Rebuttal of Review 2

Dear reviewer,

We appreciate the time and effort taken to review our manuscript. Please, find
below our answers to your comments.

General Comments

While the manuscript primarily reviews existing concepts of return pe-
riods for compound events, it is unclear how these concepts can be
generalized to all typologies of compound events. Specifically, the appli-
cation of return periods to preconditioned and temporally compounding
events is not well addressed. To achieve the stated goal of extending the
concept to any type of compound event, the manuscript would benefit
from illustrative examples that demonstrate this applicability.

Our study follows the classification by Zscheischler et al. (2020) and emphasizes
that preconditioned, multivariate, temporally compounding, and spatially com-
pounding events can all be analyzed within a unified conceptual framework under
our methodology.

While the manuscript already employs a multivariate approach that captures de-
pendencies between different variables, we recognize the importance of explicitly
clarifying how our methodology applies to each typology of compound events. To
enhance clarity, we will refine the manuscript by explicitly stating that all ty-
pologies of compound events can be framed within the same conceptual approach,
ensuring a unified interpretation. Additionally, we will clarify how our methodol-
ogy applies to each typology described in Zscheischler et al. (2020), reinforcing that
they can all be analyzed within the same methodological framework. To further
support this, we will provide a detailed description of how the method is applied
in each case:

1. Preconditioned events: These events are modeled by incorporating the ini-
tial system state as a variable within the dependency analysis. For example,
in the case of flooding, where the occurrence of an extreme event depends
on prior soil moisture conditions, this factor is explicitly included in the re-
turn period estimation through conditional copulas or probability functions.
This allows for the assessment of how antecedent conditions influence the
likelihood of extreme events. After the selection process, a multivariate set
of events is obtained, preserving the influence of prior conditions.

2. Multivariate events: Our methodology is specifically designed to capture
dependencies between multiple simultaneous extreme variables, such as the
concurrent occurrence of intense precipitation and storm surges within the
same system. Multivariate copulas are used to characterize these interac-
tions and compute joint return periods, reflecting the probability of multiple



drivers occurring together. Once the selection process is completed, a mul-
tivariate set of events is obtained, maintaining the dependency structure
between extreme variables.

3. Temporally compounding events: These events are handled by incorporating
the relationship between extreme events occurring within a short time frame.
The dependency between consecutive events is accounted for, allowing us to
assess how the occurrence of one extreme event increases the probability
of another occurring shortly after. This is reflected in the estimation of
cumulative return periods, which consider event persistence and its impact
on system recovery. At the end of the selection process, a multivariate set
of events is obtained, preserving temporal dependencies and the sequential
occurrence of extreme events.

4. Spatially compounding events: Our methodology enables the assessment
of correlations between extreme events in different regions by incorporating
spatial dependency structures. Spatial copula models are applied to estimate
the joint probability of extremes occurring across multiple locations, allowing
for the calculation of regional return periods that capture the simultaneous
occurrence of events in different geographic areas. After the selection process,
a multivariate set of events is obtained, maintaining the spatial correlation
structure among the analyzed regions.

All the categories described above, end up as a collection of variables whose joint
distribution needs to be characterized by means of copulas. That is, mathemat-
ically, all the typologies end up being the same problem, where copulas need to
be fit and the fitted copula analyzed to derive the joint return periods. Therefore,
the distinction between typologies comes from the interpretation of the results,
but methodologically all the four types can be treated with the same methodol-
ogy, without making any methodological different except for the event selection
phase.

Additionally, we would like to highlight that our work is structured into three
parts, which demonstrates the applicability of our methodological framework to
different types of compound events:

o The first part, presented in this manuscript, develops the methodological
framework for estimating return periods in compound events.

o The second part, addressed in a complementary study, applies this method-
ological framework specifically to spatially compounding events.

e The third part, although not submitted to this journal, applies the method-
ology to analyze multivariate events in an estuarine region, aiming to char-
acterize flood risk considering multiple simultaneous drivers.

Although the manuscript aims to include machine learning techniques,
their description lacks detail and validation. The following areas require
clarification and elaboration:

Page 17, Points 5C-5D: The manuscript discusses the computation of
copula values in higher dimensions via integration. However, the role
of Gaussian processes in this context is insufficiently explained. The
algorithm is not described in detail, its numerical performance is not
evaluated, and there is no validation of the method.

Gaussian Processes are used as a universal approximator or emulator of the func-



tion that we want to evaluate. Since computing values of a multivariate cumulative
distribution function (CDF) is a costly endeavor, the Gaussian Processes serve to
approximate such a non-linear function with less computational cost.

To improve the clarity of the manuscript, we will include a more detailed method-
ological description of Gaussian Process Regression (GPR) in the supplementary
information. This will provide a better understanding of the role of GPR in our
methodology and its applicability in estimating computationally expensive func-
tions.

The use of GPR has been extensively studied and applied in the approximation of
high-cost computational functions in various contexts. For example, Ba and Joseph
(2012) developed a composite Gaussian process model to emulate computationally
expensive functions, capturing both global trends and local details.

Additionally, Zhuang et al. (2025) applied GPR in the context of high-dimensional
American option pricing, highlighting its potential to mitigate computational chal-
lenges in high-dimensional settings. Their study demonstrates that GPR-based ap-
proaches can be adapted to efficiently model complex systems without a significant
increase in computational cost, which aligns with our use of GPR to approximate
the Vine copula CDF while maintaining computational efficiency.

These studies are examples of the effectiveness of Gaussian processes in approxi-
mating computationally expensive functions, supporting their application in our
study. We believe this addition will clarify the role of GPR within our method-
ological framework and provide a stronger justification for its use.

The validation and calibration performance is carried out in Part II of the pa-
per, since this first part is a detailed description of the methodology, presenting
potential variations and citing all the relevant sources that we know about.

Page 18: The determination of the highest probability density point
in the critical layer is attributed to “computational optimization tech-
niques,” but these techniques are neither named nor described.

Once the critical layer has been defined, there are two potential ways forward to
define events of interest. The first one is to determine the most likely event from
the critical layer. To determine this event, we have used the MLE (Maximum
Likelihood Estimation) algorithm of the Spotpy Python library, which -in spite
of its name- does not maximize the statistical likelihood, but it does a classical
gradient descent optimization -considering the derivatives of the function-. This
procedure works well for up to three dimensions, because above that number there
is a high probability of it getting stuck in a local maximum.

The alternative strategy is to not look for the most likely event, but simply to
sample events from the critical layer proportionally to their likelihood. However,
this procedure faces two complications. First, there is a need to compute the value
of the CDF at each point, which implies a multidimensional numerical integration,
which is highly time consuming. Second, to sample from the critical layer we need
the CDF for all the events at the layer, which is difficult to calculate accurately.

To remediate the first problem, we use Gaussian Process Regression (GPR) as a
non-linear approximator to the real value of the multivariate CDF. We compute
the value of the CDF using Monte Carlo integration methods for a number of
points that serve as interpolation basis for GPR. Then, this methods provides
approximated values of the CDF, speeding up the process. The number of points



of the interpolation base serve to control the approximation error to any desired
level.

The second problem is dealt with using the Metropolis-Hastings algorithm, which
allows us to sample from complicated probability distributions where the CDF
cannot be computed. Using an auxiliary probability distribution, this method
allows us to generate a sample that grows iteratively, which, in the end, converges
to the desired unknown distribution.

Sampling for the critical layer in this way, allows us to generate a collection of
events from which the most likely one -or an event almost indistinguishable from
the most likely one- can be obtained. Even more, since a complete collection
of events is obtained, multiple events related to the same return period can be
analyzed and see how the effect of such events may differ in the impact variable.

To improve the clarity of the methodology presented in the manuscript, we will
incorporate the following description in the methodological section:

The identification of the most probable design event within the critical layer was per-
formed following two complementary approaches, depending on the dimensionality
of the problem.

First, for cases involving up to three dimensions, we employed Maximum Likelihood
FEstimation (MLE) as implemented in Spotpy (Spotpy, 2024). Contrary to its
name, this algorithm does not maximize the statistical likelthood but rather applies a
classical gradient-descent optimization, leveraging function derivatives to iteratively
refine the estimate of the most probable event. This method is computationally
efficient; however, for problems beyond three dimensions, it presents a high risk of
converging to local mazima, reducing its effectiveness.

As an alternative, when dealing with higher-dimensional spaces, we employed a
sampling-based strategy that does not rely on direct maximization but instead pro-
portionally samples events from the critical layer based on their likelihood. This
approach, however, faces two main computational challenges:

1. The need to evaluate the cumulative distribution function (CDF) at multiple
points, requiring multidimensional numerical integration, which is computa-
tionally expensive.

2. The necessity to estimate the CDF for all events within the critical layer,
which is challenging to compute accurately.

To address the first issue, we leveraged Gaussian Process Regression (GPR) as a
surrogate model to approximate the true multivariate CDF. We computed reference
CDF' wvalues using Monte Carlo integration over a selected set of interpolation
points, which were then used to train the GPR model. This approach significantly
reduces computational costs while maintaining control over approrimation errors.

For the second issue, we utilized the Metropolis-Hastings algorithm, which allows
us to efficiently sample from complex probability distributions where direct CDF
computations are infeasible. By iteratively refining an auxiliary probability distri-
bution, this method generates a representative sample of events that converge to
the true distribution of extreme events in the critical region.

This refined sampling process allows us to obtain a collection of extreme events, from
which we can extract the most probable one—or an event nearly indistinguishable
from it. Furthermore, this method enables the analysis of multiple events with



the same return period, providing deeper insight into how different realizations of
extreme events may impact the target variable.

The complete implementation of this methodology, including its application in high-
dimensional contexts, is detailed in Part II of this study, where we validate its
effectiveness and illustrate its practical relevance in extreme event characterization.

We believe that these modifications will contribute to a better integration between
Part I (methodological framework) and Part II (case study) while enhancing clar-
ity in the presentation of the optimization process. We sincerely appreciate the
reviewer’s observation, which has allowed us to strengthen the exposition of our
methodology.

Section 3.6.2: The manuscript references the use of the Metropolis-
Hastings algorithm. However, no algorithm details are provided, and
no numerical validation or examples are included.

We propose modifying Section 3.6.2 of the manuscript to include a more detailed
description of the Metropolis-Hastings algorithm, which was previously mentioned
in line 475 of Part I of the article. However, we acknowledge that the original
manuscript did not include the proper reference to the foundational work on the
method. This will be corrected by citing Hastings (1970), who formalized the
algorithm, along with the original formulation by Metropolis et al. (1953). In
addition to this correction, we will clarify its implementation and provide numer-
ical evidence to support its functionality. The suggested wording for the revised
manuscript is as follows:

“To obtain a representative sample of the probability distribution within the critical
layer, the Metropolis-Hastings algorithm is implemented (Metropolis et al., 1953;
Hastings, 1970). The process begins with the selection of an initial event within
the critical layer, from which a sequence of events is generated using an auziliary
proposal distribution. In each iteration, a new candidate event is proposed, and
its probability density is compared to that of the current event. If the candidate
has a higher density, it is automatically accepted; otherwise, it is accepted with
a probability proportional to the ratio of both densities. This iterative procedure
allows the construction of a sample that, after a sufficient number of iterations,
converges to the target distribution, ensuring an adequate representation of the
variability in extreme events.

In Part II of this study, numerical validation is presented to demonstrate the
effectiveness of the method in generating representative samples of the probability
distribution. This enables both the identification of the event with the highest
density and the analysis of multiple events associated with the same return period.”

With this modification, we aim to improve the methodological clarity of the process,
particularly by emphasizing the selection of the proposal distribution, as it plays
a key role in the efficiency of the sampling procedure and the convergence to the
target distribution. This revision provides a clearer understanding of the role of
Metropolis-Hastings in our methodology.

In summary, while the manuscript provides a comprehensive review of
return period concepts, further clarification and illustrative examples
are needed to demonstrate the applicability of these concepts to diverse
types of compound events. Additionally, the integration of machine
learning techniques should be substantiated with detailed methodolo-
gies and numerical validations.



We appreciate the reviewer’s comment and agree that including additional illustra-
tive examples can improve the understanding of the applicability of the concepts
presented in the manuscript. We will revise the text to incorporate more examples
where possible and relevant.

However, we would like to emphasize that this manuscript is the first part of a
three-part study. In particular, the second part of this study, which is currently
under review, focuses on applying the methodology to spatially and temporally
compounding events, providing detailed numerical validations and case studies.
Additionally, there is a third part of the study, which, although not submitted
to this journal, applies the same methodological framework to multivariate com-
pound events in estuarine environments, considering river discharge, wind, and
marine/coastal variables to analyze interactions between different extreme phe-
nomena affecting estuarine dynamics.

Since this manuscript primarily focuses on methodological formulation, most of
the validation and practical applications are presented in the second part of the
study.

Specific comments

Section 3.1.2: It is unclear to me the difference between parametric and
non-parametric measures of dependence. I guess that the distinction
is between rank-invariant measures and other measures like Pearson’s
correlation. Also the intuitive distinction between Spearman’s rho and
Kendall’s tau at line 150 should be better explained.

We appreciate the reviewer’s insightful comment and agree that a more detailed
explanation of these concepts will enhance the manuscript’s clarity. Differences
between Parametric and Non-Parametric Dependence Measures:

e Parametric Measures: These measures, such as Pearson’s correlation coeffi-
cient, assume a linear relationship between variables and require that the
data follow a normal distribution. They are sensitive to outliers and may
not effectively capture non-linear relationships.

Non-Parametric Measures: These include coefficients like Spearman’s rho
and Kendall’s tau, which do not assume a specific distribution and are based
on the ranks of the data rather than their actual values. This makes them
more robust to non-normal distributions and outliers, allowing them to cap-
ture monotonic relationships that are not necessarily linear.

Differences between Spearman’s Rho and Kendall’s Tau:

e Spearman’s Rho: Calculated as the Pearson correlation coefficient between
the ranked variables, Spearman’s rho assesses how well the relationship be-
tween two variables can be described using a monotonic function. It is sen-
sitive to differences in ranks and can be influenced by the presence of tied
ranks.

o Kendall’s Tau: This coefficient measures the difference between the probabil-
ity of observing concordant versus discordant pairs in the data (Okoye and
Hosseini 2024). It is considered more robust in the presence of ties and pro-
vides a more direct probabilistic interpretation of the strength of association
between two variables.



To address this observation in the manuscript, we will implement the following
revisions:

1. Enhance the explanation in Section 3.1.2 by explicitly differentiating be-
tween parametric and non-parametric dependence measures, supported by
the relevant references.

2. Provide a clearer intuitive explanation around line 150 regarding the concep-
tual differences between Spearman’s rho and Kendall’s tau, highlighting their
respective applications and limitations, and substantiating with appropriate
citations.

Section 3.2: please, notice that AIC is not a test, but a selection crite-
rion.

We have corrected the wording to make this point more clear.
Eq. (1): It is unclear what is x and what is R__i(x).

We appreciate the reviewer’s observation and acknowledge that an adjustment in
the mathematical notation is necessary to enhance clarity and ensure a precise
interpretation of the expressions used.

In this context, R(x) represents the rank of the observation x within the dataset.
As described in Section 3B of the manuscript, to compute the empirical copula, it
is common practice to transform the original variables into the standard uniform
space ([0, 1]). This transformation is performed using the expression:

where R(z) is the rank of z among all observations for a given variable, and n is
the total number of observations. By applying this transformation, the original
variables (X,Y,...,W) are converted into pseudo-observations (Uy, Uy, ..., Uy, ),
which follow a uniform distribution in ([0, 1]).

To address this observation in the manuscript, we will implement the following
revisions:

1. Clarify the definition of R(x) in the text, explicitly explaining its role in the
variable transformation for empirical copula construction.

2. Include a brief note in the corresponding equation, ensuring that readers
understand that R(z) represents the rank of the observation, rather than an
additional function.

These modifications will improve the clarity of the manuscript and facilitate
the interpretation of the notation used.

Eq. (3) and (4): It is difficult to understand in which sense X and Y are
conditional events rather than random variables. Analogously, F_ X(X)
should be a random variable and not a conditional event.

We acknowledge the reviewer’s comment and recognize that the notation in Equa-
tions (3) and (4) was not presented clearly. Specifically, the way X and Y were
defined may have led to the incorrect interpretation that they represent conditional
events rather than random variables.



In our approach, X and Y are continuous random variables, while U = F'y(X) and
V = Fy(Y) correspond to their transformation via the probability integral trans-
form. This process allows any continuous random variable to be mapped into the
uniform space [0, 1] and is widely used in copula modeling to represent dependence
structures without imposing assumptions on the marginal distributions.

To improve clarity in the manuscript and avoid any possible ambiguities, we will
implement the following modifications:

1. Clarify in the text that X and Y are random variables, while U and V
result from applying the probability integral transform, ensuring they follow
a uniform distribution in [0, 1].

2. Reword the explanation of Equations (3) and (4) to prevent any misinter-
pretation regarding the term “conditional events.”

We believe these adjustments will enhance the clarity of the manuscript and ensure
that the interpretation of Equations (3) and (4) is well understood. We sincerely
appreciate the reviewer’s insightful suggestion, which will undoubtedly contribute
to improving the presentation of our work.

Eq. (5): W is not the copula function but the random variable defined
by C(U,V).

In this context, W = C(U, V) is a univariate random variable and not the copula
function itself. Equation (5) defines the Kendall distribution function, which is
expressed as:

K. (t) =Pr[W <t|=Pr[C(U,V) < {]

where W represents a scalar value derived from the copula function, and t is a
probability threshold that separates the supercritical and non-critical regions.

To improve clarity in the manuscript and avoid any misinterpretation, we will
implement the following adjustment:

1. Explicitly state in the text that W is a univariate random variable derived
from the copula and not the copula function itself.

We believe this modification will enhance the understanding of the role of W in
Equation (5).

Sections 4 and 5 are quite similar. They should be merged and their
scope should be better defined.

We do agree with the referee that the Discussion and Conclusions sections do not
belong in the paper, since, without reading Part II, it is difficult to provide solid
conclusions to our study. We have removed both sections and instead included
two new ones: Problems and Limitations and Concluding Remarks.

The former will address all the aspects discussed throughout this review that may
challenge the practical implementation of these techniques or even render them
unsuitable in certain scenarios. The latter will summarize the key points and
guide the reader towards Part II of the paper, where we will present a practi-
cal application of the methodology introduced in this study. This second part
will demonstrate the applicability of our approach using real-world data and case
studies, further supporting its robustness and relevance.
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