
Response to RC1: 

 

General comments 

Comments 1: Most of my concerns from the original submission have been addressed 

satisfactorily. The current manuscript is good work, and I enjoyed reading it. I recommend that 5 

this manuscript be considered for publication after minor revisions to make some small but 

important improvements that would greatly improve the clarity of the manuscript. 

Response 1: Thank you for your positive feedback and for recognizing our efforts in improving 

the manuscript. We appreciate your constructive comments, which have helped enhance its 

clarity and quality. Below, we provide detailed responses to your specific suggestions and 10 

outline the corresponding revisions to further improve clarity and precision. 

 

Specific comments 

Comments 2: Your response 11: You write that “This approach allowed the integration of the 

SNOW17 model with the GXAJ model to form the GXAJ-S model for calculating snowmelt 15 

runoff in grid cells, ensuring that no new parameters were added to the GXAJ-S model 

compared to the GXAJ model.”. Would it not be clearer if you expressed this as “compared to 

the GXAJ model, no new parameters were added to the GXAJ- component of the GXAJ-S 

model”? 

This would imply that all additional complexity in GXAJ-S is compartmentalized in the -S part 20 

only, which is my understanding of your work. 

Response 2: Thank you for your insightful suggestion. We appreciate this clarification, as it 

more precisely conveys that the additional complexity in the GXAJ-S model is confined to the 

-S component, while the GXAJ component remains unchanged in terms of parameters. We 

have incorporated this revision into the manuscript (see lines 404–406): 25 

 “This approach allowed the integration of the SNOW17 model with the GXAJ model to form 

the GXAJ-S model for calculating snowmelt runoff in grid cells. Compared to the GXAJ model, 

no new parameters were added to the GXAJ component of the GXAJ-S model.” 



 

Comments 3: Your response 10: It is still not clear to me which parameters you calibrated in 30 

your study, and which you used a fixed value for. In L384-386, you state that SNOW17 has 4 

parameters that must be calibrated, and 6 that do not have to be. However, in Table 2 you list a 

“prior range” for 9 of these parameters, with the word “prior” implying that you calibrated all 

9 of these to yield a posterior value. In Table 1 it appears that all of the listed parameters are 

calibrated because you use the phrase “prior estimate”. Please indicate in Table 1 and Table 2 35 

which parameters you calibrated from the field data, and which parameters you used certain 

values for without any calibration. 

Response 3: We sincerely appreciate the reviewer’s insightful comments regarding parameter 

calibration and fixed values in Tables 1 and 2. To improve clarity, we have explicitly 

distinguished parameters obtained from external sources (e.g., literature, remote sensing 40 

datasets, or soil properties) from those calibrated in our study. Specifically, we have: 

Revised Table 1 to indicate which GXAJ model parameters were estimated from external 

sources and which were calibrated. 

Updated Table 2 to clearly label SNOW17 parameters as either ‘calibrated’ or ‘fixed value.’ 

Table 1. GXAJ model parameters and their descriptions. 45 

Module Parameter Description Source or Calibration 

Canopy 
interception 

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 Maximum LAI for the vegetation 
in a year 

Derived from LDAS based on 
vegetation types 

ℎ𝑙𝑙𝑙𝑙 Height of vegetation (m) Derived from LDAS based on 
vegetation types 

Channel 
precipitation 𝑊𝑊𝑙𝑙ℎ Channel width within a cell (km) Estimated based on measured 

cross sections 

Evapotranspirat
ion 

𝑊𝑊𝑈𝑈𝑈𝑈 Tension water capacity of upper 
layer (mm) Estimated based on initial WM 

𝑊𝑊𝐿𝐿𝑈𝑈 Tension water capacity of lower 
layer (mm) Estimated based on initial WM 

𝐶𝐶 Evapotranspiration coefficient of 
deeper layer 

Estimated based on LAI and hlc of 
vegetation 

𝐾𝐾 
Ratio of potential 

evapotranspiration to pan 
evaporation 

Calibrated (prior range: 0 – 1) 

Runoff 
generation 

𝑊𝑊𝑈𝑈 Tension water capacity (mm) Estimated using 𝜽𝜽𝒇𝒇𝒇𝒇,𝜽𝜽𝒘𝒘𝒘𝒘 and 
vadose zone thickness 

𝜃𝜃𝑠𝑠 Saturated moisture content Obtained from literature based on 
soil types 

𝜃𝜃𝑓𝑓𝑙𝑙 Field capacity Obtained from literature based on 
soil types 



𝜃𝜃𝑤𝑤𝑤𝑤 Wilting point Obtained from literature based on 
soil types 

𝑆𝑆𝑈𝑈 Free water capacity (mm) Estimated using 𝜽𝜽𝒔𝒔,𝜽𝜽𝒇𝒇𝒇𝒇 and 
humus layer thickness 

𝐾𝐾𝑖𝑖 
Outflow coefficient of free water 

storage to interflow Estimated based on soil properties 

𝐾𝐾𝑔𝑔 Outflow coefficient of free water 
storage to groundwater Estimated based on soil properties 

Flow routing 

𝐶𝐶𝑖𝑖  
Recession constant of interflow 

storage Calibrated (prior range: 0 – 1) 

𝐶𝐶𝑔𝑔 Recession constant of 
groundwater storage Calibrated (prior range: 0 – 1) 

𝐶𝐶𝑠𝑠 Recession constant in the lag and 
route technique Calibrated (prior range: 0 – 1) 

𝐿𝐿𝑚𝑚𝑔𝑔 Lag time Calibrated (prior range: ≥0) 

Table 2. SNOW17 model parameters and their descriptions. 

 Parameter Description Calibration or Fixed 
Value 

Major 
parameters 

𝑆𝑆𝐶𝐶𝑆𝑆 Snow correction factor, or gage catch deficiency 
adjustment factor 

0.7 - 1.6 
(calibrated) 

𝑀𝑀𝑆𝑆𝑀𝑀𝐿𝐿𝑀𝑀 
Maximum solar melt factor during non-rain 

periods, assumed to occur on June 21 (mm·℃-
1·6hr-1) 

0.5 - 2.0 
(calibrated) 

𝑀𝑀𝑆𝑆𝑀𝑀𝐿𝐿𝑀𝑀 
Minimum solar melt factor during non-rain 
periods, assumed to occur on December 21 

(mm·℃-1·6hr-1) 

0.05 - 0.49 
(calibrated) 

𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈 The average wind function during rain-on-
snow periods (mm·mb-1) 

0.03 - 0.19 
(calibrated) 

Minor 
parameters 

𝑀𝑀𝑀𝑀𝑆𝑆 Maximum negative melt factor (mm·mb-1·6hr-

1) 0.45 (fixed value) 

𝑇𝑇𝐿𝐿𝑇𝑇𝑀𝑀 Antecedent temperature index parameter 0.9 (fixed value) 

𝑇𝑇𝑀𝑀𝑇𝑇𝑃𝑃𝑀𝑀𝑇𝑇 The temperature that separates rain from snow 
(˚C) 0 (fixed value) 

𝑀𝑀𝑀𝑀𝐿𝐿𝑆𝑆𝑃𝑃 Base temperature for snowmelt computations 
during non-rain periods (˚C) 0 (fixed value) 

𝑇𝑇𝐿𝐿𝑊𝑊𝑃𝑃𝐶𝐶 
Percent liquid water holding capacity for ripe 

snow  
(decimal fraction) 

0.1 (fixed value) 

𝑈𝑈𝐿𝐿𝐷𝐷𝐷𝐷𝑀𝑀 
Constant daily amount of melt which takes place 

at the snow-soil interface whenever there is a 
snow cover (mm·day-1) 

0.7 (fixed value) 

 

These modifications ensure transparency in parameter selection and calibration. We appreciate 

the reviewer’s suggestion, which has helped enhance the clarity of our methodology. 
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Comments 4: Model comparison: I suggest including a table with the computational time 50 

(including both the calibration time and actual simulation time) of simulating a comparable 

scenario for all 3 models GXAJ, GXAJ-S, and GXAJ-S-SF. That would provide readers with a 

more complete information on which model to choose. The additional physical detail of GXAJ-

SSF may not be necessary in some applications that prioritize fast computation over accuracy. 

 Response 4: Thank you for your valuable suggestion. We have included a table in the revised 55 

supplementary material (Table S1) comparing the computational time of GXAJ, GXAJ-S, and 

GXAJ-S-SF under a comparable scenario. This table reports both calibration and simulation times, 

providing readers with a clearer understanding of the trade-off between computational efficiency 

and model complexity. 

We have also described this addition in the revised manuscript (Lines 574–578). Furthermore, we 60 

have specified the computing environment, including processor details, memory, operating system, 

programming language, and the number of calibration iterations. This ensures transparency and 

helps users make informed decisions based on their computational resources and modeling needs. 

Below is the added content: 

“To provide a more comprehensive comparison of the three models, we have included an 65 

evaluation of computational efficiency. Table S1 presents the calibration and simulation times for 

GXAJ, GXAJ-S, and GXAJ-S-SF. The results indicate that while GXAJ-S-SF provides improved 

physical representation, it requires longer computation time compared to GXAJ and GXAJ-S. This 

information is useful for users who may prioritize efficiency over accuracy in certain applications. 

Please let us know if any further details are needed. 70 

Table S1. Computational time comparison for the GXAJ, GXAJ-S, and GXAJ-S-SF models. 

Model Calibration Time (hours) Simulation Time (seconds) 
GXAJ 1.5 9 

GXAJ-S 6.1 39 
GXAJ-S-SF 6.7 41 

# All simulations were conducted in the following computing environment: AMD Ryzen 5 3600X 6-Core 
Processor, 32GB DDR4 2133MHz RAM, Windows 10 operating system, and MATLAB R2023a for model 
implementation and execution. The computations were performed in single-threaded mode, with 400 iterations 
set for the calibration period.” 75 
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Response to RC2: 
General comments 

Comments 1: Thank you for the authors' efforts in improving the manuscript. This version of the 80 

paper shows improvement compared to the previous one. However, I still believe that the current 

paper is not yet suitable for publication in HESS. In my opinion, the novelty of the proposed 

contributions is insufficient, and the reliability of the conclusions remains inadequate. 

Response 1: We sincerely appreciate your time and effort in reviewing our manuscript and for 

providing constructive feedback. We are grateful for your acknowledgment of the improvements 85 

made in this revised version. However, we regret that our work has not yet fully met your 

expectations regarding novelty and the reliability of our conclusions. 

To address your concerns, we have undertaken substantial and comprehensive revisions 

throughout the manuscript (include Abstract, Introduction, Results, Discussion and Conclusions). 

These include enhanced validation using multi-source data, deeper interpretation of hydrological 90 

processes in cold regions, and expanded discussions that place our work in context with existing 

studies. These revisions aim to better clarify the novelty of our methodology and reinforce the 

robustness of our conclusions. 

We have carefully addressed your concerns regarding novelty and reliability in our detailed 

responses below. We highly value your insights and would greatly appreciate any further 95 

suggestions you may have to help improve the quality of our work. Once again, thank you for your 

thoughtful critique and for helping us enhance our manuscript.  

 

Specific comments 

Comments 2: The authors emphasize the development of a new hydrological model that considers 100 

snow and seasonally frozen ground. However, in my view, the approach of simply coupling 

empirical formula-based modules into a hydrological model is not sufficiently innovative. 

Extensive research has already been conducted on this issue in the Tibetan Plateau region, as the 

authors themselves have also mentioned. Moreover, several existing models, such as the VIC 

model (Cuo et al., 2015), CLM4.5 (Yang et al., 2018), GIPL2.0 (Qin et al., 2017a), WEB-DHM 105 

(Song et al., 2020), and GBEHM (Gao et al., 2018), provide more comprehensive descriptions of 

snow and seasonally frozen ground modules. The authors repeatedly highlight that the model 

developed in this study requires fewer input data, thereby emphasizing its applicability in data-
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scarce regions. However, the input data required by this model are essentially the same as those 

required by the aforementioned physically based models, primarily including topographic data, 110 

vegetation data, and meteorological input data. On the contrary, due to the simplified 

representation of physical processes in the model, more reference data are needed for parameter 

calibration. Therefore, I do not consider the simplicity of the model's physical description to be an 

advantage. 

 Response 2: Thank you for your valuable comments. We understand your concerns regarding the 115 

innovation and applicability of the model and would like to further clarify the main contributions 

of this study and the scientific rationale behind the modeling approach adopted. Indeed, we 

recognize that the advantages of the here considered modelling approach may be context-

dependent. Below, we provide a detailed response to your concerns. 

 Coupling of Frozen Ground and Hydrological Processes 120 

Our study does not simply integrate empirical formulas into a hydrological model; rather, it 

systematically coupled seasonally frozen ground (SFG) processes with key hydrological 

components. The Stefan equation was used to calculate the spatiotemporal distribution of frozen 

depth, which directly influenced soil moisture/ice content in the vadose zone. This in turn changed 

the effective thickness of the vadose zone and humus soil layer (including effective tension water 125 

storage capacity and free water storage capacity), ultimately affecting multiple hydrological 

processes such as runoff generation, runoff distribution and evapotranspiration (see Section 2.2). 

The freeze-thaw process of frozen soil is affected by snow conditions. The improved model in this 

study takes these hydrological physical processes into account. 

 Comparison with Physically Based Models 130 

Indeed, we recognize that the advantages of the here considered modelling approach may be 

context-dependent. Considering the Yalong River basin case, we therefore now include an in-depth 

comparison of the performance of the investigated simplified (relative) models with the 

performance of physically based models. In data-limited regions such as the Yalong River basin, 

physical models may rely on data that are not available through direct measurements, such as 135 

ground temperature. This complicates parameterization processes and introduces uncertainties in 

the results. This hence motivates our refined investigation example (see below) regarding how 

physical models perform in comparison with simplified models.  
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To investigate this issue, we referenced the application of the VIC model and SWAT model in our 

study area from 2007 to 2011 (Li et al., 2018) and compared it with our proposed model. The 140 

results show that the simulation accuracy of the VIC model (NSE = 0.75 during calibration and 

NSE = 0.65 during validation) and the SWAT model (NSE = 0.77 during calibration and NSE = 

0.66 during validation) did not exceed that of our model over the same period (NSE = 0.87 during 

calibration and NSE = 0.74 during validation). This may hence be related to the uncertainties 

introduced by the parameterization of physical models in data limited regions, and suggests the 145 

need to expand observational efforts before expanding modelling efforts to further improve 

predictive capacity (see Discussion, Lines 649–668). 

“Although significant progress has been made in physical models that account for snow and 

freeze-thaw processes, their application in cold-region hydrology remains challenging. Due to 

the complex topography, heterogeneous vegetation cover, and uneven soil moisture distribution 150 

in cold regions, uncertainties in radiation and surface albedo estimation can lead to 

inaccuracies in surface energy balance simulations, introducing errors in ground temperature 

and soil heat flux estimations (Gao et al., 2018). Additionally, the spatial parameterization of 

physical models remains a significant challenge, and their structural and parameterization 

schemes require further refinement (Zhou et al., 2021). The diverse climatic and geographic 155 

conditions in cold regions further limit the applicability of many physical models across different 

study areas (Yong et al., 2023). Moreover, the complexity and uncertainty of cold-region 

hydrological processes increase the difficulty of model development and parameter calibration, 

which may negatively impact simulation accuracy (Gao et al., 2018; Qin et al., 2017). To further 

assess the performance of physical models in our study area, we compared the VIC model’s 160 

simulation results from 2007 to 2011 (Li et al., 2018b) with those obtained using our simplified 

model. The results indicate that the VIC model exhibited NSE values of 0.75 and 0.65 for the 

calibration and validation periods, respectively, which did not exceed those of our model (0.87 

for calibration and 0.74 for validation). This comparison illustrates that the data limitations in 

the Yalong River basin are likely to currently constrain the performance of physically based 165 

models. This hence suggests the need to expand observational efforts before expanding 

modelling efforts to further improve predictive capacity..” 

 Parameterization process 
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We understand that the physical model can provide more explanations, and then its 

parameterization scheme is still a huge challenge. The enhanced model developed in this study 170 

integrates multiple key cold region hydrological processes while maintaining low parameter 

complexity (Section 2.2.3 Model parameters and calibration), making it particularly suitable for 

cold regions with complex hydrological and meteorological conditions and scarce data such as the 

Yalong River Basin. 

 Scientific Contribution and Innovation 175 

The novelty of this study lies not only in the coupling of snow, frozen ground, and hydrological 

processes (as mentioned above), but also in (see revised ‘Abstract’, ‘Results’ and ‘Conclusion’ 

sections): 

 Providing a quantitative analysis of the impact of snow/frozen ground on runoff partitioning 

and evapotranspiration (Section 3.3 ‘Model differences in simulated runoff components and 180 

soil evapotranspiration’ and 4.2 ‘The impact of seasonal frozen ground/snow on hydrological 

processes’). 

 Demonstrating the complex interactions among snow cover, frozen ground, and the 

unsaturated zone (Section 3.1 ‘Simulation of snow accumulation and freeze-thaw process’ and 

4.2 ‘The impact of seasonal frozen ground/snow on hydrological processes’). 185 

 Offering a flexible and adaptable modeling framework that can be seamlessly integrated into 

hydrological models beyond GXAJ. 

In summary, the enhanced modeling framework proposed in this study improves runoff 

simulations while providing new insights into the role of snow and frozen ground in shaping water 

balance components. The comparison with both the studied model set and more complex 190 

physically based models suggests that data limitations in the Yalong River Basin may currently 

constrain the performance of physically based models. This highlights the need for expanded 

observational efforts to improve predictive capabilities before extending physically based 

modeling approaches. 

Thank you for your time and consideration. 195 

 

Comments 3: Additionally, the authors primarily demonstrate the model's accuracy through the 

performance of streamflow simulations. However, this is far from sufficient for a study on 

hydrological processes in high-mountain basins, where multiple processes contribute to the overall 
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dynamics. Given that the focus of the paper is on analyzing the impacts of snow and frozen ground 200 

on streamflow, detailed validation of these two critical intermediate processes is essential. 

However, such validation is currently lacking. For the snow module, the authors only use remotely 

sensed snow depth data for calibration and validation. However, the accuracy of these data remains 

uncertain, as it is well known that remote sensing of snow depth in the complex terrain of the 

Tibetan Plateau is subject to significant uncertainties. I recommend that the authors use more 205 

authoritative MODIS snow cover data to conduct a more comprehensive validation of the snow 

module results. As for the frozen ground module, the current validation is mainly limited to the 

start dates of freeze-thaw cycles (the results do not appear to be very satisfactory, and the authors 

have not provided quantitative metrics). There is a notable lack of validation for key physical 

variables, such as soil temperature and soil moisture (both ice and liquid water). I suggest that the 210 

authors collect in-situ measurements from the study region or validate their results against more 

authoritative remote sensing or reanalysis soil data to enhance the reliability of their findings. 

 Response 3: Thank you for your valuable comments on this study. In response to your concerns 

regarding the insufficient validation of the snow and frozen ground modules, we have made further 

improvements and validation efforts based on your suggestions: 215 

 Snow Module Validation: 

We acknowledge that remote sensing snow depth data may contain uncertainties, particularly in 

complex terrain. However, previous studies have specifically evaluated the dataset used in this 

study for the Yalong River Basin, demonstrating its high accuracy (Wu et al., 2024), which 

suggests that the model errors should be relatively low. To further enhance the validation, we have 220 

compared MODIS snow cover data with our model simulations. The results indicate that snow 

cover extended over up to half of the study area, with a high correlation coefficient (0.91) between 

the simulated and observed daily snow cover fractions. Figure S8 presents the spatial distribution 

of simulated snow depth alongside MODIS-derived snow cover on December 1, 2015, 

demonstrating strong consistency in coverage patterns (lines 669-701). 225 

“In complex mountainous cold regions, observation remains a bottleneck (Gao et al., 2022). Due 

to limitations in measured data on frozen soil and snow depth in the considered Yalong River basin, 

this study used multi-source remote sensing data and reanalysis data for calibration and 

verification from multiple perspectives. In particular, errors in remote sensing snow depth data 

(Yan et al., 2022; Zou et al., 2014) can propagate to the model output. However, previous studies 230 
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have specifically investigated the here used remote sensing dataset for the Yalong River basin 

showing that its accuracy is high (Wu et al., 2024), which suggests that model errors should be 

relatively low. This study further compared MODIS snow cover data with model simulations, 

revealing that snow cover extended over up to half of the study area, with daily snow cover fraction 

exhibiting a high correlation coefficient of 0.91 between the two datasets. Figure S8 illustrates the 235 

spatial distribution of simulated snow depth and MODIS-derived snow cover on December 1, 2015, 

demonstrating strong consistency in coverage patterns. We also recognize that the use of 

surface/soil temperature and maximum frozen ground depth to verify the freeze-thaw process 

introduces some uncertainty (Li et al., 2022). Since the GXAJ-S and GXAJ-S-SF model variants 

used the same temperature, snow and frozen ground data in the present simulations, they can be 240 

expected to share similar data errors, However, due the non-linear nature of the modeled processes, 

such data errors may still not cancel completely when comparing different models. Nevertheless, 

observed differences in model performance between these models are mainly expected to reflect 

differences in model capabilities rather than differences in input datasets. Future work should 

focus on improving remote sensing data quality and exploring the long-term robustness of the 245 

model to further enhance performance and improve our understanding of the freeze-thaw 

processes in complex mountainous cold regions. 

Hydrological modeling typically prioritizes model fitness, which in theory can be improved by 

introducing more fitting parameters. However, this study highlights differences that are due to 

addition of process-based modules (regarding snow and frozen ground). This implies that 250 

improvements in model fit and differences in associated model output (e.g. runoff and 

evapotranspiration) reflect how the considered snow and/ or frozen ground processes more 

concretely alter hydrological flows. This therefore increases the understanding of underlying 

hydrological processes (Gao et al., 2022) in large-scale applications such as the Yalong River 

basin that additionally has a complex topography with large elevation differences yielding high 255 

spatio-temporal heterogeneity in snowmelt and freeze-thaw cycles of soil.” 

 Frozen Ground Module Validation: 

For the frozen ground module, we have further refined the validation process. In addition to 

validating the start dates of the freeze-thaw cycles and providing quantitative metrics, we have 

also incorporated ERA5 soil temperature data and spatial distribution data of maximum frozen soil 260 

depth. The comparison of these data shows that the simulated frozen ground depth from the model 
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aligns well with the remote sensing/reanalysis data in terms of both time series and spatial 

distribution, with detailed results provided in lines 476-497. 

“This study systematically validated the simulation results of frozen soil depth based on the Stefan 

empirical formula through multi-source data comparison. Fig. 5 presents the frozen depth derived 265 

from ERA5 reanalysis data using four soil temperature layers (0–7 cm, 7–28 cm, 28–100 cm, and 

100–289 cm; freezing occurs when layer temperatures fall below 0°C). The seasonal freeze-thaw 

depths calculated by the Stefan formula exhibit high consistency with ERA5-derived results in both 

freeze-thaw timing and variation trends. Notably, the ERA5-based frozen depths display a stepwise 

variation pattern, with the maximum freezing depth terminating at the 100 cm layer, likely 270 

attributable to the freezing inhibition effect caused by higher temperatures in the deep soil layer 

(100–289 cm). The simulations indicate that the freezing process initiates in late September, 

reaches the maximum depth of 1.4 m by late March of the following year, and completes thawing 

by late May. This temporal pattern aligns closely with ground temperature observations from basin 

meteorological stations (Fig. S6; mean errors of ≤5 days for initial freezing dates and ≤10 days 275 

for initial thawing dates). 

To further evaluate the model’s spatial performance, the 2000–2018 mean maximum frozen depth 

distribution was compared with contemporaneous data from the National Tibetan Plateau Data 

Center (Table 3; Fig. S7). The Stefan formula-based simulations, incorporating station-based 

temperature interpolation, demonstrate smoother spatial transitions—a characteristic linked to 280 

model parameterization. Both datasets reveal a gradient pattern of deeper frozen depths in 

upstream valley regions and shallower depths in downstream areas, with a spatial correlation 

coefficient of 0.89. Furthermore, the observed decreasing trend in frozen depth during 2000–2018 

corresponds with accelerated snowmelt patterns (Fig. 4), highlighting the coupled response of the 

cryosphere to climate change.” 285 

 Data Sources and Validation Reliability: 

Due to the lack of in-situ measurements in our study area, we have employed multiple remote 

sensing and reanalysis datasets to validate the snow and frozen ground processes from various 

perspectives. This multi-source validation approach strengthens the reliability of the model results 

while accounting for potential uncertainties from different data sources. We believe this 290 

significantly enhances the credibility of our findings. In future work, we will continue to improve 

the quality of remote sensing data and assess the long-term stability of the model. 
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We appreciate your constructive feedback, which has helped us further refine the study. The 

manuscript has been revised accordingly, and we believe these improvements contribute to the 

robustness and clarity of our findings. 295 

 

Comments 4: Finally, numerous studies have already investigated the hydrological effects of snow 

and frozen ground at large basin scales, ranging from basin-scale (e.g., Cuo et al., 2015; Qin et al, 

2017b; Song et al., 2022; Wang et al., 2023a, 2023b) to the entire Tibetan Plateau. Therefore, I 

recommend that the authors compare some of their conclusions with those of previous studies, 300 

rather than simply stating that research in this area is lacking. Furthermore, I find the current 

conclusions to be insufficiently in-depth. For example, the critical processes of how changes in 

soil ice and liquid water in frozen ground affect streamflow are not thoroughly discussed. 

 Response 4: Thank you for your thoughtful comments. We appreciate your suggestions regarding 

the need for comparison with previous studies and a more in-depth discussion of key processes. 305 

To address this, we have made substantial revisions to the ‘Discussion’ section, where we now 

explicitly compare our refined conclusions with existing studies. This comparison highlights both 

the similarities and differences between our study and previous research, thereby strengthening the 

contextual relevance of our findings. 

Additionally, we have integrated the refined findings into the revised ‘Conclusion’ section. This 310 

includes the key findings described in the ‘Results’ and ‘Discussion’ regarding the influence of 

snow depth on frozen ground depth and duration, the seasonal impact of freeze-thaw cycles on 

runoff generation, the suppressive effect of snow and frozen ground on evapotranspiration during 

cold months, the seasonal role of snowmelt, and key findings regarding the future hydrological 

significance of snow and frozen ground. These comparisons aim to position our results within a 315 

broader literature context while emphasizing both the consistency with previous studies and the 

novel insights provided by our research. 

 


