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GENERAL COMMENT
For the reasons given below, I recommend a REJECTION (WITH POSSIBLE RESUBMISSION).

SPECIFIC COMMENTS
Line(s) 26–27

AUTHOR(s): Depending on the hydrological scale used, compound precipitation events measured
at different rain gauges may contain a considerable number of zeros (zero-inflated data).

REFEREE: From a Statistical point of view, it is a nightmare, and the problem is far from being
resolved. The introduction of a mixed model, and then considering only positive rainfall values,
does not seem to fix the question, for introduces other problems (see my comment below).

We acknowledge the complexity of handling zero-inflated precipitation data, and we agree that this remains an
open challenge in statistical hydrology. Our approach, rather than attempting to definitely “solve” this issue,
involves the introduction of a mixed model that explicitly includes both a discrete component for zeros and a
continuous component for positive precipitation values (Section 2.1.1). This framework provides a pragmatic so-
lution to mitigate the impact of an excess of zeros on the dependence structure while preserving the intermittent
nature of rainfall and systematically capturing spatial dependencies.

Although this method has limitations, it aligns with established practices in hydrology and has been employed in
previous studies addressing similar issues (Serinaldi 2008). While not a final solution, it offers a mathematically
sound and physically consistent representation of the variability of precipitation.

Line(s) 36–38

AUTHOR(s). One of the first mixed models applied in a bivariate approach was developed by
(Shimizu, 1993). This approach represents a copula-based mixed distribution function composed
of a continuous part (observations greater than zero) and a discrete part (observations at zero).

REFEREE. The model by Shimizu (1993) is not copula-based: the modeling via copulas is present
nowhere in the paper, also considering that it deals with a mixture of discrete-continuous distribu-
tions. Incidentally, none of the marginals used in that paper is heavy-tailed, possibly inadequate
to deal with rainfall extremes.

Our reference to Shimizu (1993) incorrectly suggested that the model was copula-based. The misstatement
stemmed from imprecise wording rather than a misunderstanding of the model. Our intention was to highlight
its multivariate nature and the discrete–continuous mixture, not to imply the use of copulas.

Although Shimizu’s original model did not address tail behavior, his conceptual framework—partitioning precip-
itation into discrete and continuous components—laid the groundwork for more advanced approaches, including
the one adopted in this study. He underscored the necessity of explicitly handling the intermittent nature of
precipitation, an insight that has continually shaped methodological advancements.

We have addressed these aspects in the revised manuscript, as follows:

“One of the first approaches to separate rainfall into discrete (zero) and continuous (positive) components was
the bivariate model proposed by Shimizu (1993). Despite its bivariate focus, it laid a conceptual foundation for
handling the intermittency of precipitation, paving the way for future extensions to multivariate contexts with
the capacity to model extreme behavior.”
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Line(s) 43–44

AUTHOR(s). Another fundamental definition when discussing floods corresponds to the notion
of the return period (RP). Salvadori et al. (2011) defines the RP as the time elapsed between
two successive occurrences of a prescribed event.

REFEREE. The true novelty of the paper by Salvadori et al. (2011), beyond the mathematical
formalization of a multivariate notion of RP, and the introduction of original multivariate design
techniques, is that the calculation of the RP is written in terms of copulas only in any multi-
dimensional setting (not only bivariate).

As the referee notes, the formulation of the return period (RP) entirely in terms of copulas, as presented
by G. Salvadori, C. De Michele, and F. Durante (2011), is a significant theoretical advancement, extending
their applicability beyond the bivariate case. However, its practical implementation is constrained by high
computational demands. Their study illustrates a three-dimensional case where the computation required
approximately 48 hours of CPU time on an iMac with an Intel Core 2 Duo 3.06 GHz processor and 8 GB of
RAM, underscoring the prohibitive costs of scaling to higher dimensions. The authors explicitly acknowledge
these limitations, emphasizing the need for further research to develop alternative design strategies and refine
the theoretical framework for multivariate risk assessment.

In response, our approach enhances computational efficiency, enabling the extension of the analysis to high
dimensions without incurring excessive computational costs. This refinement makes multivariate RP calculations
not only more feasible but also more practical for real-world applications where complexity demands efficiency.

We propose to reformulate the original text as follows:

“While Salvadori et al. (2011) provide a solid theoretical foundation for calculating the multivariate return
period using copulas in n-dimensional contexts, its practical application faces significant challenges related
to computational load, especially in high-dimensional scenarios. In our study, we address this limitation by
employing optimized computational techniques that enable the extension of the analysis to five dimensions,
reducing computation times and facilitating its application to more complex real-world cases.”

Line(s) 56–57

AUTHOR(s). In this context, this study has two main objectives: (I) to expand the method-
ological framework for modeling data with zero intermittency from a bivariate (Shimizu, 1993;
Serinaldi, 2008; Villarini et al., 2008), to a five-dimensional approach …

REFEREE. Is 5 a magic number, in hydrology or elsewhere? Increasing the dimension is not a
synonymous of novelty: what about if tomorrow I publish a paper on a 6-dimensional approach?
It may solve problems in 6 dimensions, but may not change the paradigms. . . in addition, you
only dealt with a sub-class (Group 32) of the 5 dimensional problem …

The selection of five dimensions is not arbitrary but is grounded in the results of the exploratory dependency
analysis and the availability of data in the studied region. The strongest dependency structure we identified,
based on Kendall’s correlation coefficient, corresponded to five stations distributed across different sectors of
the watershed. However, this does not imply that the methodology is not scalable to more dimensions.

The added value lies not in merely increasing the dimensionality but in adapting and validating an approach
that integrates copulas and mixed models (discrete–continuous) within a multidimensional framework beyond
the traditional bivariate or trivariate settings. Therefore, we do not propose “five” as a paradigm but rather
demonstrate that the method is scalable to higher dimensions. In addressing the first objective, we acknowledge
an overstatement in our wording. Our intent is not to “expand” the framework for modeling data with zero
intermittency (Shimizu 1993; Serinaldi 2008; Villarini, Serinaldi, and Krajewski 2008) but rather to adapt it to
n-dimensional spaces.

Regarding the apparent ‘sub-class’ (Group 32), this group was analyzed in detail because the hypersurface used
to estimate the 100-year Joint Return Period (JRP) lies fully within this group. This means that the critical
level t associated with the 100-year return level is reached only by events within Group 32. While all groups
contribute to the cumulative probability leading up to this threshold, none of the events included in them
individually reaches the probability level required to belong to this JRP (except some in group 32). Indeed, the
probability gradually accumulates across groups until it meets the threshold within Group 32.

However, the approach considers all possible combinations (32 groups) of zeros and positive values across the
five stations. In lines 189–192, 206–209, 225–227, 256–260, and 291–293, we present the results for all groups,
covering the full range of configurations. As specified, this analysis encompasses the complete set of precipitation
scenarios introduced in Equation (1). To improve clarity, we propose adjusting line 56 as follows:
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“In this context, this study has two main objectives: (I) to adapt a methodological framework for modeling data
with zero intermittency in an n-dimensional space (Shimizu, 1993; Serinaldi, 2008; Villarini et al., 2008), going
beyond traditional bivariate approaches.”

Line(s) 72–73

AUTHOR(s). This consideration leads to the incorporation of multivariate mixed models, which
will be detailed in this chapter.

REFEREE. The mixed model ignores/spoils the correlation structure of the sequences of (0, >
0)’s in the rainfall time series, and in turn the COMPOUND nature/feature of the events. For
example, the total precipitation in the two sequences A and B below is the same (0 means no
rain, 1 means rain), but the COMPOUND impact of series B could be devastating as compared
to the one of series A:

A=[0,1,0,1,0,1,0,1,0,1]

B=[1,1,1,1,1,0,0,0,0,0]

Here, the correct approach would be to use a stochastic renewal process, as in G. Salvadori and
C. De Michele. Statistical characterization of temporal structure of storms. Advances in Water
Resources, 29(6):827–842, 2006. doi: 10.1016/j.advwatres.2005.07.013

Our approach is designed to capture the most extreme event occurring at a given time while accounting for spatial
dependence. The objective is to characterize the joint dependence of precipitation across multiple locations using
the JRP. The model presented does not explicitly account for the sequential temporal structure of precipitation
events, as highlighted in the reviewer’s example (sequences A and B). Instead, it focuses on the spatial co-
occurrence of extreme precipitation. Future research could explore the integration of stochastic renewal processes
with multivariate spatial dependence models to capture both the temporal and spatial structure of compound
events.

Line(s) 77

AUTHOR(s). 4. Hazard scenario

REFEREE. A reference to Salvadori, G., Durante, F., De Michele, C., Bernardi, M., and Petrella,
L.: A Multivariate CopulaBased Framework for Dealing with Hazard Scenarios and Failure Prob-
abilities, Water Resources Research, 52, 3701–3721, https://onlinelibrary.wiley.com/doi/abs/10.
1002/2015WR017225, 2016 should be put here: it is the first paper where Hazard Scenarios are
first formalized in terms of Copulas, including those mentioned by the Authors.

Following your recommendation, we propose citing this reference in Section 3.4 (Hazard Scenarios) to emphasize
its pioneering role and further strengthen the theoretical framework of our analysis:

“3.4 Hazard Scenarios

The mathematical definitions for the JRP and critical layer in d-dimensional spaces were developed using the
methodology described by Manuel del Jesus et al. (2023). In this study, we focused on identifying multivariate
design events with a 100-year RP, associated with the Kendall hazard scenario for the proposed approaches.

This work builds upon the theoretical foundations established by Salvadori et al. (2011, 2016), who first formalized
hazard scenarios in terms of copulas and introduced the Kendall approach for evaluating multivariate risk
scenarios.”

Line(s) 80

AUTHOR(s). Specifically, we compute the critical surface…

REFEREE. Surface or hyper-surface, with dimension larger than 2?

The appropriate term in our study is hyper-surface, as the analysis takes place in multidimensional spaces with
more than two dimensions. Referring to it as a surface was an imprecise simplification that may have led to
confusion.

To correct this issue, we will revise the manuscript by replacing critical surface with critical hyper-surface in
the relevant sections.
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Line(s) 94–96

AUTHOR(s). To ensure regional representativeness, “regional events” are then selected based on
simultaneous rainfall contribution across all stations and, for non-independent events, the highest
total precipitation.

REFEREE. This sentence is quite obscure: what do you mean by “for non-independent events”?
What are the events you are considering? Monthly maxima at different stations? What kind of
independence do you consider? Spatial-Pairwise? Spatial-Global? Note that they are different:
Pairwise independence may not imply Global one… How do you test it? How do you identify a
“homogenous” region? Via clustering procedures?

Non-independent events: In our study, the term “non-independent events” refers to the temporal overlap of
events due to the selection method of maximum precipitation events at each station, as described in lines
94-96 of the manuscript. To avoid this overlap, an additional criterion is applied based on total accumulated
precipitation, as detailed in Chapter 2.1.

Events analyzed: Instead of considering only individual monthly maxima, compound events were identified
based on their spatial dependence and hydrologically validated using flow series, selecting those that generated
streamflow events exceeding the 10-year RP threshold. The full event selection process is described in Chapter
2.1 and summarized in Figure 4, where the criteria applied for identification and regional representativeness are
detailed.

Spatial dependence: Our study does not aim to demonstrate independence between stations but rather to
identify dependence in the occurrence of precipitation events. To this end, we assess spatial dependence using
the Kendall correlation coefficient and model the dependence structure through multivariate copulas (lines 206-
209). We did not perform formal spatial independence tests, as our objective is to characterize the dependency
relationships between stations rather than to verify their independence.

Temporal independence: When referring to independence, we specifically mean the temporal independence of
the selected events within each station’s time series. To assess this, we apply an autocorrelation analysis and
evaluate independence between consecutive events in each time series using the Kendall correlation coefficient
(lines 189-192). The results confirm that the selected events do not exhibit significant temporal dependence, as
shown in Figure 5 for Group 32, while line 189 provides details for the other groups.

Homogeneous region: No formal clustering procedure was applied. Instead, homogeneity was established based
on the spatial correlation of precipitation and the consistency in station responses (lines 291-293). Additionally,
all selected stations are located within the same watershed, ensuring that they share similar hydrological forcings,
thereby justifying their selection without requiring further segmentation.

Line(s) 105 & Eq. (1)

AUTHOR(s). In this context, we have extended the model proposed by Serinaldi (2008)…

REFEREE. I do not think it is an extension, except perhaps for the dimension, but then it
would be trivial: you simply try to account for the probability of mutually exclusive events in
dimensions larger than 2, nothing too special that could justify a specific paper. . . Φ is not
precisely defined, what should it represent? A joint CDF? Eq. (1) looks like a linear combination
of probabilities: what is its meaning? What is the domain/support of the parameters p’s, and
their inter-relationships? No information/explanation is provided. . . 2Furthermore, written in
this way, the formula may account twice for the probability of zero rainfall: in fact, by definition,
F (x) = P (X � x) (in whatever form you write it, for one or more variables) includes the case
that the variable(s) take on the value 0, even if the threshold x is strictly larger than 0: the
probabilities in Eq. (1) look more like conditional ones. In addition, P0 should depend upon the
location, I would be surprised if it were the same at all stations. In all cases, you should prove that
Φ is a genuine probability distribution, which however suffers from over-parametrization (i.e., the
number of p’s): estimating all these parameters in a highdimensional space is a torment, at least
from a numerical standpoint, for the estimates almost certainly never correspond to optimal
values (at best, they are suboptimal in the most favorable cases).

As mentioned in our response to lines 56–57, our work does not increase only the dimensionality of the problem, it
develops a methodological framework for the computation of the JPR in high dimensions. This endeavor requires
addressing challenges related to probabilistic consistency and numerical stability, ensuring that the integration of
copulas and mixed models (discrete–continuous) correctly represents the dependence between stations, without
double-counting probabilities and without introducing biases in the estimation of joint extreme events.

Regarding the definition of the function Φ in Equation (1), as stated in lines 105–106 of the manuscript, it
represents the joint cumulative distribution function (JCDF) of precipitation across the considered stations. This
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function is structured within a mixed continuous-discrete model that explicitly accounts for zero intermittency.
Equation (1) is not intended as a simple linear combination of probabilities but rather as a representation of
the JCDF, where the complete set of events selected is decomposed into homogeneous groups. Equation (1) is
the reconstruction of the JCDF over all the events, combining the fits obtained for each one of the groups.

The p parameters represent the probabilities that any given event belongs to each one of the groups, therefore
these values are restricted to the interval [0,1]. They sum up to 1, since their combination results in the original
set of selected events. This way, Φ constitutes a convex combination of CDFs, resulting in a CDF itself.

We understand the reviewer’s concern regarding the potential duplication of the probability of zeros in Equation
(1). We have carefully reviewed this point and clarify that the model’s structure is designed to avoid such
duplication. The probability 𝑃0 represents the joint probability of no precipitation occurring at any station and
is calculated independently of the conditional probabilities considered in the subsequent terms of the equation.
Moreover, we agree with the reviewer that 𝑃0 could vary across stations due to local climatological differences.

As commented above, the values of the p parameter results from the decomposition of events into groups, and
thus they do not need to estimated, but rather directly calculated from the proportion of events from the original
sample that belong to each one of the groups.

We will revise the manuscript to clarify these aspects and have expanded the explanations related to Equation
(1), including an explicit definition of Φ, the domain, and the interrelationships of the p parameters.

Line(s) 125–126

AUTHOR(s). Gaussian Copula without intermittency (Gaussian): This approach considers the
joint dependence between compound rainfall events without accounting for zero intermittency,
including all rainfall data without exception.

REFEREE. The presence of 0’s yields Ties, which adversely affect (spoil) statistical techniques:
how do you manage such a problem, given the fact that no effective solutions are present in
Literature? The failure of the Gaussian approach may be due to the fact that, as remarked
below, it is inadequate for dealing with extremes, but also to the fact that Ties play against it in
this approach: you must make things clear.

The selection of the Gaussian Copula was justified in the manuscript, as stated in lines 143–146. It was not
chosen for its ability to model extreme events, as its limitations have been widely documented (Jaser and
Min 2021), but rather for its capacity to handle high-dimensional data. In this specific approach, ties were
intentionally not considered, as the objective was to evaluate how the Gaussian Copula models dependence
without distinguishing between zero and positive values and how this affects the results obtained.

In Section 3.2.2 (Pre-treatment of Data, Part I), we detail the limitations that ties introduce in fitting procedures
and the biases they generate in multivariate analysis. It is emphasized that ties reduce statistical efficiency and
can distort the underlying dependency structure, particularly in rank-based copula models (De Michele et al.
2013; Pappadà, Durante, and Salvadori 2017). To mitigate this issue in approaches that account for intermit-
tency (Gaussian Groups, Vine Gaussian, Vine Extreme, and Vine t-Student) (lines 127-139), we segmented the
data into groups based on the presence or absence of zero values and applied copulas only to strictly positive
data within each group. This methodology eliminates the adverse effects of ties, enabling a more accurate
estimation of the dependency structure.

Line(s) 128–129

AUTHOR(s). This method models each group using the Gaussian copula, leveraging its ability
to model high dimensions.

REFEREE. Unfortunately, a Gaussian framework is unsuitable for dealing with maxima, such as
those considered in this paper. .

This limitation was acknowledged in the manuscript, where we clarified that the selection of the Gaussian
Copula was not based on its ability to model extremes. As mentioned in lines 143–145, this clarification had
already been addressed in the response to Lines 125–126.

The purpose of including this approach was to highlight its limitations in this context. Since your comment
is closely related to previous observations regarding the Gaussian Copula, we refer to that response to avoid
redundancies and maintain consistency in the discussion.

Line(s) 130–132

AUTHOR(s). This approach utilizes R-vine structures with Gaussian copulas to model all pairs
of series. It combines the flexibility of R-vines for capturing complex dependence structures with
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the efficiency of Gaussian copulas for pairwise modeling.

REFEREE. I am not sure that a Gaussian copula could be “efficient” (whatever you mean with
this unspecified feature) if the true dependence structure is not Gaussian itself. A Gaussian
copula has feasible mathematical properties, but also strong limitations, especially considering
Extreme phenomena, as abundantly pointed out in Literature.

We agree that the Gaussian copula has significant limitations, as previously mentioned. Its use in this context is
justified by its computational simplicity within R-vine structures and its ability to handle high dimensionality,
rather than its suitability for modeling extremes. This clarification will be incorporated into the manuscript to
avoid any potential misunderstandings.

“Vine Gaussian copulas (Vine Gaussian): This approach utilizes R-vine structures with Gaussian copulas to
model all pairs of series. While Gaussian copulas offer computational simplicity for pairwise modeling in high-
dimensional spaces, they are limited in capturing tail dependencies, making them less suitable for extreme event
analysis (Jaser and Min, 2021). In this study, their use serves as a baseline for comparison with more flexible
copula families.”

Line(s) 133

AUTHOR(s). Vine extreme copulas (Vine extreme): This approach uses R-vine structures with
a diverse set of bivariate copulas…

REFEREE. Perhaps, dealing with maxima, Extreme Value copulas should better be used, but
these exclude the case of negative dependencies: a justification is required here.

As stated in the manuscript (line 133), the Vine extreme approach explicitly accounts for the possibility of
negative dependencies by incorporating rotated versions of Archimedean copulas. This inclusion directly ad-
dresses the limitations raised by the reviewer, ensuring that the model can capture a wide range of dependency
structures, including those involving negative relationships when necessary.

Additionally, within the Vine extreme structure, bivariate dependencies in extreme events are modeled using
Extreme Value copulas, specifically Gumbel and Joe, ensuring an adequate representation of strong tail de-
pendencies. The use of R-vine structures allows for the selection of the most appropriate copula for each pair
of variables based on their dependency relationship, providing greater flexibility and enhancing the model’s
adaptability to complex hydrological scenarios.

Line(s) 143–146

AUTHOR(s). The selection of the Gaussian copula […] is supported by its frequent application
in climate and hydrological research focused on simulating extreme conditions (Chen and Guo,
2019).

REFEREE. This sentence/explanation sounds like a suicide, for it reads as: since (inexperienced)
practitioners frequently use the Gaussian copula, this justifies its use, and therefore we use it.
No comment.

The selection of the Gaussian copula was never presented as a validation of its suitability for modeling extremes.
Its well-documented limitations in capturing tail dependencies are precisely why it was included—to illustrate
the consequences of its application in this context. By incorporating it as a benchmark, we reaffirm how its use
in extreme event analysis can lead to misinterpretations or suboptimal conclusions (Jaser and Min 2021).

At first glance, this might seem futile—Why emphasize what is already well established?—. However, as stated
in the response to Lines 143-145, its use in such contexts persists in the literature (as shown by recent studies
(García et al. 2021; Mascolo et al. 2024)). If emphasizing these limitations seems redundant, it is only because
the persistence of its use suggests that the message has yet to fully resonate. Our study provides further evidence
of these limitations and demonstrates how the presence of zero intermittency and ties exacerbates the challenges
associated with its use in this type of analysis.

To ensure that the intent of the analysis is accurately conveyed, we propose the following revision:

“The selection of the Gaussian copula was not intended to justify its use for modeling extremes, given its known
limitations in capturing tail dependencies (Jaser and Min, 2021). Instead, it was deliberately included to highlight
the consequences of its application in extreme event analysis and to serve as a baseline for comparison with more
suitable copulas, as evidenced by the results.”

Line(s) 149–150

AUTHOR(s). To carry out our analysis comprehensively, we have selected 5 strategically dis-
tributed rain gauge stations…
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REFEREE. What do you mean by “strategic”? Do you mean “representative” of the hydrolog-
ical regime (whatever the word “representative” could mean)? What regionalization/clustering
procedures/criteria did you use to decide that these are “strategic”? Or these stations are the
only ones available (and so the number 5 has a justification)?

The term “strategic” may have lacked clarity. To avoid misinterpretation, the manuscript has been revised to
explicitly outline the criteria used for station selection. As mentioned in response to Lines 56-57, the five rain
gauges were chosen not arbitrarily but based on an exploratory dependency analysis and the availability of
consistent data within the study region. This implies that, while formal regionalization or clustering techniques
were not applied (as noted in the response to Lines 94-96), the selection was nonetheless informed by exploratory
analysis, ensuring that the chosen stations appropriately represent the hydrological variability of the basin.

To ensure greater precision in the manuscript, we propose the following revision, which clarifies that the selection
was guided by the dependency structure and required spatial coverage rather than being random or based solely
on data availability:

“To carry out our analysis comprehensively, we selected five rain gauge stations based on the results of an
exploratory dependency analysis and the availability of continuous, high-quality historical data. The selection
was not arbitrary; instead, it was driven by the need to capture the spatial and temporal variability of precipitation
events within the basin. The five stations, located across different sectors of the basin, represent the optimal
structure of spatial dependence identified during the analysis.”

Line(s) 155–156

AUTHOR(s). A rigorous quality control process was implemented, including outlier identification
(Gonzalez and Bech, 2017), review of repeated values…

REFEREE. What do you mean by “review of repeated values”? And rigorous with respect to
what benchmarks?

By “review of repeated values”, we refer to the identification of unusual sequences of identical values in daily
precipitation records, which could indicate systematic measurement errors or sensor malfunctions. While con-
secutive days with zero precipitation are expected, extended sequences of identical positive values may suggest
issues in the data recording and require verification.

Regarding the term “rigorous”, while its nuance may seem ambiguous when translated from Spanish to En-
glish, it specifically refers to the quality control process adhered to established methodologies and recognized
hydrological data management standards (Gonzalez and Bech 2017; Llabrés-Brustenga et al. 2019). To provide
a clearer explanation, the quality control process included several key stages to ensure the reliability and con-
sistency of the data. First, outlier detection was carried out using standard statistical techniques to identify
potential anomalies in precipitation records and physically impossible values. Subsequently, the verification of
null data and false zeros was performed following the criteria established by Lez-Rouco (2001), ensuring that
days without precipitation were accurately represented and that there were no erroneous data gaps. Finally,
a manual review of extreme events was conducted in cases where automatic algorithms detected discrepancies,
providing an additional layer of validation and ensuring the accuracy of the data.

To enhance readability, we propose revising the text as follows:

“A quality control process was implemented, following established hydrological data management standards (Gon-
zalez and Bech, 2017; Llabrés-Brustenga et al., 2019). This process included the identification of outliers using
standard statistical techniques. It also involved the verification of null values and false zeros, following the crite-
ria outlined by Lez-Rouco (2001), ensuring that days with no recorded precipitation were accurately represented
and that potential data gaps were addressed. Additionally, a manual review of extreme events was conducted in
cases where discrepancies were detected by automated algorithms, providing an additional layer of validation to
maintain data integrity. This multi-step approach ensured that the dataset used in the analysis was both reliable
and consistent, meeting rigorous quality control benchmarks.”

Line(s) 175–177

AUTHOR(s). Given the considerable number of groups and to simplify the interpretation of the
findings, we will focus on the group where rainfall occurs simultaneously in all stations (group
32 - Fig. 1).

REFEREE. So what? You introduce a tricky model, then you realize it is too complex, and thus
you use the simplest case given by Group 32: essentially, it corresponds to a classical “AND”
hazard scenario. The fact that the model is a mathematical mess was already clear in Eq. (1),
so why not considering the case of Group 32 directly, which simplifies the discussion, as well as
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the mathematical treatment. In practice, you boasted about solving a problem in 5 dimensions,
but then you only dealt with a specific sub-case.

The model considers all possible combinations of precipitation occurrence across the stations, structured into
32 groups, each representing a distinct precipitation pattern (Figure 1). This decomposition avoids part of the
complications related to zero precipitation by separating different event configurations. Some examples include:

• Group 1 = [1,0,0,0,0] → Includes events where precipitation occurs only at the last station.

• Group 2 = [1,1,0,0,0] → Includes events where precipitation occurs at the last two stations.

• Group 3 = [1,1,1,0,0] → Includes events where precipitation occurs at the last three stations.

• …

• Group 32 = [1,1,1,1,1] → Includes events where precipitation occurs at all stations.

Group 32 was analyzed in detail because the hypersurface used for the estimation of the 100-year JRP lies
within this group, as previously explained in our response to Lines 56-57. However, this does not mean that the
analysis was limited to this case. All groups were modeled and incorporated into the construction of the JCDF
presented in Equation (1), which fully accounts for the multivariate dependence structure.

To avoid misinterpretations, we will revise the manuscript to explicitly clarify that the model incorporates all
precipitation occurrence scenarios, while the focus on Group 32 is justified by its role in defining the RP.

Line(s) 185–187

AUTHOR(s). Figure 5 presents the autocorrelation plots calculated for group 32. When ana-
lyzing the autocorrelation plot of the five event series, it is observed that there is no significant
correlation between values at different time intervals.

REFEREE. To the best of my understanding of the plot, quite a few estimates of the ACF
are outside a (traditional) 5% Confidence Band, and thus I would suspect that the data ARE
auto-correlated. . .

The fact that some values fall outside the confidence intervals of the autocorrelation function (ACF) does
not necessarily mean that they indicate significant autocorrelation. As Box et al. (2015) noted, even in non-
autocorrelated data, approximately 5% of autocorrelation coefficients are expected to exceed the confidence
bands purely due to random fluctuations. Therefore, relying solely on visual inspection can be misleading. A
statistical assessment is necessary to determine whether these deviations reflect genuine autocorrelation or are
merely artifacts of chance.

To ensure a more rigorous evaluation, we propose incorporating the Ljung-Box test (Ljung and Box 1978) to
statistically assess autocorrelation across all lags. This will provide a more conclusive determination of whether
the observed deviations result from random variation or indicate structural autocorrelation. The results of
this test will be included in the revised manuscript to strengthen the analysis and offer a clearer, statistically
grounded interpretation of the autocorrelation patterns in the data.

Line(s) 195

AUTHOR(s). In the upper triangular matrix, Kendall’s � values are displayed in a heatmap…

REFEREE. Confidence Intervals for the estimates must also be provided.

The addition of confidence intervals for Kendall’s 𝜏 estimates is a valuable suggestion. While the manuscript
currently presents the point estimates of Kendall’s 𝜏 in the heatmap, illustrating the strength and direction of
dependencies between station pairs, we understand that incorporating confidence intervals will help quantify the
uncertainty associated with these estimates and offer a more robust interpretation of the observed correlations.

In response, we will incorporate confidence intervals for the Kendall’s 𝜏 estimates using suitable methods.
These intervals will be incorporated into the heatmap and further discussed in the manuscript, ensuring a more
comprehensive interpretation of the dependencies. The updated results will be applied to all relevant groups
and reported accordingly.

Line(s) 203–204

AUTHOR(s). The results from this indicator showed that both upper and lower tail dependence
were present in the data.

REFEREE. Believe me, with such data you cannot really claim anything about the possible
(statistical) presence of Tail Dependence: this is just visual statistics, too often a deceiving
practice used by inexperienced practitioners…

8



We understand that relying solely on visual methods for identifying tail dependence may raise concerns about
the validity of the conclusions. To clarify, the identification of tail dependence in our study was not based solely
on visual inspection. We employed the non-parametric estimator by Schmidt and Stadtmuller (2006), which
is specifically designed to detect tail dependencies in multivariate contexts. This approach, as stated in the
manuscript (lines 203–205), is more robust and statistically sound than visual methods.

We are fully aware of the limitations of this method, as discussed in the manuscript, and interpreted the results
with caution, also considering previous evidence on the occurrence of tail dependencies in extreme precipitation
events (Serinaldi 2008; Evin, Favre, and Hingray 2018).

To address your comment and eliminate any ambiguity, we propose the following revision in the manuscript:

“As in other studies (Brunner et al., 2018), the estimator by Schmidt and Stadtmüller (2006) was applied to
determine tail dependencies, acknowledging the limitations associated with this method (Serinaldi et al., 2015).
While the graphical representation aids in visualizing dependencies, the statistical evaluation provided by this
estimator ensures that the analysis goes beyond visual inspection. The results indicated both upper and lower tail
dependencies, though, as highlighted by Serinaldi (2008) and Evin et al. (2018), upper tail dependence is often
expected in extreme precipitation events.”

Line(s) 226–227

AUTHOR(s). Additionally, the QQ plots for each group were checked, and it was observed that
the GEV adequately represented the tail behavior.

REFEREE. Formal Monte Carlo Goodness-of-Fit tests, and the corresponding p-values, would
be less visual and more objective (e.g., Kolmogorov-Smirnov, or even better Anderson-Darling
ones).

While QQ plots were employed in the manuscript to visually assess the fit of the marginal distributions to the
GEV (Generalized Extreme Value) distribution, we are aware that this approach, though informative, relies on
subjective visual inspection.

In response to your suggestion, we will incorporate formal goodness-of-fit tests, such as the Kolmogorov-Smirnov
and Anderson-Darling tests, to more rigorously evaluate the fit, particularly in the tails of the marginal distribu-
tions. These tests will provide a more objective and quantitative assessment, allowing for a clearer understanding
of the model’s performance in capturing the extremes.

Table 1

REFEREE. In Table 1, GoF p-values are missing for the first two cases, they should be shown.

To ensure completeness and consistency in presenting the results, we will include the missing p-values for these
cases in the revised manuscript.

Line(s) 256–257

AUTHOR(s). To analyze the results for the remaining groups, a box plot was constructed, as
presented in Fig. 8, where the distributions of AIC for all groups in each proposed approach are
compared.

REFEREE. You must first check that the model is admissible via a GoF test, and then (and only
then) select the “best” model (according to some criterion) ONLY among the admissible ones.
The plots of the AIC’s alone in Fig. 8 are of little interest/significance: the corresponding models
could all be non-admissible without, first, carrying out suitable GoF tests.

We understand the importance of ensuring model admissibility through Goodness-of-Fit (GoF) tests before
comparing models based on criteria such as AIC. To clarify, the models presented in Figure 8 were all evaluated
using GoF tests prior to comparison, ensuring that only admissible models were included in the analysis.

The purpose of Figure 8 is to illustrate the differences in AIC values among models that have already passed
the GoF tests, allowing for an objective comparison based on their relative efficiency. However, we acknowledge
that this validation process may not have been clearly communicated in the manuscript.

To prevent any confusion, we will revise the text to explicitly state that the models in Figure 8 were subjected
to GoF tests prior to comparison. Additionally, we will include a discussion of the GoF test results, providing
more transparency regarding the model validation and selection process.
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Line(s) 271–272

AUTHOR(s). The first was crucial for assessing whether the dependency of the observed values
was maintained, reduced, or improved.

REFEREE. How you could “improve” a dependence remains a mystery to me. . .

The term improved may have caused some confusion. Our intention was to express that the analysis aimed to
determine whether the model accurately captured the dependency structure of the observed data and whether
the generated synthetic data preserved this structure. To avoid ambiguity, we have revised the wording in the
manuscript and replaced ‘improved’ with a more precise formulation:

“The first was crucial for assessing whether the dependency observed in the original data was accurately captured
in the synthetic data generated by the model.”

Line(s) 283–284

AUTHOR(s). This finding supports the ability of the copulas used to accurately capture and
reproduce the behavior of the real variables in terms of their extremes and dependencies.

REFEREE. Statistically speaking, at most you can hope it: your conclusions are only based on
visual analyses, be careful.

While we acknowledge that graphical methods, such as Kernel Density Estimation (KDE) plots, are inherently
exploratory, they are valuable tools widely used in the scientific literature to identify complex patterns, such as
tail dependencies, especially when analyzing extreme data.

In our approach, KDE plots were not used in isolation but as complementary tools that facilitate the visualization
of data concentration in the tails and aid in interpreting the results. However, we agree that the conclusions
can be strengthened by integrating quantitative measures that support the visual observations. To enhance
the robustness of our conclusions, we propose incorporating the results from the tail dependence estimator by
Schmidt and Stadtmuller (2006) or another suitable estimator. This modification will allow for an objective
quantification of the presence of tail dependence, thereby combining the interpretative value of visual analyses
with the rigor of formal statistical methods.

Line(s) 291

AUTHOR(s). Based on the analyzed results, the Vine extreme approach demonstrated its ability
to reproduce upper tail dependencies.

REFEREE. You should add: assuming it is really present.

The suggestion will be incorporated to ensure the statement accurately reflects the presence of tail dependencies.
Additionally, to enhance the rigor and consistency of the analysis, we will explicitly support this assertion with
statistical tests that quantify tail dependence. This adjustment will reinforce the conclusions by integrating
both graphical and numerical evidence, strengthening the robustness of the presented analysis.

Line(s) 324–327

AUTHOR(s). To calculate the critical level t, it was necessary to calculate the 100-year RP.
Considering that we have more values per year than in the case of annual maximum, the quantiles
in this case move to the extreme part of the distribution. Note also that each Kendall function
is calculated from the continuous part of the function described in Eq. (1), that is, it considers
the complete CDF.

REFEREE. This claim is quite obscure, and should be clarified. Intuitively, it should be enough
to properly set the constant � in the definition of the Kendall RP to fix the right temporal scale
(e.g., � = 1/12). However, this looks like a Kendall RP conditional to the fact that rain is present.

The interpretation of the Kendall return period in this study follows the methodology outlined by G. Salvadori,
C. De Michele, and F. Durante (2011). As noted, the temporal scale can be adjusted by appropriately setting
the constant 𝜇. In our case, the number of events per year is explicitly incorporated into the computation of
the 100-year RP, ensuring that the temporal framework is properly accounted for.

Regarding the conditioning on rainfall occurrence, it is important to clarify that the Kendall function is calcu-
lated using the complete distribution described in Equation (1), which includes both the discrete part (probabil-
ities of zero) and the continuous part (positive values). This means that our JRP estimation properly considers
precipitation intermittency across different stations, without exclusively conditioning on the presence of rainfall
at all stations.
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To make this clearer in the manuscript, we propose the following revision:

“The critical Kendall level t was calculated following the methodology outlined in Salvadori et al. (2011). Addi-
tionally, the actual number of events per year was considered when computing the 100-year return period, which
leads to a shift of the quantiles toward the extreme part of the distribution, as highlighted in the analysis. It is
important to note that we calculated the Kendall function using the complete Join CDF described in Equation
(1), which includes both discrete (zero values) and continuous (positive precipitation) components, thus properly
accounting for precipitation intermittency across stations without conditioning exclusively on rainfall presence.”

Line(s) 329–330

AUTHOR(s). The best-performing approach (4) obtained a critical value of 0.993, while the
lowest performing approach (1) obtained a critical value of 0.778.

REFEREE. Assuming that these results make sense, you should interpret them, and discuss the
consequences.

The difference in the critical values obtained reflects the ability of each approach to accurately capture ex-
treme dependencies between variables. The best-performing approach (0.993) more accurately preserves the
dependency structure of the data, indicating a greater capacity to model extreme compound events, especially
those impacting multiple stations simultaneously. This result is essential in the context of hydrological risk
management, as it enables more reliable estimations of low-frequency, high-impact events.

Conversely, the lowest-performing approach (0.778) underrepresents extreme dependence, which may lead to
an underestimation of the risk associated with simultaneous extreme events. In hydrological and disaster
management contexts, this outcome could lead to insufficient preparedness and an underestimation of actual
risks.

To present the information more effectively, we will refine the manuscript as detailed below:

“The best-performing approach (4) obtained a critical value of 0.993, indicating its strong ability to preserve the
dependency structure observed in the data. This enhances the model’s reliability in representing compound events
and strengthens its predictive capacity. In contrast, the lowest-performing approach (1), with a critical value of
0.778, shows a reduced ability to maintain data dependencies, which could impact the accuracy of simulations
and lead to potential misinterpretations in risk assessments”

Line(s) 341–344

AUTHOR(s). This procedure was iterated until we obtained a sufficient number of events on
the critical layer for each approach. Iteration was necessary because, given the specific nature of
the critical level t, only a small fraction of the synthetic events would correspond exactly to this
value.

REFEREE. Frankly speaking, I really doubt that any of the events generated actually lies on the
critical layer, if only for the sake of numerical approximation. Most likely, you have fixed some
tolerance coefficient: you must clearly explain how you accept that an event lies on the critical
layer.

The procedure for selecting events on the critical layer is detailed in the manuscript (Line 336, Section 3.5.1
Critical Layer). We note that our previous wording may not have been entirely precise. Given the numerical
constraints of the process, it is highly unlikely that a randomly generated event would match the critical level t
exactly: To handle this numerical limitation, a tolerance coefficient of 10−4 was applied, allowing events within
this range to be accepted during the filtering process.

Since this study operates in a five-dimensional space, ensuring statistical robustness required generating a
sufficiently large and representative set of synthetic events. Gaussian Process Regression (GPR) models were
employed to capture the structure of the high-dimensional space, followed by an iterative filtering process to
extract events meeting the tolerance criterion, resulting in a final set of 1 million critical events.

We propose the following revision in the manuscript:

“For each approach, a sufficiently extensive set of synthetic events was generated to represent possible realizations
within the multidimensional space. The generation process, while computationally intensive, was made feasible
and efficient through pre-trained Gaussian Process Regression (GPR) models. The joint distribution function
was calculated for each synthetic event, and only those that matched the critical level t were selected. Given the
inherent numerical constraints, a a tolerance coefficient of 10−4 was applied to identify events within the defined
range. This approach, consistent with the principles outlined by Salvadori et al. (2011), provided a structured
and reliable representation of the critical layer”.
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Line(s) 354–355

AUTHOR(s). Solving this loss of precision in high dimensions was easy because we had sufficient
event combinations on the critical layer. For each combination of events, we calculated the density
function and selected the one with the highest density.

REFEREE. It is not clear what you mean by a “combination of events”, and how it is chosen.
What is its sample size and how is it decided? What is its density function (the joint one?) More
details must be given for the sake of discussion and reproducibility.

When we refer to average precipitation, our goal is to estimate the total precipitation over the watershed, rather
than simply computing an arithmetic mean. To achieve this, we use different approaches for the univariate and
multivariate cases.

In the univariate case, extreme precipitation values are first estimated independently at each station based
on a 100-year RP. To obtain the total precipitation over the watershed, these values are spatially aggregated
using Thiessen polygons and hydrological reduction factors, commonly used methods for estimating spatial
precipitation from point measurements.

In the multivariate case, we account for spatial dependence between stations, which is not considered in the
univariate approach. Instead of aggregating independent extremes, the total precipitation over the watershed
is estimated by modeling the joint probability structure of extreme events, ensuring that the spatial correlation
of precipitation is preserved when assessing extreme conditions.

While a traditional precipitation average may not fully align with extreme value methods, spatially integrating
extreme values across the watershed provides a relevant metric for assessing the system’s response under critical
conditions. This approach ensures consistency within the extreme value analysis framework, maintaining a valid
comparison between the univariate and multivariate methods.

We acknowledge that this procedure may require further clarification in the manuscript and therefore propose
the following revision:

“To compare the results of univariate and multivariate analyses, the total precipitation over the watershed was
estimated using both approaches. In the univariate case, the 100-year return period values were calculated
independently at each station and aggregated using Thiessen polygons and hydrological reduction factors. In
contrast, the multivariate approach incorporated spatial dependence among stations, providing an alternative
estimation of total precipitation under extreme conditions. This ensures a consistent and meaningful comparison
between methodologies, allowing for a better understanding of how spatial dependence influences extreme event
estimation over the watershed.”

Line(s) 371–372

AUTHOR(s). To compare the results of univariate and multivariate analysis, it was necessary to
calculate the average precipitation in the watershed using both approaches.

REFEREE. Average precipitation could have little to do with the Extreme Value approach: I
understand that it is part of common hydrological practice, but then it seems that the Authors
are playing at the same time on two different layers, as if they were trying to have a foot in both
camps. A justification is required here.

The concern regarding the use of average precipitation in the context of extreme value analysis is well taken.
The comparison between univariate and multivariate approaches does not rely on a simple average of daily or
monthly precipitation but rather on the spatial average of extreme values estimated at each station, that is, we
compute the average spatial rainfall over the complete watershed of the extreme event considered. This way to
proceed ensures consistency with extreme value analysis while providing an aggregated metric that facilitates
hydrological interpretation.

The spatial average was computed using extreme precipitation values associated with a 100-year RP, estimated
independently at each station. In the univariate approach, these values were derived through standard extreme
value analysis techniques and then aggregated using spatial reduction methods, such as Thiessen polygons and
hydrological reduction factors tailored for large watersheds.

While a traditional precipitation average may not align with extreme value methods, averaging extreme values
across the watershed offers a relevant measure of the system’s aggregated response under critical conditions.
This approach ensures that the comparison remains within the framework of extreme value analysis rather than
introducing inconsistencies between methodologies.

We recognize that the explanation of this procedure may require further clarification in the manuscript and
therefore propose the following revision:
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“To compare the results of univariate and multivariate analyses, the spatial average of the extreme precipitation
values estimated at each rain gauge was used as a common metric. In the univariate approach, the 100-year
return period values were calculated independently for each station and aggregated using Thiessen polygons and
spatial reduction factors appropriate for large watersheds. This procedure ensures a consistent and meaningful
comparison between approaches, enabling the assessment of differences in estimated extreme events across the
watershed.”

Line(s) 379–381

AUTHOR(s). Compared to this method, the Gaussian, Gaussian Groups, and Vine Gaussian
models tend to underestimate the events, while the Vine t-student overestimates them.

REFEREE. Here, as well as below, you cannot speak about under- or over-estimates: this makes
sense only if you know the true value. Here you can only speak about relative smaller/larger
values.

We agree that terms such as “underestimation” or “overestimation” imply a known true value, which does not
apply in this context. Our comparison is based on a reference model—the one that best fits the data—against
which other models are evaluated. In this framework, the Gaussian, Gaussian Groups, and Vine Gaussian
models yield relatively smaller values, while the Vine t-student model produces relatively larger values. These
differences are assessed relative to the reference model rather than an absolute benchmark, offering a comparative
perspective on how each model represents extreme events and captures the dependency structure in the data.

This distinction will be clarified in the text, and the proposed modification is:

“Compared to the model that showed the best fit to the data, the Gaussian, Gaussian Groups, and Vine Gaussian
models produced relatively smaller values, while the Vine t-student yielded relatively larger values. These com-
parisons are made relative to the reference model and do not imply absolute under- or over-estimation. Instead,
they highlight the differences in how each approach captures the dependence structure and the extremes present
in the dataset.”

Line(s) 399–ff.

REFEREE. The Discussion and the Conclusions sections could/should be merged in a single
section “Discussion & Conclusions”.

In response to the suggestion, the Discussion and Conclusions sections have been consolidated into a single “Dis-
cussion & Conclusions” section. This streamlined format presents key findings, interpretations and limitations,
thereby enhancing overall clarity and coherence.
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