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Abstract: Estimation of field-scale surface and rootzone soil moisture (SM) is crucial for agriculture water 12 

management. When ground observations are not available, Land Surface Models (LSMs) aid in reconstructing 13 

historical dynamics and providing predictions. However, they often run at coarse resolution (in the order of tens 14 

of kilometers), overlook subgrid processes (e.g., lateral flow), and thus underestimating the SM spatial 15 

heterogeneity. Considering this limitation, we applied the Noah-MP LSM with the HydroBlocks hyper-resolution 16 

modeling framework to estimate surface and rootzone SM at field scale (effective 30 meters resolution) for the 17 

first time in India. Recognizing the importance of rootzone processes for agriculture, the present study attempts 18 

to improve high-resolution rootzone SM simulations by incorporating vertical heterogeneity in soil properties into 19 

HydroBlocks using the SoilGrids global soil database. The analysis is carried out in Upper Bhima Basin (a 20 

subbasin of Krishna Basin) for 2020 with ERA5-Land meteorological forcing. 21 

HydroBlocks simulations, configured with vertically homogeneous (VHom) and vertically heterogeneous (VHet) 22 

soil properties, were compared against GLEAM, ERA5-Land, SMAP-L3, and SMAP-L4, revealing temporal 23 

consistency (correlation between 0.76 and 0.94) and improved sub-grid (up to 0.2 m3m-3) and spatial variability 24 

(σθ), in particular VHet (σθ = 0.093 m3m-3) higher than VHom (σθ = 0.09 m3m-3). Both HydroBlocks 25 

configurations show reasonable performance against in situ SM observations, with VHet showing systematic 26 

improvement compared to VHom by reducing the bias in all sub surface layers and a higher correlation (0.60) 27 

than VHom (0.59) at deeper layer (0-60 cm). Finally, we performed a Sobol sensitivity analysis to investigate the 28 

seasonal sensitivity of soil on HydroBlocks (VHet) SM simulations for the first five soil layers (up to 1 meter 29 

depth). Results revealed that soil parameters interact more prominently in the surface layer and during monsoons. 30 

Soil porosity (MAXSMC), Brooks-Corey parameter (BB), and SM at wilting point (WLTSMC) are significant 31 

parameters across seasons. Their order of significance changes from surface to deeper layers; however, they 32 

remain consistent beyond 30 cm depth. This study finds that the hyper-resolution LSM with vertical soil 33 

heterogeneity can enhance small-scale SM simulations by accounting for varying parameter importance, 34 

interactions, and seasonal effects within the soil column. 35 

1. Introduction 36 

Soil moisture is an important state variable in the energy and water cycles. It effectively controls sensible and 37 

latent heat fluxes at the land-atmosphere interface (Benson and Dirmeyer, 2021), playing a decisive role in land-38 

atmospheric interactions (Schwingshackl et al., 2018; Sehgal et al., 2021; Goswami et al., 2023). Soil moisture 39 
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available at the plant root zone (up to 1 m deep from the surface) represents the water availability to plants. Hence, 40 

rootzone soil moisture is significant in agriculture (Rigden et al., 2020; Tijdeman and Menzel, 2021). There is a 41 

notable spatial scale dependency on soil moisture variability, which is attributed to physical controls, including 42 

climatic factors like precipitation and land surface variability due to soil types, vegetation characteristics, and 43 

topography (Famiglietti et al., 2008; Gaur and Mohanty, 2016; Rosenbaum et al., 2012; Vergopolan et al., 2022). 44 

The dominance of these soil moisture controls varies significantly with changing spatial scales (Joshi and 45 

Mohanty, 2010; Vergopolan et al., 2022). With an increase in spatial resolution (from 25 km to ~1.6 km), drivers 46 

of soil moisture variability shift from vegetation, soil, and topography (Gaur and Mohanty, 2013, 2016) to mostly 47 

soil itself. Accordingly, the significance of scale and spatial variability may vary depending on the emphasis of 48 

different studies. The landscape heterogeneity is further enhanced by farming practices (irrigation, fertilizer 49 

application, tile drainage) (Vergopolan et al., 2021; Yang et al., 2024), particularly at the surface layer. This 50 

heterogeneity is not captured within a coarser grid resolution and is even more challenging to assess in a 51 

fragmented agrarian system (Vergopolan et al., 2021).  52 

Land surface Models (LSMs) have advantages over satellite and point scale observations by providing temporally 53 

consistent hydrologic estimates over a large extent. Although LSMs are capable of accurate simulation of various 54 

land surface processes, traditional models are limited to macro scales (in the order of tens of kilometers), which 55 

are primarily intended to run synergistically with climate models (Ek et al., 2003; Lawrence et al., 2011; Niu et 56 

al., 2011). The coarse resolution can overlook many aspects of agricultural applications, including irrigation water 57 

management and crop yield prediction (Ray et al., 2022). However, traditional LSMs still overlook many subgrid 58 

processes, including subsurface lateral connectivity, which becomes significant when the model resolution 59 

becomes finer (Ji et al., 2017; Kim and Mohanty, 2016; Krakauer et al., 2014; Singh et al., 2015). To understand 60 

the soil moisture heterogeneity at the farm scale (in the order of a few meters), LSMs must accurately represent 61 

the complexity of various land surface processes at that scale. However, increasing complexity significantly 62 

increases computational expenses.  63 

HydroBlocks (Chaney et al., 2016, 2021) is a semi-distributed hyper-resolution (< 1 km) LSM with Noah-MP at 64 

its core intended to simulate soil moisture at 30 m spatial resolution. One of the critical advantages of HydroBlocks 65 

is its incorporation of subsurface lateral connectivity between its computing units. Studies have been conducted 66 

to leverage the benefits of this semi-distributed modeling approach to simulate soil moisture at hyper-resolution 67 

without making the simulations computationally expensive (Torres‐Rojas et al., 2022; Vergopolan et al., 2020, 68 

2021). In India, fragmented agriculture prevails with 86% small or marginal holdings with farm sizes less than 2 69 

hectares (Agriculture Census, 2015-16). Hence, considering the backdrop of small farm sizes prevalent in the 70 

country, representing sub-grid heterogeneity of soil, topography, and meteorological variables at the field scale is 71 

fundamental. High resolution soil moisture aids agricultural applications, including drought (Park et al., 2017; 72 

Vergopolan et al., 2021), crop yields (Vergopolan et al., 2021), precise irrigation and water management (Jalilvand 73 

et al., 2021, 2023; Zhou et al., 2024). 74 

However, one of the critical challenges to extending the applicability of a hyper-resolution LSM is the availability 75 

of high-resolution input data as well as point scale observations for validation. The availability of digital soil maps 76 

at a finer spatial resolution and applying Pedo Transfer Functions (PTFs) for estimating soil-hydraulic properties 77 

can provide better results for surface soil moisture simulations compared to the traditional look-up table approach 78 

in the LSMs (Xu et al., 2023). Soil properties are dominant physical controls in soil moisture spatial heterogeneity 79 
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(Crow et al., 2012; Vergopolan et al., 2022). The importance of incorporating soil vertical heterogeneity in LSMs 80 

is emphasized in previous studies either through a simplified LSM considering a single soil column (Yang et al., 81 

2005) or approximating effective hydraulic parameters (Zhu and Mohanty, 2003). While those approaches were 82 

valuable in advancing our understanding, their application in simulating soil moisture at a heterogeneous land 83 

surface at field scales covering large spatial extent remains limited. Incorporating soil vertical heterogeneity in 84 

the HydroBlocks LSM has improved field scale surface soil moisture simulation (Xu et al., 2023). However, the 85 

effects of incorporating soil vertical properties in the model to simulate rootzone soil moisture at the field scale 86 

are still unknown. With the greater significance of rootzone soil moisture in agriculture, a study on understanding 87 

the role of soil vertical properties on rootzone soil moisture simulations applied agriculture-dominant countries 88 

like India is needed 89 

The soil hydraulic properties are parameterized in LSMs, and uncertainties in these soil parameters affect soil 90 

moisture simulations (Arsenault et al., 2018; Cai et al., 2014). Applying PTFs on digital soil maps and 91 

incorporating soil vertical properties offers a better representation of the spatial heterogeneity of soil parameters. 92 

Besides, HydroBlocks LSM, which accounts for subsurface lateral flow, can provide more accurate field scale 93 

soil moisture simulations (Vergopolan et al., 2022, 2020). However, the vertical and seasonal influence on these 94 

properties in soil moisture simulation at the field scale remains unknown.  Hence, a detailed sensitivity analysis 95 

of soil parameters on soil moisture simulations at a field scale is required. 96 

The current study deploys digital soil maps combined with PTFs to estimate soil properties for each vertical soil 97 

layer in HydroBlocks and soil moisture at the farm scale (30 m spatial resolution). Although the primary goal of 98 

this study is to understand the effect of soil vertical properties in rootzone soil moisture, a study emphasizing the 99 

importance of having hyper-resolution LSM in India is still missing.  For the first time, a hyper-resolution LSM 100 

simulations were set up over an Indian catchment, the Upper Bhima basin, a sub-basin of Krishna, in Maharashtra.. 101 

Although focused on a single catchment, this research holds global relevance, particularly considering that 84% 102 

of the world’s farmers are smallholders. 103 

The current study evaluates the performance of surface and rootzone soil moisture simulations obtained from two 104 

configurations of HydroBlocks – the first configuration with vertically heterogeneous soil properties and the 105 

second with vertically homogeneous soil properties. The soil moisture simulations from the model are evaluated 106 

using available in situ soil moisture station data in the basin at multiple soil depths. Because India does not have 107 

a well-monitored soil moisture network to evaluate the simulations, we also assessed the performance using 108 

satellite and reanalysis of soil moisture products. We also did an intercomparison between two HydroBlocks 109 

configurations at multiple layers (up to 1 m deep) to simulate soil moisture at each layer. Besides, a comprehensive 110 

understanding of the significance of soil parameters in hyper-resolution modeling of soil moisture for each soil 111 

layer and their seasonal variability remains unknown. Hence, for the first time, we performed a global sensitivity 112 

analysis test using the HydroBlocks, which considers soil vertical heterogeneity, on five soil layers (up to 1 meter 113 

depth) to assess the influence of soil textural parameters on the model simulated soil. In this process, we also 114 

evaluated the seasonal variability of parameter sensitivity. Through this research, we aim to address the following 115 

research questions: 116 

▪ What are the benefits of a hyper-resolution LSM in generating soil moisture at the surface and rootzone 117 

over an agriculture-dominant landscapes in India? 118 
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▪ What changes does the integration of vertical soil heterogeneity into the model bring in the simulation 119 

of surface and rootzone soil moisture? 120 

▪ What are the sensitive soil parameters toward soil moisture in each soil layer?  121 

▪ Is there a seasonal influence on the soil parameter sensitivity? 122 

2. Data and Methods 123 

2.1 Study Area 124 

The present study is carried out in the Upper Bhima basin, as shown in Fig.1, a subbasin of the Krishna Basin in 125 

India. The Upper Bhima basin has a spatial extent spread around 45,790 km2 between 73.3° and 76.10° longitudes 126 

and 16.85° and 19.40° latitudes. The terrain is characterized by high elevation (353 m -1479 m) with steep slopes 127 

towards the west and flat land towards the east. The subbasin is identified with seven land cover classes according 128 

to IGBP standards of land cover classification, as shown in Fig.1. The majority of the basin area is occupied by 129 

croplands with more than 77%, followed by grasslands (12%), urban and built-up areas (6%), water bodies (2.5%), 130 

mixed forests (1.8%), with the remainder 0.7% for barren lands and permanent wetlands.  131 

 132 

 133 

Figure 1: The Upper Bhima Basin (a) elevation in meters and (b) land use land cover (LULC) according to IGBP 134 

classification. The basin is divided into 35 subwatersheds modeled independently. The inset shows the location 135 

of the IMD station for in situ soil moisture observations. 136 

The entire study area is subdivided into 35 watersheds (Lehner and Grill, 2013), with area varying between 490 137 

km2 and 2883 km2 to make the simulations computationally feasible. The climate of the Upper Bhima River 138 

Basin is marked by a high degree of variability due to the interplay between the monsoon and the Western Ghat 139 

mountain range (Gunnell, 1997) The average annual rainfall for the basin is 653 mm, which is distributed non-140 

uniformly across space and time (Garg et al., 2012). The Western Ghats zone receives heavy rainfall, with a 141 

maximum of 5000 mm per year. However, the rainfall decreases significantly towards the eastern slopes and 142 

plateau areas, falling below 500 mm per year (Pavelic et al., 2012).  143 
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2.2 Data 144 

2.2.1 ERA5-Land  145 

ERA5-Land is the fifth-generation global reanalysis product, providing hourly data for the land component of 146 

ERA5 at a spatial resolution of 9 km from 1950 onwards (Muñoz-Sabater et al., 2021).  The model assimilates 147 

data from satellite sensors like Soil Moisture Ocean Salinity (SMOS), Advanced Microwave Scanning 148 

Radiometer-2 (AMSR-2), Tropical Rainfall Measuring Mission Microwave Imager (TRMM-MI), Active 149 

microwave instrument scatterometer onboard ERS1/2 and meteorological operational satellite for soil moisture 150 

product. Soil moisture data available at three soil layer depths (0-7 cm, 7-28 cm, and 28-100 cm) at 3-hour 151 

intervals were used in the current study for comparison with the model simulated soil moisture data.  152 

2.2.2 GLEAM 153 

GLEAM is a set of algorithms that estimate the main components of evapotranspiration based on satellite 154 

observations (Martens et al., 2017). In the current study, we have used GLEAM v3.6a – a global dataset spanning 155 

42 years with a spatial resolution of 0.25° and a temporal resolution of 1 day. This dataset is based on the reanalysis 156 

radiation and air temperature, a combination of gauge-based reanalysis and satellite-derived precipitation and 157 

satellite derived vegetation optical depth. Soil moisture data from this product is available for surface (0-10 cm) 158 

and (0-100cm) 159 

2.2.3 SMAP enhanced L3 160 

The Soil Moisture Active Passive (SMAP) enhanced Level 3 product is a daily composite based on SMAP 161 

enhanced Level 2 product (O’Neill et al., 2021), providing global soil moisture data at a spatial resolution of 9 km 162 

available from 2015 onwards. In the current study, we have used daily SPL3SMP_E, Version 5 soil moisture data 163 

(0- 5 cm) for the study area. 164 

2.2.4 SMAP L4 165 

The level-4 SMAP is a global product that merges SMAP observations into the NASA Catchment Land Surface 166 

Model (Reichle et al., 2014) using an Ensemble Kalman filter. Hence, it provides data at a deeper layer, facilitating 167 

rootzone soil moisture estimates. For the current study, we have used rootzone (0-100 cm) soil moisture estimates 168 

of SMAP L4 product at a spatial resolution of 9 km and temporal resolution of 3 hours. 169 

2.2.5 In-situ soil moisture data  170 

The India Meteorological Department (IMD) Agromet Division provides weekly soil moisture measurements for 171 

41 stations across India at various depths: 5 cm, 7.5 cm, 15 cm, 30 cm, 45 cm, and 60 cm based on gravimetric 172 

measurements. The Upper Bhima basin has only one station at 18.5385° N, 73.8429° E (Fig.1). However, during 173 

2020, due to the COVID-19 pandemic, soil moisture was recorded for only 34 weeks. Despite limited data, this 174 

comprises the best ground truth estimation of soil moisture in the domain. 175 
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2.2.6 Data used in the HydroBlocks  176 

We use ERA5-Land (Muñoz-Sabater et al., 2021) as meteorological forcings, which include precipitation, air 177 

temperature, longwave and shortwave radiations, surface air pressure, wind speed, and specific humidity derived 178 

from 2 m dew point temperature at 0.1° spatial resolution and 3-h time intervals over a time period 2015-2020. 179 

Besides, the model also requires static data about soil characteristics, topography, and land cover regridded to 30 180 

m spatial resolution. We used the SoilGrids dataset (Hengl et al., 2017) at 250 m resolution and PTFs (Saxton and 181 

Rawls, 2006) to estimate other soil hydraulic properties. These include porosity, pore size distribution parameters, 182 

soil moisture at the wilting point, field capacity, saturated hydraulic conductivity, soil water diffusivity at 183 

saturation, and saturated soil matric potential. The land use land cover data is obtained from ESRI (Karra et al., 184 

2021), available at 10 m resolution. Further, the land cover classes are reclassified based on IGBP classification 185 

as per the model requirement using the nearest neighbor for each 30m grid cell. The elevation data for topography 186 

is obtained from the ASTER Global Digital Elevation Model, available at a resolution of 30 m. 187 

2.3 HydroBlocks Model 188 

HydroBlocks (Chaney et al., 2016, 2021) is a semi-distributed hyper-resolution LSM that clusters areas of 189 

hydrologic similarity into Hydrologic Response Units (HRU). The HRUs form the domain’s computing units and 190 

enable simulating land surface processes at an effective 30m spatial resolution. At its core, HydroBlocks applies 191 

Noah-MP to solve land surface processes within each HRU. The present study uses the HydroBlocks model 192 

version using Darcy’s equation to maintain the lateral connectivity between HRUs at the subsurface (Chaney et 193 

al., 2021). HydroBlocks was validated over the United States and have been demonstrated to provide accurate and 194 

computationally feasible simulations of soil moisture at a farm scale (Vergopolan et al., 2021, 2020).  195 

2.4 HydroBlocks Model with Vertically Heterogenous Soil Parameterization for Soil Moisture Profile 196 

Simulations      197 

For computational efficiency, the basin was discretized into 35 sub-watersheds. For each sub-watersheds, we 198 

simulated soil moisture at 30 m resolution at the surface (0 – 5 cm) and the rootzone (0 – 100 cm) for the year 199 

2020 at a temporal resolution of 3 hours. We spin up the model from 2015 to 2019. In an attempt to improve the 200 

soil moisture profile simulations, the HydroBlocks model is modified to incorporate vertical heterogeneity in soil 201 

properties. The schematic of vertical heterogeneity implemented in HydroBlocks is shown in Fig.2. The vertical 202 

heterogeneity of soil properties corresponds to soil depth information as in SoilGrids, which are 0-5 cm, 5-15 cm, 203 

15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm. From this point forward, vertical heterogeneity (of soil 204 

properties) incorporated in HydroBlocks is referred to as HydroBlocks Vertically Heterogeneous (VHet) version. 205 

In the case of the existing model of HydroBlocks, the soil profile is assumed to be vertically homogeneous 206 

(VHom), wherein the surface layer soil properties are utilized for the entire soil column. Both model 207 

configurations are run at Noah-MP parameterization schemes, as shown in Table 1.  208 
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 209 

Figure 2: Schematics depicting HydroBlocks LSM setups. a) HydroBlocks updates soil moisture between 210 

different soil layers after incorporating vertical flow between layers and lateral flow between the HRUs at the 211 

subsurface layer for every timestep. The lateral subsurface flow is defined by Darcy’s equation. b) HydroBlocks 212 

model setup with vertically homogeneous (VHom) soil and after incorporating vertical heterogeneous (VHet) soil. 213 

Soil properties for each layer are defined by sand clay and organic matter content using PedoTransfer Functions 214 

(PTFs). Each small square represents soil parameters for each soil layer. Hence, the VHet setup has eight soil 215 

parameters stacked for three soil layers (represented by three colours). In the VHom setup, the eight soil 216 

parameters corresponding to the surface layer are used in the entire soil column. 217 

Table 1. Description of the selected Noah-MP schemes 218 

Parametrization Schemes selected 

Dynamic vegetation Off 

Canopy stomatal resistance Ball-Berry 

Soil moisture factor for stomatal resistance Noah type 

Runoff and groundwater 
TOPMODEL-based scheme with the equilibrium 

water table 

Surface layer drag coefficient Monin-Obukhov-based 

Supercooled liquid water in frozen soil Koren99 scheme 

Frozen soil permeability Koren99 scheme 

Radiation transfer Modified two-stream 

Ground snow surface albedo CLASS 

Snow/soil temperature time scheme (layer 1) Semi implicit scheme 

2.5 Performance Evaluation 219 

 To compare model simulations with IMD in situ soil moisture observations, we selected common depths (5 cm, 220 

15 cm, 30 cm, and 60 cm). Soil moisture simulations from the model are hence calculated corresponding to layers 221 

0- 5cm, 0-15 cm, 0-30 cm, and 0-60 cm after assigning weights based on the model layers 0-5 cm, 5-15 cm, 15-222 

30 cm, and 30-60 cm. VHet and VHom simulations are evaluated against in situ observations using bias, unbiased 223 

Root Mean Square Error (ubRMSE), Pearson’s correlation (R), and Spearman’s rank (Rsp) correlations. 224 

Due to the limited availability of in situ soil moisture observations over the study area, HydroBlocks simulated 225 

soil moisture is also compared with existing satellite and reanalysis products. These products include SMAP L3 226 
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Enhanced (9 km resolution), SMAP L4 (9 km resolution), ERA5-Land (0.1° resolution) and GLEAM (0.25° 227 

resolution). The evaluation of surface and rootzone soil moisture simulations is carried out in two ways. First, 228 

consistency with respect to satellite and reanalysis datasets is carried out in terms of temporal and spatial 229 

variations. Time variations are assessed in four randomly selected watersheds (Fig.S1). Spatial variations are 230 

evaluated in terms of daily soil moisture and spatial standard deviations (to analyze the subgrid heterogeneity). 231 

Spatial standard deviation is computed using the HydroBlocks simulations from grid cells falling within the 232 

coarser resolution grids of each reanalysis and satellite data. Second, a quantitative comparison is carried out by 233 

upscaling HydroBlocks soil moisture simulations to a reference macroscale product. We use bias, Pearson 234 

Correlation, and ubRMSE for this purpose. For the surface layer, spatio-temporal comparisons are carried out 235 

with SMAP L3, ERA5-Land, and GLEAM surface soil moisture. For the rootzone, SMAP L4, ERA5-Land, and 236 

GLEAM rootzone soil moisture are used for this purpose. In both cases, one SMAP grid cell is randomly identified 237 

within the four selected watersheds (Fig.S1), and soil moisture corresponding to the grid cell is considered from 238 

all datasets. A quantitative comparison is carried out using SMAP L3 and SMAP L4 as references for surface and 239 

rootzone soil moisture simulations. 240 

2.6 Sensitivity Analysis 241 

Soil moisture has high spatial-temporal variability. Understanding this variability in the context of the influence 242 

of soil textural properties requires a careful study of their role under varying climatic conditions. Although soil 243 

textural properties have been shown to drive the soil moisture variability at hyper-resolutions (Vegropolan et al., 244 

2022), the vertical and seasonal influence on these properties in soil moisture simulation at this scale remains 245 

unknown. Hence, a Sobol sensitivity analysis (Sobol, 1993) is performed on the soil parameters of HydroBlocks 246 

(parameters used in Noah-MP) at the HRU scale and at every timestep. Eight soil parameters are considered, 247 

which include the Brooks-Corey parameter (BB), wilting point (WLTSMC), porosity (MAXSMC), field capacity 248 

(REFSMC), soil moisture limiting direct evaporation (DRYSMC), saturation soil matric potential (SATPSI), 249 

saturated hydraulic conductivity (SATDK) and saturated soil-water diffusivity (SATDW). To minimize the 250 

computational time, we selected a small watershed of 402.1 km2 within the basin to perform the sensitivity test 251 

across all of its HRUs. The watershed is predominantly cropland (96%), waterbodies (2.3%), and with the 252 

remainder 1.7% for urban and mixed forest. The watershed has flat terrain with elevation range between 376m 253 

and 548m and clay content (30% to 42.6%). To assess the sensitivity of soil parameters with respect to depth, 254 

Sobol analysis is carried out on soil moisture simulations obtained from HydroBlocks VHet version at each soil 255 

layer and each timestep across all HRUs in the selected watershed. We considered a variability of one standard 256 

deviation for each soil parameter in the sensitivity analysis. The Sobol analysis is carried out using the Python 257 

package SALib (Herman and Usher, 2017). In this test, HRUs under urban land cover are omitted due to the lack 258 

of information and variability of soil parameters in these regions. This test decomposes the total variance 𝑉  of the 259 

model output as a combination of variances of each input parameter as 𝑉𝑖 and as variances of its interactions with 260 

other parameters. 261 

V = ∑  𝑖 𝑉𝑖 + ∑  𝑖<𝑗 𝑉𝑖𝑗 + ∑  𝑖<𝑗<𝑘 𝑉𝑖𝑗𝑘 + 𝑉12,…,𝑛       (1) 262 

𝑉𝑖𝑗  is the variance in the model output corresponding to the interaction between parameters i and j, and hence 263 

𝑉12,…,𝑛 represents all the interactions higher than the third order. 264 
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𝑆𝑖 is the first-order Sobol index representing the contribution of each parameter without considering its interaction 265 

with other parameters. The total contribution from parameter i., including its interaction with other parameters, is 266 

defined by the total order of Sobol index 𝑆𝑇𝑖. This can also be written in terms of total variance, 𝑉  when the sum 267 

of all variances where every parameter is varied except the parameter i as 𝑉∼𝑖 . Hence, the first-order Sobol index 268 

𝑆𝑖 and total-order Sobol index 𝑆𝑇𝑖 are as follows. 269 

𝑆𝑖 =
𝑉𝑖

𝑉
,              (2) 270 

𝑆𝑇𝑖 = 1 − 𝑉∼𝑖/𝑉            (3) 271 

Soil moisture generated from the model is a time series data. Hence, Sobol indices are calculated at each timestep 272 

for all parameters under consideration. Further, following (Cuntz et al., 2016), the 𝑉12,…,𝑛 arithmetic mean of Sobol 273 

indices is calculated over all time steps as given below. The time series of sensitivity is utilized to assess the role 274 

of seasonality in influencing soil parameter sensitivity on soil moisture profile simulations. 275 

𝑆𝑖

—

=
1

𝑇
∑  𝑇

𝑡=1 𝑆𝑖(𝑡) =
1

𝑇
∑  𝑇

𝑡=1
𝑉𝑖(𝑡)

𝑉(𝑡)
         (4) 276 

𝑆𝑇𝑖

—

=
1

𝑇
∑  𝑇

𝑡=1 𝑆Ti(𝑡) = 1 −
1

𝑇
∑  𝑇

𝑡=1
𝑉∼𝑖(𝑡)

𝑉(𝑡)
        (5) 277 

3. Results and Discussion 278 

3.1 The capabilities of hyper-resolution simulations for characterizing the soil moisture dynamics  279 

3.1.1 Temporal dynamics of surface soil moisture 280 

Fig.3 shows the temporal variation of surface soil moisture of different products: HydroBlocks VHet and VHom, 281 

SMAP L3, GLEAM, and ERA5-Land for four watersheds. The HydroBlocks model configurations (VHet and 282 

VHom) are shown at a location corresponding to an SMAP grid. During dry seasons (October to May), the soil 283 

moisture spatial variability of HydroBlocks simulations are consistent, as shown in terms of its standard deviation 284 

in shades. From all the data products, only ERA5-Land is drier than HydroBlocks simulations in the dry period. 285 

During the monsoon season, HydroBlocks simulations showed less spatial variability (black and maroon shades 286 

in Fig.3); however, less consistency than during the dry periods. Considering that the only difference between the 287 

two HydroBlocks model configurations is the vertical heterogeneity of subsurface soil layers, the observable 288 

differences in surface soil moisture during the monsoon can be attributed to the influence of soil properties at the 289 

deeper layers, especially during active wetting/drying conditions. Compared to other data products, ERA5-Land 290 

exhibits sudden wetups with increased precipitation towards the onset of the monsoon and steeper drydown as the 291 

monsoon recedes. During monsoon, ERA5-Land shows high wet bias compared to other data products. Despite 292 

using the same meteorological forcing as ERA5-Land, HydroBlocks simulations were more consistent and able 293 

to better represent the temporal dynamics of SMAP L3 surface soil moisture. There are several differences 294 

between the HydroBlocks and ERA5-Land in terms of soil hydrology processes (e.g., accounting for lateral 295 

connectivity), modeling resolution, parameterizations, and supporting datasets. ERA5-Land defines soil 296 

properties based on soil texture information derived from soil depth (30-100 cm) of FAO Digital Soil Map of 297 

World at 9 km resolution (Muñoz-Sabater et al., 2021). This soil data ignores horizontal and vertical spatial 298 

variability of soil properties at the field scale in the study region (Dai et al., 2019; Poggio et al., 2021). Further, 299 

HydroBlocks used in this study do not account for surface channel routing, whereas ERA5-land does, which can 300 

also influence soil moisture variations. 301 
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 302 

Figure 3: Time series of surface soil moisture simulations from HydroBlocks (VHet and VHom configurations) 303 

compared with SMAP L3, ERA5-Land, GLEAM surface soil moisture (m3m-3), and ERA5-Land daily 304 

precipitation (mm). Soil moisture values considered from all datasets for the year 2020 correspond to a randomly 305 

identified SMAP L3 grid in each of the four watersheds. Both HydroBlocks simulations are represented by the 306 

mean soil moisture from all 30 m grids within the SMAP L3 grid, with one spatial standard deviation shown as a 307 

light-coloured band around the mean.    308 

During the dry season (October to May), HydroBlocks VHom and VHet surface soil moisture simulations are 309 

consistent with SMAP L3 observations with the exception of dry bias of -0.056 m3m-3.and -0.051 m3m-3, 310 

respectively. Conversely, during the monsoon, HydroBlocks simulations have a wet bias of 0.015 m3m-3 and 0.032 311 

m3m-3 compared to SMAP L3. However, during saturated conditions, where soil moisture is around 0.45 m3m-3, 312 

there is a convergence between HydroBlocks VHet and VHom simulations and SMAP soil moisture. In 313 

HydroBlocks, the saturated soil moisture conditions are limited by soil porosity, which is computed through PTFs. 314 

Consistency with satellite observed saturation levels confirms that properties computed using digital soil maps 315 

and PTFs can improve soil moisture modeling performance than those obtained from the look-up table, as also 316 

shown in (Xu et al., 2023). 317 

HydroBlocks surface soil moisture simulation, compared to that of GLEAM data at 0.25° spatial resolution, shows 318 

minimal temporal variability with steeper drydown towards the end of the monsoon. HydroBlocks represents 319 

surface soil moisture at 5 cm depth and uses Richards equations in Noah-MP to account for the vertical flow of 320 

soil water. In contrast, GLEAM represents soil moisture for a 10 cm profile and uses a simplified drainage scheme 321 

independent of soil properties except for wilting point and soil porosity (Martens et al., 2017). This simplification 322 

is beneficial for enhancing computational efficiency (Martens et al., 2017); however, it ignores various subgrid 323 

processes and is hence not suitable for field-scale application. 324 

3.1.2 Temporal dynamics of rootzone soil moisture 325 

Fig.4 shows the temporal variation of rootzone soil moisture (1 meter deep) for different products, including two 326 

HydroBlocks model configurations at a location corresponding to an SMAP pixel in four different watersheds.      327 

Results show a wet bias of 0.03 m3m-3 between HydroBlocks (VHet) and HydroBlocks (VHom). During the dry 328 
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period from January to May, neither model configuration depicts a noticeable drydown except for later months in 329 

the period. Precipitation events were limited and of low magnitude, causing low evaporation. However, other soil 330 

moisture data products show a consistent drydown pattern throughout the period. HydroBlocks simulations do not 331 

depict a prominent drydown since the monthly LAI values are zero from the Noah-MP parameter table, 332 

MPTABLE.TBL, thus, indicates no transpiration till April. Towards the end of April, as LAI increases, 333 

transpiration also increases, causing a discernible drydown pattern in both HydroBlocks configurations. To 334 

address this limitation, we expect that incorporating dynamic LAI as an input in Noah-MP parameterization 335 

improves vegetation accountability and transpiration estimation. However, implanting dynamic vegetation in 336 

hyper-resolution scales increases the complexity and is beyond the purview of current work. Such a modification 337 

shall be included in future versions of the model. 338 

During the monsoon, with the increase in precipitation events and their intensities, soil moisture variability 339 

increases in all data products. HydroBlocks VHet and VHom rootzone soil moisture values were consistent with 340 

SMAP L4 and GLEAM; however, they showed a significant dry bias of -0.056 m3m-3  and 0.08 m3m-3 compared 341 

to ERA5-Land during the monsoon. Unlike HydroBlocks rootzone soil moisture, which saturates at 0.4 m3m-3, 342 

ERA5-Land data saturates at 0.5 m3m-3 in monsoon. 343 

 344 

Figure 4: Time series plots of rootzone soil moisture simulations from HydroBlocks (VHet and VHom 345 

configurations) compared with SMAP L4, ERA5-Land, GLEAM rootzone soil moisture (m3m-3), and ERA5-Land 346 

daily precipitation (mm). Soil moisture values considered from all datasets for the year 2020 corresponded to a 347 

randomly identified SMAP L4 pixel in each of the four watersheds. HydroBlocks rootzone soil moisture 348 

simulations are represented by the mean soil moisture from all 30 m grids within the SMAP L4 pixel, with one 349 

standard deviation shown as a light-colored band around the mean. 350 

3.1.3 Spatial dynamics of surface soil moisture 351 

The spatial distribution of surface soil moisture estimates for GLEAM, ERA5-Land, SMAP L3, and HydroBlocks 352 

(VHom and VHet) are shown in Fig. 5(a). HydroBlocks and SMAP L3 soil moisture data show a transition from 353 

wetter in the west to drier soil conditions in the east, reflecting the spatial pattern of precipitation across the basin. 354 

Compared to HydroBlocks simulations, SMAP L3 soil moisture data shows a smoother transition, which can be 355 
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attributed to the effect of interpolation of original SMAP retrieval at 36 km to 9km (Chaubell et al., 2016). As 356 

expected, the HydroBlocks surface soil moisture shows substantial spatial variability (represented by the spatial 357 

standard deviation σθ, of VHet = 0.088 m3m-3 and VHom =0.084 m3m-3) compared to macroscale products (σθ of 358 

SMAP L3 = 0.054 m3m-3, ERA5-Land = 0.033 m3m-3, and GLEAM = 0.017 m3m-3). The spatial variability of 359 

HydroBlocks surface soil moisture is shown for each coarse resolution pixel corresponding to the coarser scale 360 

products in Fig.5(b). The dry soil conditions in urban areas of some watersheds result in high soil moisture 361 

variability with a spatial standard deviation exceeding 0.16 m3m-3 at all the macroscale product resolutions. 362 

However, this behavior is likely a response to how urban areas are parametrized in the model rather than only the 363 

soil hydrologic process. Further, drier watersheds in the south exhibit a low standard deviation (~0.02 m3m-3) in 364 

this region.   365 

At a watershed scale, represented by the inset of Fig.5(a), we can observe higher spatial heterogeneity in 366 

HydroBlocks VHet and VHom simulations than in SMAP L3, ERA5-Land, and GLEAM soil moisture data. 367 

HydroBlocks simulations in this watershed, although spatially consistent with SMAP L3 observations, reveal a 368 

detailed variation. We can observe wet soil patches near streams or dry soil in higher elevations to the south of 369 

this watershed. Similar spatial heterogeneity is not observed in the estimates of other datasets because of their 370 

coarse resolution. Besides, this watershed has a spatial extent less than GLEAM’s 0.25° grid resolution. 371 

Improvement in spatial variability at a localized scale is a response to the combined interactions between the 372 

meteorological forcing, topography, land cover types, and soil properties (Vergopolan et al., 2022).  373 
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 374 

Figure 5: (a) The spatial maps of surface soil moisture on August 6, 2020, were obtained from HydroBlocks 375 

simulations compared with ERA5-Land, GLEAM, and SMAP L3 data. The soil moisture mean (µθ) and spatial 376 

standard deviation (σθ) of the entire basin for each data product are also shown. The inset shows the simulations 377 

at a watershed scale (watershed 20 with an area of 402 km2). (b) Spatial standard deviations (σθ) of HydroBlocks 378 

(VHet and VHom configurations) surface soil moisture (at 30 m resolution) estimates within coarser resolution 379 

pixels of different macroscale products. 380 

https://doi.org/10.5194/hess-2024-339
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



 

14 

 

3.1.4 Spatial dynamics of rootzone soil moisture 381 

Fig.6(a) shows the spatial maps of the rootzone soil moisture estimates on August 6, 2020, across the whole basin 382 

from GLEAM, ERA5-Land, SMAP L4, and HydroBlocks VHet and VHom. As for the surface, HydroBlocks 383 

rootzone soil moisture shows higher spatial variability (σθ, of VHet = 0.093 m3m-3 and VHom =0.09 m3m-3) than 384 

other macroscale products (σθ of SMAP L3 = 0.052 m3m-3, ERA5-Land = 0.032 m3m-3, and GLEAM = 0.018 385 

m3m-3). However, the rootzone variability is higher than the surface soil moisture variability. HydroBlocks 386 

simulations show wet soil in most of the basin, except for watersheds 11, 12, 13, and 19 in the south, where soil 387 

is dry. The spatial pattern of HydroBlocks simulations is not consistent with any of the macroscale data at a basin 388 

scale. However, at a regional scale, soil moisture simulations from HydroBlocks and other products show 389 

similarities, although HydroBlocks simulations demonstrate high spatial variability. For example, in Watersheds 390 

5, 6, 7, and 8, simulations of HydroBlocks (both configurations) and ERA5-Land show the influence of 391 

topography where the soil is drier at the ridges and wet in the foothills. However, HydroBlocks simulation shows 392 

better spatial variability, which is evident from its spatial standard deviation within the corresponding ERA5-Land 393 

grid cells (Fig.6(b)). Watersheds 23, 29, and 31 towards the west of the basin receive high precipitation and have 394 

numerous tributaries, causing the soil to be wet with more spatial variability in HydroBlocks simulations than 395 

SMAP L4 data. Figure 6(b) shows the spatial standard deviation of rootzone soil moisture simulated by 396 

HydroBlocks (VHom) and HydroBlocks (VHet) for each coarser resolution pixel of the macroscale products. 397 

HydroBlocks could simulate the dryness in soil moisture in the urban area, causing a high standard deviation (~0.2 398 

m3m-3) within the corresponding coarse resolution grid cells. Macroscale products like GLEAM  have wide 399 

applicability in hydroclimatic studies (Baker et al., 2021), particularly due to their improved accuracy in 400 

estimating evapotranspiration (Ding and Zhu, 2022; Zhu et al., 2022). However, macroscale products overlook 401 

the sub-grid scale process, including lateral connectivity and heterogeneity in land cover types at the field scale 402 

(Wood et al., 2011). Agricultural applications require spatial heterogeneity of rootzone soil moisture at the field 403 

scale (Vergopolan et al., 2021). 404 
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 405 

Figure 6: (a) The spatial maps of rootzone soil moisture on August 6, 2020, were obtained from HydroBlocks 406 

simulations compared with ERA5-Land, GLEAM, and SMAP L4 data. The soil moisture mean (µθ) and spatial 407 

standard deviation (σθ) of the entire basin for each data product are also shown. The insets reveal the spatial details 408 

of the simulations at a local scale. (b) Spatial standard deviations (σθ) of HydroBlocks (VHet and VHom 409 

configurations) rootzone soil moisture (at 30 m resolution) estimates within coarser resolution pixels of different 410 

macroscale products. 411 

Further comparing the two model configurations, HydroBlocks (VHet) simulations show soil to be wet in plain 412 

topography and drier in hilly areas to the west of the basin than HydroBlocks (VHom) simulations. At field scale, 413 

HydroBlocks (VHet) offers higher spatial variability than HydroBlocks (VHom) in both surface and rootzone soil 414 

moisture simulations. A farm-scale soil moisture simulation with improved sub-grid variability is valuable for 415 
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precision irrigation and water resources management (Peng et al., 2021). Root zone soil moisture indicates water 416 

availability to plants, and its spatial variability significantly impacts crop yield and their predictions (Holzman et 417 

al., 2014). However, both model configurations of HydroBlocks could simulate soil moisture with higher spatial 418 

variability than in macroscale products. We further evaluated the performance of HydroBlocks, and the results 419 

are discussed in the next section. 420 

3.2 Model Performance  421 

3.2.1. Validation with IMD in-situ observations 422 

In-situ monitoring of soil moisture is a challenge in agriculture dominant countries like India, which have 423 

fragmented farming systems (Karthikeyan and Kumar, 2016; Vergopolan et al., 2021). In view of these 424 

limitations, we could validate HydroBlocks VHet and VHom simulations with in-situ soil moisture data at only 425 

one location. Fig.7 presents the timeseries and scatterplots of VHet and VHom simulations of an HRU 426 

corresponding to location where in-situ station is situated in watershed 29. Fig. 7(a) corresponds to the surface 427 

layer (0-5 cm), Fig. 7(b) corresponds to layer 2 (0-15 cm), Fig. 7(c) coreesponds to layer 3 (0-30 cm) and Fig 4 428 

corresponds to layer 4 (0-60 cm) ; Table 2 presents the layer-wise performance VHet and VHom simulations. In 429 

the case of surface soil moisture, results reveal that both HydroBlocks configurations exhibited similar 430 

performance. Both VHet and VHom configurations have low bias (-0.001 m3m-3 0.003 m3m-3) with similar 431 

ubRMSE (0.096 m3m-3 and 0.097 m3m-3) and correlation (R = 0.66;0.66 and Rsp = 0.66;0.67) when compared to 432 

in-situ observations.  433 
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 434 

Figure 7: Time series of HydroBlocks (VHet and VHom configurations) simulations of soil moisture at different 435 

layers ((a) 0-5 cm (surface), (b) 0-15 cm, (c) 0-30 cm, (d) 0-60 cm with ERA5-Land daily precipitation (mm), 436 
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which is used as the forcing in the model, are compared with IMD in situ soil moisture observations at watershed 437 

29. Scatterplots comparing the HydroBlocks simulations and in situ observations are also included beside 438 

layerwise soil moisture time series. HydroBlocks simulations are converted to daily timescale before comparing 439 

against insitu observations. 440 

Table 2. Performance metrics of layer wise simulations of HydroBlocks VHet and VHom configurations against 441 

IMD in situ observations. 442 

 Layer 1 (Surface) 

(0-5 cm) 

Layer 2 

(0-15 cm) 

Layer 3 

(0-30 cm) 

Layer 4 

(0-60 cm) 

 VHom VHet VHom VHet VHom VHet VHom VHet 

Bias 

(m3m-3) 
0.003 -0.001 0.036 0.030 0.051 0.044 0.067 0.059 

ubRMSE 

(m3m-3) 
0.096 0.097 0.067 0.067 0.055 0.055 0.066 0.066 

R 0.66 0.66 0.63 0.63 0.70 0.70 0.59 0.60 

Rsp 0.67 0.66 0.67 0.67 0.80 0.80 0.67 0.68 

 443 

In the case of subsurface layers, soil moisture simulations from VHet slightly outperformed VHom, particularly 444 

by reducing the bias. In all the sub surface soil layers at different depths (0-15 cm ,0-30 cm, 0-60 cm), VHet 445 

simulations show lower bias (0.030 m3m-3, 0.044 m3m-3 and 0.059 m3m-3) than VHom (0.036 m3m-3, 0.051 m3m-446 

3 and 0.067 m3m-3). However, there is no change in ubRMSE values (~0.067 m3m-3, 0.055 m3m-3, and 0.066 m3m-447 

3). This indicates that incorporating soil vertical properties into the model has brought a systematic improvement 448 

(thus, the difference in bias) in deeper layers. VHet configuration also show a marginal improvement in the 449 

correlation values in the deeper layer ( at depth 0-60cm) with R and Rsp (0.60 and 0.68) than VHom's values (0.59 450 

and 0.67, respectively) at the site. Both VHet and VHom configurations show similar correlation values in other 451 

sub surface layers – R = 0.67 and Rsp = 0.67 for layer (0-15 cm) and R = 0.7;Rsp = 0.80 for layer (0-30 cm). VHet 452 

simulations have shown good agreement with in situ soil moisture during the monsoon season (Fig. 7 (b,c,d)). 453 

Furthermore, the wetup and drydown patterns of both configurations are largely consistent with in situ 454 

observations and precipitation. It is important to note that there could be uncertainties due to the lack of dense 455 

network of observations, which can affect the performance (Chen et al., 2017). Despite uncertainties, VHet 456 

followed by VHom simulations are reasonably accurate when compared to the ground truth. To gain further 457 

confidence on the quality of simulations and account for land surface heterogeneity, we evaluated the model 458 

simulations against SMAP L3 and SMAP L4 soil moisture data and discussed in Sect 3.2.2. 459 

3.2.2 Comparison with SMAP L3 and L4 soil moisture data 460 

The boxplots shown in Fig. 8 explain the quality of HydroBlocks VHet and VHom surface soil moisture 461 

simulations with respect to SMAP L3 observations. Only those SMAP L3 pixels that have recommended retrieval 462 

quality are considered during this analysis. Performance is assessed using bias, ubRMSE, and Pearson correlation. 463 

Most of the watersheds have a dry bias compared to SMAP L3. Exceptions are there, with some watersheds having 464 

a marginal wet bias, however, less than 0.025 m3m-3. The average median bias values, across the basin, for 465 
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HydroBlocks VHet and VHom simulations are -0.02 m3m-3 and -0.021 m3m-3, respectively. There is no clear trend 466 

or pattern in the bias values of watersheds following their elevation range. However, watersheds with higher 467 

relative relief, greater than 500m, show higher variability marked by long whiskers than other watersheds. Further 468 

watersheds with low variation in bias are more commonly found in regions with smaller elevation ranges. 469 

Although exceptions exist in both cases, a possible reason is that some of these watersheds (e.g., 22, 27, 29, and 470 

31) have a significant portion of their area urban or waterbodies, causing fewer SMAP L3 pixels with 471 

recommended quality to represent the watershed. 472 

 473 

Figure 8: Box plot showing the performance of HydroBlocks (VHom) and HydroBlocks (VHet) model in 474 

simulating surface soil moisture to SMAP L3 observations in terms of (a) bias, (b) ubRMSE, (c) R. Watersheds 475 
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are arranged in terms of their elevation range (representing topographic variations) along the x-axis. Each boxplot 476 

corresponds to a watershed identified by their number provided in Fig.1.   477 

The ubRMSE median values of HydroBlocks (both configurations) simulated surface soil moisture measurements 478 

vary between 0.04 m3m-3 and 0.06 m3m-3 across 35 watersheds. The median ubRMSE values for HydroBlocks 479 

surface soil moisture simulations are generally higher in the VHet configuration, with a basin-wide average of 480 

0.053 m³/m³ compared to 0.052 m³/m³ for VHom simulations.  Further, surface soil moisture simulations from 481 

both model configurations of HydroBlocks also show a strong correlation with SMAP L3 observations, as shown 482 

in Fig.8. Both HydroBlocks configurations have similar median values of Pearson correlation in all 483 

watersheds,with their values lying between 0.78 and 0.95. When upscaled to 9kmx9km, both versions of 484 

HydroBlocks performed well with low bias and high correlation with respect to SMAP L3 observations. Since 485 

both HydroBlocks use the same soil properties at the surface, the difference between their simulation for the 486 

surface layer is minimal. Besides, the influence of soil properties is significant in soil moisture simulations at a 487 

finer scale than at a coarser resolution (Crow et al., 2012). 488 

Further, rootzone soil moisture simulated by HydroBlocks (both model configurations) is compared with SMAP 489 

L4 data for the year 2020 across all SMAP pixels in terms of bias, ubRMSE, and Person correlation, and the 490 

results are shown in Fig.9. Contrary to surface soil moisture plots, there is significant wet bias in many watersheds 491 

when compared to SMAP L4 analysis product. The median bias values range between -0.01 m3m-3 to 0.15 m3m-3 492 

in both HydroBlocks configurations, as shown in Fig.9(a). Most watersheds show minimal variability in ubRMSE 493 

values, ranging from 0.03 to 0.055 m³/m³, with a few exceptions (watersheds 9, 25, 28, 30 and 33). However, the 494 

median ubRMSE values across all watersheds remain below 0.055 m³/m³ (see Fig. 9(b)) and have a higher 495 

correlation with SMAP L4 data, with their median Pearson correlation values ranging between 0.76 and 0.93, as 496 

shown in Fig 8(c). The median correlation values for VHom simulations are marginally higher, with an average 497 

of 0.85, while VHet simulations have an average median correlation value of 0.83. The higher correlation of  498 

VHom simulations to SMAP L4 data can also be due to vertically homogeneous soil parameters considered in the 499 

CLM while generating SMAP L4 rootzone soil moisture data.However, in either configurations, performance 500 

metrics reveal higher consistency between model simulated rootzone soil moisture and SMAP L4 data.  501 
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 502 

Figure 9: Box plot showing the performance of HydroBlocks VHom and VHet configurations in simulating 503 

rootzone soil moisture to SMAP L4 observations in terms of (a) bias, (b) ubRMSE, (c) R. Watersheds are arranged 504 

according to their elevation range (representing topographic variations) along the x-axis. Each boxplot 505 

corresponds to a watershed identified by their number near the whiskers, matching those provided in Fig 1. 506 

3.3 Importance of Soil Vertical Heterogeneity in HydroBlocks 507 

We compared layer-wise soil moisture from HydroBlocks VHet and VHom experiments in terms of mean bias 508 

and unbiased Root Mean Square Difference (ubRMSD). Such a comparison is done to understand the changes in 509 

the model simulations after incorporating soil vertical heterogeneity in the model. Surface soil moisture from both 510 
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configurations is compared at each HRU for each watershed, as shown in Fig.10. Watersheds are sorted in terms 511 

of their elevation range to check for topographic influence. A low wet bias, with median values close to zero, was 512 

attributed to the same soil properties in the surface soil layer for both configurations. Consequently, no substantial 513 

evidence exists that soil moisture simulations in the surface layer differ according to topographical variations.  514 

The ubRMSD between the two configurations has median values in all watersheds around 0.01 m3m-3 and no 515 

greater than 0.02 m3m-3. However, in some watersheds, the ubRMSD can reach up to 0.03 m3m-3. This indicates 516 

that the influence of soil properties is more random at the surface layer (evident from high ubRMSD values) than 517 

having a systematic influence (evident from low bias). It may be noted that Noah-MP follows Richards equation, 518 

which also depends on soil hydraulic properties of adjacent soil layers. Besides, soil parameters in Noah-MP 519 

influence the runoff and infiltration and, eventually, soil moisture (Cuntz et al., 2016; Kishné et al., 2017). In 520 

HydroBlocks (VHet), these soil parameters are heterogeneous along the soil column, and their influence is also 521 

considered in determining the infiltrated water (Niu et al., 2005, 2011).  522 
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 523 

Figure 10: Box plot showing the comparison between HydroBlocks VHet and VHom configurations in simulating 524 

surface soil moisture in terms of bias and ubRMSD. These two metrics are calculated for VHet simulations with 525 

respect to VHom. Watersheds are arranged according to their elevation range (representing topographic 526 

variations) along the x-axis. Watersheds are identified by their number and colour, as shown in the spatial plot. 527 

Figure 11 shows the difference in rootzone soil moisture simulations between HydroBlocks VHet and VHom 528 

configurations. In the case of rootzone soil moisture, watersheds with less variation in topography (elevation range 529 

< 300 m) show positive bias with their median values around 0.02 m3m-3, and watersheds having high 530 

topographical variations tend more to be negatively biased, albeit their median values are close to zero. The 531 

ubRMSD values between rootzone soil moisture simulations from two model configurations are low, with median 532 

values less than 0.01 m3m-3. Exceptions are observed in those watersheds having significant topographic 533 

variations. However, the ubRMSD values for rootzone soil moisture are lower than surface soil moisture. Indeed, 534 
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soil moisture simulation variations become more systematic (high bias) in the deeper layers (Fig.S2-S5 in the 535 

Supplementary Material).  536 

There is a transition from wet bias to dry bias in rootzone soil moisture simulations with an increase in topographic 537 

variations, as shown in Fig. 11. Such a transition is not observed when the simulations are compared with SMAP 538 

L4 product at coarse resolution (9 km; Fig. 9). Topography and soil textural properties affect soil moisture 539 

simulations at higher resolution as they are crucial in determining the saturated soil fraction, hence the runoff and 540 

infiltration (Singh et al., 2015). However, in the present study, the difference in both model configurations is only 541 

due to the vertical heterogeneity of soil properties. Hence, any association between rootzone soil moisture and 542 

topographical variation is attributed to soil heterogeneity at subsurface layers and their relationship with 543 

topography. Both soil properties and topographic information influence the subsurface lateral flows. Therefore, it 544 

is crucial to understand the significance of each soil property in simulating soil moisture at each layer. For this 545 

purpose, we performed a sensitivity analysis of Noah-MP soil parameters, which are presented in the next section.  546 

https://doi.org/10.5194/hess-2024-339
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



 

25 

 

 547 

Figure 11: Box plot showing the comparison between HydroBlocks VHet and VHom configurations in simulating 548 

rootzone soil moisture in terms of bias and ubRMSD. Watersheds are arranged according to their elevation range 549 

(representing topographic variations) along the x-axis. Watersheds are identified by their number and colour, as 550 

shown in the spatial plot. 551 

3.4 Sensitivity Analysis of Soil Parameters 552 

We analyzed the results from the Sobol sensitivity test across all the HRUs in watershed 20 to understand the 553 

most sensitive parameters and their seasonal variation at different layers. Figure 12 presents the sensitivity analysis 554 

result in one of the HRUs of the watershed within their respective SMAP grid cell (same grid of the time series in 555 

Fig.3 and Fig.4). Through the Sobol analysis, the role of different parameters and their interactions with each 556 

other in simulating soil moisture at every layer across the season is studied. The light colour bar represents the 557 
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first-order Sobol index (Si) value for a parameter indicating the proportion of total variance in soil moisture output, 558 

and it is driven by variance corresponding to only that parameter. The darker colour bar is the total-order Sobol 559 

index (ST), depicting the contribution of that parameter, including its interaction with other parameters, to the total 560 

variance in soil moisture output. Hence, the difference between these two indicates the significance of parameter 561 

interaction.  562 

Fig.12 shows that parameter interactions become prominent during the monsoon (June-September), followed by 563 

post-monsoon (October-December), and minimal during the summer months (January-May) at the surface layer. 564 

Although parameter interactions in deeper layers are less than in the surface layer, as expected, these interactions 565 

remain more significant during the monsoon than in other months. This also implies the importance of 566 

precipitation in driving soil hydraulic properties and thus influencing soil moisture dynamics. During the monsoon 567 

(June-September) till layer 3, soil moisture at the wilting point (WLTSMC), soil porosity (MAXSMC), and the 568 

Brooks-Corey parameter (BB) are the significant parameters, while other soil parameters (SATPSI, SATDW, 569 

SATDK, REFSMC, DRYSMC) have equal significance (approximately ST =0.6 at the surface layer to ST = 0.3 at 570 

layer 3) as shown in Fig.12. Within the deeper layers (layer 4 and layer 5), the order of parameter significance is 571 

consistent, with MAXSMC as the most significant parameter across all seasons, followed by BB, and the 572 

remaining parameters have equal but less significance. All other parameters have minimal direct significance from 573 

January to May. During the post-monsoon season, interactions increase; however, MAXSMC and BB remain the 574 

only parameters with significant first-order Sobol index values in all layers. The significance of MAXSMC in 575 

deeper layers is also evident in Fig 12, which shows the number of HRUs where a specific soil parameter is the 576 

most sensitive across three seasons at every soil layer. Soil porosity (MAXSMC) plays a crucial role in 577 

determining the water-holding capacity of the soil, the movement of water within the soil and ultimately runoff 578 

and evaporation, thus exerting a dominant control over soil moisture. (Arsenault et al., 2018; Cuntz et al., 2016). 579 

For the same reason, the dominance of MAXSMC increases in the deeper layers, even in the dry months (October 580 

to May). Further, the difference in the Sobol index values of parameters is minimal in deeper layers. This could 581 

be a reason for the systematic influence (high bias of VHet simulations compared to VHom) on rootzone soil 582 

moisture (Fig.11). 583 

WLTSMC is another parameter that has significance on soil moisture till layer 3. During monsoon and at the 584 

surface layer, WLTSMC has ST = 0.8 and is equally significant parameter as MAXSMC across the watershed. 585 

During January-May, interactions between the parameters are limited across the layers, with minimal interaction 586 

at the surface. In these months, WLTSMC has some significance till layer 3, with the first-order Sobol index value 587 

greater than 0.1. WLTSMC controls stomatal resistance and, subsequently, the water availability for transpiration 588 

(Arsenault et al., 2018). Consequently, WLTSMC becomes significant only during the monsoon and afterward, 589 

as in Fig.12 and Fig.13, when sufficient water is available for plants, or LAI is prominent. In deeper layers below 590 

60 cm from the surface, the importance of WLTSMC is reduced significantly because the model simulations are 591 

parameterized to have root depth NROOT up to the third layer. Beyond this, the transpiration process is not 592 

considered; hence, its dominance was reduced. This also emphasizes the importance of the parameter root depth 593 

and the necessity of introducing a dynamic root depth when the focus is on hyper-resolution soil moisture 594 

simulation, especially in regions of fragmented agricultural systems (Gayler et al., 2014; Liu et al., 2020; Niu et 595 

al., 2020). 596 
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BB is another significant soil parameter for soil moisture simulation, particularly in the surface layer. During 597 

January -May, BB shows high sensitivity (ST = 0.7) at the surface with minimal interactions, as shown in Fig.13 598 

and Fig.13. During this season, transpiration loss in most months is zero as LAI used in the period accounts for 599 

zero, and runoff is minimal with limited precipitation events. Hence, any isolated precipitation events can induce 600 

evaporation, causing some variability in surface soil moisture, as shown in Fig.3. The parameter BB indicates the 601 

pore size distribution, which defines a relationship between soil moisture and matric potential, and in defining 602 

saturated hydraulic conductivity (SATDK), and diffusivity of soil water at saturation (SATDW). Hence, the 603 

parameter BB is also significant in deciding the loss of water from the surface layer, either percolating to the sub-604 

surface layers and contributing to sub-surface runoff or evaporation (Cuntz et al., 2016) and is thus crucial in 605 

simulating surface layer soil moisture. During monsoon, with more precipitation events and vegetation, this 606 

exponential parameter (BB) interacts with other parameters, including MAXSMC, SATDK, and SATDK, causing 607 

it to be a sensitive soil parameter in terms of total-order Sobol index rather than first-order (Fig.12). Its influence 608 

on soil moisture dynamics is also evident during the post-monsoon season, October to December, where it 609 

interacts with other soil parameters, although less than that during monsoon.  610 
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 611 

Figure 12: Sensitivity of the Noah-MP soil parameters on an HRU within the SMAP pixel (green box in the 612 

watershed map), used in the time series plots of watershed 20, to identify the influence of soil parameters across 613 

different seasons at every layer. The first-order Sobol index, Si, (light colour bar), indicates the parameter 614 

contribution (no interaction with other parameters) to the total variance in soil moisture output. The total-order 615 

Sobol index, ST (darker colour bar), indicates the parameter contribution, including its interaction with other 616 

parameters with respect to the total variance in soil moisture output.  617 
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 618 

Figure 13: Distribution of HRUs where a particular soil parameter exhibits the highest sensitivity (total-order 619 

Sobol index) across three distinct seasons, as determined by sensitivity testing on watershed 20 at HRU scale 620 

conducted at various soil layers with all the HRUs within the watershed. 621 

3.5 The added value of hyper-resolution modeling and vertical soil properties for small-sized farms 622 

HydroBlocks simulations have improved spatial heterogeneity of soil moisture at the surface (σθ, of VHet = 0.088 623 

m3m-3 and VHom =0.084 m3m-3) and rootzone (σθ, of VHet = 0.093 m3m-3 and VHom =0.09 m3m-3) while 624 

maintaining temporal consistency to macroscale products. As previously mentioned, the fragmented agricultural 625 

system in India leads to significant diversity in agricultural practices. Consequently, there is substantial sub-grid 626 

heterogeneity in irrigation requirements as well (Gumma et al., 2024). With improved subgrid heterogeneity of 627 
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soil moisture simulations (Fig. 5(b) and Fig.6(b)), HydroBlocks, as a hyper-resolution LSM, can cater to the 628 

demands of field-scale agricultural applications. The climatological conditions of the present study area, 629 

characterized by arid conditions and limited precipitation events, demand effective water management practices, 630 

which have global relevance. Hyper-resolution soil moisture with sub-grid heterogeneity can provide information 631 

regarding crop water deficiency, and with precision agriculture, water management practices can be improved 632 

(Peng et al., 2021).  633 

HydroBlocks VHet simulations reveal that the deeper layer soil properties have a systematic influence (evident 634 

from high bias in Fig.10) at the rootzone and random influence at the surface layer (evident from high ubRMSD 635 

in Fig.11). At field scale soil properties are crucial in determining the spatial heterogeneity of soil moisture (Crow 636 

et al., 2012; Vergopolan et al., 2022). Incorporating vertical soil properties in the model better represents the 637 

ground reality, and the results reveal that VHet of soil can improve the rootzone soil moisture simulations. 638 

HydroBlocks VHet has higher spatial and subgrid variability than VHom at rootzone soil moisture (Fig.5(b) and 639 

Fig.6(b)). Developing a hyper-resolution LSM for farm scale soil moisture requires key improvement in several 640 

aspects including improved representation of surface and subsurface interactions (Wood et al., 2011). The 641 

HydroBlocks configurations used in the current study are limited by a lack of surface water routing, subsurface 642 

lateral connectivity during unsaturated conditions, dynamic representation of LAI and root depth, as well as 643 

improved topographical representation. Incorporating vertical soil properties in the model is one of the critical 644 

steps to achieve improved rootzone soil moisture simulations. Accurate estimates of rootzone soil moisture are 645 

critical for understanding and forecasting droughts (Ochsner et al., 2013). With their coarse resolution, traditional 646 

dynamic models have limited capability to capture field-scale variation in drought events (Abolafia-Rosenzweig 647 

et al., 2023). High-quality soil moisture data at the field scale can provide improved spatial heterogeneity, 648 

benefiting small-holding farmers (Peng et al., 2021; Vergopolan et al., 2021) through early warning of extreme 649 

events and thus reducing the crop loss risk. 650 

4. Conclusions 651 

Recent studies proved the necessity of understanding horizontal and vertical soil heterogeneity in simulating 652 

hyper-resolution surface soil moisture (Vergopolan et al., 2022; Xu et al., 2023). Considering the importance of 653 

rootzone soil moisture in agriculture and India’s fragmented agricultural system, this study implemented soil 654 

vertical heterogeneity in the hyper-resolution LSM to simulate surface and rootzone soil moisture in a 655 

predominantly cropland area in India for the first time. Since a field observation network for soil moisture in this 656 

study area was in progress, we assessed the performance of HydroBlocks against an available in situ station data, 657 

as well as SMAP L3 observations and SMAP L4 data for surface and rootzone soil moisture, respectively. The 658 

results from our study point out the following: 659 

• At the field scale, HydroBlocks simulations with vertically homogeneous and vertically heterogeneous soil 660 

properties show improved spatial heterogeneity (for surface, σθ, of VHet = 0.088 m3m-3 and VHom =0.084 661 

m3m-3; for the rootzone, σθ, of VHet = 0.093 m3m-3 and VHom = 0.09 m3m-3) compared to the macroscale 662 

products dataset. This is accomplished by considering various interactions between different physical 663 

controls, including topography, precipitation, land cover, and soil properties at the finer scale (Vergopolan 664 

et al., 2022) 665 
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• Evaluation against in situ data revealed that both VHet and VHom simulations performed similarly toward 666 

surface soil moisture simulation. However, VHet systematically improves soil moisture simulation than 667 

VHom by reducing the bias at all sub-surface layers. In the deeper layer (0-60 cm), VHet simulations show 668 

low bias (0.059 m3m-3) similar ubRMSE (0.066 m3m-3) and higher Pearson’s correlation (0.60) than VHom 669 

with performance metrics of 0.067 m3m-3, 0.066 m3m-3 and 0.59 respectively. 670 

• The 30m resolution HydroBlocks (VHet and VHom) simulations upscaled to ~10 km resolution showed a 671 

temporal pattern consistent with SMAP data. When evaluated against SMAP L3 observations and SMAP L4 672 

data, both model configurations performed well in terms of bias (0.02 m3m-3, 0.021 m3m-3), ubRMSE (0.053 673 

m3m-3, 0.052 m3m-3), and Pearson’s correlation (0.85, 0.85)  for surface soil moisture and bias (0.056 m3m-674 

3, 0.049 m3m-3), ubRMSE (0.046 m3m-3, 0.045 m3m-3), and Pearson’s correlation (0.83, 0.85)  for rootzone 675 

soil moisture. 676 

• Comparison between HydroBlocks vertically homogeneous and vertically heterogeneous simulations reveal 677 

that deeper layer soil properties have a random influence on surface soil moisture and have a systematic 678 

influence on deeper layer soil moisture. Results also indicated that the influence of soil properties on 679 

rootzone soil moisture follows a topographical variation.  680 

• Soil porosity (MAXSMC), the wilting point (WLTSMC), and Brooks-Corey parameter (BB) are crucial 681 

parameters influencing soil moisture at every layer and season. However, there is a season-wise variation in 682 

the interaction between soil parameters, which is more significant during monsoon than in other seasons. 683 

• Sensitivity analysis across soil layers indicates a transition in the significance of soil parameters between the 684 

surface and deeper layers, with the order of significance remaining consistent between the deeper layers 685 

(below 30 cm from the surface). However, the exactness of such an influence requires an in-depth analysis 686 

in the future. Hence, incorporating soil vertical heterogeneity in LSMs is critical to the reliability of rootzone 687 

soil moisture simulations at a farm scale. 688 

Although this study is limited by the lack of network of in situ observations to validate the simulations, comparison 689 

with the only in-situ observation available yielded promising results on the quality of simulations. Acknowledging 690 

this limitation, pertaining to in situ validation, we assessed the importance of hyper-resolution LSM in soil 691 

moisture simulation for farm-scale studies by comparing the simulations with available satellite-based soil 692 

moisture products, and analyzed the sensitivity of different model configurations and the importance of soil 693 

properties in simulating multi-layer soil moisture at farm scales. The current study uses lookup table of LAI values, 694 

which depicts variability during and post monsoon seasons. Incorporating dynamic LAI and dynamic root depth 695 

can improve soil moisture simulations (Liu et al., 2020; Niu et al., 2020). Future studies will focus on bringing 696 

LAI at the HRU scale and adopting a dynamic LAI scheme in the model. Further understanding the influence of 697 

topography and improving its parametrization to suit hyper-resolution is also necessary for improving soil 698 

moisture simulations.  699 
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