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Abstract. Machine learning has significantly improved inverse modeling for groundwater systems. One promising 

development is the tandem neural network architecture (TNNA), which integrates surrogate modeling and reverse mapping 

for efficient forward simulations and data assimilation. Although TNNA has shown success in groundwater inverse modeling, 

its application scenarios remain limited, and its advantages over conventional methods have not been fully explored. This 15 

paper aims to address these gaps by comparing the TNNA method with four conventional metaheuristic algorithms: Particle 

Swarm Optimization, Genetic Algorithm, Simulated Annealing, and Differential Evolution. Two synthetic solute transport 

numerical cases are designed, with aquifer parameters characterized by low- and high-dimensional scenarios, respectively. 

The surrogate model is constructed using a deep residual convolutional neural network (ResNet), selected based on a 

comparative evaluation against three other popular machine learning models. Inversion performance is evaluated based on the 20 

accuracy of calibrated hydraulic heads, solute concentrations, and parameter estimation errors. The results demonstrate that 

the TNNA algorithm yields more reliable inversion results and significantly reduces computational burden across both low- 

and high-dimensional cases, effectively balancing exploration and exploitation in global optimization. This study highlights 

the significant advantages of machine learning in advancing groundwater system inversions. 

1 Introduction 25 

Numerical models are essential for quantifying flow and mass transport dynamics within aquifers, providing significant 

insights into hydrological and biogeochemical processes (Steefel et al., 2005; Sanchez-Vila et al., 2010; Sternagel et al., 2021; 

Xu et al., 2022). However, directly measuring aquifer parameters, such as permeability fields, remains challenging due to 

limitations in current hydrogeological exploration techniques and budgetary constraints (Dai and Samper, 2004; Castaings et 

al., 2009; J. Chen et al., 2021). Inverse modeling has become a key approach for estimating these uncertain model parameters, 30 

improving the accuracy of numerical simulations (Zhou et al., 2014; Bandai and Ghezzehei, 2022; Abbas et al., 2024). 
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Inverse modeling within Bayesian theorem-based data assimilation frameworks has garnered significant attention from 

the hydrogeological community over the past few decades (Scharnagl et al., 2011; X. Chen et al., 2013; J. Zhang et al., 2018; 

Xia et al., 2021). Among available algorithms, deterministic inversion methods are a significant category, where model 

parameters are estimated through maximizing the posterior distribution probability using optimization techniques (Tsai et al., 35 

2003; N. Sun, 2013; Vrugt, 2016). One type is local optimization algorithms, which update model parameters from initial 

guesses towards optimal solutions according to gradient directions, such as the Gaussian-Newton method (Dragonetti et al., 

2018; Qin et al., 2022) and the Levenberg-Marquardt method (Schneider-Zapp et al., 2010; Nhu, 2022). These methods are 

highly efficient but may converge to local optima when dealing with nonconvex inversion problems. Another category is to 

achieve global optima solutions through metaheuristic searches, which typically incorporate processes of exploration (to search 40 

the entire parameter space for a diverse range of estimates) and exploitation (to leverage local information to refine estimates). 

Popular metaheuristic algorithms include the Genetic Algorithm (GA) (Ines and Droogers, 2002; Lindsay et al., 2016), 

Simulated Annealing (SA) (Kirkpatrick et al., 1983; Jaumann and Roth, 2018), Differential Evolution (DE) (E. Li, 2019; Yan 

et al., 2023), and Particle Swarm Optimization (PSO) (Rafiei et al., 2022; Travaš et al., 2023). Nevertheless, their 

computational efficiency may be reduced by extensive exploration and exploitation processes in achieving globally optimal 45 

inversion results. Accurate and efficient estimation of uncertain model parameters across various scenarios remains one of the 

most significant challenges for developing inversion frameworks. 

In recent years, machine learning has experienced rapid developments and demonstrated significant performance in 

addressing complex problems characterized by high dimensionality and nonlinearity (Hinton and Salakhutdinov, 2006; LeCun 

et al., 2015; Bentivoglio et al., 2022; Shen et al., 2023). Integrating conventional inversion methods with cutting-edge machine 50 

learning techniques has become increasingly popular in addressing the challenges of inversion studies. One effective strategy 

is constructing surrogate models to accelerate forward simulations, ensuring that inversion algorithms perform comprehensive 

searches across the entire parameter space more efficiently (Razavi et al., 2012). For instance, Zhan et al. (2021) identified 

lithofacies structures by utilizing a deep octave convolution residual network to construct a surrogate model for predicting 

solute concentrations and hydraulic heads in heterogeneous aquifers. N. Wang et al. (2021) constructed a subsurface flow 55 

surrogate model under heterogeneous conditions through physically informed neural network methods, specifically for 

uncertainty quantification and parameter inversion. M. Liu et al. (2023) constructed a CNN surrogate model to combine with 

a hierarchical homogenization method to estimate effective permeability of digital rocks. More related studies can also be 

found in recent reviews (Yu and Ma, 2021; J. Luo et al., 2023b; Zhan et al., 2023).  

In addition to surrogate models, parameter optimization through machine learning-based reverse mapping represents 60 

another significant advancement in inversion techniques. Previous studies have outlined at least two strategies to achieve 

reverse mapping models. The first strategy is the data-driven approach, where reverse regressions are trained using datasets 

that comprise pairs of model outputs and inputs. For example, A.Y. Sun (2018) developed a regression model from hydraulic 

heads to heterogeneous conductivity fields using a CNN-based generative adversarial network (GAN) approach. Kuang et al. 

(2021) succeeded in real-time identification of earthquake focal mechanisms by training a DNN regression on seismic 65 
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waveform data. Yang et al. (2022) established the relationship between gravity data and CO2 plumes to perform real-time 

inversion for geologic carbon sequestration. Another strategy is to train a reverse network within the tandem neural network 

architecture (TNNA) integrated with a pre-trained surrogate model (i.e., forward network). The TNNA method was introduced 

with the advent of deep learning and has been successfully applied in computed tomography reconstruction (Adler and Öktem, 

2017), nanophotonic structure inverse design (D. Liu et al., 2018; Yeung et al., 2021), and photonic topological state inverse 70 

design (Long et al., 2019). Our previous research expanded the application of the TNNA algorithm within groundwater science, 

evaluating its performance in reactive transport inverse modeling and improving inversion results by incorporating an adaptive 

update strategy to reduce local predictive errors of surrogate models. The findings indicated that accurate surrogate model 

predictive results around the actual parameter values yield dependable TNNA inversion outcomes (J. Chen et al., 2021).  

The advantage of the TNNA algorithm is that it requires only one forward simulation per parameter update, whereas 75 

conventional metaheuristic algorithms necessitate multiple forward simulations. Despite this approach is innovative, the 

application of TNNA is primarily limited to low-dimensional parameter settings, leaving its advantages over conventional 

optimization algorithms uncertain. This study aims to comprehensively compare the TNNA method with four conventional 

metaheuristic algorithms across both low-dimensional and high-dimensional parameter settings. Major contributions of this 

study include (1) systematically improving and applying the TNNA algorithm to high-dimensional heterogeneous aquifer 80 

parameter inversion, thereby filling a significant research gap in the field, and (2) quantitatively evaluating the advantages and 

limitations of the TNNA method in comparison to conventional deterministic inversion methods. The inversion accuracy of 

the TNNA algorithm depends on the predictive accuracy of the surrogate models. Based on a comparative analysis of four 

machine learning models, the most accurate DNN for forward simulation will be chosen to build the surrogate model. With 

advances in artificial intelligence, the intended research outcomes are anticipated to significantly enhance the development of 85 

appropriate frameworks for novel inversion algorithms, providing fresh insights for future inversion studies. 

This paper is structured as follows: Section 2 introduces the fundamental principles of the methodology involved in this 

study. Section 3 provides detailed information on numerical models for low- and high-dimensional scenarios. Section 4 

presents the results and discussions. Finally, Section 5 presents a summary and conclusions drawn from this research, along 

with recommendations for future investigations. 90 

2 Methodology 

The nonlinear inversion optimization model of this study is formulated as follows: 

min�
1
𝜎𝜎𝑖𝑖
�yobs[i] − y�[i]�

2
Nobs

i=1

�y�=FHF(m) ≈ FForward(m,θForward)
mL≤m≤mU

(1) 
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Where  𝐲𝐲obs ∈ ℝNobs×1 and y� ∈ ℝNobs×1 represent the observed data vector and the corresponding model simulation output 

vector. yobs[i] and y�[i] refer to the ith element of the observed and simulated vectors, respectively, and 𝜎𝜎𝑖𝑖  denotes the 95 

standard deviation of the ith observed data. mL and mU are the vectors representing the lower and upper limit values of the 

model parameters, respectively. FHF(∙) and FForward(∙) represent the high-fidelity numerical model and the surrogate model, 

respectively. θForward represents the trainable parameters of the surrogate model (Lykkegaard et al., 2021; Jiannan Luo et al., 

2023a).  

The uncertain model parameters m are estimated through optimization algorithms, subject to the constraints defined in 100 

the nonlinear optimization model. Specifically, the high-fidelity forward model output FHF(m)  is approximated by the 

surrogate model FForward(m,θForward), ensuring computational efficiency. Detailed information about for surrogate modelling 

methods and optimization algorithms is provide in Sections 2.1 and 2.2, respectively. 

2.1 Surrogate modeling methods 

As shown in Figure 1, surrogate models are developed using a data-driven strategy. The process begins by sampling 105 

model parameters from prior distributions and calculating their responses using high-fidelity numerical models. A training 

dataset of paired model parameters and responses is then obtained, which is used to construct surrogate models via supervised 

machine learning. Specifically, four popular machine learning models are evaluated for surrogate modeling: multi-output 

support vector regression (MSVR), fully connected deep neural network (FC-DNN), convolutional neural network (LeNet), 

and deep residual convolutional neural network (ResNet). Each model represents a distinct period in the development of 110 

machine learning. Despite rapid advancements in artificial intelligence, these four methods remain broadly applicable for 

constructing surrogate models in most groundwater modeling scenarios. 

The detailed principles of MSVR and the three deep learning-based methods are illustrated in the following two sub-

sections. The surrogate model for inversion will be constructed using the most accurate among them. Before constructing 

surrogate models, the training datasets are normalized to ensure that the values for different simulation components fall within 115 

the range of [0,1].  
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Figure 1. The framework for data-driven based surrogate model construction and the machine learning models employed.  

2.1.1 MSVR 

MSVR is developed from the original support vector machine (SVM) for realizing multivariate regression (Pérez-Cruz et 120 

al., 2002; Tuia et al., 2011). The mathematical expression is given as follows: 

𝑦𝑦 = F(x)=φ(x)TW+B (2) 

where 𝜑𝜑(𝑥𝑥) is a nonlinear regression function. W and B are regression coefficients determined by minimizing the structural 

risk, as outlined in Eq.(3)~(6): 

𝑊𝑊,𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑊𝑊,𝐵𝐵) =
1
2
��𝑤𝑤𝑗𝑗�2
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗=1

+ 𝐶𝐶 � 𝑎𝑎(𝑢𝑢𝑖𝑖)
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑗𝑗=1

(3) 125 

where Ntrain is the sample size of the training dataset; C is a penalty parameter; and L(u) is a quadratic ε-insensitive loss function, 

expressed as: 

𝑎𝑎(𝑢𝑢) = � 0,                                𝑢𝑢 < 𝜀𝜀
𝑢𝑢2 − 2𝑢𝑢𝜀𝜀 + 𝜀𝜀2,         𝑢𝑢 ≥  𝜀𝜀 (4) 

where 𝑢𝑢𝑖𝑖 = ‖𝑒𝑒𝑖𝑖‖ = �𝑒𝑒𝑖𝑖𝑇𝑇𝑒𝑒𝑖𝑖;  𝑒𝑒𝑖𝑖𝑇𝑇 = 𝑦𝑦𝑖𝑖𝑇𝑇 − 𝜑𝜑𝑇𝑇(𝑥𝑥𝑖𝑖)𝑊𝑊 −𝐵𝐵𝑇𝑇 ; ɛ in L(u) is the radius of the insensitive tube. For ɛ=0, this problem is 

equivalent to an independent regularized kernel least square regression for each component. For ɛ≠0, it becomes feasible to 130 

develop individual regression functions for each dimension based on the model outputs and to generate their corresponding 

support vectors. Solving the optimization problem directly is challenging, and the desired solutions for W and B are determined 
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using an iterative reweighted least squares (IRWLS) procedure, employing the quasi-Newton approach. During the IRWLS 

process, the term L(u) in Eq.(3) is first transformed into a discrete first-order Taylor expansion, and the corresponding quadratic 

programming approximation is constructed. Meanwhile, a linear expression is derived based on the principle that the first-135 

order derivatives of the objective function with respect to W and B are zero. Finally, the optimal values of W and B are obtained 

through a line search. Further details on the IRWLS procedure can be found in (Sanchez-Fernandez et al., 2004). 

The performance of the MSVR model is influenced by three hyperparameters: the penalty parameter C, the kernel function 

parameter 𝜎𝜎 and ɛ (Ma et al., 2022). This study optimizes these hyperparameters by minimizing the root mean square error 

(RMSE) using the four metaheuristic algorithms introduced in this study. 140 

2.1.2 Deep learning based surrogate models 

(1) DNN architectures 

The three DNN models are all feedforward neural networks. In DNN model construction, various neural network layers 

can yield diverse DNN models, resulting in different predictive performances (LeCun et al., 2015). For the DNN models 

adopted in this study, the involved neural network types are the fully connected layer, the convolutional layer, and the residual 145 

block layer.  

In fully connected layers, both input and output layers are in vector forms. Assume Xinput∈ℝn×1 is the input vector and  

Xoutput∈ℝm×1 is the output vector. The transformation in a fully connected layer is expressed as: 

Xoutput=σ�W×Xinput+B� (5) 

where σ(∙) is a non-linear active function; W∈ℝm×n is the weight matrix; and B∈ℝm×1 is the bias vector.  150 

In a convolutional layer, both the input and output are in matrix forms. A convolutional layer transfers information through 

sparse connections by several convolution kernels, essentially small matrices. The mathematical formula of a convolutional 

layer is as follows (Y. Wang et al., 2019; Jardani et al., 2022): 

hu,v
q (xu,v)=σ���wi,j

q xu+i,v+j+b

kj
'

j=1

ki
'

i=1

� (6) 

where xu,v is the pixel value at position (u, v) of the input matrix; hu,v
q (xu,v) is the output feature hu,v

q (xu,v) calculated by employing 155 

the qth (q=1,…,Nout) convolutional kernel filter wq∈ℝki
'×kj

'
. In a convolutional layer with Nout filters, the output matrix contains 

Nout feature layers. The output size (Sout) of each convolutional layer is determined by the input size (Sin) and the 

hyperparameters (i.e., zero padding p, kernel size k′ and stride s). A pooling layer is often used after a convolutional layer to 

remove redundant information from the extracted features and improve the efficiency of model training (J. Chen et al., 2021). 

The residual block is a fundamental component of residual networks (ResNets). It is designed to mitigate the vanishing 160 

and exploding gradients commonly encountered in the training of deep neural networks. In a residual block, an intermediate 

layer is designed to learn a residual mapping, F(x)=H(x)-x (or H(x)-G(x), where G(x) represents another transformation of x). 
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Here, x is the input to the block. The output of the block is then computed as F(x)+x, which is intended to approximate 𝐻𝐻(𝑥𝑥). 

This design ensures that the output of the module at least replicates the input, thus avoiding overcoming the challenges posed 

by vanishing gradients. The mathematical formula of a residual block is expressed as follows: 165 

𝑦𝑦𝑙𝑙 = 𝐹𝐹(𝑥𝑥𝑙𝑙 ,𝑊𝑊𝑙𝑙) + 𝑥𝑥𝑙𝑙 (7) 

𝑥𝑥𝑙𝑙+1 = 𝑓𝑓(𝑦𝑦𝑙𝑙) (8) 

where xl and Wl are the input data and the connection weight matrix for the l-th residual block, respectively. F(·) is the 

residual function. Within this framework, the function f(·) is configured as an identity map, such that 𝑥𝑥𝑙𝑙+1=𝑦𝑦𝑙𝑙 . Then, the 

relationship between the L-th residual block in a deeper layer and the l-th residual block is expresses as follows (He et al., 170 

2016): 

𝑥𝑥𝐿𝐿 = 𝑥𝑥𝑙𝑙 + �𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝑊𝑊𝑖𝑖)
𝐿𝐿−1

𝑖𝑖=1

(9) 

According to the chain rule in derivatives, the gradient of the loss function ɛ with respect to xi can be expressed as: 

𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑙𝑙

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝐿𝐿

𝜕𝜕𝑥𝑥𝐿𝐿
𝜕𝜕𝑥𝑥𝑙𝑙

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝐿𝐿

�1 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

�𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝜔𝜔𝑖𝑖)
𝐿𝐿−1

𝑖𝑖=1

� (10) 

This formulation highlights two key properties of the residual network. First, the gradient does not vanish during network 175 

training processes because the term  𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

∑ 𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝜔𝜔𝑖𝑖)𝐿𝐿−1
𝑖𝑖=1  is never equal to -1. Second, the gradient of the deepest residual block 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝐿𝐿

 can directly affect all preceding layers, ensuring effectively transmission of gradients throughout the network (Chang et 

al., 2022). 

The FC-DNN of this study is constructed using fully connected layers, and each hidden layer consists of 512 neurons. 

The activation function for the output layer is Sigmoid, and the other hidden layers use Swish. The number of hidden layers n 180 

is determined by comparing the model prediction accuracy with different configurations, where n varies from 1 to 7. For the 

LeNet and ResNet models, the initial processing maps the input vector to a fixed matrix shaped 1×80×80 using a combination 

of a fully connected layer and a reshaped layer, as shown in Figure 1(b). Specifically, LeNet consists of two convolutional 

blocks and two fully connected layers. Each convolutional block consists of a convolutional layer followed by a max-pooling 

layer. The fully connected layers have 1024 and 512 neurons, respectively. ResNet consists of four stages and two different 185 

Res blocks are adopted. The first stage includes two residual units without down-sampling, while the remaining three stages 

each have one residual unit with down-sampling and one residual unit without down-sampling. Activation functions in all 

layers are Rectified Linear Units (ReLUs), except for the output layer, where Sigmoid activation is used. Detailed architecture 

information for LeNet and ResNet is provided in Figure S1 and Figure S2, respectively.  

(2) DNN model training 190 

The purpose of a surrogate model is to minimize the difference between the predicted outputs 𝑦𝑦�𝑖𝑖 = 𝑓𝑓𝐷𝐷𝑁𝑁𝑁𝑁(𝑎𝑎𝑖𝑖,𝜃𝜃𝐷𝐷𝑁𝑁𝑁𝑁) and 

the numerical modeling outputs yi. Consequently, the loss function is formulated with L1 norm constraints: 
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θDNN=argmin 
1
N
�|FDNN(mi,θDNN)-𝑦𝑦𝑖𝑖|

N

i=1

+
𝑤𝑤𝑑𝑑
2
𝜃𝜃𝐷𝐷𝑁𝑁𝑁𝑁𝑇𝑇 𝜃𝜃𝐷𝐷𝑁𝑁𝑁𝑁 (11) 

where 𝑤𝑤𝑑𝑑 is the weight decay to avoid overfitting, referred to as the regularization coefficient. This study implemented the 

DNN models using PyTorch (https://pytorch.org/), a widely used machine learning framework. The neural network weights 195 

were initialized using the default initialization method of PyTorch and optimized using the stochastic gradient descent method 

via the Adam algorithm. 

2.2 Optimization algorithms 

2.2.1 Metaheuristic algorithms 

(1) Particle swarm optimization algorithm 200 

Particle swarm optimization (PSO) is a population-based intelligent optimization algorithm inspired by the foraging 

behavior of birds (Eberhart and Kennedy, 1995). It is realized through the following steps: 

Step 1: Initialize a population with n particles of a m-dimensional space X=(X1,X2,…,Xn). For an arbitrary particle (i), 

denote its position, velocity and best position at the kth iteration as Xi
k=(xi1

k ,…,xim
k ), Vi

k=(vi1
k ,…,vim

k ), and Pi
k=(pi1

k ,…,pim
k ), 

respectively.  205 

Step 2: Calculate the best solution for each particle (Xpbesti
k) according to Eq.(12): 

Xpbesti
k=�

Xpbesti
k-1,           f(Xi

k)≥f(Xpbesti
k-1)

Xi
k,                       f(Xi

k)<f(Xpbesti
k-1)

(12) 

where f(·) is the objective function, also known as the fitness function. 

Step 3: Calculate the best position of the population (Xgbesti
k) according to Eq.(13). 

Xgbesti
k=min{ f(X1

k),…, f(Xn
k)} (13) 210 

Step 4: Updated the velocity and position for each particle (i) according to Eq.(14) and Eq.(15): 

Vi
k+1=wiVi

k+r1c1(Xpbesti
k-Xi

k)+r2c2(Xgbesti
k-Xi

k)  (14) 

Xi
k+1=Xi

k+Vi
k+1  (15) 

where c1 and c2 are learning parameters, generally taken as two equal non-negative constants and are set to 0.5 and 0.1 here; 

r1 and r2 are two random values within the range of [0, 1]; wi is the inertia weight and set to 0.8 for this study. 215 

(2) Genetic algorithm 

Genetic algorithm (GA) is initially introduced by Holland John (1975). It draws inspiration from natural evolution and 

genetics, where individuals within a population are selected or eliminated based on their adaptability to the environment. The 

GA is realized through the following steps: 

Step 1: Generate an initial population X=(X1,X2,…,Xn) randomly. 220 
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Step 2: Perform binary encoding on all individuals in the population X to obtain their respective binary symbol strings. 

These binary symbol strings are called chromosomes, and each value (“0” or “1”) on a symbol string is called a gene.  

Step 3: Crossover: Perform crossover operations on randomly paired combinations of individuals in X. The essence of 

crossover is to exchange some values in the symbol strings of a pair of individuals.  

Step 4: Mutation: Perform mutation operations on some random individuals in X by changing some values of their symbol 225 

strings.  

Step 5: Selection: Perform selection operations based on the fitness values of each individual (Xi) to generate the next 

generation population. This step is realized through the roulette wheel selection method, where individuals with higher fitness 

values are more likely to be selected.  

Step 6: Determine whether the current results satisfy the iteration termination condition. If not, return to step (2); 230 

otherwise, output the optimal individual in the current population as the final result. 

(3) Simulated Annealing 

The SA method is a Monte Carlo-based stochastic optimization algorithm proposed by Metropolis et al. (1953) and 

initially applied to combinational optimization problems by Kirkpatrick et al. (1983). The realization steps for SA method are 

as follows: 235 

Step 1: Set the starting temperature as T0 and draw an initial optimal solution as Xi.  

Step 2: Generate a new solution Xj from the neighborhood of the current solution Xi.  

Step 3: Calculate the objective function values f(Xi) and f(Xj). If f(Xi) ≥f(Xj), then Xj becomes the current solution Xi; 

otherwise, Xj becomes the current solution Xi with a probability calculated as: 

P(Xi→Xj)= exp (
 f(Xi)-f(Xj)

atT0
) (16) 240 

where t is the current time and a is the temperature decay constant. 

Step 4: Under the current temperature conditions, repeat steps (2) and (3) until reaching the predetermined number of 

internal iterations. Then, update the temperature and time as follows: set t=t+1 and Tt=atT0, then proceed to the next step. 

Step 5: Return to step (2) and continue the iteration according to the new temperature (Tt) and time (t) until the termination 

conditions are met. The iterations in this step can be considered outer iterations, distinguished from step (4). 245 

(4) Differential evolution 

DE is another evolutionary algorithm proposed by Storn and Price (1997). Similar to GA, DE also employs mutation, 

crossover and selection operators, but they update uncertain model parameters in different ways (Tran et al., 2022). The 

detailed steps for realizing DE are as follows: 

Step 1: Generate the initial population X=(X1,X2,…,Xn) randomly. 250 

Step 2: Perform encoding for each individual in X. The encoding method used in DE is floating-point real encoding, 

rather than binary encoding used in GA.  
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Step 3: Mutation: After completing individual encoding, DE performs mutation operations to generate new individuals 

according to Eq. (17): 
xperturbed(g+1)=xrand1(g)+FDE×(xrand2(g)-xrand3(g)) (17) 255 

where xrand1, xrand2 and xrand3 are randomly selected individuals among the candidate solutions of the current population and 

must be different from each other. FDE is a scaling parameter within the range of [0,1], controlling differential variations. g 

represents the sequence number of iterations.  

Step 4: Crossover: Perform crossover operations to generate the trial vector by combining the mutant and target vectors. 

The formula for this step is as follows: 260 

uj(g+1)= �
xperturbed

j (g+1)   if  𝑃𝑃𝑗𝑗≤CR
xj(g)                  if   𝑃𝑃𝑗𝑗>CR

(18) 

where Pj is a random number in the range of [0,1], CR is the crossover rate. If some variables of the trial vector have the same 

values, keep one of them and reset the others with random integer numbers in the range [1, 𝐷𝐷].  

Step 5: Selection: Perform selection operations to determine whether the new generated trial vector uj(g+1) can survive 

the next generation, xj(g+1). Therefore, a candidate solution replaces the parent only if it has better objective function value. 265 

Step 6: Return to step 3 until the convergence criteria are met. 

2.2.2 TNNA algorithm 

The TNNA algorithm aims to obtain a reverse network that maps the observation vector to model parameters, as shown 

in Eq. (19).  

m=FReverse�y�obs,θReverse� (19) 270 

where θReverse are the trainable parameters of FReverse. The training of the reverse network is guided by the constraints of the 

nonlinear optimization model defined in Eq. (1). The loss function for training is expressed as follows: 

𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
1
𝜎𝜎𝑖𝑖

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖=1

�𝑦𝑦�𝑜𝑜𝑜𝑜𝑅𝑅[𝑎𝑎] − 𝐹𝐹𝐹𝐹𝑜𝑜𝑅𝑅𝐹𝐹𝐹𝐹𝑅𝑅𝑑𝑑𝑖𝑖 (𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦�𝑜𝑜𝑜𝑜𝑅𝑅,𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅),𝜃𝜃𝐹𝐹𝑜𝑜𝑅𝑅𝐹𝐹𝐹𝐹𝑅𝑅𝑑𝑑)�2 (20) 

The FReverse is also trained within the pytorch framework. The required training data here are the normalized observation 

data. Specifically, the reverse network for this study is designed using an FC-DNN with three hidden layers, each containing 275 

512 neurons.  

During reverse network training processes, each iteration of updating the trainable parameters θForward involves two steps: 

First, the vector 𝑦𝑦�𝑜𝑜𝑜𝑜𝑅𝑅 is input into the reverse network FReverse to obtain the parameter prediction 𝑎𝑎� . This predicted parameter 

𝑎𝑎�   is then input into the forward network FForward to generate the corresponding forward prediction results. Subsequently, the 

trainable parameters θReverse of the reverse network are updated based on the error feedback from the loss function in Eq. (20) 280 

through DNN model training. This process demonstrates that FReverse and FForward are connected in a TNNA, wherein the forward 

simulation realization is executed once during each epoch to update the trainable parameters of θReverse. This is a marked 
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difference from the four selected metaheuristic algorithms, which require numerous forward simulations for each update of 

estimated model parameters. Upon completion of FReverse training, the final optimal parameters are predicted by inputting 

observation data into FReverse. Further details on TNNA can be found in (J. Chen et al., 2021). 285 

3. Case Study 

We introduce two numerical cases to compare the TNNA algorithm with conventional metaheuristic algorithms: one with 

low-dimensional parameters and the other with high-dimensional parameters. Initially, four surrogate models will be assessed 

using the low-dimensional parameter case, and the model with the highest accuracy will be integrated into the inversion 

framework. Based on hypothetical observation scenarios, we will compare the inversion performance of the TNNA method 290 

and the four metaheuristic algorithms in low- and high-dimensional cases. 

3.1 Case 1: Low-dimensional zoned permeability field scenario 

As shown in Figure 2, the numerical model for the low-dimensional scenario focuses on conservative solute transport 

within a zoned permeability field. The model domain is a two-dimensional rectangular area measuring 10m×20m. The left and 

right boundaries are Dirichlet boundary conditions, with a hydraulic head difference of 1 m. The heterogeneous permeability 295 

is divided into eight homogeneous permeability zones, denoted as k1 to k8. The prior range for these eight permeabilities is 

from 1×10-12 to 9.9×10-12 m2. The contaminant source is located at the left boundary with a fixed release concentration ranging 

from 1×10-3 to 1 mol/L. The simulation area is uniformly discretized into 3,200 (40×80) meshes, and the simulation time is set 

to 20 days. 

 300 
Figure 2. Flow domain of the solute transport model for the low-dimensional scenario.  
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According to these model conditions, there are nine uncertain model parameters to be estimated: eight permeability 

parameters (k1 to k8) and the source release concentration. As shown in Figure 2, these parameters will be estimated using the 

observation data of hydraulic heads and solute concentrations collected from 25 locations, denoted by black pentagrams. 

Additionally, observation data from another 24 locations, denoted by orange hexagons, will be used to validate the prediction 305 

accuracy of the calibrated numerical model. 

3.2 Case 2: High-dimensional gaussian random permeability field scenario 

The numerical model for the high-dimensional scenario features a domain size of 10m×10m, with impervious upper and 

lower boundaries and constant head boundaries at the left (1m) and right (0m) sides. The domain is discretized into 4,096 (64

×64) grids. The log-permeability field follows a Gaussian distribution, and the permeability value of the i-th mesh is defined 310 

as follows: 

𝑘𝑘𝑖𝑖=𝛼𝛼𝑖𝑖𝑘𝑘𝑅𝑅𝑅𝑅𝑟𝑟 (26) 

where kref is the reference permeability, set to 2 × 10−13m2. The modifier α for the logarithmic Gaussian random field satisfies 

the following formula: 

α(𝒔𝒔) = exp�𝐺𝐺(𝒔𝒔)�,𝐺𝐺(∙) ∼ 𝑁𝑁�𝑎𝑎,𝐶𝐶(∙,∙)�, (27) 315 

where m = 0 is the constant mean and L2 exponentiated quadratic covariance function for two arbitrary spatial locations, 𝒔𝒔 =

(𝑠𝑠𝑥𝑥 , 𝑠𝑠𝑦𝑦) and 𝒔𝒔′ = (𝑠𝑠𝑥𝑥′ , 𝑠𝑠𝑥𝑥′ ): 

𝐶𝐶 �𝒔𝒔, 𝒔𝒔′� = 𝜎𝜎𝐺𝐺2exp�−��
𝑠𝑠𝑥𝑥 − 𝑠𝑠𝑥𝑥′

𝜆𝜆𝑥𝑥
�
2

− �
𝑠𝑠𝑦𝑦 − 𝑠𝑠𝑦𝑦′

𝜆𝜆𝑦𝑦
�
2

� , (28) 

where  σG
2 = 2 is the variance and λx =λy = 2.5 m are the correlation lengths along the x and y directions, respectively.  

The Karhunen-Loève expansion (KLE) is utilized to parameterize the permeability field (D.X. Zhang and Lu, 2004). In 320 

this case, 100 KLE terms are used to preserve more than 92.67% of the field variance. Consequently, estimating the 

permeability field is equivalent to identifying these 100 KLE terms. The observational data used for inverse modeling include 

hydraulic heads from a stable flow field and solute concentrations measured every two days over 40 days, starting from the 

2nd day to the 40th day (day: t= 2i, i=1,…,20). To mitigate inversion errors arising from equifinality, actual permeability values 

at observed locations are included as regularization constraints. The standard deviation of Gaussian noise for the normalized 325 

observations is set to 0.01.  

As the degrees of freedom significantly increase in high-dimensional models, the influence of observation data on 

inversion results becomes increasingly significant. Five scenarios with different monitoring networks are considered to 

comprehensively evaluate the performance of different inversion algorithms using various observations. Figure 3 displays the 

monitoring station locations for each scenario. 330 

https://doi.org/10.5194/hess-2024-315
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



13 
 

 
Figure 3. The reference log-permeability field and locations of observation stations for five scenarios. The observation stations 
are represented by black pentagrams. 

4. Results and discussion 

4.1 Surrogate model evaluations 335 

Surrogate models were first compared using the low-dimensional parameter case. Four training datasets 

Dtrain={Mtrain,Ytrain} with 200, 500, 1000, and 2000 samples (represented as Dtrain-200, D train-500, D train-1000 and D train-2000, 

respectively) and a testing dataset Dtest={Mtest,Ytest} with 100 samples (represented as Dtest-100) are prepared. These datasets 

were generated using Latin hypercube sampling (LHS) and numerical simulations. The predictive accuracy of surrogate models 

was quantitatively evaluated using root mean square error (RMSE) and determination coefficient (R²) metrics (J. Chen et al., 340 

2022). 

For solute transport inverse modeling problems, it is crucial to consider observations of both hydraulic heads and solute 

concentrations simultaneously. Therefore, the surrogate model within an inversion framework should have accurate predictive 

capabilities for hydraulic heads and solute concentrations. This study calculates RMSE and R2 values separately for hydraulic 

heads, solute concentrations, and all model response data, resulting in the following evaluation criteria: RMSEALL and 𝑅𝑅𝐴𝐴𝐿𝐿𝐿𝐿2  for 345 

overall data, RMSEH and 𝑅𝑅𝐻𝐻2  for hydraulic heads, and RMSEC and 𝑅𝑅𝐶𝐶2 for solute concentrations.  

Figure 4 and Figure 5 display the RMSE and R2 values of each surrogate model, and Figure S3~Figure S6 present the 

pairwise comparison results. The optimal values for C, 𝜎𝜎, and 𝜀𝜀 in the MSVR method are provided in Table S1. Moreover, the 
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optimal number of hidden layers in the FC-DNN for Dtrain-200, D train-500, D train-1000 and D train-2000 are 2, 4, 3, and 3, respectively, 

as determined by the corresponding RMSEAll and RAll
2  values in Table S2 and Table S3.   350 

According to the performance criteria in Figure 4 and Figure 5, the prediction accuracy of each surrogate model 

significantly improves with an increasing number of training samples. Based on RMSEAll and RAll
2  values, their performance 

ranks as follows: ResNet, LeNet, FC-DNN, and MSVR. The MSVR method accurately predicts hydraulic heads but performs 

the worst in predicting solute concentration. Training MSVR with the four prepared datasets, the RMSEH values are below 

0.02, and 𝑅𝑅𝐻𝐻2  values are near 1. Notably, with a training sample size of 200, the prediction accuracy of MSVR for hydraulic 355 

heads is higher than that of FC-DNN and LeNet, as indicated by their RMSEH and 𝑅𝑅𝐻𝐻2  values, closely matching that of ResNet. 

However, when using 200 training samples, the RMSEC value for MSVR exceeds 0.08, and the 𝑅𝑅𝐶𝐶2 value falls below 0.85. 

Even with a dataset size of 2000, the enhancement in the MSVR-based surrogate model is limited, as the RMSEC value remains 

around 0.05, and the 𝑅𝑅𝐶𝐶2 value stays below 0.95. FC-DNN demonstrates a significant advantage over MSVR in predicting 

solute concentration, particularly with larger training sample sizes of 1000 or 2000. However, there are still some obvious 360 

biases between some surrogate modeling results and their numerical modeling results (see Figure S2(d)). When adopting CNN-

based surrogate models (LeNet and ResNet), the prediction accuracy for solute concentrations significantly improves (see 

Figure 4(b) and Figure 5(b)). With training datasets of 2000 samples, LeNet and ResNet achieve RMSE values below 0.02 

and R² values close to 1. It is worth noting that the ResNet performs well even with smaller sample sizes. For example, with 

200 training samples, the RMSEC and 𝑅𝑅𝐶𝐶2 values for LeNet are around 0.06 and 0.9, respectively, while these criteria values 365 

for ResNet are around 0.04 and 0.95 (see Figure 4(b) and Figure 5(b)). As the number of training samples increases, the 

advantages of ResNet become more apparent. According to Figure S4(d), when the training sample size reaches 2000, the 

prediction results of ResNet are closely consistent with the numerical simulation results for both hydraulic heads and solute 

concentrations. 

 370 
Figure 4. The RMSE results of surrogate model predictions. (a)~(c) are respectively the RMSE values of hydraulic heads, 
solute concentrations and all model outputs.  
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Figure 5. The R2 results of surrogate model predictions. (a)~(c) are respectively the R2 values of hydraulic heads, solute 
concentrations and all model outputs.  375 

The comparison results of the surrogate models reflect a trend of enhanced robustness attributable to advancements in 

machine learning methodologies. Different machine learning approaches employ distinct strategies for achieving nonlinear 

mappings in developing surrogate models. Generally, deeper or larger models contain more trainable parameters, resulting in 

higher degrees of freedom to capture more robust nonlinear relationships. The essence of machine learning development lies 

in addressing the challenge of training these complex DNNs. Current state-of-the-art machine learning techniques have 380 

demonstrated proficiency in training each of the four selected surrogate modeling methods. With sufficient training samples, 

a surrogate model of greater complexity exhibits enhanced capability in representing higher levels of non-linearity (LeCun et 

al., 2015; He et al., 2016). This also explains why, despite having a sufficient number of training samples, the improvement in 

prediction accuracy of the MSVR for solute concentration is limited. In CNNs, sparse connections and weight-sharing in 

convolutional layers reduce redundant weight parameters in DNNs, enhancing the feature extraction of hidden layers. 385 

Consequently, LeNet demonstrates better performance than FC-DNN. The ResNet, which employs residual blocks in 

conjunction with convolutional layers, effectively addresses the issues of gradient vanishing and exploding, making the 

successful training of deeper CNNs possible.  

According to J. Chen et al. (2021), a more globally accurate surrogate model can enhance the performance of TNNA 

inversion results. Thus, we selected the ResNet trained with 2000 samples for the subsequent inversion procedure. In the low-390 

dimensional scenario, its RMSE values for hydraulic head and solute concentration data are less than 0.02, with R² values 

greater than 0.99. Subsequently, the surrogate models for the five high-dimensional scenarios designed in this study were all 

constructed using the ResNet-2000. An additional 500 samples were used to assess the accuracy of their predictions. The 

RMSE values for hydraulic head and solute concentration data are less than 0.02, and the R² values are greater than 0.99, as 

shown in Table 1. Hence, inversion simulations in the five high-dimensional scenarios of this study are also appropriate to the 395 

ResNet-2000 surrogate model. 
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Table 1. The RMSE and R2 values for surrogate model predictions in designed five high-dimensional scenarios. 400 
 RMSE R2 
 RMSEH RMSEC RMSEAll 𝑅𝑅𝐻𝐻2  𝑅𝑅𝐶𝐶2 RAll

2  
Scenario 1 0.0108 0.0174 0.0172 0.9990 0.9980 0.9982 
Scenario 2 0.0102 0.0138 0.0136 0.9995 0.9989 0.9990 
Scenario 3 0.0120 0.0165 0.0163 0.9991 0.9981 0.9983 
Scenario 4 0.0123 0.0161 0.0159 0.9990 0.9984 0.9985 
Scenario 5 0.0137 0.0156 0.0155 0.9989 0.9985 0.9986 

4.2 Parameter inversion method comparison results 

4.2.1 Inversion results of the low-dimensional parameter scenario 

For the low-dimensional parameter scenario, the performance of optimization algorithms is thoroughly evaluated across 

100 parameter scenarios using the Monte Carlo strategy. The observation data for these scenarios are derived from the testing 

dataset after adding Gaussian random noise ε~N(0,0.01). The population sizes of GA, DE, and PSO, along with the chain 405 

length in SA, are set in four distinct scenarios: 20, 40, 60 and 80 (these population size or chain length values are represented 

as NPC in subsequent discussions). These settings determine the number of forward modeling calls required for each iteration, 

significantly influencing the convergence rate and computational efficiency of optimization procedures. Maximum iterations 

for these four metaheuristic algorithms are set to 200. The learning rate, epoch number and weight decay for the TNNA 

algorithm are set to  6×10-5,1000, and 1×10-6, respectively. 410 

The performance of the five optimization algorithms is evaluated according to three aspects: average convergence 

efficiency and accuracy in inversion procedures, predictive accuracy of calibration models for hydraulic heads and solute 

concentrations, and statistical analysis of the estimated errors for each model parameter. Figure 6 presents the logarithmic 

average convergence curves of four metaheuristic algorithms and the TNNA algorithm throughout 100 parameter scenarios. 

Specifically, sub-figures (a)~(d) represent the NPC values for metaheuristic algorithms set at 20, 40, 60, and 80, respectively. 415 

These figures clearly illustrate the average convergence speed and accuracy of five optimization algorithms. Figure 7 displays 

the comparison of calibration and validation between the simulation results and the observed values across all 100 parameter 

scenarios. Sub-figures (a) and (b) illustrate the comparative prediction fit at the 25 observation locations used for model 

calibration, whereas sub-figures (c) and (d) display the comparative prediction fit at the 24 observation locations. In this figure, 

distinct symbols are used to represent the five optimization algorithms. It should be noted that the NPC values for the four 420 

metaheuristic algorithms are uniformly set to 80 during this comparison. Figure 8 illustrates the probability density curves of 

the estimation errors for nine model parameters across 100 parameter scenarios, with different colours representing the five 

optimization algorithms.  

The results in Figure 6 demonstrate that the TNNA algorithm achieves the best convergence accuracy, with its 

convergence logarithmic objective function value (i.e., approximately -4.4) being smaller than those of the other four 425 
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metaheuristic algorithms across these NPC settings. The influence of NPC on the convergence speeds of these four metaheuristic 

algorithms is not significant, exhibiting a distinct transition from rapid to slower convergence around the 75th iteration. As 

NPC increased from 20 to 80, each metaheuristic algorithm showed distinct improvements in the accuracy of the final objective 

function. The DE algorithm showed the least improvement in final convergence accuracy as the NPC value increased from 20 

to 80, with the logarithmic value of its objective function dropping from just above -4.0 to slightly below -4.0. The SA 430 

algorithm also showed limited improvement, with its logarithmic average convergence value increasing from around -4.1 at 

NPC=20 to slightly below -4.3 at NPC=80, close to that of the TNNA algorithm. Among the four metaheuristic algorithms, SA 

exhibited the highest average convergence accuracy. Contrary to the SA and DE algorithms, the PSO and GA algorithms 

significantly enhanced average convergence accuracy as NPC increased. Specifically, as NPC increased from 20 to 80, the 

logarithmic convergence values of PSO and GA decreased by more than 0.5. While increasing NPC values may help 435 

metaheuristic algorithms reduce the gap in average convergence accuracy compared to the TNNA algorithm, larger NPC 

settings also require additional computational burdens. The above results indicate that the TNNA algorithm has a significant 

efficiency advantage over the four metaheuristic algorithms in parameter optimization. For instance, the DE algorithm requires 

32,000 forward model realizations (80×2×200) when NPC is set to 80, while the other three metaheuristic algorithms (PSO, 

GA, and SA) each require 16,000 realizations (80×200). In significant contrast, the TNNA algorithm requires only one forward 440 

model realization per iteration, resulting in 200 realizations. These comparisons illustrated that the TNNA method is more 

effective than the other four metaheuristic algorithms in achieving robust convergence results. 

 
Figure 6. Comparative convergence trends of five optimization algorithms (Markers indicate convergence values at every 10 
steps to indicate convergence values; for TNNA, only the first 200 out of 1000 iterations are presented). 445 
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The results presented in Figure 7 indicate that, among the five optimization algorithms, the TNNA algorithm achieves the 

smallest RMSE values and R2 values closest to 1.0 for both hydraulic heads and solute concentration during model calibration 

and validation. Furthermore, the distribution of comparison points demonstrates that the calibrated and validated modeling 

results of the TNNA algorithm are more accurately matched with their actual values than the other four metaheuristic 

algorithms, particularly for solute concentrations. Among the four metaheuristic algorithms, SA and DE outperform GA and 450 

PSO regarding RMSE and R2 values. During model calibration and validation, PSO exhibits the worst predictive accuracy, 

recording the highest RMSE and R2 values for both hydraulic heads and solute concentrations. It is noteworthy that the RMSE 

and R2 values for SA during hydraulic head calibration are 0.0085 and 0.9992, respectively, while those for DE during solute 

concentration calibration are 0.0112 and 0.9969. These values are almost equal to those of the TNNA algorithm. The robustness 

of an inversion algorithm is determined by its accuracy in both calibration and validation for hydraulic heads and solute 455 

concentrations. However, DE and SA demonstrate appropriate calibration accuracy only for one of the two simulation 

components. Overall, the TNNA algorithm provides more robust model calibration and validation results than the other four 

metaheuristic algorithms. 

Figure 8 indicates that the estimated error distributions for the nine model parameters derived from the TNNA algorithm 

are more concentrated than those obtained from the four metaheuristic algorithms. The mean estimated error values for the 460 

nine numerical model parameters using the TNNA algorithm are also the lowest. These results highlight the high accuracy and 

reliability of the TNNA inversion algorithm. Among the four metaheuristic algorithms, DE and SA outperform GA and PSO. 

This is because the probability density curves of estimation errors for the nine parameters using DE and SA are more 

concentrated around zero, with mean values lower than those of GA and PSO. The DE algorithm shows a more concentrated 

distribution around zero for the overall estimation errors of parameters K1 to K8. In contrast, the SA reveals reduced estimation 465 

errors for the C0 parameter in most cases, ranking just behind the TNNA algorithm. GA outperforms PSO in estimation 

accuracy for seven of the nine model parameters, with PSO matching its probability density curves to that of GA only for 

parameters K2 and K4. As a whole, the statistical results of the estimated model parameter errors illustrate that the machine 

learning-based TNNA algorithm exhibits enhanced inversion performance compared to the four metaheuristic optimization 

algorithms. However, the findings also reveal that none of the five algorithms consistently offers completely reliable inversion 470 

solutions across all scenarios. For example, the TNNA algorithm, despite its generally better performance, demonstrates 

estimation errors as high as 0.4 for parameters K4 and K6 in some scenarios. Such results are likely because the provided 

observational data cannot ensure equifinality in some scenarios. In these cases, it is essential to introduce additional 

regularization constraints to attenuate the equifinality (G.S. Wang and Chen, 2013; Arsenault and Brissette, 2014). These 

findings emphasize the importance of employing the Monte Carlo method in comparative studies of inversion algorithms to 475 

ensure comprehensive evaluations and avoid misleading conclusions. 
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Figure 7. Comparison of calibrated and validated model predictive accuracy for hydraulic heads and solute concentrations by 
the four metaheuristic algorithms and the TNNA method. 

 480 
Figure 8. Probability density curves of estimation errors for nine model parameters using five optimization methods. 
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The above comparison results indicated that the machine learning-based TNNA algorithm outperforms the other four 

metaheuristic algorithms in both inversion accuracy and computational efficiency. The primary advantage of the TNNA 

algorithm over the four metaheuristic algorithms is its highly deterministic updating direction of model parameters, guided by 

the loss function, which serves as the objective function for inverse modeling. Research on machine learning applications 485 

indicates that DNNs can approximate continuous functions by adjusting weights and biases (LeCun et al., 2015; Goodfellow 

et al., 2016). The TNNA algorithm leverages this capability by transforming the model parameter inversion issue into the 

training of a reverse network to achieve reverse mappings. By establishing a loss function based on inversion constraints from 

the Bayesian theorem, the TNNA algorithm ensures that training the reverse network brings each parameter update closer to 

the optimal solution during each epoch, thereby improving accuracy and convergence speed. In contrast, the four metaheuristic 490 

algorithms require numerous forward simulations for each parameter update. The optimization direction for model parameters 

is determined by evaluating the objective function. This process is governed by the exploration and exploitation strategies 

inherent in metaheuristic algorithms. However, these approaches introduce randomness in the direction of model parameter 

updates, making it challenging to ensure that updates move towards the direction of fastest convergence under specific 

hyperparameter settings. This also explains why the TNNA algorithm can update model parameters more efficiently and 495 

achieve higher convergence accuracy despite requiring only one forward realization in each training epoch. 

4.2.2 Inversion results of the high-dimensional parameter scenario 

For estimating the permeability field under five designed observational scenarios, the iteration number for the four 

metaheuristic algorithms was set at 200, with NPC values of 100, 500, and 1000. The learning rate and weight decay for training 

reverse networks within the TNNA framework were set to 1×10-3 and 1×10-4, respectively.  500 

Figure 9 and Figure 10 illustrate the log-permeability field estimation results and error distributions for the four 

metaheuristic algorithms and the TNNA algorithm under the most densely observed scenario (i.e., Scenario 5). The 

corresponding results for Scenarios 1-4 are presented in Figure S7-S14. Figure 11 compares the RMSE values for the log-

permeability fields estimated by the four metaheuristic algorithms and the TNNA algorithm across all five scenarios. These 

detailed RMSE values can be found in Table 2 (Scenario 5) and Table S4 (Scenarios 1-4). For Scenario 5, the accuracy of 505 

permeability estimations by each metaheuristic algorithm improves as the NPC value increases (see Figure 9 and Table 2). 

Notably, the GA achieves the best results with an NPC of 1000, recording an RMSE of 0.1057. The DE and SA algorithms 

yield their most accurate permeability estimations with RMSE values of 0.1597 (NPC=100) and 0.1549 (NPC=1000), 

respectively. The PSO method is the least effective, achieving an RMSE of 0.3334 at NPC =1000. As shown in Figure 10 and 

Table 2, the TNNA algorithm provides inversion results with an RMSE of 0.1063 after training the reverse network for 200 510 

epochs. This suggests that the TNNA algorithm can estimate high-dimensional permeability fields with accuracy comparable 

to that of the GA method (NPC=1000) with significantly fewer forward model realizations (200 compared to 200,000), reducing 

the computational burden by 99.9% and improving inversion efficiency by a factor of 1000. Increasing the training epochs of 

the reverse network to 1000 further reduces the RMSE of the TNNA method to 0.0595, demonstrating its advantages over the 
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four metaheuristic algorithms in this scenario. Across all scenarios, the accuracy of the estimated permeability fields correlates 515 

positively with the density of observation wells, and estimation errors are generally higher in areas not covered by monitoring 

wells (see Figure S7-S14). Figure 11 further demonstrates that the RMSE values for permeability estimation using the TNNA 

algorithm are consistently lower than those of the four metaheuristic algorithms across Scenarios 1-4, indicating that the TNNA 

algorithm exhibits greater robustness compared to the metaheuristic algorithms in all five scenarios. 

 520 
Figure 9. Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000, respectively) and 
absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 5, achieved by four metaheuristic algorithms.  

 
Figure 10. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 5, achieved by the TNNA. 

 525 
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Table 2. RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm 
under Scenario 5. 

Metaheuristic algorithms 
TNNA 

 GA DE PSO SA 
NPC=100 0.1940 0.1597 0.5399 0.2071 epoch=200 0.1063 
NPC=500 0.1142 0.1904 0.3810 0.1781 epoch=1000 0.0595 
NPC=1000 0.1057 0.1748 0.3334 0.1549   

 

 
Figure 11. Comparison of RMSE in estimating log-permeability fields using four metaheuristic algorithms and the TNNA 530 
algorithm across five scenarios (S-1 to S-5).  

To evaluate the predictive performance of the numerical model calibrated by various inversion methods, simulations of 

hydraulic heads and solute concentrations were conducted over 60 days, starting on the 2nd day with bi-daily recordings, using 

the permeability fields with the lowest RMSE values identified by each inversion method. Observation data from the 2nd day 

to the 40th day were used for model calibration, while additional data from the 42nd to the 60th day were employed to evaluate 535 

the future predictions of the calibrated numerical models. The RMSE values for the calibrated hydraulic heads and time series 

solute concentrations are presented in Table 3 and Figure 12. Figure 13 displays the spatial distribution of the calibrated 

numerical simulation results and errors for hydraulic heads and solute concentration simulation results at three specific times 

(t=4th, 20th, and 52nd days). Results for the entire 60-day period are presented in Figure S15-S44.  

According to Figure 13(a), the calibrated simulation errors for hydraulic heads did not exceed 0.02 meters for the TNNA 540 

method and three of the four considered metaheuristic algorithms, except PSO method, which exhibited hydraulic head errors 

larger than 0.06 meters in certain areas. Among the four metaheuristic algorithms, the GA method achieved the lowest RMSE 

in hydraulic head simulations, with a value of 7.4837×10-4. For solute concentrations, the GA algorithm consistently has the 

highest prediction accuracy among the metaheuristic algorithms, with RMSE values generally around 0.005 (Figure 12). The 

TNNA algorithm achieved a similar level of accuracy to GA in the calibrated numerical model predictions. Specifically, during 545 

the initial 10 days and from the 41st day to the 60th day, the TNNA algorithm showed slightly higher prediction accuracy than 

the GA-calibrated model. However, during the intermediate period from the 10th day to the 40th day, the GA-calibrated model 

had a slight advantage over the TNNA algorithm. The normalized absolute errors in the solute transport simulation results 
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obtained using the TNNA algorithm remained consistently below 0.02 throughout the simulation period (Figure 13(b~c)). 

These results indicate that in high-dimensional settings, the TNNA algorithm provides inversion outcomes that enable the 550 

calibrated model to deliver simulation results comparable to those of the best-performing metaheuristic algorithm. Overall, 

the TNNA method also demonstrates advantages over the four metaheuristic optimization algorithms in the designed high-

dimensional scenarios, excelling in both inversion efficiency and accuracy.  

Table 3. RMSE values of calibrated hydraulic heads for the four metaheuristic algorithms and the TNNA algorithm. 

 TNNA DE GA PSO SA 
RMSE 6.8537×10-4 1.2181×10-3 7.4837×10-4 2.1683×10-3 1.0316×10-3 

 555 
Figure 12. RMSE values of calibrated solute concentrations over 60 days for the four metaheuristic algorithms and the TNNA 
algorithm.  
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Figure 13. Spatial distributions of calibrated numerical simulation results and absolute errors for hydraulic heads and solute 
concentrations at three dynamic times (t=4, 20, and 50 day) using the TNNA algorithm and four metaheuristic algorithms. 560 
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4.3 Insights from synthetic cases for practical research 

The model conditions of the two synthetic cases in this study are primarily based on previous studies, as well as large-

scale sandbox (Jose et al., 2004; J. Zhang et al., 2018; Mo et al., 2019). It is worth noting that the domain sizes for field-scale 

groundwater models are commonly on the kilometre scale, which is significantly larger than 10m or 20m sizes used in this 

study. Moreover, the hydraulic gradient of groundwater in natural alluvial aquifers is generally below 0.01, while hydraulic 565 

gradients of 0.1 and 0.05 may occur when the underlying aquitard of the aquifer has a natural slope (Chai et al., 2024). 

Additionally, the monitoring stations in the synthetic cases of this study are densely distributed, whereas in practical studies, 

the number and locations of monitoring stations are constrained by financial budgets. They are often designed based on multi-

objective optimization criteria, such as maximizing information and minimizing redundancy (Keum et al., 2018; J. Chen et al., 

2022; Cao et al., 2025). Therefore, a common concern that may arise is whether the results of this study can guide the selection 570 

of appropriate algorithms in practical research scenarios. 

As summarized in the Introduction, the performance of an inversion algorithm depends on the degree of model 

nonlinearity and the complexity of parameter space. The mathematical model of this study consists of the groundwater flow 

continuity equation and the advection-dispersion equation. Within a fixed system mathematical model, variations in the 

average hydraulic gradient by an order of magnitude primarily affect flow velocity and solute transport rates, with little impact 575 

on the degree of nonlinearity in the system. Therefore, the inversion algorithms are expected to perform similarly in these real-

world scenarios, provided that the system variables at field sites adhere to the same mathematical models and exhibit 

comparable parameter heterogeneity to that in this study. Additionally, monitoring strategies with densely distributed stations 

are commonly employed in the evaluation of inversion algorithms to ensure sufficient observational information, thereby 

reducing non-uniqueness in parameter inversion results (Bao et al., 2020; Mo et al., 2020; J. Zhang et al., 2024). Although 580 

such monitoring networks are unlikely to be used in field-scale groundwater studies, the effectiveness of the inversion results 

ultimately depends on the amount of effective information in the observational data. Furthermore, as optimized monitoring 

networks exclude redundant monitoring stations, dynamic responses from optimal monitoring stations typically exhibit higher 

sensitivity to model parameters, making it easier to achieve data assimilation goals for inversion algorithms. As a whole, the 

findings of this study are also applicable to research conducted at field scales with similar mathematical model conditions.  585 

5. Summary and conclusions 

Recent advancements in machine learning have significantly contributed to the development of inverse modeling. This 

study aims to compare the universality and advantages of the novel TNNA algorithm with four popular metaheuristic 

algorithms (GA, PSO, DE, and SA) across various parameter dimensions in solute transport models. Surrogate models for 

these inversion methods were constructed using ResNet, which achieved the highest predictive accuracy for hydraulic heads 590 

and solute concentrations among four evaluated surrogate modeling methods (MSVR, FC-DNN, LeNet, and ResNet).  

https://doi.org/10.5194/hess-2024-315
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



26 
 

The inversion results indicate that the TNNA algorithm outperforms the four conventional metaheuristic algorithms in 

both high-dimensional and low-dimensional scenarios, providing more accurate results while significantly reduces the 

computational burden. Moreover, it has been verified that the TNNA algorithm consistently delivers reliable inversion results 

with just a single forward simulation per iteration in scenarios featuring various complex and uncertain model parameters. This 595 

characteristic offers a practical approach to balancing exploration and exploitation with a reduced computational burden, 

contrasting with conventional metaheuristic algorithms that require increasing forward simulations as the inversion problem 

grows more complex. 

This study demonstrates that achievements in machine learning can significantly enhance inversion results compared to 

conventional methods. Given that nonlinearity and ill-posedness are two common challenges in inversion problems across 600 

various disciplines, establishing constraints on nonlinear relationships and applying appropriate machine learning techniques 

can be treated as vital approaches for future research. Meanwhile, the equifinality induced by ill-posedness can be attenuated 

through monitoring network optimizations. The model processes in this study are clearly defined, but in real-world scenarios, 

model response measurements often involve significant uncertainty, especially in groundwater systems with multi-component 

reactive transport. In such scenarios, it is crucial to consider the inversion of model parameters and integrate the identification 605 

of key processes within the groundwater system models. These optimization challenges may also benefit from the capabilities 

of machine learning, since they often involve uncertain quantifications. Furthermore, it is essential to continuously follow the 

latest developments of machine learning and consider integrating more advanced DNN models to address increasingly complex 

groundwater system inversion problems. For example, the emergence of large language models offers opportunities for 

complex system modeling and inversion studies across various scientific and engineering disciplines (Birhane et al., 2023; 610 

Buehler, 2023). The latent capacity of large language models has yet to be fully explored. Significant achievements have 

primarily focus on protein designs (Jumper et al., 2021; Ferruz et al., 2022; Lin et al., 2023), drug development (Peng et al., 

2023; Duffy et al., 2024), and molecular discovery (Flam-Shepherd et al., 2022; J. Li et al., 2023). Developing groundwater 

system inversion frameworks based on large language models is of great significance for the advancement of hydrology and 

earth science (Deng et al., 2023; Foroumandi et al., 2023). 615 
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