Generally,
changes in PET are higher in water-limited than in energy-limited catchments. This difference arises since temperature-based
methods depend on temperature changes. Conversely, combinational methods are influenced by more than one meteorologi-
cal variable (temperature, wind speed, radiation, etc.). When we consider only statistically significant trends (p < 0.05), we
observe that temperature-based PET methods consistently demonstrate statistically significant positive trends for most of the
catchments (Table S2). Radiation-based and combinational methods account for fewer catchments than temperature-based PET
methods (Table S2), implying that they generate weaker trends compared to the temperature-based PET methods. In addition,
overall trend variability among the PET methods decreases from energy-limited to water-limited catchments, irrespective of
trend significance.

AET trends generally align with PET trends in energy-limited catchments but with smaller magnitudes (Figure 2). In these
catchments, all PET methods leads to a positive AET trend in terms of median values. However, a few catchments in this
category reveal a slight negative change for the Blaney-Criddle, Jensen-Haise, Milly-Dunne, and Priestley-Taylor methods.
For mixed catchments, the median AET trend is positive for all PET methods except Blaney-Criddle. The negative AET trends
are similar to those in energy-limited catchments. Overall, the AET trend patterns (high and low trends) for energy-limited and
mixed catchments are similar to the trends in PET for these catchments, regardless of trend magnitude, with a few exceptions
such as Blaney-Criddle and Jensen-Haise (Figure 2). In water-limited catchments, both positive and negative trends in AET are
observed. The pattern remains similar to PET trends with a few exceptions, such as Blaney-Criddle. Across all PET methods,
statistically significant positive AET trends were found in 162 energy-limited, 217 mixed, and 2 water-limited catchments
(Figure S3). Among these significant trends, Jensen-Haise yields the highest AET trend estimates in energy-limited and mixed

catchments. These statistically significant trends closely follow the overall AET trend patterns in these catchment categories.

11



240

245

250

255

260

265

Q trends exhibit lower sensitivity to PET methods in energy-limited and mixed catchments compared to PET trends when
considering all trends (Figure 2). Despite the positive median, a substantial fraction of catchments exhibit a negative trend in
energy-limited catchments. In contrast, for mixed catchments, most PET methods produce negative Q trends, though some
catchments maintain positive trends. In water-limited catchments, there is variability in PET methods; for instance, Milly-
Dunne has a larger trend, whereas Blaney-Criddle shows the lowest trend. Even though PET methods are insensitive in Q,
variability exists among the PET methods within each catchment category. Overall, one-third of the catchments (183) show
statistically significant Q trends: 28 energy-limited, 154 mixed, and one water-limited. All energy-limited catchments show
positive Q trends, except those estimated with Jensen-Haise. In mixed catchments, all statistically significant trends are nega-
tive, with the exception of Blaney-Criddle. Despite fewer catchments with statistically significant trends, the variability in Q
trends across PET methods persists, particularly in energy-limited and mixed catchments.

TWS trends are sensitive to PET methods in water-limited and mixed catchments, but energy-limited catchments remain
largely unaffected (Figure 2). Despite a consistent negative median trend across PET methods in energy-limited catchments,
few catchments still exhibit positive trends. Mixed catchments display a similar pattern. Among PET methods, temperature-
based approaches show greater variability than radiation or combinational types in mixed catchments. In water-limited catch-
ments, trends span positive to near-zero-negative, with Blaney-Criddle, Hargreaves-Samani, and Milly-Dunne showing notable
positive trends. The Blaney-Criddle method also yields higher variability in trend estimates, especially in mixed and water-
limited catchments. When focusing on statistically significant trends, TWS has a similar distribution to Q (30/172/1). Most
PET methods show decreasing trends in energy-limited and mixed catchments, with the exception again of Blaney-Criddle
(Figure S3). Compared to the full trend set, statistically significant trends reveals stronger inter-method differences, with
Jensen-Haise showing the steepest decline and Thornthwaite the weakest.

Hydrological trend estimates for AET, Q, and TWS vary across PET methods and catchment types, regardless of whether
all trends or only statistically significant trends are considered. Statistically significant trends reveal greater divergence be-
tween methods in energy-limited and mixed catchments. AET trends, though weaker in magnitude than PET trends, show
similar spatial patterns, particularly in energy-limited and mixed regions. No single PET method stands out as consistently
dominant across all components. For the trends beyond the statistically significant threshold a stronger pattern emerges. Ap-
proximately 70% of the catchments exhibit statistically significant AET trends, compared to only 33% for Q, and 36% and
TWS. Despite widespread statistical insignificance for Q, and TWS, distinct regional patterns appear. For instance, north-
ern catchments display a mix of increasing and decreasing trends, while southern regions, especially the Iberian Peninsula,

consistently demonstrate positive Q trends.
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Figure 2. Boxplots represent the annual trends (mm year™ ') of different PET methods for PET, AET, Q, and TWS across various categories
of catchments. The whiskers represent the 10th and 90th percentiles, and the box encompasses the 25th and 75th percentiles, with the median
represented by middle line of the box. Abbreviations used for different PET methods are TH: Thornthwaite, BR: Baier-Robertson, BC:
Blaney-Criddle, OD: Oudin, MB: McGuinness-Bordne, HM: Hamon, HS: Hargreaves-Samani, JH: Jensen-Haise, MD: Milly-Dunne, PT:
Priestley-Taylor, PM: Penman-Monteith, CO2: Penman-Monteith[C'O-].
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3.2 Trend comparison of PET methods at seasonal scales

Hydrological cycle components exhibit considerable seasonal variability in trend magnitude. During summer (JJA), nearly all
PET methods exhibit positive trends, with the exception of Milly-Dunne in water-limited catchments (Figure 3). Jensen-Haise
consistently shows the highest trend and greatest variability across all catchments. Notable variability is observed among PET
methods in water-limited catchments. These patterns persist in statistically significant trends, despite a smaller number of
catchments per category (Figure S4). Winter records the weakest PET trends, while spring trends are comparable to those in
summer (Text S2). The summer season is the primary contributor to the annual trends in PET across all catchment categories
(Figure S5). The distribution of statistically significant trends aligns with these findings, with the highest catchment count in
spring (460) and the lowest in winter (66).

In summer, AET exhibits an overall positive trend in energy-limited and mixed catchments for both all trends and statis-
tically significant trends (Figure 3, S4). The Jensen-Haise method exhibits greater variability for energy-limited and mixed
catchments. In water-limited catchments, despite positive PET trends, AET trends are negative across all PET methods, with
Baier-Robertson showing the strongest decline, followed by Jensen-Haise (Figure 3). In spring, AET increases across methods,
with the highest trends observed for Jensen-Haise in energy-limited and Baier-Robertson in mixed catchments. Combinational
methods show consistent trends across both types (Figure S6). This pattern is maintained for statistically significant trends
(Figure S7), with all PET methods showing positive median trends in autumn (Figure S8, S9). Summer season primarily
drives annual trends in energy- and water-limited catchments, while spring and summer contribute jointly in mixed catchments
depending on the PET method (Figure S5).

Q remains generally insensitive to PET method variation across all seasons and catchment types, with minor variability
among methods within each category (Figure 3, S6, S8, S10). In energy-limited catchments, trends remain close to zero
across PET methods. Mixed catchments show broadly negative Q trends across methods, with Blaney-Criddle exhibiting the
weakest decline. In water-limited regions, Q trends are similarly insensitive, though radiation and combinational methods tend
to positive median trends, unlike temperature-based methods, which exhibit mixed results. Statistically significant Q trends
reveal limited seasonality in water-limited catchments, with notable exceptions like Blaney-Criddle, which contributes fewer
catchments (Figures S4, S7, S9, S11). In energy-limited and mixed catchments, statistically significant Q trends demonstrate
higher seasonal magnitude as weaker trends fail to surpass the significance threshold. No single PET method consistently
dominates in trend magnitude, though Jensen-Haise and Blaney-Criddle frequently yield the highest number of statistically
significant catchments. Spring emerges as the dominant contributor to annual Q trends in mixed and water-limited catchments,
while in energy-limited areas, winter and summer are most influential, depending on the PET method (Figure S5).

TWS trends across seasons show minimal sensitivity to PET method in energy-limited and mixed catchments under all-
trend conditions, though slight variability exists among PET methods (Figure 3). Water-limited catchments, however, display
a mixed response. Median trend patterns are generally stable, but Blaney-Criddle consistently shows greater variability than
other methods across all seasons and catchment categories. Statistically significant trends are uncommon in water-limited

catchments, but trend magnitudes increase notably in energy-limited and mixed catchments during spring, summer, and au-
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tumn. In winter, temperature-based methods demonstrate positive trends, with Blaney-Criddle and Jensen-Haise showing the
lowest values (Figure S11). Slight variability across methods also seen in non-winter seasons (Figures S4, S7, S9). Seasonal
contributions to annual trends vary by catchment category: spring contributes most in energy-limited catchments, summer in
305 mixed catchments, and in water-limited catchments. The dominant season depends on the PET method—summer leads for

several (TH, BR, HM, PM, and CO2), while spring dominates for the remaining methods.
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Figure 3. Boxplot represents summer season (JJA) trends of different PET methods for AET, and Q across three categories of catchments:
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3.3 Catchment-wise DCI distribution across annual and seasonal scales

Even though there is a strong agreement across different PET methods in annual PET and AET trends, substantial variation
exists in Q, and TWS responses (Figure 4). All catchments exhibit strong positive DCI for PET, indicating that at least 75% of
310 methods report a positive trend. AET follows a similar pattern, with high positive DCI values across northern (Scandinavia),
central, western, eastern, southeastern (Balkans), and parts of southern (Iberian Peninsula) Europe, except for a few southern
catchments with low as well as negative DCI. In contrast, Q reflects strong positive agreement in southern regions but mostly
negative DCI in northern and eastern Europe. Central and western European catchments are marked by both strong positive
and negative DCI, with few catchments showing disagreement among PET methods. TWS shows widespread disagreement,
315 especially in southern, western, central, southeastern, and northern European catchments. Most central, eastern, and northern
catchments show strong negative agreement for TWS. Overall, PET methods show high directional consistency for PET and
AET, but diverge notably for Q, and TWS.
The above findings appear consistent when the selection of PET methods becomes balanced to eight methods: four temperature-
based, one radiation-based, and three combinational methods, with the latter two fixed across all 70 possible method combi-
320 nations. All the 70 combination results are consistent with the previous findings. For TWS, only a few catchments in southern
and western Europe show strong negative DCI, consistent with earlier areas of disagreement (Figure S12, S13). To assess the
impact of weaker trends, we applied the DCI using only statistically significant trends. PET shows similar agreement patterns
to the all-trend analysis, with minor disagreement in western Europe. For AET, disagreement emerges in most southern catch-
ments and some in western, central, and eastern Europe, which previously showed agreement. Q, and TWS exhibit widespread
325 disagreement, largely due to weak trends across PET methods. Catchments with strong agreement under statistically significant
trends align well with those under all-trend analysis. PET and AET trends remain predominantly positive in both statistically
significant and all-trend evaluations.
To better understand the annual changes of the level of concurrence between all PET method trends, we decompose them into
sub-seasonal values. Figure 5 shows strong positive agreement for PET and AET across all seasons, while Q, and TWS exhibit
330 predominantly negative agreement in central Europe, with evident regional variation. PET demonstrates high positive DCI
in most catchments during spring, summer, and autumn, indicating consistent upward trends. In winter, agreement is highest
in central, eastern, and southern Europe, but weaker elsewhere. AET shows strong seasonal agreement in central Europe,
particularly in winter, spring, and summer, while disagreement emerges in northern and western regions during winter and
in several southern and central catchments during autumn. AET also exhibits strong negative agreement in southern Europe
335 during summer. Q consistently reflects a negative DCI across central Europe in all seasons, although southern catchments show
positive agreement in spring and autumn. TWS trends show persistent negative DCI in central Europe across seasons, while
southern Europe sees a shift from strong positive agreement in spring to strong negative in summer, with weak agreement in
winter and autumn. Northern Europe shows a mix of agreement and disagreement across all seasons.
Comparing sub-seasonal concurrence based on statistically significant trends (Figure S14) highlights both consistencies and

340 divergences compared to the all-trend results. Strong positive DCI for PET and AET is observed in most catchments during
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spring, which aligns with the findings from all trends. In summer, PET shows strong agreement in central and southern regions.
In contrast, Q and, TWS exhibit substantial disagreement across all seasons, with most catchments showing low concurrence
among PET methods. Similar inconsistencies are observed for PET and AET in winter. Some central and eastern catchments
consistently exhibit strong negative DCI for Q, and TWS in both spring and summer, reflecting similar patterns in the all-
trend case. Applying statistical significance thresholds often shifts catchments from strong agreement (positive or negative) to
disagreement, primarily because trends are no longer significant. Notably, no catchments switch from strong positive to strong

negative DCI (or vice versa), confirming the consistency between statistically significant and all-trend results.
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Figure 4. Spatial distribution of annual scale data concurrence index (DCI) for PET, AET, Q, and TWS. PET represents potential evapo-
transpiration, AET represents actual evapotranspiration, Q represents runoff at the outlet of the catchment and TWS represents total water
storage.
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Figure 5. Spatial distribution of seasonal scale (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) DCI for PET, AET, Q, and
TWS. Where DCI represents data concurrence index, PET represents potential evapotranspiration, AET represents actual evapotranspiration,
Q represents runoff at the outlet of the catchment and TWS represents total water storage.

20



350

355

360

365

370

3.4 PET methods and patterns of hydrological cycle at annual and seasonal scales

In the previous section, we compared PET methods and their influence on individual hydrological components (P, AET, Q,
and TWS), including agreement among PET methods. Here, we assess the influence of PET methods on patterns of key
hydrological components across European catchments, identifying the most prevalent trend patterns where components (P,
AET, Q, and TWS) concurrently increase or decrease. For instance, one pattern involves all components showing positive
trends. Figure 6 summarizes these patterns, presenting the average and total number of catchments associated with each PET
method. The analysis includes only the five most frequent patterns, covering the majority of catchments, excluding those
patterns with minimal representation.

Most European catchments exhibit increasing trends across all hydrological components. The second most common pat-
tern involves a decrease in P, Q, and TWS, with an increase in AET. Temperature-based PET methods generally account
more number of catchments for these patterns than radiation and combinational methods, though exceptions exist, such as
Baier-Robertson and Blaney-Criddle. Catchment distributions are spatially consistent across methods for these two patterns
(Figure S15), with Blaney-Criddle showing the highest counts for patterns involving uniform increases or decreases. In case of
statistically significant trends, only the all-positive pattern is prominent (Figure S16), with an average of 80 catchments. This
pattern reveals notable differences between temperature-based and combinational methods. Overall, PET methods differ in the
number of catchments assigned to each pattern; however, combinational methods consistently demonstrate similar catchment
counts across most patterns.

Seasonal analyses reveal distinct PET method preferences across hydrological component patterns. During winter, spring,
and autumn, the prevailing pattern involves decreasing P, Q, and TWS with increasing AET (Figures S17, S18, S20). In contrast,
summer is characterized by increased P and AET, and decreased Q, and TWS. Substantial variation is observed among PET
methods for each hydrological cycle pattern across all seasons. For instance, a pattern where all components exhibit positive
trends, Baier-Robertson captures the fewest catchments, while Blaney-Criddle captures the most. The pattern reverses for the
combination of decreased P, Q, and TWS with increased AET. Blaney-Criddle consistently represents the highest number
of catchments in all-positive and all-negative patterns during spring, summer, and autumn. Combinational methods generally
show stable catchment counts, whereas temperature-based methods exhibit greater variability. Statistically significant trends,

however, are associated with very few catchments, and no single pattern dominates.
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Figure 6. Pattern of different hydrological cycle components and the corresponding influence of PET methods on an annual scale. The
first panel represents different patterns of hydrological cycle components. Each vertical column in this table corresponds to one pattern
of hydrological cycle components. For example, the first column is filled with *+° signs, indicating that all hydrological components (P,
AET, Q, and TWS) exhibit positive changes. The '+’ and ’-’ signs denote positive and negative changes in the respective components. In
the second panel, each bar represents the average number of catchments for each hydrological cycle pattern. The third panel shows the
number of catchments associated with each PET method for the corresponding hydrological cycle patterns. The color of each cell represents
a specific PET method, and each column aligns with the hydrological cycle pattern represented in the corresponding column of Panel One.
Where P is precipitation, AET is actual evapotranspiration, Q is runoff, and TWS is total water storage. Abbreviations used for different
PET methods are TH: Thornthwaite, BR: Baier-Robertson, BC: Blaney-Criddle, OD: Oudin, MB: McGuinness-Bordne, HM: Hamon, HS:
Hargreaves-Samani, JH: Jensen-Haise, MD: Milly-Dunne, PT: Priestley-Taylor, PM: Penman-Monteith, CO2: Penman-Monteith[C'O2].
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3.5 Relationship of PET and precipitation

Precipitation is an important component of the hydrological cycle. Figure 7 shows the changes in precipitation (P) without
considering statistical significance. Annually, positive P trends dominate northern, western, southern, and southeastern catch-
ments, while central Europe shows mixed positive and negative trends. In western Europe, a few catchments exhibit decreasing
P trends (Figure 7A). Seasonally, southern catchments experience increased P in winter, spring, and autumn but declines in
summer. Southeastern Europe shows consistent P increases across all seasons, while eastern Europe exhibits negative P trends
in summer and autumn and positive trends in winter and spring (Figure 7A). P demonstrates a higher correlation with Q, and
TWS across all catchment categories (Figure 7C). This suggests that P has a greater influence on Q, and TWS than PET. In
energy-limited catchments, AET is mainly driven by PET. In mixed catchments, both P and PET contribute to AET. In water-
limited catchments, AET is mainly influenced by P. When we consider statistically significant P trends, only 129 catchments
show significant trends at the annual scale. Across seasons, the number of statistically significant catchments varies from 20
to 61 (Figure S21). Despite the limited number of statistically significant catchments, our findings regarding the influence of P
and PET on AET, Q, and TWS remain consistent with all trends.

23



Annual DJF MAM
70°N 70°N
65°N
65°N
60°N
60°N
55°N
55°N
50°N
50°N 45°N
40°N
45°N
40°N 70°N
65°N
20°E
Trend: -
rend: - W+ 60°N
C
el
L
5 55°N
)
2
« 50°N
el
[}
X
= 45°N
o
> o
E 40°N
I
] =
o
=

AET

Q

TWS

AET

Q

TWS

10°E

20°E 30°E 8°W
Trend: W - W+

0°

Figure 7. Spatial variation of precipitation (P) trends and their relationship with other hydrological components across catchment categories.
Panel A shows the spatial distribution of increasing and decreasing annual P trends. Panel B illustrates the seasonal variation in increasing
and decreasing P trends. Panel C represents the median correlation between P and AET, Q, and TWS, as well as between PET and AET, Q,
and TWS, for each catchment category across all PET methods.
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4 Discussion
4.1 Trendsin P, PET, AET, Q, and TWS across Europe

PET methods consistently exhibit upward annual trends across European catchments (Figure 2), aligning with findings by
Anabalén and Sharma (2017), who reported similar increases using diverse PET datasets. Among the methods, Jensen-Haise
consistently produces the highest absolute values, a pattern observed in various regions by other studies (Kingston et al., 2009;
Hanselmann et al., 2024; Seiller and Anctil, 2016). This method relies on temperature and extraterrestrial radiation data, with
the latter remaining constant annually. Thus, the observed trends are primarily temperature-driven. Shi et al. (2023b) found that
Jensen-Haise trends align closely with Penman-Monteith, which is used as a benchmark for evaluating other PET methods. In
our study, we observe a notable distinction between the Jensen-Haise and Penman-Monteith PET methods, primarily driven by
differences in meteorological forcings. While temperature is the dominant factor in Jensen-Haise, Penman-Monteith is more
influenced by radiation, followed by temperature, vapor pressure deficit, and wind speed (Macek et al., 2018). Conversely, the
Milly-Dunne method consistently shows the lowest trends in water-limited catchments, with lower net radiation-driven trends
in southern Europe (Pfeifroth et al., 2018). Sensitivity analyses of each PET method with meteorological forcings are beyond
the scope of this research.

The AET trend is proportional to the PET trend in energy-limited and mixed catchments. In water-limited regions, there is
not enough water to evaporate, and it is mainly governed by available water (P) (Bruno and Duethmann, 2024). This results
in a notable decline in AET when compared to PET. Anabal6én and Sharma (2017) similarly reported stronger correlations
between AET and PET in energy-limited regions, while AET in water-limited areas aligned more closely with precipitation.
Notably, their study did not differentiate between PET methods but relied on existing datasets. In our analysis, AET exhibits
the same directional changes as precipitation at both annual and seasonal scales in water-limited catchments (Figure 7). Despite
differences among catchment categories, PET methods demonstrate strong positive or negative agreement in AET trends.

Runoff trends vary with PET method selection in water-limited catchments but remain largely insensitive to PET methods
in energy-limited and mixed catchments. This aligns with previous findings (Bai et al., 2015; Oudin et al., 2005; Seiller and
Anctil, 2016), which reported insensitivity of runoff to PET formulations. This insensitivity is often attributed to hydrological
model calibration, where PET impacts are counterbalanced by parameterization. Notably, despite the absence of individual
PET method calibration in our study, runoff in energy-limited and mixed catchments remained insensitive to PET variation.
This is likely due to the strong correlation between precipitation and runoff trends (Figure 7c), which often outweighs the
impact of PET (Berghuijs et al., 2017; Anabalén and Sharma, 2017). The strong negative agreement among PET methods for
runoff in central European catchments is similarly related to their strong correlation with precipitation (Figure 7a).

Total water storage (TWS) appears to be insensitive in energy-limited and mixed catchments, while it exhibits variability
in the trend of different PET methods in water-limited catchments. Bai et al. (2016) observed that TWS in energy-limited
catchments is more strongly impacted by PET than in water-limited catchments, though their study focused solely on Chinese
catchments. More recently, Boeing et al. (2024) reported a decline in TWS over Germany, consistent with our findings that

TWS decreases in energy-limited and mixed catchments for all PET methods. In hydrological models, TWS compensates for
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long-term changes, i.e., higher PET results in lower TWS in energy-limited catchments, whereas water-limited catchments are
primarily governed by precipitation (Bai et al., 2016). This is in line of our findings on the opposite TWS trends relative to
AET and a stronger agreement among PET methods in energy-limited and mixed catchments.

Precipitation generally increases across most catchments, with annual and seasonal patterns largely consistent. Exceptions
occur in summer for the southern catchment and spring for eastern catchments, consistent with findings by Caloiero et al. (2018)
and Markonis et al. (2019). Precipitation has a stronger influence on the hydrological cycle than AET in low and mid-latitude
regions compared to higher latitudes (Zhang et al., 2019). This spatial distribution explains the stronger correlations observed
in mixed and energy-limited catchments, predominantly located in mid and high latitudes. Globally, Q is more sensitive to P

than PET, supporting the observed decline in Q despite rising PET across many catchments (Berghuijs et al., 2017).
4.2 Methodological sensitivity of PET estimation methods

PET methods vary in both absolute values and trends, even within the same category, due to structural and empirical differences
in their formulations. For instance, while Jensen—Haise and Hargreaves—Samani both incorporate extraterrestrial radiation and
air temperature, Hargreaves—Samani includes a diurnal temperature range term absent in Jensen—Haise. Thornthwaite, in con-
trast, relies solely on a heat index derived from monthly temperature. Among combinational methods, Penman—Monteith and its
modified version differ by the inclusion of a CO4 concentration term. Structurally similar methods like McGuinness—Bordne,
Oudin, and Jensen—Haise diverge primarily due to empirically derived constants tailored to specific regions or climates (Prout-
sos et al., 2023). Moreover, catchment size does not significantly influence the overall findings related to PET and hydrological
components (Figure S22), consistent with Tang et al. (2023), who observed that spatial averaging over larger catchments
reduces uncertainty and enhances reliability.

Even though our study’s experimental design varies from the global analysis of Pimentel et al. (2023), both utilize large-
scale hydrological models at the basin scale. Pimentel et al. (2023) evaluated three PET methods to identify the optimal
approach for estimating PET, AET, and Q across the Globe. Across Europe, they reported that Jensen-Haise in northern Europe
(energy-limited), Hargreaves in central (mixed), and Priestley-Taylor alongside Hargreaves-Samani in southern Europe (water-
limited) perform better to estimate PET. For AET estimation, Jensen-Haise remains the preferred method in northern Europe,
with Hargreaves-Samani leading in central Europe and Priestley-Taylor in southern Europe. Priestley-Taylor was also deemed
the most effective for runoff estimation. In contrast, our findings indicate a consistent distinction between Jensen-Haise and
Penman-Monteith for PET across all catchment types. Similarly, for AET, Jensen-Haise consistently shows higher trends than
Penman-Monteith in both energy-limited and water-limited catchments. For runoff, Priestley-Taylor and Penman-Monteith
exhibit similar patterns in energy-limited and mixed catchments; however, in water-limited catchments, Priestley-Taylor yields

more pronounced changes than Penman-Monteith.
4.3 Patterns of hydrological cycle components

When we look at the combination of changes among the hydrological cycle components (P, AET, Q, TWS) across European

catchments, two dominant patterns of changes are observed: a water cycle intensification pattern of simultaneous increase
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in all components and an aridification pattern of simultaneous decline in all except AET. These two patterns can be seen
across over 60% of European catchments. However, when focusing only on significant trends, the pattern of intensification
becomes more dominant, declining approximately to 15% (80 catchments) compared to 0.4% (2 catchments) aridification. The
intensification pattern aligns with findings by Teuling et al. (2019), who reported rising P, AET, and Q in central-western Europe
and declines in these components in the Mediterranean. Their analysis, based on the Penman—Monteith method, also indicated
fewer catchments classified under this pattern compared to temperature-based methods, which show stronger responses. This is
a vivid example of how PET method selection could amplify or dampen our estimates about hydrological cycle intensification.

On the contrary, the aridification pattern (decrease in P, Q, and TWS and increase in AET) suggests that water reserves are
being depleted to sustain evapotranspiration, a mechanism particularly evident in water-limited regions. Bruno and Duethmann
(2024) noted that rising atmospheric demand, without sufficient water supply, results in reduced Q, and TWS. Massari et al.
(2022) similarly reported that increasing AET contributes to Q reductions in water-limited regions. Even with decreasing P and
Q, continued declines in TWS appear to support increases in AET (Massari et al., 2022). For Europe, this is also very relevant
to the compound warm season droughts that have been reported to increase since the beginning of the century (Markonis
et al., 2021), as well as with the conditions that favor the onset and propagation of flash droughts (Shah et al., 2023). Since
the evaporative demand is expected to further increase in the future (Rakovec et al., 2022), it is essential to acknowledge the

uncertainties due to PET method selection.
4.4 TImplications of PET method selection to hydroclimatic regime classification

The selection of PET methods significantly influences the hydroclimatic classification of catchments. Traditionally, catchments
are categorized as water-limited or energy-limited based on the aridity index. However, our study introduces a third category,
termed “mixed”, which lacks a physical basis but highlights the critical role of PET method selection in defining catchment
types. This is when, a PET method that consistently estimates higher values may shift a catchment from energy-limited to
water-limited, whereas a method with lower estimates could reverse this shift. This underscores the importance of method
selection, where variations in PET estimates can alter the hydroclimatic classification. Similarly, Zhang et al. (2016) intro-
duced a less common classification termed “equitant”, which applies a single PET method to calculate the aridity index. Such
methodological differences can lead to inconsistencies in catchment classification. For instance, Kuentz et al. (2017) uses the
Jensen-Haise method, Ajami et al. (2017) utilizes the Priestley-Taylor method, and Zhang et al. (2016) adopt the Penman
method for aridity index estimation. In our analysis, excluding PET methods that consistently estimate higher PET values,
such as Blaney-Criddle, Jensen-Haise, and McGuinness-Bordne, resulted in 42% of catchments transitioning from the mixed

to the energy-limited category (Figure S23). Detailed catchment shifts based on various combinations are outlined in Table S1.
4.5 Limitations and future research

Our study comes with certain limitations that pave the way for future research. One key limitation is the uncertainty associated
with the input data used to calculate PET methods. Previous studies have shown that temperature-based methods are sensitive

to temperature, radiation-based methods to radiation, and combinational methods to multiple variables, including temperature,
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radiation, relative humidity, and wind speed (Hua et al., 2020; Guo et al., 2017). In addition, we use a monthly time step, which
tends to mask the influence of PET method selection on AET extremes. These extremes can behave differently from the mean
state of AET, potentially leading to different implications for changes in hydrological cycle fluxes compared to those based on
mean AET values (Markonis, 2025). Finally, we limited our analysis to one precipitation product to isolate the specific impact
of the PET method. However, precipitation is widely recognized as the most sensitive meteorological input, with extensive
studies highlighting its uncertainties (Mazzoleni et al., 2019; Markonis et al., 2024). Our findings also confirm its dominant
influence over PET in certain catchment categories (Figure 7). This identifies a potential gap for exploring the combination of
precipitation with PET for more accurate simulations of hydrological cycle components. Although we selected meteorological
datasets with comparatively lower uncertainty, data quality, whether from observational or reanalysis sources, remains an issue
for hydrological assessments. While our focus was on methodological comparisons among PET methods, future research could
benefit from multi-source assessments to enhance the robustness and reliability of hydrological modeling.

Large-scale hydrological models, including mHM, typically rely on default parameterization. In mHM, these parameters
were initially developed using German basins, as outlined by Samaniego et al. (2010) and Kumar et al. (2013a). Since then,
mHM has been extensively tested across various basins and hydrological variables (Rakovec et al., 2016; Samaniego et al.,
2019; Boeing et al., 2024). For instance, Rakovec et al. (2016) evaluated discharge simulations across 400 European catch-
ments using 36 parameter sets, demonstrating consistent model performance regardless of parameterization, thereby reinforcing
confidence in the model’s reliability. Similar approaches have been applied in global water models; Beck et al. (2017) employed
ensemble parameters derived from ten catchments, while Kumar et al. (2013a) tested default parameters from European basins
across 80 American catchments with varying climatic conditions. While these studies demonstrate the robustness of default
parameterization, investigating how PET-specific calibration affects hydrological trends could provide valuable insights for fu-
ture research. Notably, the Hargreaves-Samani PET method, used in developing these parameters in mHM, demonstrated best
model performance in this study but did not consistently stand out compared to other PET methods in trend analysis across hy-
drological components. Moreover, the study is confined to temperate European catchments, leaving a gap in assessing arid and
tropical climates, where distinct patterns may emerge. While Penman-Monteith[CO-], it did not exhibit substantial differences
compared to the Penman-Monteith method, indicating the need for further exploration of this method. It would be interesting

to assess their impact under changing climate conditions and their implications for trend assessments.

5 Summary and conclusions

Twelve PET methods were used to evaluate their impacts on changes in the components of the hydrological cycle using the
mesoscale Hydrological Model (mHM). These methods were applied across 553 European catchments, which vary in size
and include different European climate types. These catchments were classified as water-limited, energy-limited, and mixed
catchments based on their aridity index. Changes in PET and hydrological components were assessed using Sen’s slope for
trend magnitude and the Mann—Kendall test for statistical significance. We analysed our results under two cases: first, using

all trends; and second, using only statistically significant trends. To assess the agreement between different PET methods, we
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used the data concurrence index for the period 1980 to 2019. The results demonstrate that the choice of PET method can
substantially affect changes in AET, Q, and TWS, especially in water-limited and mixed catchments, with smaller changes
and greater variability observed in water-limited catchments on an annual scale. Seasonal variations in changes and agreement
between PET methods were also observed, as discussed in detail in sections 3.2 and 3.3. In general, there is agreement among
the different methods that, since 1980, PET and AET are increasing over Europe, while runoff and total water storage exhibit
mixed fluctuations depending on the method used and the catchment latitude. The key findings of our study are summarized as

follows:

1. PET is increasing across European catchments. The majority of the PET methods indicate a positive trend in all categories

of catchments, but the increase rates differ among the methods employed.

2. At the annual scale for all trends, the Jensen-Haise PET method stands out by consistently showing the highest trends
for PET and AET across all catchment categories. The Milly-Dunne (energy-based) method is notable as the only one
to exhibit a negative trend for water-limited catchments. Regarding Q, and TWS, the PET methods display different
changes and variability, with no method consistently showing either the lowest or highest trends for these hydrological

components. Conclusions remain consistent when considering only statistically significant trends.

3. The trend patterns between PET and AET are similar across all methods for the hydrological cycle components. However,
Q, and TWS do not exhibit the same pattern and appear to be less sensitive to choice of PET methods. Most PET methods
agree on the trend direction for PET and AET, but in a few catchments, the trends for Q, and TWS show an opposite
direction. The negative trends in Q, and TWS are primarily due to negative precipitation trends, which have a stronger

impact on these components in all catchment categories.

4. At the seasonal scale, PET methods reveal different trends for PET, with no method consistently showing the highest or
lowest trends across all seasons. However, the Jensen-Haise method shows the highest PET trends during spring, autumn,
and summer. AET trends follow a similar pattern to PET in all seasons. The PET methods show strong agreement on
trend direction for central and southern European catchments, especially for PET, but there is less agreement for northern
catchments in winter. Strong negative agreement is found for Q, and TWS in summer and spring, while disagreement is

observed for AET in central and southern catchments during autumn.

5. The summer season contributes more to the annual PET trends than any other season across all catchment categories.
Similarly, for AET, the summer season has a higher contribution to the annual AET trend in energy-limited and water-
limited catchments. For runoff (Q), the spring season contributes more in mixed and water-limited catchments. For TWS,

the spring season has a higher contribution in energy-limited catchments.

6. Overall, the magnitude of trends varied between PET methods for PET and the hydrological components (AET, Q, and
TWS). The use of a specific PET method in a hydrological model can notably affect studies focused on the hydrological

cycle.
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7. Precipitation primarily governs trends in all hydrological components and catchment types, except for AET in energy-

limited catchments, which is largely influenced by the choice of PET variations.

8. The choice of PET method substantially influences hydrological patterns across European catchments on both annual
555 and seasonal scales. Combinational methods generally account for fewer catchments than temperature-based methods in

dominant hydrological patterns. This observation remains consistent for statistically significant trends as well.

9. In the case of statistically significant trends, the conclusions remain consistent with those from the all-trend analysis.

The only difference is the reduced number of catchments, primarily omitted due to weaker trends.

Our research demonstrates the critical role of PET method selection and its implications for quantifying fluctuations in the

560 hydrological cycle. Our findings reveal that two methods notably deviate from the others. Specifically, the Jensen-Haise method
shows higher trend values, while the Milly-Dunne method exhibits lower trends in water-limited catchments. Consequently, we
recommend exercising caution when applying these methods as they appear to be outliers. Despite these variations, the PET
methods generally agree that atmospheric moisture demand is increasing across Europe, reflecting recent shifts in temperature

and radiation. The observed variability in trend magnitudes emphasizes the importance of careful PET method selection to

565 ensure robust and representative assessments of hydrological trends.
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Appendix A: Potential Evapotranspiration formulation

Table A1. Formulations of PET methods. Where R. is extraterrestrial radiation (MJ m~2d~1), A is the latent heat of vaporization (MJ kgfl),
p is water density (= 1000 kg m~?), dg is air density (kg m~?), T, is air temperature (°C), T is dew point temperature (°C), Tmax iS maximum
air temperature (°C), Tiin is minimum air temperature (°C), A is the slope of the vapor pressure curve (kPa°C™!), v is the psychrometric
constant (kPa°C™1), e, is saturation vapour pressure (kPa), e, is actual vapour pressure (kPa), us is wind speed 2 m above the soil surface
(ms™1), R, is net short-wave radiation MIm~2d ™), Ry, is net incoming solar radiation (MJ m~2d™Y), G is soil heat flux MIm~2d™1),
RH is relative humidity (%), DL is day length (hd ), I is annual heat index, and C'Ox is carbon dioxide concentration (ppm). The following
abbreviations are used throughout the manuscript to refer to the respective PET methods: TH (Thornthwaite), BR (Baier-Robertson), BC
(Blaney-Criddle), OD (Oudin), MB (McGuinness-Bordne), HM (Hamon), HS (Hargreaves-Samani), JH (Jensen-Haise), MD (Milly-Dunne),
PT (Priestley-Taylor), PM (Penman-Monteith), and CO2 (Penman-Monteith[C'O2]).

Method Formulation Reference
Hargreaves-Samani 0.0023 x )\Iiep X Vtmaz — tmin X (tavg +17.8) x 1000 Hargreaves and Samani
(1985)
McGuinness-Bordne 1000 x /\R;p X T‘ég‘r’ McGuinness and Bordne
(1972)
Hamon k x0.165 x 216.7 X,% X Wi% Hamon (1961)
Oudin 1000 x 52 x feped Oudin et al. (2005)
Baier-Robertson 0.157 X tmaz +0.158(tmaz — tmin) +0.109 X R, —5.39 | Bai et al. (2016)
Blaney-Criddle 0.825 x (0.46 X tqug + 8.13) x L00xDL Blaney (1952)
k
Thornthwaite 16 x DL x (LX; “’“9> Thornthwaite (1948)
Jensen-Haise 1000 x /\RX“ X Tigg Jensen and Haise (1963)
Priestley-Taylor %&‘f Priestley and Taylor
(1972)
Milly-Dunne 0.8 x (R, —G) Milly and Dunne (2016)
0.408 X AX (Rp—G)+ 7200 ) Xuz X (es—e€a
Penman-Monteith xaxd ~ 437 : ;ggﬂg - Zg)) KX ) Penman (1948)
. 0.408><A><(R”7G)+’y><(%)Xuzx(esfea)
Penman-Monteith[C'O5] AT X (T03TX (G T2 X0 < ([COs[=3007)) Yang et al. (2019)
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