
Rebuttal of Review 1

Dear reviewer,

Below you will find our comments and responses to your review.

General Comment
This paper is useless, and introduces no novelties concerning the esti-
mate of the RP of high-dimensional occurrences. The work does not
contain any relevant advance: it simply suggests (in a non-technical and
superficial way) to use well known algorithms to find the critical points
of multidimensional functions.

We do not agree with your valuation of our contribution as useless. This paper
is the first part of a two parts paper, and we consider this distinction crucial to
understand the role that our work intends to play. In our experience, multidimen-
sional statistics, and specifically extremes, is a complicated subject where, if it is
true that a lot of literature exists, more often than not methodological details are
missing. Our aim with this paper was twofold. First, we wanted to make sure
that our methodology was fully reproducible, and for that, we wanted to make
sure that all the relevant points were covered. Due to the fragmentation of much
of the research on the topic, we considered to present an extended methodology
that anyone could follow. The second aim, once we realized the extension of such a
methodology, was to try to be as inclusive as possible and carry a literature review
of the different options that exist. In this way we provide the reader with a more
clear picture of the choices made in the paper, without giving the impression that
our way to proceed forward was the only one.

Even considering both parts, it may seem that this paper includes more additional
details than needed, and that is because there is a third paper, were we deal with
other different variables, were the selection of events and the treatment of the
distribution are quite different. Thus, including all the required information into
this paper to make references to it from all our posterior works. In this regard, we
were discouraged to submit the third paper as a third part, but we can make it
available to the reviewers should you consider to evaluate if our argumentation is
more understandable with all the judgement elements at hand.

In response to concerns regarding the novelty and relevance of our work, we find
it essential to make clear how our research not only integrates existing literature
but directly addresses one of the key limitations identified in the field: the esti-
mation of multivariate return periods in high dimensions and the definition of the
associated critical layer (or hypersurface). As noted by G. Salvadori, De Michele,
and Durante (2011), as well as in recent studies (Gräler et al. (2013); Brunner,
Seibert, and Favre (2016), Xu, Wang, and Bin (2023); Brunner (2023)), there is
a consensus within the scientific that the mathematical and computational chal-
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lenges of extending and aplying existing techniques to higher-dimensional spaces
(n>3) remain underexplored. Our paper advances in this area through:

1. Integration of existing methodological approaches for joint return periods
(JRPs): We present a comprehensive approach that organizes and synthe-
sizes existing methodologies, offering practical guidelines and structured
steps to enhance reproducibility and applicability. Given the complexity
and fragmentation of methods in the literature, this work aims to provide
a well-documented and cohesive framework that integrates statistical and
hydrological techniques, ensuring broader accessibility for researchers and
practitioners.

2. Definition of the multidimensional critical layer: We propose a novel ap-
proach to define the critical hypersurface associated with compound events
in high-dimensional spaces. This approach integrates advanced statistical
techniques with Gaussian Process Regression (GPR), thus optimizing the
computation of the critical layer and significantly reducing the associated
computational cost.

3. Reduction of computational cost: Unlike traditional approaches that rely
on intensive simulations, our methodology employs a combination of
Monte Carlo simulation and GPR-based regression models. This enables
the efficient computation of copula values in large datasets, making
high-dimensional analysis feasible without compromising accuracy.

4. Generalizable and applicable methodology: Although our methodology is ini-
tially presented for analyzing the spatial dependence of rainfall regimes, its
flexible and adaptable design allows for its application to different types of
compound events, including multivariate, preconditioned, temporally com-
pounding, and spatially compounding events, as classified by Zscheischler et
al. (2020). Thanks to its adaptability, our approach is applicable to a broad
range of environmental and climate-related challenges.

5. Opening avenues for future research: As detailed in our paper, once the crit-
ical layer in high-dimensional spaces is established, it opens the door for
more detailed studies on the selection of design events and uncertainty anal-
ysis. We thus consider that our contribution is neither superficial nor a mere
application of well-known methods. Rather, it constitutes a methodologi-
cal advancement that tackles a well-documented challenge in the scientific
literature while providing practical tools for implementation.

We would also like to emphasize that this work constitutes the first part of a
broader investigation, with the second and third parts presenting specific results
from its application to real-world case studies. This integrated and efficient ap-
proach is not only novel but also establishes a solid foundation for future research
and practical applications in the analysis of high-dimensional compound events.

Not to say about the “Conceptual Framework”: it is already well known
in hydrological/geophysical Literature since about 20 years. All the
formulas presented (sometimes inexact from a mathematical point of
view) do not show anything new, nor they represent any advance with
respect to the present knowledge.

We acknowledge that the “Conceptual Framework” is well known in the hydrologi-
cal and geophysical literature, having provided a solid theoretical basis for the past
two decades. However, our contribution does not lie in redefining this framework,
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but rather in its integration into a novel methodological approach designed to ad-
dress specific challenges in high-dimensional spaces. By combining this theoretical
foundation with advanced regression techniques (such as Gaussian Process Regres-
sion), efficient computational simulations, and an optimized approach for defining
critical layers, we provide practical solutions that are not directly available in the
existing literature.

Moreover, reproducibility is a cornerstone of scientific progress, and incorporating
established formulas ensures that our work remains transparent, accessible and
verifiable by the broader research community. However, what sets our contribution
apart is not merely the use of these concepts but their targeted application and the
significant advancements in computational efficiency. These innovations provide
deeper insights into the analysis of multivariate return periods in hydrology, and
represent an ongoing effort to overcome persistent limitations that have yet to be
fully addressed in the field. While we build upon two decades of research, our work
strives to go beyond a mere repetition of existing methods. Rather, it seeks to
integrate, adapt, and optimize established approaches to to enhance the reliability
of multivariate return period estimation.

In addition, the fact that the occurrences considered are Compound
Events does not emerge in any part of this work: only superficial com-
ments and descriptions are presented, but the true core problem is
nowhere investigated. Furthermore, sort of indications for carrying out
a multivariate analysis are sketched, but they are too generic, never dis-
cussed in details concerning the problems they are expected to solve,
and most of all they are all already well known in Literature: this pa-
per adds nothing to knowledge, all what is written has already been
more precisely (and mathematically correctly) introduced in already
published works, so what?

We appreciate the reviewer’s comments and understand the concern about the
“true core problem,” which, however, seems somewhat ambiguous to us, as it is
not entirely clear which specific aspect the reviewer is referring to. From our per-
spective, one of the many fundamental problems in this field—widely discussed
in the literature— is the definition of the multidimensional critical layer and its
effective application to hydrological problems involving compound events. Our
research is grounded in the pivotal contributions of G. Salvadori, De Michele, and
Durante (2011), Gräler et al. (2013), Brunner, Seibert, and Favre (2016), Xu,
Wang, and Bin (2023), and Brunner (2023), but seeks to extend this methodolog-
ical framework by addressing several key limitations:

1. From theory to a reproducible and practical methodology: While previous
studies have emphasized the theoretical importance of multivariate return
periods and critical surfaces, they often lack practical guidelines on how to
define these layers in high-dimensional spaces. To the best of our knowl-
edge, no study has developed and applied a general methodology, including
vine copulas, to derive multivariate return periods beyond three-dimensions,
highlighting the challenges in this field. These challenges include high com-
putational costs associated with managing complex dependence structures
and the lack of a clear methodological framework to efficiently address these
issues. Our work bridges this gap by providing a detailed and reproducible
procedure to identify the critical layer, integrating statistical models and
computational optimizations that make its application feasible in higher-
dimensional settings.
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2. Applications in hydrology and coastal systems: While the general framework
for compound events is well established, our contribution lies in its adap-
tation to hydrological problems with high-dimensional dependencies, such
as rainfall regimes and their spatial distribution. Moreover, the proposed
methodological framework may be extendable to the study of compound
events in coastal and estuarine environments, where interactions between
river discharge, storm surges, and extreme winds can have significant im-
pacts on coastal dynamics and infrastructure.

3. Challenges in high-dimensional modeling: As noted by Brunner (2023), mod-
eling dependence in multivariate environments is feasible in low dimensions
(e.g., bivariate cases) but becomes increasingly complex and computationally
demanding as the number of interdependent variables increases. Identifying
suitable dependence structures in high dimensions is not always straightfor-
ward and requires more flexible approaches to simultaneously account for
temporal, spatial, and variable dependencies. In fact, these aspects have
been recognized in the literature as outstanding challenges and future re-
search directions (Brunner 2023), further reinforcing the relevance of our
work in addressing these issues through computational optimizations, includ-
ing efficient Monte Carlo simulations and regression-based models, enabling
scalable and accurate analyses within the critical layer framework.

4. Compound floods with multiple drivers: Xu, Wang, and Bin (2023) high-
light that, in the context of climate change and urbanization, the interac-
tion between extreme precipitation, storm surges, and rising sea levels will
continue to intensify, making the study of compound events in coastal en-
vironments increasingly relevant. However, most studies have focused on
two-dimensional scenarios (e.g., rainfall-storm surge or runoff-storm surge),
while three-dimensional scenarios still present methodological and compu-
tational challenges. Our work contributes to close this gap by developing
methodologies for identifying critical layers in high dimensions, allowing for
a more realistic approach and improving the predictive capabilities of hydro-
logical models .

This article represents the first part of a three-stage study. In this work, we es-
tablish the general framework and methodology for identifying the critical layer
in high-dimensional compound events. The second part of this study, currently
under review, focuses on applying the methodology to spatially and temporally
compounding events, providing detailed numerical validations and case studies.
Additionally, there is a third part of the study, which, although not submitted
to this journal, applies the same methodological framework to multivariate com-
pound events in estuarine environments, considering oceanic, hydrological and me-
teorological variables to analyze interactions between different extreme phenomena
affecting these ecosystems.

From this perspective, our work complements and extends previous studies rather
than replicating them. By making existing knowledge more accessible and ap-
plicable to hydrological, and more generally, environmental problems, we aim to
contribute to the ongoing scientific effort to better understand and manage com-
pound events in complex environments.

Finally, the mathematical notation is often wrong: e.g., the Authors
confuse a function (say, F ) with its value (e.g., F (x, y)), or even worse
confuse F (x) with F (X), where the former is a real number, whereas
the latter is a random variable.
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We will revise the mathematical notation. It is true that none of the authors is a
mathematician by training, and that some expressions were not rigorous. Luckily,
these imprecisions pertain to the realm of wording and have not introduced any
conceptual error into the methodological procedure itself.

Overall, the content of this paper can be summarized in a single para-
graph, and recycled in the Introduction of the companion paper (Part
II).

Again, we do not agree with you. Although we perfectly understand that highly-
trained researchers in multivariate statistics may find some of the contents unnec-
essary and summarizable in a single paragraph, in our view, most hydrologists
require more details and explanations to approach such a complex topic. For in-
stance, the review for Part II mentions that we should not include approaches
that are wrong just because practitioners use them. In our opinion, we researchers
have a deontological obligation to convey our knowledge in the most comprehensi-
ble way possible. If there are professionals using these techniques wrongly, it may
be because of their intellectual limitations, but the hypothesis that we favor is the
one in which the problem is that nobody cared to build a better bridge for them
to transit from lousy practice to rigorous application.

We stress the importance of providing an extensive and detailed presentation of
the methodology to address the knowledge gap that still exists in the practical
application of multivariate statistics in hydrology. While many of the concepts dis-
cussed may be familiar to experts in multivariate statistics, our goal is to present
them in a clear and applicable manner for a broader audience, including readers
and professionals in hydrology and coastal studies. These fields often involve com-
plex dependencies and uncertainties, making it essential to complement theoretical
knowledge with practical guidelines to ensure proper implementation.

As highlighted by studies such as G. Salvadori, De Michele, and Durante (2011)
and Gräler et al. (2013), misapplications of statistical tools in practice often stem
from a lack of clarity in the available literature. We see it as our responsibility to fill
this gap by offering a comprehensive and well-organized framework that bridges
the theoretical and practical aspects of defining multidimensional critical layers
and estimating multivariate return periods. This cannot be effectively conveyed
in a single paragraph without sacrificing important details that are crucial for
reproducibility and understanding.

Furthermore, as this is the first part of a broader investigation, the level of detail
provided here is essential to ensure that the second part (Part II) is well-supported
and does not require unnecessary repetition of fundamental concepts. This struc-
ture allows for a more efficient and targeted discussion of the specific case studies
and applications presented in Part II.

We hope that this explanation clarifies our perspective and illustrates the impor-
tance of the level of detail provided in this paper. We view it as a necessary
step toward improving the practical application of advanced statistical methods
in hydrology and addressing common sources of misinterpretation and misuse.

Specific comments
Line(s) 55–56 AUTHOR(s). Vine copulas are a flexible class of depen-
dence models consisting of bivariate building blocks. REFEREE. The
Authors do not mention the problems intrinsic to modeling via Vine
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copulas.

Your comment raises an important point, as it allows us to delve deeper into some
critical aspects of modeling with vine copulas. After reading both reviews, we
identified that the conclusion of the paper could lead to misinterpretations by
not explicitly addressing certain methodological limitations. Therefore, we have
decided to revise the final sections of the paper. Instead of a Discussion and a
Conclusions section, we have added a Problems and Limitations section and a
Concluding Remarks section, where we discuss the technical challenges associated
with the use of vine copulas and the strategies we have implemented to address
them.

In the Problems and Limitations section, we will discuss the following key aspects:

1. Computational complexity and scalability: One of the main limitations of us-
ing vine copulas is the exponential growth in the number of parameters to be
estimated as the dimensionality of the problem increases. This challenge is
relevant in our context, as defining the critical layer involves handling multi-
ple variables and conducting intensive simulations. To address this issue, we
have implemented optimization techniques using Gaussian process regression
(GPR), which reduces the need for exhaustive simulations. Furthermore, we
plan to explore the use of parallel computing strategies and truncated vine
copula models in future studies to further improve computational efficiency.

2. Selection of the optimal structure and bivariate copula families: The selection
of the vine structure and the bivariate copula families is a critical process,
as it directly impacts the accuracy of the results and the model’s ability
to capture extreme dependencies. We recognize that this process can be
complex and computationally expensive, especially in high-dimensional ap-
plications. To address this limitation, we have implemented the Dißmann et
al. (2013), which sequentially selects the optimal vine structure and copula
families based on conditional dependence criteria and independence tests.

The Dißmann algorithm optimizes the structural search by reducing the
computational cost and avoiding the selection of irrelevant copulas at higher
levels of the vine. This approach is particularly important in our work,
where multiple hydrological variables with complex dependencies require
well-defined structures. Additionally, to ensure that the selected structure
properly represents the observed events, we perform a validation of synthetic
and observed events. This process involves generating synthetic samples from
the selected vine structure and comparing them with the observed data using
graphical tools, such as quantile plots and joint empirical distributions. We
also employ specific tests, such as the upper tail dependence test and correla-
tion test, to verify that the model accurately captures extreme dependencies.
This validation process, which is applied in the second part of our study,
ensures that the selected structure is not only theoretically sound but also
consistent with observed data.

Nonetheless, we acknowledge that in more complex scenarios, future work
could benefit from the development of hybrid methods that combine this
algorithm with machine learning techniques to further enhance structural
selection efficiency.

3. Error propagation and simplified assumptions: Another challenge is the po-
tential propagation of errors in parameter estimation, especially in the pres-
ence of strong conditional dependencies. Although our approach uses cross-
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validation and regularization of estimators to minimize this effect, we also
recognize that, in certain applications, simplified assumptions can be prob-
lematic. Future work could explore the use of non-simplified copulas and
Bayesian approaches to improve parameter estimation in highly dependent
cases.

In the Concluding Remarks section, we will highlight that, despite these limi-
tations, the use of vine copulas enables us to adequately capture complex de-
pendencies among hydrological variables and accurately define the critical layer.
The proposed improvements, including computational cost reduction, automated
structural selection, and validation based on observed events, are important steps
toward optimizing this approach and its applicability to real-world cases.

Line(s) 58–59 AUTHOR(s). For more theoretical details, please refer
to (Sklar, 1959; Nelsen, 2006). REFEREE. None of the references is
pertinent to Vine copulas: more recent and relevant paper must be
cited, starting from the basic one: Aas, K., Czado, C., Frigessi, A.,
Bakken, H. (2009). Pair-copula constructions of multiple dependence.
Insurance: Mathematics and Economics, 44(2), 182–198.

Following the reviewer’s suggestion, we have incorporated more specific and up-
dated references to further support the theoretical development of vine copulas.
Our initial intention was for the citations provided (Sklar, 1959; Nelsen, 2006) to
serve as general reference for the overall content. However, upon reviewing the
text, we recognize that the phrasing of the sentence suggested that these references
were directly related to vine copulas, which is not entirely accurate. Therefore, we
will revise the sentence as follows:

“For more theoretical details on general copulas, please refer to (Sklar, 1959; Nelsen,
2006). For theoretical details on vine copulas, please refer to (Aas et al., 2009;
Czado, 2019).”

Additionally, we will include the reference to Aas et al. (2009), as suggested by the
reviewer, and add Czado (2019), one of the main sources of our research, which
provides a comprehensive and practical guide to the construction and application
of vine copulas. Although we had already included this reference in later sections,
we recognize that it is also relevant in this context.

Line(s) 149–151 AUTHOR(s). For instance, Kendall’s � is more appro-
priate when the joint distribution is non-Gaussian (Serinaldi, 2008).
Spearman’s rank correlation is based on the rankings of variable val-
ues, whereas Kendall’s rank correlation assesses the concordance and
discordance between pairs of observations (Czado, 2019). REFEREE.
None of the references is pertinent. Much better references are the
two books by Nelsen (2006)—a more theoretical one—and Salvadori et
al. (2007)—a more practical one.

As suggested, we have reviewed the relevance of the references included in this
section. Serinaldi (2008) and Czado (2019) were chosen because they directly
discuss the application of Kendall’s � and Spearman’s � in non-Gaussian contexts
and in models involving multivariate dependence, making them relevant for our
discussion. However, we recognize that the suggested references by Nelsen (2006)
and Salvadori et al. (2007) provide a more comprehensive theoretical and practical
perspective.

Consequently, we propose the following adjustments:
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• We will retain Serinaldi (2008) and Czado (2019) due to their specific rele-
vance to our application.

• We will add the suggested references as complementary sources to strengthen
the discussion:

• Roger B. Nelsen (2006) will provide additional theoretical context on depen-
dence measures within the framework of copulas.

• Gianfausto Salvadori et al. (2007) will enhance the practical aspect, linking
the discussion to real-world hydrological applications.

The revised paragraph will read:

Modeling the dependence between variables is fundamental for understanding and
analyzing their joint behavior. To achieve this, both parametric measures, such as
the Pearson correlation coefficient, and non-parametric measures, such as rank-
based correlations—Kendall’s � and Spearman’s �—are employed. Non-parametric
measures are particularly favored in the estimation of dependence for compound
events because the marginal distributions of these data often deviate from normal-
ity. For more theoretical background on dependence measures, see (Nelsen, 2006).
For instance, Kendall’s � is more appropriate when the joint distribution is non-
Gaussian (Serinaldi, 2008). Spearman’s rank correlation is based on the rankings
of variable values, whereas Kendall’s rank correlation assesses the concordance and
discordance between pairs of observations (Czado, 2019; Salvadori et al., 2007).

Line(s) 159–ff. AUTHOR(s). Graphical tools for analyzing dependence.
. . REFEREE. For intellectual honesty, the Authors should warn the
reader that the interpretation of graphical results always involves a
degree of subjectivity, and should always be accompanied by objective
formal tests.

This is an important observation, and we do agree that the interpretation of graph-
ical tools for analyzing dependence, such as scatter plots, quantile-quantile plots,
and dependence structure visualizations, can introduce a degree of subjectivity. To
address this concern, we will include a clear recommendation in the manuscript em-
phasizing that graphical tools should be used as a complement to formal statistical
tests.

The following revision aims to clarify the limitations of graphical tools while em-
phasizing their role as a complement to formal statistical analysis:

“Graphical tools provide valuable insights into the structure of dependencies between
variables, offering a visual representation that can highlight nonlinear relationships,
tail dependencies, and clusters (Genest et al., 2009; Salvadori et al., 2007). How-
ever, we caution readers that the interpretation of graphical results involves a
degree of subjectivity and should be complemented by formal statistical tests, such
as goodness-of-fit tests, upper tail dependence tests, or correlation tests (Joe, 2015;
Nelsen, 2006), to ensure robust conclusions.”

Line(s) 175–176 AUTHOR(s). They also found that the strong bias
and associated uncertainty raise doubts about the reliability of most
empirical results reported in the hydrological literature. REFEREE. See
also Illustration 3.18 in Salvadori et al. (2007, p. 173), where numerical
experiments were carried out both on empirical and simulated data.

As highlighted by Salvadori et al. (2007), the estimation of tail dependence co-
efficients 𝜆𝐿 and 𝜆𝑈 is particularly challenging in hydrology due to limited data

8



availability in extreme regions, which can lead to unstable empirical estimates.
This issue is shown in Figure 3.16 of Gianfausto Salvadori et al. (2007), where the
estimates become unreliable as 𝑡 → 0+ or 𝑡 → 1−.

To address this known limitation, we have implemented a validation procedure
that combines empirical data with synthetic data generated through simulations.
Following the recommendations in Salvadori et al. (2007), this approach mitigates
bias and improves the robustness of our estimates by providing additional data in
regions where empirical observations are scarce.

The text will be modified as follows:

Estimating tail dependence coefficients in hydrology is prone to bias and instability
due to the limited availability of extreme data (Salvadori et al., 2007). To address
this issue, we validate our estimates by combining empirical data with synthetic
data generated through simulations, following the recommendations in Salvadori
et al. (2007), where numerical experiments showed that this combination improves
the robustness of the analysis.

Line(s) 242 AUTHOR(s). The literature proposes various alternatives
for combining multivariate analysis and non-stationarity. REFEREE.
For intellectual honesty, the Authors should point out that, at present,
non-stationarity is generally modeled by introducing a temporal depen-
dence of the parameters of the marginals/copulas at play (e.g., by as-
suming linear and/or exponential changes of the parameters with time),
but these remain mere mathematical exercises, not tested on empirical
data.

This observation brings attention to a key consideration regarding non-stationarity
in the multivariate framework. While many approaches have indeed relied on
introducing temporal variability in the parameters of the marginals or copulas,
this is neither the only possible method nor the only one that has been empirically
applied

In the univariate case, non-stationarity is often addressed by incorporating covari-
ates into the marginal distributions rather than relying solely on explicit time-
dependent parameterizations. Méndez et al. (2007) applied a non-stationary
Generalized Extreme Value (GEV) model to analyze monthly extreme sea lev-
els, explicitly considering seasonal variability and long-term trends. Later, López
and Francés (2013) explored non-stationary flood frequency analysis, highlighting
the influence of both climatic and anthropogenic factors on extreme event distribu-
tions. Their study emphasized the importance of integrating external covariates,
such as reservoir regulation effects and climate variability indices, to improve the
characterization of hydrological extremes beyond traditional stationary assump-
tions. More recently, Urrea Méndez and Jesus (2023) incorporated non-stationary
techniques into extreme rainfall estimation, demonstrating that covariates—such
as climate indices—can be used to improve probabilistic estimations without exclu-
sively assuming parametric temporal trends.These studies show that alternative
approaches exist for modeling non-stationarity beyond the simple incorporation of
time-dependent parameters in traditional models.

This approach moves beyond simplistic time-based formulations, allowing for a
more physically interpretable modeling of variability in extreme events multivari-
ate context, Boumis et al. (2025) propose the use of physics-informed dynamic
copulas, where dependence parameters vary not only as a function of time but
also in relation to climate indices such as the Oceanic Niño Index (ONI) and the
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North Atlantic Oscillation (NAO). This approach represents a more realistic alter-
native, as it enables the modeling of multivariate dependencies based on observable
climatic factors, avoiding the abstraction of time as the sole driver of change.

To better capture these considerations, we have updated the relevant sentence as
follows:

“While much of the literature has focused on modeling non-stationarity by introduc-
ing temporal dependence in the parameters of marginal distributions or copulas (e.g.,
assuming linear or exponential changes over time), other approaches have also been
explored. In the univariate setting, non-stationarity can be introduced through co-
variates in the marginal distributions (Méndez et al., 2007; López & Francés, 2013;
Urrea-Méndez & del Jesus, 2023), allowing for greater flexibility in capturing long-
term variability by incorporating climatic and anthropogenic influences. In the
multivariate framework, alternative strategies such as physics-informed dynamic
copulas have been proposed (Boumis et al., 2025), where dependence parameters
evolve not only as a function of time but also in response to large-scale climate in-
dices such as ONI or NAO, providing a physically consistent approach to modeling
changing dependencies.”

Line(s) 292–294 AUTHOR(s). This test evaluates the null hypothe-
sis that the empirical copula comes from a specific copula;if the null
hypothesis is rejected, the empirical copula does not follow the distri-
bution of the specified copula. REFEREE. Statistically speaking, this
sentence is not correct: Statistics can only offer guidance and sugges-
tions, but never absolute truths. The words “copula does not” should
be written as “copula may not”.

Your correction is well taken, and we agree that the current wording could be inter-
preted as overly deterministic, which is not appropriate in a statistical context. As
you correctly point out, goodness-of-fit test results provide probabilistic evidence
rather than absolute conclusions. Therefore, we have revised the corresponding
sentence to reflect this conceptual precision.

The text has been updated to:

“This test evaluates the null hypothesis that the empirical copula comes from a
specific copula; if the null hypothesis is rejected, this suggests that the empirical
copula may not follow the distribution of the specified copula.”

This revision better reflects the probabilistic nature of statistical test results and
eliminates any potential misinterpretation. Additionally, this correction aligns
with the general understanding that statistical tests only provide a confidence
level associated with the rejection or acceptance of a hypothesis.

Line(s) 422–ff. (3.6 Compound design events) REFEREE. The Authors
are quite confused about the difference between a density and a prob-
ability distribution function: they are not the same, and they have
different meanings. For instance, in the cited paper by Salvadori et
al. (HESS 2011), the two different strategies proposed were based ei-
ther on a probabilistic base (the Component-wise Excess one) or on a
likelihood/density base (the Most Likely one). The description and the
explanation given by the Authors is a superficial and confusing one,
especially for practitioners. Here and elsewhere, use “most likely” in-
stead of “most probable”: in Probability Theory, a density induces a
likelihood, not a probability (which, instead, is induced by a distribu-

10



tion function, i.e. the integral of a density).Line 427 refers to the Most
Likely strategy outlined in the cited paper by Salvadori et al. (HESS
2011). Line 428 refers to the usage of “ensembles”, as suggested in
Salvadori et al. (HESS 2011).

We are not confused, but we acknowledge that our choice of wording was influenced
by our mother tongue and the way these terms are commonly used in Spanish. The
phrase “most probable” was used as a direct linguistic translation of how we refer
to density-based likelihood in Spanish. However, to ensure rigor and consistency
with probability theory, we will adopt the term “most likely” throughout the text,
aligning with standard terminology in the field.

In G. Salvadori, De Michele, and Durante (2011), two approaches are proposed for
identifying representative events in a multivariate setting:

• The Component-wise Excess Approach, which focuses on selecting events
where all variables exceed specific thresholds, prioritizing the probability of
joint exceedance.

• The Most Likely Approach, which selects events based on the highest joint
probability density, ensuring that the chosen event is the most representative
in terms of likelihood.

Our methodology follows the Most Likely Approach, as we identify the event in
the critical layer that maximizes the joint probability density function. This is
consistent with the theoretical framework outlined in G. Salvadori, De Michele,
and Durante (2011), where this method is used to determine the most typical or
expected realization of an extreme event.

To avoid confusion, we will explicitly clarify that our approach does not correspond
to the Component-wise Excess strategy, which is based on probability exceedance
rather than likelihood maximization. While both strategies are valid, they serve
different purposes, and our focus aligns with the density-based selection outlined
in G. Salvadori, De Michele, and Durante (2011).

To improve clarity and ensure consistency with standard probability terminology,
we will modify this section as follows:

Original Title: Most probable compound event
Modified Title: Most likely compound event

The revised text now states:

“The simplest way to select the most likely design event among all possible options
is to choose the point with the highest joint probability density. This follows the
likelihood-based approach outlined by Salvadori et al. (2011).”

These modifications aim to eliminate any ambiguity regarding terminology, clarify
our approach, and ensure consistency with the probabilistic framework established
in the literature. We appreciate the reviewer’s feedback, as it has allowed us to
refine this section for better clarity and methodological alignment.

Eq. (9) is a special case of Eq. (13) in Salvadori et al. (HESS 2011),
using the density f as a weight function w. Note that fXY …W is the
joint density of the distribution FXY …W , not of the copula CXY …W
.

We will correct and adapt the wording to properly capture the concepts. Once
again, the informal way in which we speak about all these concepts has percolated
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into the written paper.

For intellectual honesty, the Authors should make it clear, and warn
the reader, that there is no guarantee that the maximum found by a
numerical routine will be a global maximum, rather it is very likely that
it will be a local maximum, and this will be more and more likely as
the dimension of the problem increases.

A new section, Problems and Limitations, will be added, including a discussion on
the objective behind this approach. In practice, even if the true global maximum
is not found, a maximum close enough will serve, since the aim is to define an
event as similar to the most likely one as possible.

We will also mention all the modern techniques used to try to improve the proba-
bility of finding the global maximum. Despite it being true that finding the global
maximum in high dimensions is a tough problem, most of our machine learning
and deep learning techniques depend on finding a good approximation to it, and
the current development of the field indicates that the new algorithms perform
well, although at a high computational cost.

Line(s) 489–ff. (Discussion, Conclusions) REFEREE. This is not a Dis-
cussion, it is at most a replica of generic sentences already written in
previous parts of the manuscript. Actually, in my opinion, in this pa-
per there little to discuss about. The Conclusions are a collection of
statements that try to justify a paper with no content.

We do agree with the referee that the Discussion and Conclusions sections do not
belong in the paper, since, without reading part II, it is difficult to provide solid
conclusions to our study. We have removed both sections and instead included
two new ones: Problems and Limitations and a Concluding Remarks.

The former will deal with all the topics that we have commented in this review that
may render the applications of these techniques impractical or even undesirable.
The latter will try to summarize the most important points to guide the reader
towards the Part II of the paper.
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